
International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075 (Online), Volume-12 Issue-9, August 2023  

1 

Published By: 

Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijitee.I96960812923 
DOI: 10.35940/ijitee.I9696.0812923 

Journal Website: www.ijitee.org 

 

A Comparative Evaluation of Diverse Deep 

Learning Models for the COVID-19 Prediction 
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Abstract: Deep learning methodologies are now feasible in 

practically every sphere of modern life because to technological 

advancements. Because of its high level of accuracy, deep 

learning can automatically diagnose and classify a wide variety 

of medical conditions in the field of medicine. The coronavirus 

first appeared in Wuhan, China, in December 2019, and quickly 

spread throughout the world. The pandemic of COVID-19 

presented significant challenges to the world's health care 

system. PCR and medical imaging can diagnose COVID-19. 

There has a negative impact on the health of people as well as 

the global economy, education, and social life. The most 

significant challenge in stymieing the rapid propagation of the 

disease is locating positive Corona patients as promptly as 

possible. Because there are no automated tool kits, additional 

diagnostic equipment will be required. According to radiological 

studies, these images include important information about the 

coronavirus. Accurate treatment of this virus and a solution to 

the problem of a lack of medical professionals in remote areas 

may be possible with the help of a specialized Artificial 

Intelligence (AI) system and radiographic pictures. We used pre-

trained CNN models Xception, Inception, ResNet-50, ResNet-

50V2, DenseNet121, and MobileNetV2 to correct the COVID-19 

classification analytics. In this paper, we investigate COVID-19 

detection methods that make use of chest X-rays. According to 

the findings of our research, the pre-trained CNN Model that 

makes use of MobileNetV2 performs better than other CNN 

techniques in terms of both the size of the solution and its speed. 

Our method might be of use to researchers in the process of fine-

tuning the CNN model for efficient COVID screening 
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I. INTRODUCTION 

When referring to coronavirus, the term "novel" is 

frequently used to denote a new strain within the dangerous 

virus family [1]. According to the World Health Organization 

(WHO), the coronavirus belongs to a broad group of viruses 

encompassing a range of conditions, spanning from mild 

respiratory infections such as the common cold to more 

severe and hazardous diseases. These illnesses can affect both 

people and animals. The outbreak of the COVID-19 strain of 

the coronavirus commenced in Wuhan, China, in December 

2019. Since that period, it has resulted in significant health 

concerns on a global scale. The COVID-19 coronavirus strain 

is a component of the Middle East Respiratory Syndrome 

(MERS) and Severe Acute Respiratory Syndrome 

coronaviruses (SARS). Coronavirus infection symptoms 

include liquid buildup in the lungs, renal disease, and 

respiratory issues including pneumonia. Coronaviruses are 

particularly dangerous due to their serial interval and 

reproduction rate [2].  

    These viruses can generate epidemics like the ones that 

caused MERS and SARS in the past 20 years since they know 

no boundaries between species. The SARS-CoV started in 

China, spread to 24 countries, and resulted in 8000 cases and 

800 fatalities. Beginning in Saudi Arabia, the MERS-CoV 

has been linked to 2500 cases and 8700 fatalities. Healthy 

CoV carriers make up around 2% of the population, and these 

viruses cause 5 to 10% of acute respiratory illnesses [3]. 

SARS-CoV-2 (Severe Acute Respiratory Syndrome 

Coronavirus-2) is the name of the virus that caused the 

COVID-19 pandemic [4]. 

    The 2019 discovery of COVID-19 represents a novel 

species that has not yet been recognised in humans. There are 

several viruses, including corona viruses, that can naturally 

infect both people and other animals, such as chiropterans, 

rodents, and avian species, through the employment of bats 

as reservoirs and vectors [5]. The CoV received its moniker 

from its solar corona-like visual characteristics when 

observed using an electron microscope. According to 

statistics from the WHO, COVID-19 is a medical condition 

characterized by its acute nature, which can lead to resolution. 

However, it is important to note that in certain cases, COVID-

19 can also result in fatality, as depicted in Fig. 1. Due to 

extensive alveolar damage and developing respiratory failure, 

severe illness may cause mortality when it first manifests [8]. 

