
Malleable APGAS 
Programs and their support 

in Batch Job Scheduler

Patrick Finnerty1, Leo Takaoka1,
Takuma Kanzaki1, Jonas Posner2

1. Kobe University, Kobe, Japan
2. University of Kassel, Kassel, Germany

Asynchronous Many-Task systems for Exascale 2023



Parallel Job Scheduling
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Malleable Job Potential
• Malleable Job?

→ can change nb of nodes used (grow/shrink)
during execution following scheduler instruction
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Scheduler instructs 
green job to grow

Earlier completion of 
green jobs allows earlier 

start for the next jobs

Possible schedule on parallel 
machines with rigid jobs only

Possible schedule on parallel 
machines with some malleable jobs

• Benefits?
→ More effective use of resources
→ Increased throughput and/or reduced energy consumption



• Support in RMS (Slurm, Torque, Open PBS, …)
• Interactions between program/RMS necessary

• Some experimental implementations

• Support in libraries and Programming models
• MPI w/ Checkpoint/Restart

• Charm++

• (A)PGAS languages

• Compatible programs
• Requires effort to convert/create applications

Hurdles
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Our work



Contributions
• Malleable implementation of APGAS for Java

• Simple abstractions for programmers

• Modularity for adaptation to future schedulers

• Refactoring of an AMT work-stealing scheme
• Simplified through our abstractions

• Can respond to scheduler directives

• Demonstrate the benefits of malleability on a 
Beowulf cluster with a custom scheduler
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A word about (A)PGAS
• Partitioned Global Address Space

• The memory is partitioned between processes

• That memory can be accessed from remote processes

• Asynchronous PGAS
• Can spawn and control termination of tasks on the 

processes

• In X10 and APGAS for Java:
• “Place,” finish at async 

6

Place 0 Place 1 Place 2 Place 3



Malleable APGAS?
• Add and remove Places!
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Malleable APGAS architecture
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Application example
• Lifeline-based Global Load Balancer

• Each place has some tasks

• When a place runs out of tasks, steal through 
preferential channels, the “lifelines”
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Application example
• Grow order

• Before: do nothing

• After: integrate the new place(s) into the lifeline 
network, they steal some work and start working
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Application example
• Shrink order

• Before: Disconnect place(s) from lifeline network, 
relocate any work to remaining places

• After: do nothing
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Evaluation - environment
• Beowulf cluster

• 12 nodes
• Password-less 

SSH authentication

• Simplistic malleable job scheduler
• First-Come First-Served
• If possible, shrink jobs to allow the next one to start
• Otherwise, grow running malleable jobs

• 30-job batch
• Some MPI, some APGAS
• Malleable programs have a min/max nb of nodes
• Compare “100% fixed” with “half malleable/half fixed” batch
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Evaluation - results
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100% fixed jobs
Half fixed, 
half malleable

Workload: 100% rigid Half malleable half rigid

Makespan (m) 21.4 18.2 (-15%)

Avg cluster utilization 72.3% 83.4% (+15%)

Avg wait time (m) 9.4 7.9 (-15%)

Avg exec time (m) 0.96 1.40 (+45%)

Avg response time (m) 10.36 9.34 (-10%)

Higher 
throughput!

Malleable 
jobs use 

fewer nodes 
for longer



• Presented a practical, extensible, malleable 
implementation of APGAS for Java

• Demonstrated performance benefits on our small 
Beowulf, even with a simplistic scheduling strategy

• Perspectives
• Support for evolving jobs? Other applications?

• Change in resource allotment initiated by the program

• Evaluation on larger clusters?
• Possible within a certain degree … 

• Scheduling algorithms best studied through simulation

Conclusion
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Conclusion

• All of our source code is freely available:
• Malleable APGAS runtime 

https://github.com/projectwagomu/apgas

• Malleable lifeline-based Global Load Balancer 
https://github.com/projectwagomu/lifelineglb

• Custom scheduler 
https://github.com/projectwagomu/FIFO-Malleable-Job-Scheduler
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Thank you for listening!
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