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Abstract

Let p ≥ 5 be a prime. In 1801, Gauss proved that the sum of distinct quadratic
residues modulo p is congruent to 0 modulo p. A study by Stetson in 1904 showed
that the sum of distinct triangular residues modulo p is congruent to −1/16 modulo
p. Both of these results were extended in 2017 by Gross, Harrington, and Minott,
who studied the sum of distinct quadratic polynomial residues modulo p. In this
article, we determine the sum of distinct cubic polynomial residues modulo p and
prove a conjecture of Gross, Harrington, and Minott. We further consider the sum
of distinct residues modulo p for polynomials of higher degree.

1. Introduction

Throughout this paper, let p ≥ 5 be a prime, and let Zp = Z/pZ. In 1801, Gauss

[1] proved that the sum of distinct quadratic residues modulo p is congruent to 0

modulo p. Then in 1904, Stetson [4] showed that the sum of distinct triangular

residues modulo p is congruent to −1/16 modulo p. Both of these results were

extended by Gross, Harrington, and Minott [2] in 2017, who considered the sum of

distinct s-gonal numbers, and more generally the sum of distinct quadratic polyno-

mial residues, modulo p.

For every polynomial f ∈ Zp[x], we define

R(f) = {f(x) ∈ Zp : x ∈ Zp},
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and define

S(f) =
∑

y∈R(f)

y.

To generalize the results of Gauss and Stetson, Gross, Harrington, and Minott

provided the following theorem.

Theorem 1 ([2]). Let f(x) = ax2 + bx + c ∈ Zp[x] be a quadratic polynomial. If

a 6= 0, then

S(f) = −b
2 − 4ac

8a
.

In this article, we provide a formula for S(f) when f ∈ Zp[x] is a cubic polyno-

mial, thus proving a conjecture of Gross, Harrington, and Minott. We then discuss

S(f) when f ∈ Zp[x] has degree larger than 3, with a special emphasis on certain

families of cyclotomic polynomials.

2. Determining S(f) for Cubic Polynomials

We begin this section with the following lemma.

Lemma 1. Let h ∈ Zp[x] be an odd polynomial, i.e., h(−x) = −h(x). Let g(x) =

h(x) + k, where k ∈ Zp. Then

S(g) ≡ |R(g)| · k (mod p).

Proof. Suppose y ∈ R(h) \ {0}. Then there exists an x ∈ Zp such that h(x) = y.

Since h is an odd polynomial, we have h(−x) = −h(x) = −y. Thus, −y ∈ R(h).

Since p > 2, we have y 6= −y. It follows that S(h) = 0. Now, suppose z ∈ R(g).

Then z = y + k for some y ∈ R(h). Hence, S(g) is given by∑
z∈R(g)

z =
∑

y∈R(h)

(y + k) =
∑

y∈R(h)

y +
∑

y∈R(h)

k ≡ |R(h)| · k ≡ |R(g)| · k (mod p).

In 1908, von Sterneck [3] proved that for all x3 + a1x
2 + a2x + a3 ∈ Zp[x] such

that a21 6= 3a2,

|R(x3 + a1x
2 + a2x+ a3)| =

2p+
(
p
3

)
3

, (1)

where
(
p
3

)
is the Legendre symbol. With von Sterneck’s result and Lemma 1, we

can now prove our main result.



INTEGERS: 23 (2023) 3

Theorem 2. Let f(x) = ax3 +bx2 +cx+d ∈ Zp[x] be a cubic polynomial. If a 6= 0,

then

S(f) =



27a2d− 9abc+ 2b3

81a2
if b2 6= 3ac and p ≡ 1 (mod 6)

−27a2d− 9abc+ 2b3

81a2
if b2 6= 3ac and p ≡ 5 (mod 6)

2(27a2d− 9abc+ 2b3)

81a2
if b2 = 3ac and p ≡ 1 (mod 6)

0 if b2 = 3ac and p ≡ 5 (mod 6).

Proof. We begin by letting g(x) = f(x− b/(3a))/a, i.e.,

g(x) = x3 +

(
3ac− b2

3a2

)
x+

27a2d− 9abc+ 2b3

27a3
.

Notice that the coefficients of g are well-defined in Zp since p ≥ 5. Therefore, S(g)

is defined, and it can easily be seen that S(f) = a · S(g). Thus, we will study S(g)

to obtain the proof.

Since g(x) = h(x) + k, where

h(x) = x3 +

(
3ac− b2

3a2

)
x

is an odd polynomial and

k =
27a2d− 9abc+ 2b3

27a3
,

we have from Lemma 1 that S(g) = |R(g)| · k.

If 3ac− b2 6= 0, then Equation (1) implies

|R(g)| =
2p+

(
p
3

)
3

≡

{
1/3 (mod p) if p ≡ 1 (mod 6)

−1/3 (mod p) if p ≡ 5 (mod 6).

Otherwise, if 3ac− b2 = 0, then g(x) = x3 + k and

|R(g)| =

{
(p+ 2)/3 if p ≡ 1 (mod 6)

p if p ≡ 5 (mod 6)

≡

{
2/3 (mod p) if p ≡ 1 (mod 6)

0 (mod p) if p ≡ 5 (mod 6).