Respiratory droplets larger than 5 to 10 m are capable of 

transmitting diseases through the air.  
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Compared to SARS and MERS, COVID-19 has a greater 

growth factor because it is more likely to spread through 

unprotected contact and often manifests milder symptoms. 

with the aid of Fig. 1, the statistics for the top 10 COVID-19 

afflicted nations in terms of infection cases and fatalities are 

shown. 

 

Figure 1. The top ten countries statistical data pertaining to the number of individuals who have been 

infected and the number of fatalities 

In order to stop the COVID-19 pandemic from spreading 

further, it is crucial to identify those who have the viral 

infection as soon as possible [6]. The acknowledged standard 

diagnostic technique is real-time polymerase chain reaction 

(RT-PCR), which detects viral nucleic acids [7, 8]. However, 

it is worth noting that this test exhibits sensitivity and 

specificity levels that are below average. Additionally, 

numerous regions and countries with a high prevalence of 

the disease are facing challenges in conducting a sufficient 

number of RT-PCR tests to promptly address several 

thousand of suspected cases. The discomfort of RT-PCR, the 

scarcity of swabs, the requirement for reagents, the time it 

takes to get results, and the high false-negative rate are 

additional issues. In light of these worries, other diagnostic 

strategies merit research [9]. In order to establish a robust 

framework for the comprehensive identification, tracking, 

and isolation of individuals who have contracted COVID-19 

during the early stages of infection, it is imperative that all 

methodologies exhibit a high degree of dependability, 

expediency, and efficacy in detecting the presence of the 

virus. The use of artificial intelligence tools for training, 

forecasting, and assessment is now widely recognised as 

being advantageous. A lot of prediction models are created 

using neural networks. However, there are still drawbacks 

with neural networks, such as their poor convergence and 

learning capacity [10]. Deep learning has been shown to be 

a helpful technology to speed up diagnostics as it is evident 

that it has a wide range of uses and can be used to make 

predictions and clinical judgements in a medical system, as 

ALzubi et al. [11] showed. These studies also shown that 

connecting medical images and diagnostic factors is a 

successful plan that would help doctors diagnose patients 

using big data. Medical imaging plays a pivotal role in the 

detection of COVID-19 infections through the utilization of 

radiological modalities, including X-rays and computed 

tomography scans, in order to facilitate clinicians the 

analysis of the COVID-19 disease and expedite the 

implementation of preventive and control measures fast. 

   CT scans are used in imaging. Ground-Glass Opacities 

(GGO) are known to be abnormalities that can be seen in 

COVID-19 infected person’s thorax CT images [12]. Chest 

CT scans can be used to develop a method for identifying 

and quantifying COVID-19 instances, according to a large 

body of research [13]. X-ray pictures can also be used in 

place of CT scans to identify COVID-19. Because of this, it 

is feasible to analyze medical pictures like chest X-rays 

(CXR) and CT scans to provide very quick diagnostic 

information by looking for potential patterns that might 

result in the automated identification of the condition. The 

chest X-ray is a commonly employed imaging technique for 

the diagnostic evaluation of individuals showing thoracic 

abnormalities. Its popularity stems from its rapid imaging 

time, low radiation exposure, low cost, and widespread 

availability in emergency and hospital settings. Furthermore, 

it is often interpreted without the involvement of expert 

radiologists. 

   X-ray imaging offers a safer alternative to laboratory 

techniques that investigate the respiratory system, as it does 

not pose a heightened risk of aerosolizing the pathogen. In 

addition to demonstrating the extent of the disease at various 

time points, X-rays can also assist in the categorization of 

patients based on their respective levels of risk for 

developing subsequent complications. Chest X-rays, unlike 

computed tomography (CT) scans, cannot distinguish 

between pneumonia and other diseases, despite the fact that 

it is thought to be the most difficult plain film to read 

correctly [18]. For the care of patients in a dire condition and 

to aid in the discovery of COVID-19 clustering events, 

accurate interpretation is essential.  
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Since CT is a noninvasive imaging technique, it can show 

specific lung symptoms that are connected to COVID-19 

[15, 16]. CT is a useful tool for the early identification of 

COVID-19, although it may reveal imaging characteristics 

that make it difficult to distinguish COVID-19 from other 

kinds of pneumonia. Compared to X-ray imaging, CT 

imaging takes a lot longer and necessitates intricate 

sanitization processes between patients. Further, timely viral 

pneumonia screening may be challenging due to the lack of 

readily accessible high-quality CT scanners. For a quick 

diagnosis of COVID-19, the involvement of medical 

imaging is crucial [14]. Therefore, using AI in conjunction 

with chest imaging can be helpful. 

