

Reading the Invisible: the role of optical investigations in the Study of the Herculaneum Papyri

Sveva Longo (^A), Sabrina Samela (^A), Claudia Caliri (^B), Danilo Pavone (^B), Francesco Paolo Romano (^B), Francesca Rosi (^C), Graziano Ranocchia (^D)and Costanza Miliani (^A)

(a) Istituto di Scienze del Patrimonio Culturale - Consiglio Nazionale delle Ricerche (ISPC-CNR), Napoli Italy
 (b) Istituto di Scienze del Patrimonio Culturale - Consiglio Nazionale delle Ricerche (ISPC-CNR), Catania, Italy
 (c) Istituto di Scienze e Tecnologie Chimiche - Consiglio Nazionale delle Ricerche (SCITEC-CNR), Perugia, Italy
 (d) Dipartimento di Filologia, Letteratura e Linguistica - Università di Pisa, Pisa, Italy

Congresso Nazionale AIAr, 19-21 Aprile 2023 Messina

Herculaneum Papyri

>1,800 papyrus scrolls found, carbonized by the heat of the eruption in 79 AD

ISTITUTO di SCIENZE del PATRIMONIO CULTURALE

Previous Studies

<u>1. Mocella V. et al.,</u>

Revealing letters in rolled Herculaneum papyri by X-ray phasecontrast imaging <u>Nature Communications</u> (2015) X-ray phase-contrast tomography (XPCT)

<u>2. Bukreeva I. et al.</u> Virtual unrolling and deciphering of Herculaneum papyri by X-ray phase-contrast tomography <u>Scientific Reports</u> (2016) X-ray phase-contrast tomography (XPCT) & unrolling algorithms

<u>3. Parker CS et al.</u> From invisibility to readability: Recovering the ink of Herculaneum. <u>PLoS ONE (2019)</u> Micro-CT & AI

Piaggio's machine (1756-1906)

Consiglio Nazionale delle Ricerche

h

H

1578

225

ISTITUTO di SCIENZE del PATRIMONIO CULTURALE

Parte de Palmi due Nopolitione I. S. A. C. der

Papyrological practices

ISTITUTO di SCIENZE del PATRIMONIO CULTURALE

C

Consiglio Nazionale delle Ricerche

The main aim of the project is the application of non-invasive advanced techniques to Herculaneum papyri belonging to Philodemus' *Syntaxis* in order to:

(a) read the text hidden on the *verso*,
(b) detect, classify, and replace overlapping layers
(c) read the text concealed inside them
(d) produce a more reliable and improved critical text

An Open Access Platform development for an ongoing and online collaborative review of the critical edition

Wavelength Regions for Hyperspectral Imaging

Hyperspectral Imaging

Image at 950 nm No text visible from the verso between the column

Consiglio Nazionale delle Ricerche

ISTITUTO di SCIENZE del PATRIMONIO CULTURALE

PHerc 1021 Cr1

PC3 SWIR hyperspectral images Showing text from the verso

Hyperspectral Imaging

Image at 950 nm No text visible from the verso between the column

Consiglio Nazionale delle Ricerche

ISTITUTO di SCIENZE del PATRIMONIO CULTURALE

PHerc 1021 Cr1

PC3 SWIR hyperspectral images Showing text from the verso

Hyperspectral Imaging

Α

Text readability increased by 20%.

Enhancement of the recto

Sci Adv **5** (10) DOI: 10.1126/sciadv.aav8936

A/ Image at 950 nm No text visible from the verso between the colomn

Consiglio Nazionale delle Ricerche

B/ PC1 SWIR hyperspectral images Showing text from the recto

PHerc 1021 Cr 4, general view

Hyperspectral Imaging: single wavelength image

2000 nm

1735 nm

-

1865 nm

Hyperspectral Imaging: machine learning for image processing

PC2 TETA HERTING TETA HERTING TOYONION TOYONION TOYONION

PC1

.

Consiglio Nazionale delle Ricerche

SCIENZE del PATRIMONIO CULTURALE

Technical photography

ISTITUTO di SCIENZE del PATRIMONIO CULTURALE

Side by Side

Split View

CNR ISPC CATANIA

Web-based Viewer: side by side

. .

C ISTITUTO di SCIENZE del PATRIMONIO CULTURALE

Web-based Viewer: photogrammetry

Or

Consiglio Nazionale delle Ricerche SOENZE del PATRIMONIO CUITURALE

Web-based Viewer: photogrammetry

2

Web-based Viewer: photogrammetry

.

Consiglio Nazionale delle Ricerche Spc ISTITUTO di SCIENZE del PATRIMONIO CULTURALE

Papyri Inks

- First chemical analysis by Davy in 1821¹: C-based + gum – (confirmed with IRrifl.).
- **Pb** evidences in *Brun et al. (2016)*².

1

- Carbon inks are based on C compound from burning or macerating of organic and inorganic materials (wood, oil, earth)³.
 - Pliny the Elder: *exudation as salts or sulphur compounds*.
- Amorphous C in the form of soot, charcoal or bone black⁴.
- Pliny, Vitruvius and Dioscorides indicate a certain type of fine soot, considered the best for both writing and painting was procured through the careful pyrolysis of resin or pitch in factories³.

¹Basile (1994) I papiri carbonizzati di Ercolano: la temperatura dei materiali vulcanici e le tecniche di manifattura dei rotoli. Quaderni del Museo del papiro, Siracura: Istituto internazionale del papiro, 1 ed. ²Brun et al. (2016) Revealing metallic ink in Herculaneum papyri. PNAS, 113(14): 3751-3754.

Christiansen (2017) Manufacture of black ink in the ancient Mediterranea. Bulletin of the America Society of Papyrologists, 54: 167-195.

⁴Di Stefano and Fuchs (2011) Characterization of the pigments in a Ptolemaic Book of the Dead papyrus. Archaeological and Anthropological Science, 3:231.

MA-XRF scanning system: new developments

Painting

Romano et al. Journal of Analytical Atomic Spectrometry 32.4 (2017): 773-781.

O CULTURALE

high-throughput 3D Array detection system

Hodoscope with 6 SDD detectors operated in parallel in a fast-mapping mode

high-performing mechatronics

scanning area 120x90x20 cm³ scanning speed up to 150 mm/sec CPU with high computing capabilities

MA-XRF mapping

Detecting low residues of an organic ink

Detecting low residues of a metallic ink

Carbonized papyri from Herculaneum:

despite the strong degradations of the materials, the large detection efficiency allows the detection of low trace elements characterizing the nature of the residual inks.

- **Optical Coherence Tomography**
- NMR-MOUSE
- THz IMAGING •
- **Reflectance Transformation Imaging** ightarrow

THANKS!

Does anyone have any questions?

sveva.longo@ispc.cnr.it www.ispc.cnr.it

