
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A21

ON SHORT ZERO-SUM SUBSEQUENCES II

W. D. Gao
Center for Combinatorics, Nankai University, Tianjin 300071, China

gao@cfc.nankai.edu.cn

Q. H. Hou
Center for Combinatorics, Nankai University, Tianjin 300071, China

hou@nankai.edu.cn

W. A. Schmid
Institut für Mathematik und Wissenschaftliches Rechnen, Karl-Franzens-Universität Graz,

Heinrichstraße 36, 8010 Graz, Austria
wolfgang.schmid@uni-graz.at

R. Thangadurai
School of Mathematics, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad - 211019,

India
thanga@mri.ernet.in

Received: 7/7/06, Accepted: 4/11/07, Published: 4/18/07

Abstract

Let G be a finite abelian group of exponent n. In this paper we investigate the structure of
the maximal (in length) sequences over G that contain no zero-sum subsequence of length [at
most] n. Among others, we obtain a result on the multiplicities of elements in these sequences,
which support well-known conjectures on the structure of these sequences. Moreover, we
investigate the related invariants s(G) and η(G), which are defined as the smallest integer l
such that every sequence over G of length at least l has a zero-sum subsequence of length
n (at most n, respectively). In particular, we obtain the precise value of s(G) for certain
groups of rank 3.

1. Introduction and Main Results

Let G be a finite abelian group. By s(G) (or η(G) respectively) we denote the smallest integer
l ∈ N such that every sequence S over G of length |S| ≥ l has a zero-sum subsequence T
of length |T | = exp(G) (or 1 ≤ |T | ≤ exp(G) respectively). For details on terminology and
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notation we refer to Section 2. The investigation of these invariants has a long tradition, and
in recent years the investigation of these invariants and of the according inverse problems,
i.e., the investigation of the structure of extremal sequences with, and in particular without,
the respective properties, received an increasing amount of attention. Among others, this is
due to applications in the theory of non-unique factorizations. We refer to the monograph
[21], in particular to Chapter 5, for a detailed account of results on these invariants and their
applications in the theory of non-unique factorizations, and to the recent survey article [16]
for an exposition of the state of the knowledge and numerous references.

Still, many questions are wide open. The precise value of s(G) for cyclic groups is known
by the classical Erdős–Ginzburg–Ziv theorem [9], but s(G) for groups of rank 2 has only
recently been determined by C. Reiher [26], and the precise value of s(G) is unknown for
most groups of rank greater than 2, as is the value of η(G). In Theorem 2.2 we recall these
and some further results on s(G) and η(G) that we apply in our investigations.

A main motivation for the investigations of this paper is the following conjecture.

Conjecture 1.1. ([14, Conjecture 2.3]) Let G be a finite abelian. Then

s(G) = η(G) + exp(G) − 1.

It is well-known and not difficult to see that s(G) ≥ η(G) + exp(G) − 1 (cf., e.g., [21,
Lemma 5.7.2]). Moreover, several (in general unproven) assertions, which we recall below, on
the structure of maximal sequences without zero-sum subsequences of length exp(G) would
imply this conjecture.

Open Problems 1.2. Let G be a finite abelian group with exp(G) = n. Are the following
claims true?

(C1) Every sequence S ∈ F(G) of length s(G) − 1 that has no zero-sum subsequence of
length n contains some element g ∈ G with multiplicity vg(S) ≥ %(n − 1)/2&.

(C2) Every sequence S ∈ F(G) of length s(G) − 1 that has no zero-sum subsequence of
length n contains some element g ∈ G with multiplicity vg(S) = n − 1.

(C3) Suppose G ∼= Cr
n. Every sequence S ∈ F(G) of length η(G)−1 that has no non-empty

zero-sum subsequence of length at most n is of the form S = T n−1 for some T ∈ F(G),
i.e., each element contained in S is contained in it with multiplicity n − 1. (A group
for which this is true is said to have Property C.)

(C4) Suppose G ∼= Cr
n. Every sequence S ∈ F(G) of length s(G) − 1 that has no zero-sum

subsequence of length n is of the form S = T n−1 for some T ∈ F(G). (A group for
which this is true is said to have Property D.)

Apparently, these four claims are closely related. Obviously, (C2) is a stronger claim
than (C1), and for G ∼= Cr

n the claim (C4) is stronger than (C2). And, it is known that if
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for a group (C1) is true, then so is Conjecture 1.1 (see [14, Proposition 2.7]). Moreover, it is
known that (C4) implies (C3). Conversely, if for a group both (C1) and (C3) are true, then
so is (C4) (see [18, Theorem 2]).