  Recent studies have shown that deep learning [17, 18], 

machine learning [19, 20], and computer vision [21] may all 

be used to automatically diagnose a variety of body ailment 

[22,23]. The utilization of deep learning as a feature extractor 

is employed with the objective of enhancing classification 

accuracy. [24]. 

   The ability of radiologists to accurately interpret 

radiography images remains a significant issue, primarily 

attributed to the inherent limitations of human perception in 

detecting subtle visual cues within the images. Despite the 

widespread availability and expeditious nature of 

radiography procedures, particularly in the context of chest 

radiology imaging systems commonly found in hospitals, the 

challenge of effectively analyzing these images persists. 

Radiologists may overlook patterns in chest X-rays that deep 

learning can spot [25]. 

   Due to its great power of feature extraction [26], deep 

learning, which has been used to detect TB in chest X-rays, 

might also be utilized to identify lung abnormalities linked 

to COVID-19 [27]. This will be useful to physicians as they 

choose the best course of action for high-risk COVID-19 

patients. On pediatric chest radiographs, deep learning was 

utilized to distinguish between bacterial and viral pneumonia 

[28]. Additionally, efforts have been undertaken to identify 

different chest CT scan imaging characteristics [29]. 

Deep learning (DL), which is a subfield of machine learning 

(ML), is used to extract features from pictures as well as 

categorize them. It is motivated by how the human brain 

functions. Being able to learn from unlabeled data, or 

unsupervised learning, is DL's main strength. The utilization 

of unlabeled data, the absence of feature engineering, the 

ability to achieve accurate and precise predictions, and the 

capability for image classification are among the notable 

characteristics of this approach [30], Deep learning (DL) has 

been extensively utilized in various industries, including but 

not limited to self-driving vehicles, face recognition, object 

detection, and image classification. 

   Convolutional neural networks (CNNs) are DL algorithms 

that have been widely applied to address issues with 

document analysis, various picture classifications, posture 

identification, and action recognition [31]. Convolutional 

neural networks (CNNs) have demonstrated efficacy in the 

detection of various medical conditions, such as coronary 

artery disease, malaria, Alzheimer's disease, several dental 

disorders, and Parkinson's disease. One area where CNN has 

shown promising results is in medical imaging [32]. 

  Moreover, CNN exhibits a favorable likelihood of 

discerning between COVID-19 infections and non-COVID-

19 infections by leveraging medical images such as chest X-

rays and CT scans, which are readily accessible in public 

databases . 

The majority of convolutional neural networks (CNN)-based 

deep learning models for COVID-19 detection employ this 

architecture. These include Mobile Net, Shuffle Net, Res 

Net, Alex Net, Google Net, Inception or Xception, VGG Net 

etc. A few publications discussing reviewed investigations of 

COVID-19 diagnostic systems based on deep learning have 

recently been published [33,34,35,36,37,38,39]. The 

researchers have presented their findings on the detection of 

COVID-19 using a variety of datasets consisting of chest X-

ray (CXR) and computed tomography (CT) images. The 

majority of these datasets were collected from online 

sources. Based on the findings of these researches, the 

produced systems have demonstrated promising 

performance, but further advancements in the databases of 

medical pictures and the construction of optimal deep 

learning algorithms are still required to lower computing 

costs and resolve the issue of sparse data. Accuracy, 

sensitivity, specificity, precision, F1-score, and other metrics 

are often employed to assess the effectiveness of deep 

learning models.  