The theorem follows since S(f) = a · S(g) ≡ a · |R(g)| · k (mod p).
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3. Addressing S(f) for Polynomials of Degree Greater than 3

Theorems 1 and 2 provide formulae for calculating S(f) when f is a quadratic

polynomial or cubic polynomial, respectively. A natural direction for further study

is to consider S(f) for quartic or higher degree polynomials f ∈ Zp[x]. Preliminary

work in this direction suggests that |R(f)| plays an important role in understanding

S(f). Unfortunately, the study of |R(f)| seems very limited; interested readers are

referred to Sun’s article for results concerning |R(f)| for quartic polynomials f [5].

Nonetheless, in this section, we study S(f) for certain families of polynomials of

arbitrarily high degree.

A polynomial f ∈ Zp[x] is called a permutation polynomial if R(f) = p. Clearly,

for an odd prime p, if f is a permutation polynomial, then S(f) = 0. The following

lemma shows that the converse of this statement is not true.

Lemma 2. For a positive integer r,

S(xr) =

{
1 if (p− 1) | r
0 otherwise.

Proof. For a positive integer r, let gr ∈ Zp[x] with gr(x) = xr. Recall that R(gr) \
{0} forms a group under multiplication with |R(gr) \ {0}| = (p− 1)/ gcd(p− 1, r).

Thus, if p−1 divides r, then |R(gr)\{0}| = 1. We then deduce that R(gr) = {0, 1}
and S(gr) = 1. On the other hand, if p − 1 does not divide r, then R(gr) \ {0}
contains an element β 6= 1. Let α1, α2, . . . , αt be the elements of R(gr) \ {0}. Since

R(gr) \ {0} forms a group under multiplication,

S(gr) = 0 + α1 + α2 + · · ·+ αt = β · 0 + β · α1 + β · α2 + · · ·+ β · αt = β · S(gr).

Since β 6= 1, we deduce that S(gr) = 0.

For the rest of this article, let gr ∈ Zp[x] such that gr(x) = xr. The next theorem

determines S(f) for a particular class of binomials f ∈ Zp[x].

Theorem 3. Let f(x) = axr + b ∈ Zp[x]. Then

S(f) =

a+ 2b if (p− 1) | r

b

(
p− 1

gcd(r, p− 1)
+ 1

)
otherwise.

Proof. Let α be the generator of the multiplicative group Z∗p = Zp \ {0}. Then the
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order of αr is ordp(α
r) = (p− 1)/ gcd(r, p− 1). By Lemma 2,

S(f) = a · S(gr) + b · (ordp(α
r) + 1)

=

{
a · 1 + b · (1 + 1) if (p− 1) | r
a · 0 + b · (ordp(α

r) + 1) otherwise

=

{
a+ 2b if (p− 1) | r
b · (ordp(α

r) + 1) otherwise.

Let Φn(x) ∈ Zp[x] denote the n-th cyclotomic polynomial. Recall that Φ2t(x) =

x2
t−1

+ 1. Thus, letting a = b = 1 and r = 2t−1 in Theorem 3 yields the following

corollary.

Corollary 1. Let j be an integer such that 2j || (p− 1). Then

S(Φ2t) =

3 if (p− 1) | 2t−1
p− 1

2min{t−1,j} + 1 otherwise.

The following lemma is an easy exercise in elementary number theory, and can

by verified by considering the multiplicative group Z∗p.

Lemma 3. Let q be a prime and let j satisfy qj || (p− 1). For every integer t ≥ j,

R(gqt) = R(gqj ).

Consequently, for all h ∈ Zp[x],

S(h ◦ gqt) = S(h ◦ gqj ).

Remark 1. Lemma 3 shows that for all h ∈ Zp[x], S(h◦gqt) = S(h) for any positive

integers t and prime q with gcd(q, p− 1) = 1. In combination with Theorems 1 and

2, if gcd(q, p−1) = 1 and f = h◦gqt , where deg(h) ∈ {2, 3}, we can determine S(f)

as S(h).

To make use of Lemma 3 in studying S(Φn), we present the following well-known

cyclotomic identity.

Lemma 4. For any prime q and positive integer n divisible by q, Φqn = Φn ◦ gq.

The following theorem is an immediate consequence of Lemmas 3 and 4.

Theorem 4. Let q be a prime and let j satisfy qj || (p− 1). Then for any positive

integer m not divisible by q and integer t > j,

S(Φqtm) = S(Φqj+1m).
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4. Concluding Remarks

In their article, Gross, Harrington, and Minott gave the following conjecture.

Conjecture 1. Let f(x) = ax3 + bx2 ∈ Zp[x]. If a 6= 0, then

S(f) =


2b3

81a2
if p ≡ 1 (mod 6)

− 2b3

81a2
if p ≡ 5 (mod 6).

Theorem 2 of this paper proves Conjecture 1 and generalizes it to all cubic polyno-

mials.

