
Malleable APGAS 
Programs and their support 

in Batch Job Scheduler

Patrick Finnerty1, Leo Takaoka1,
Takuma Kanzaki1, Jonas Posner2

1. Kobe University, Kobe, Japan
2. University of Kassel, Kassel, Germany

Asynchronous Many-Task systems for Exascale 2023



Parallel Job Scheduling

2

time

n
o

d
e

s

Possible schedule on 
parallel machines

Jobs submitted by users

Unused 
resources

Ressource 
Management 

System

Scheduler



Malleable Job Potential
• Malleable Job?

→ can change nb of nodes used (grow/shrink)
during execution following scheduler instruction

3

time

n
o

d
e

s

time

n
o

d
e

s

Scheduler instructs 
green job to grow

Earlier completion of 
green jobs allows earlier 

start for the next jobs

Possible schedule on parallel 
machines with rigid jobs only

Possible schedule on parallel 
machines with some malleable jobs

• Benefits?
→ More effective use of resources
→ Increased throughput and/or reduced energy consumption



• Support in RMS (Slurm, Torque, Open PBS, …)
• Interactions between program/RMS necessary

• Some experimental implementations

• Support in libraries and Programming models
• MPI w/ Checkpoint/Restart

• Charm++

• (A)PGAS languages

• Compatible programs
• Requires effort to convert/create applications

Hurdles

4

Our work



Contributions
• Malleable implementation of APGAS for Java

• Simple abstractions for programmers

• Modularity for adaptation to future schedulers

• Refactoring of an AMT work-stealing scheme
• Simplified through our abstractions

• Can respond to scheduler directives

• Demonstrate the benefits of malleability on a 
Beowulf cluster with a custom scheduler

5



A word about (A)PGAS
• Partitioned Global Address Space

• The memory is partitioned between processes

• That memory can be accessed from remote processes

• Asynchronous PGAS
• Can spawn and control termination of tasks on the 

processes

• In X10 and APGAS for Java:
• “Place,” finish at async 

6

Place 0 Place 1 Place 2 Place 3



Malleable APGAS?
• Add and remove Places!

7

Shrink by 1

Grow by 2

Place 2 is chosen 
to be released

Place 0 Place 1 Place 2 Place 3

Place 0 Place 1 Place 2 Place 3

Place 0 Place 1 Place 3 Place 4 Place 5



Malleable APGAS architecture

8

APGAS runtime

Application

Malleable 
Handler Impl

Malleable
Handler

Malleable
Communicator

Socket Malleable
CommunicatorScheduler

Implements what to do 
before & after malleable 

reconfiguration
(application specific)

Implements communication 
protocol with scheduler

(modular)

Coordinates 
procedures between 

application & runtime



Application example
• Lifeline-based Global Load Balancer

• Each place has some tasks

• When a place runs out of tasks, steal through 
preferential channels, the “lifelines”

9

Place 0

Place 1

Place 2

Place 3

Ø



Application example
• Grow order

• Before: do nothing

• After: integrate the new place(s) into the lifeline 
network, they steal some work and start working

10

Place 0

Place 1

Place 2

Place 3

Place 4

Ø

Note:
Computation continues 
while new places are 
added to the runtime!



Application example
• Shrink order

• Before: Disconnect place(s) from lifeline network, 
relocate any work to remaining places

• After: do nothing

11

Place 0

Place 1

Place 2

Place 3

Place 4

Ø

Note:
Computation continues 
while places are removed 
from the runtime!



Evaluation - environment
• Beowulf cluster

• 12 nodes
• Password-less 

SSH authentication

• Simplistic malleable job scheduler
• First-Come First-Served
• If possible, shrink jobs to allow the next one to start
• Otherwise, grow running malleable jobs

• 30-job batch
• Some MPI, some APGAS
• Malleable programs have a min/max nb of nodes
• Compare “100% fixed” with “half malleable/half fixed” batch

12



Evaluation - results

13

100% fixed jobs
Half fixed, 
half malleable

Workload: 100% rigid Half malleable half rigid

Makespan (m) 21.4 18.2 (-15%)

Avg cluster utilization 72.3% 83.4% (+15%)

Avg wait time (m) 9.4 7.9 (-15%)

Avg exec time (m) 0.96 1.40 (+45%)

Avg response time (m) 10.36 9.34 (-10%)

Higher 
throughput!

Malleable 
jobs use 

fewer nodes 
for longer



• Presented a practical, extensible, malleable 
implementation of APGAS for Java

• Demonstrated performance benefits on our small 
Beowulf, even with a simplistic scheduling strategy

• Perspectives
• Support for evolving jobs? Other applications?

• Change in resource allotment initiated by the program

• Evaluation on larger clusters?
• Possible within a certain degree … 

• Scheduling algorithms best studied through simulation

Conclusion

14



Conclusion

• All of our source code is freely available:
• Malleable APGAS runtime 

https://github.com/projectwagomu/apgas

• Malleable lifeline-based Global Load Balancer 
https://github.com/projectwagomu/lifelineglb

• Custom scheduler 
https://github.com/projectwagomu/FIFO-Malleable-Job-Scheduler

15

https://github.com/projectwagomu/apgas
https://github.com/projectwagomu/lifelineglb
https://github.com/projectwagomu/FIFO-Malleable-Job-Scheduler


Thank you for listening!

16


	Slide 1: Malleable APGAS Programs and their support in Batch Job Scheduler
	Slide 2: Parallel Job Scheduling
	Slide 3: Malleable Job Potential
	Slide 4: Hurdles
	Slide 5: Contributions
	Slide 6: A word about (A)PGAS
	Slide 7: Malleable APGAS?
	Slide 8: Malleable APGAS architecture
	Slide 9: Application example
	Slide 10: Application example
	Slide 11: Application example
	Slide 12: Evaluation - environment
	Slide 13: Evaluation - results
	Slide 14: Conclusion
	Slide 15: Conclusion
	Slide 16: Thank you for listening!