     The field of COVID-19 detection based on deep learning 

has seen a significant amount of study since March 2020. In 

certain cases, both chest X-ray and CT scan pictures are used 

to train and evaluate these deep learning models. The general 

COVID-19 detection methods based on machine learning, 

deep learning, and deep transfer learning are shown in 

Figures 2 and 3.  

 
Figure 2. Machine learning-based COVID-19 detection/classification. 

 

https://www.openaccess.nl/en/open-publications
http://doi.org/10.35940/ijitee.I9696.0812923
http://www.ijitee.org/


 

A Comparative Evaluation of Diverse Deep Learning Models for the COVID-19 Prediction 

4 

Published By: 

Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 

© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijitee.I96960812923 
DOI: 10.35940/ijitee.I9696.0812923 

Journal Website: www.ijitee.org 

 

 

 
Figure 3. (a) General convolutional neural network-based COVID-19 detection or classification method. (b) Deep 

transfer learning-based COVID-19 detection or classification method. 

II. MATERIALS AND METHODS  

This Section describes the dataset, image preprocessing, 

transfer learning, classification methods, parameter settings, 

and performance assessment measures. 

2.1. Data Set 

For the validation of the proposed method, the images that are 

used are taken from the SARS-CoV-2 CT scan dataset [40]. 

This data set includes 1252 CT images of the infected type 

and 1230 CT images of the non-infected type.  

2.2. Image pre-processing 

Two processes that are implemented for pre-processing are 

Normalization and Data Augmentation. The process of 

normalizing the data is an important step that is typically 

implemented in CNN designs in order to keep the numerical 

values stable. When normalization is used, a CNN model has 

a better chance of learning more quickly, and the gradient 

descent has a better chance of being stable. As a consequence 

of this, the pixel values of the input photos have been 

standardized within the range of 0–1 for the purpose of this 

investigation. The photos that were utilized in the datasets 

that were taken into consideration were grayscale 

photographs, and the rescaling was accomplished by 

multiplying the pixel values by 1/255. The data augmentation 

approach has seen widespread use and has proved helpful in 

increasing the quantity of images through the application of a 

series of modifications while maintaining the integrity of 

class labels. Augmentation also adds more variation to the 

images themselves and acts as a regularizer for the dataset. 

The following digital methods were utilized in order to 

enhance the images: 

rotation_range=40,width_shift_range=0.2,height_shift_rang

e=0.2,shear_range=0.2,zoom_range=0.2,fill_mode='nearest'. 

2.3. Algorithms for Classification 

COVID-19 and normal are the two classifications into which 

CXR pictures are divided using six algorithms. Xception, 

ResNet50, ResNet50V2, InceptionV3, DenseNet121, 

Inception-v3 [13], MobileNetV2 are pre-trained networks 

that are used in these techniques. Each of these models is 

tested with two different activation function in the last layer. 

The different activation function that were employed for the 

training are Sigmoid and Softmax. Also 6 different optimisers 

were also used with each model and their performance 

evaluated for fixed value of dropout and learning rate. The 

different optimisers that were used are SGD, RMSProp, 

Adagrad, Nadam, Adam and Ftrl.  Transfer learning is used 

to fine-tune these networks. 

Table 1. Main Characteristics of The Models 

Model Size (MB) Parameters Depth 

Xception 88 22,910,480 126 

ResNet50 98 25,636,712 50 

ResNet50V2 98 25,613,800 164 

InceptionV3 92 23,851,784 159 

DenseNet121 33 8,062,504 121 

MobileNetV2 14 3.5M 105 
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2.4.  Transfer Learning 

Transfer learning refers to the method of enhancing the 

learning capabilities of a pre-trained neural network when 

applied to a novel task with fewer training pictures by 

leveraging previously learned information from a related task 

[10]. Convolutional layers in pre-trained CNNs extract visual 

characteristics that are used by the final learnable layer and 

the classification layer to categorise the input picture. We 

swap out the final three layers for three new ones that are 

tailored to the new dataset in order to fine-tune the network 

to categorise CXR pictures into two classes (COVID-19 and 

normal) using transfer learning. 