Although it would be nice to obtain a theorem analogous to Theorems 1 and

2 for quartic or higher degree polynomials, such a result seems beyond our reach.

For instance, let fc(x) = x4 + cx2 ∈ Zp[x]. In view of Theorems 1 and 2, it is

natural to conjecture that S(fc) is a polynomial of c. However, for selected primes

p, when we apply the method of successive differences on the sequence (S(fc))
p−1
c=1 ,

the resulting sequences do not become constant after several iterations, indicating

that the conjecture fails.

In the following, we provide a conjecture related to S(fc).

Conjecture 2. Let S = {S(fc) : c ∈ Zp}. If p > 5, then

S =



Zp if p ≡ 3 (mod 4) and − 1 ∈ S
R(g2) if p ≡ 3 (mod 4) and − 1 /∈ S,

or p ≡ 1 (mod 4) and − 1 ∈ S
R(g4) if p ≡ 5 (mod 8) and − 1 /∈ S
R(g2) \R(g4) if p ≡ 1 (mod 8) and − 1 /∈ S.

Furthermore, S(f8) = 1 if p ≡ 3 (mod 4).

Theorem 5. Let f(x) =
∑k
`=0 a`x

m` ∈ Zp[x], where 0 < m0 < m1 < m2 <

· · · < mk and a` 6= 0 for all 0 ≤ ` ≤ k. Let δ > 1 be a common factor of

{m` −m0 : 1 ≤ ` ≤ k} such that gcd(δ,m0) = 1 and δ | (p− 1). Then S(f) = 0.

Proof. Since m0 > 0, f(0) = 0 ∈ R(f). Let α be a generator of Z∗p, and let

ω = α
p−1
δ . For each 0 ≤ i ≤ p−1

δ − 1, let Ci = {f(αiωj) : 0 ≤ j ≤ δ − 1}. Note that

f(αiωj) = αim0ωjm0

k∑
i=0

a`α
i(m`−m0)ωj(m`−m0)

= αim0ωjm0

k∑
i=0

a`α
i(m`−m0)

= ωjm0f(αi),
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since ωm`−m0 = α
p−1
δ (m`−m0) = 1. Together with the condition that gcd(δ,m0) = 1,

it follows that for each 0 ≤ i ≤ p−1
δ − 1, the elements of Ci are all distinct unless

f(αi) = 0, and the sum of the elements of Ci is

δ−1∑
j=0

ωjm0f(αi) = f(αi)

δ−1∑
j=0

ωjm0 = f(αi)

δ−1∑
j=0

ωj = 0

since δ − 1 > 0. Finally, since R(f) = {0} ∪
⋃ p−1

δ −1
i=0 Ci, and Ci and Ci′ are either

equal or disjoint for any 0 ≤ i < i′ ≤ p−1
δ − 1, we conclude that S(f) = 0.

For example, if p = 71, then it follows that S(a3x
62 + a2x

42 + a1x
22 + a0x

2) = 0

by taking δ = 5 in Theorem 5. By taking δ = 3, we have the following corollary.

Corollary 2. Let f(x) = x4 + dx ∈ Zp[x]. If p ≡ 1 (mod 3), then S(f) = 0.

Proposition 1. Let fd(x) = x4 + dx ∈ Zp[x]. If p ≡ 2 (mod 3), then S(fd) =

d
4
3S(f1).

Proof. Note that if p ≡ 2 (mod 3), then x 7→ x3 forms a permutation on Zp. Hence,

every element d ∈ Zp has a unique cube root d
1
3 ∈ Zp. If d ∈ Z∗p, then x 7→ d

1
3x

induces a permutation on Zp, so

R(fd) = {fd(d
1
3x) : x ∈ Zp} = {d 4

3 (x4 + x) : x ∈ Zp} = {d 4
3 f1(x) : x ∈ Zp}.

Furthermore, x 7→ d
4
3x also forms a permutation on Zp, so R(fd) = {d 4

3 y : y ∈
R(f1)}, implying that S(fd) = d

4
3S(f1). Finally, if d = 0, then by Theorem 3,

S(f0) = 0, which is equal to 0
4
3S(f1).

Conjecture 3. Let f(x) = x4 + cx2 + e ∈ Zp[x]. Then

S(f) =



−9c2 + 40e

64
if p ≡ 1 (mod 8) and c is a quadratic residue in Zp

−c2 + 40e

64
if p ≡ 1 (mod 8) and c is a quadratic nonresidue in Zp

−7c2 + 56e

64
if p ≡ 3 (mod 8) and c is a quadratic residue in Zp

c2 − 8e

64
if p ≡ 3 (mod 8) and c is a quadratic nonresidue in Zp

−c2 + 8e

64
if p ≡ 5 (mod 8) and c is a quadratic residue in Zp

−9c2 + 72e

64
if p ≡ 5 (mod 8) and c is a quadratic nonresidue in Zp

c2 + 24e

64
if p ≡ 7 (mod 8) and c is a quadratic residue in Zp

−7c2 + 24e

64
if p ≡ 7 (mod 8) and c is a quadratic nonresidue in Zp.
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