No counterexample to Conjecture 1.1 or to these claims is known and there are several
results that support them (see, e.g., [13, 15, 18, 7]). However, they are only confirmed for
very few types of groups. It is easy to see that elementary 2-groups have Property D and
H. Harborth [22, Beweis von Hilfssatz 3] showed (not using this terminology) that elementary
3-groups have Property D as well. Furthermore, for cyclic groups the inverse problems are
well investigated (see, e.g., [12, 11, 29, 17]), and in particular it is known that cyclic groups
have Property D. Yet, for groups of rank 2 only Conjecture 1.1 is confirmed in general (cf.
Theorem 2.2); the more general claims are confirmed only in special cases: for instance it is
known that C2

n has Property D if n is not divisible by a prime greater than 7 (see [28] and
the references there). Additionally, Conjecture 1.1 is confirmed for certain 2- and 3-groups
(see [7]), in particular for groups of exponent 4 (see [14]), for C3

5 (see [16, Theorem 6.6.4]),
and for a special type of p-group with “large” exponent (see [27]).

In this paper, we confirm Conjecture 1.1 and the claims in Open Problems 1.2 for certain
groups and obtain results that support them for more general groups. Moreover, we deter-
mine the precise value of s(G) for certain groups of rank 3. Below, we outline the results of
this paper in more detail.

First, we obtain two results valid for fairly general groups. The first gives some informa-
tion on the structure of “long” sequences without a zero-sum subsequence of length equal to
the exponent of the group.

Theorem 1.3. Let G be a finite abelian group with exp(G) = n. Let S ∈ F(G) such that
|S| ≥ η(G) + n − 2 and S has no zero-sum subsequence of length n.

1. vg(S) (= n − 2 for each g ∈ G.

2. If n − 3 ≥ %(n − 1)/2& and gcd(2, n) = 1, then vg(S) (= n − 3 for each g ∈ G.

3. If n − 4 ≥ %(n − 1)/2& and gcd(6, n) = 1, then vg(S) (= n − 4 for each g ∈ G.

This theorem directly yields the following result.

Corollary 1.4. Let G be a finite abelian group with exp(G) = n. Let S ∈ F(G) such that
either |S| = s(G)− 1 and S has no zero-sum subsequence of length n, or |S| = η(G)− 1 and
S has no non-empty zero-sum subsequence of length at most n. Then assertions 1., 2., and
3. of Theorem 1.3 hold.

This result, in particular, implies that if (C2) (or Properties C or D) should not hold
for some group, then the structure of the extremal sequences has to differ considerably from
the “expected” one. Furthermore, it immediately implies that Cr

3 has Property D for every
r ∈ N.
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The second result is an upper bound on s(G), which supports Conjecture 1.1. For now,
we only state a special case; for the more technical results see Section 4.

Theorem 1.5. Let G be a finite abelian group and let H ⊂ G be a subgroup such that
exp(G) = exp(H) exp(G/H). If exp(G) ≥ |G/H|2, then

s(G) ≤ exp(G/H)s(H) + η(G/H) − 1.

At first it might not be clear that this results actually supports Conjecture 1.1 and, thus,
we add the following explanation. We recall a result that generalizes a classical result of
H. Harborth [22]; also see Theorem 1.2 and Lemma 4.1 in [7] for other and more general
results of this type.

Lemma 1.6. ([5, Proposition 3.1]) Let G be a finite abelian group and let H ⊂ G be a
subgroup such that exp(G) = exp(H) exp(G/H). Then

s(G) ≤ exp(G/H)s(H) + s(G/H) − exp(G/H).

Consequently, if Conjecture 1.1 is true for G/H, then the upper bound of Theorem
1.5 follows immediately. Conversely, we can use Theorem 1.5 to confirm, under certain
conditions, Conjecture 1.1 (see Section 4 for details).

Then, we focus on specific groups of rank 3 and obtain the following results.

Theorem 1.7. Let n = 3a5b for a, b ∈ N0. Then

s(C3
n) = η(C3

n) + n − 1 = 9n − 8.

Thus, equality holds at the lower bound obtained by C. Elsholtz [8] (cf. Theorem 2.2.3
for his actual result, which is more general), so far this was known only for n = 3a.

Theorem 1.8. Let n = 2a3 with a ∈ N. Then

s(C3
n) = η(C3

n) + n − 1 = 8n − 7.

Thus, equality holds at the classical lower bound due to H. Harborth [22] (cf. Theorem
2.2.2). The crucial point in the proofs of these two results is the investigation of C3

5 and C3
6 ,

respectively. In these investigations Theorem 1.3 plays a key role. However, considerable
additional effort and the aid of a computer is needed to obtain the results. In particular, we
also prove that (C2) holds for C3

6 (see Proposition 6.3) and moreover obtain the following
result.
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Theorem 1.9. Let a ∈ N. The group C3
5a has Property D.