 

 

2.5.  Matrices for the evaluation of the algorithms 

In order to assess the efficacy of various algorithms employed 

for the classification of CXR images into two distinct 

categories, three key metrics are computed: accuracy (Acc), 

sensitivity (SN), and specificity (SP). In terms of positives 

and negatives, they are defined as: 

 
Figure 4. Matrices for the evaluation of the algorithms. 

III. RESULTS COMPARISON AND DISCUSSION 

Comparison of different models for fixed learning rate = 0.0001 Epoch =5 Drop out = .5 Activation = Softmax  

 

Figure 5. Comparison of accuracy of Xception model with different optimizer and Softmax activation function. 

 

Figure 6. Comparison of accuracy of Resnet50 model with different optimizer and Softmax activation function 
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Figure 7. Comparison of accuracy of Resnet50 V2 model with different optimizer and Softmax activation function 

 

Figure 8. Comparison of accuracy of Inception V3 model with different optimizer and Softmax activation function 

 

Figure 9. Comparison of accuracy of DenseNet121 model with different optimizer and Softmax activation function 
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Figure 10. Comparison of accuracy of MobileNetV2 model with different optimizer and Softmax activation function 

Comparison of different models for fixed learning rate = 0.0001 Epoch =5 Drop out = .5 Activation = Sigmoid 

 

Figure 11. Comparison of accuracy of Xception model with different optimizer and Sigmoid activation function. 

 

Figure 12. Comparison of accuracy of Resnet50 model with different optimizer and Sigmoid activation function. 
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Figure 13. Comparison of accuracy of Resnet50 V2 model with different optimizer and Sigmoid activation function. 

 

Figure 14. Comparison of accuracy of Inception V3 model with different optimizer and Sigmoid activation function. 

 

Figure 15. Comparison of accuracy of DenseNet121 model with different optimizer and Sigmoid activation function. 
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Figure 16. Comparison of accuracy of MobileNetV2 model with different optimizer and Sigmoid activation function. 

Comparison of various optimiser for different models for fixed learning rate = 0.0001 Epoch =5 Drop out = .5 Activation = 

Softmax  

 

Figure 17. Comparison of accuracy for RMSprop optimizer for various model with Softmax activation function. 

 

Figure 18. Comparison of accuracy for Adagrad optimizer for various model with Softmax activation function. 
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Figure 19. Comparison of accuracy for Nadam optimizer for various model with Softmax activation function. 

 

Figure 20. Comparison of accuracy for Ftrl optimizer for various model with Softmax activation function. 

 

Figure 21. Comparison of accuracy for Adam optimizer for various model with Softmax activation function. 
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Figure 22. Comparison of accuracy for SGD optimizer for various model with Softmax activation function. 

Comparison of various optimiser for different models for fixed learning rate = 0.0001 Epoch =5 Drop out = .5 Activation = 

Sigmoid. 

 

Figure 23. Comparison of accuracy for SGD optimizer for various model with Sigmoid activation function. 

 

Figure 24. Comparison of accuracy for RMSprop optimizer for various model with Sigmoid activation function. 
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Figure 25. Comparison of accuracy for Adagrad optimizer for various model with Sigmoid activation function. 

 

Figure 24. Comparison of accuracy for Nadam optimizer for various model with Sigmoid activation function. 

 

Figure 24. Comparison of accuracy for Ftrl optimizer for various model with Sigmoid activation function. 
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Figure 25. Comparison of accuracy for Adam optimizer for various model with Sigmoid activation function. 

Confusion matrix for the 6 models for ADAM optimiser are given below. 
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IV. CONCLUSION AND FUTURE WORK 

This paper describes a comparative study of six deep learning 

models for COVID-19 images from a publicly available 

dataset. These models were used to automatically classify the 

COVID-19 images into two classes. Analyzing the 

performance of various DL model for binary classification for 

various parameters, it is observed that the softmax activation 

function and the adam optimiser provides the better 

performance in general. The training for the binary 

classification can be made faster by employing transfer 

learning. The MobileNetV2 shows a comparative better 

performance comparted to others considering the size and 

hence provide a faster result. In our future work, we will 

tackle the problem of generalizing the proposed model to a 

wider range of practical scenarios to facilitate the diagnosis 

of more types of diseases from CXR and CT images. 
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