In view of these results, we formulate the following conjecture.

Conjecture 1.10. Let n ∈ N. Then

s(C3
n) =

{
8n − 7 if n is even

9n − 8 if n is odd .

As mentioned above, 8n − 7 and 9n − 8, respectively, are known to be lower bounds.
Moreover, if n is even, C3

n has Property D, and s(C3
m) = 9m − 8 where m denotes the

maximal odd divisor of n, then s(C3
n) = 8n − 7; this follows by Lemma 1.6 and the well-

known fact that this conjecture is true for powers of 2 (cf. Theorem 2.2.2).

The organization of the paper is as follows: in Section 2 we recall basic terminology and
results, and each of the other sections is devoted to the proof of one or two of the above
mentioned theorems. Following [7], we use geometrical methods.

2. Preliminaries

Our terminology and notation is consistent with the monograph [21]. For convenience we
recall some key notions.

Let N and N0 denote the positive and non-negative integers, respectively. Throughout,
all finite abelian groups are written additively. For r, n ∈ N, we denote by Cn a cyclic group
of order n and by Cr

n the direct sum of r copies of Cn.

Let G denote a finite abelian group. If |G| > 1, then there exist uniquely determined
integers 1 < n1 | · · · | nr such that G ∼= Cn1 ⊕ · · · ⊕ Cnr , and exp(G) = nr is called the
exponent of G and r(G) = r the rank of G. For |G| = 1, let exp(G) = 1 and r(G) = 0.
We call G a p-group if exp(G) = pk for p a prime number and k ∈ N, and we call G an
elementary p-group if exp(G) = p.

We denote by F(G) the (multiplicatively written) free abelian monoid with basis G. An
element S ∈ F(G) is called a sequence over G and is written in the following ways:

S =
∏

g∈G

gvg(S) =
l∏

i=1

gi,

where vg(S) ∈ N0, and l ∈ N0 and gi ∈ G. The neutral element of F(G) is called the
empty sequence. We call |S| = l ∈ N0 the length, σ(S) =

∑l
i=1 gi ∈ G the sum, and

supp(S) = {g ∈ G : vg(S) > 0} the support of S. Moreover, vg(S) is called the multiplicity
of g in S.
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A sequence is called a zero-sum sequence if σ(S) = 0, it is called squarefree if vg(S) ≤ 1
for each g ∈ G, and it is called short (with respect to G) if 1 ≤ |S| ≤ exp(G). A sequence T
is called a subsequence of S (in symbols T | S) if T divides S (in F(G)), i.e., there exists a
sequence T ′ ∈ F(G) such that TT ′ = S; clearly the sequence T ′ is uniquely determined by
T and S and we denote it by T−1S.

As mentioned in Section 1, we investigate the invariants s(·) and η(·). In our investigations
we make use of an other related invariant as well. We summarize their definitions.

Definition 2.1 Let G be a finite abelian group. We denote by

• η(G) the smallest l ∈ N such that every sequence S ∈ F(G) of length |S| ≥ l has a
short zero-sum subsequence.

• s(G) the smallest l ∈ N such that every sequence S ∈ F(G) of length |S| ≥ l has a
zero-sum subsequence of length exp(G).

• g(G) the smallest l ∈ N such that every squarefree sequence S ∈ F(G) of length |S| ≥ l
has a zero-sum subsequence of length exp(G).

We point out that, though, in case G is an elementary 2-group or a cyclic group of even
order no squarefree zero-sum sequences over G of length exp(G) exist, the invariant g(G) is
nevertheless well-defined (cf. [16, Lemma 10.1]).

In the following theorem we recall known results on these invariants that we use in this
paper.

Theorem 2.2. Let m, n, r ∈ N with m | n.

1. η(Cm ⊕ Cn) = 2m + n − 2 and s(Cm ⊕ Cn) = 2m + 2n − 3.

2. η(Cr
n) ≥ (2r − 1)(n − 1) + 1 and s(Cr

n) ≥ 2r(n − 1) + 1. If n is a power of 2, then
equality holds.

3. If n is odd, then η(C3
n) ≥ 8n−7 and s(C3

n) ≥ 9n−8. If n is a power of 3, then equality
holds.

4. g(C2
5) = 9 and g(C3

3) = 10.

Proof.

1. The result is based on work of C. Reiher [26] and may be found in [21, Theorem 5.8.3].
2. The result is due to H. Harborth [22, Hilfsatz 1 and Satz 1], also see [7, Proposition 3.1].
3. The lower bound is due to C. Elsholtz [8, Theorem] (actually, he obtained an improvement
on (2) for odd n for arbitrary r ≥ 3; moreover see [7] for further improvements for r ≥ 4).
Equality for powers of 3 holds by Lemma 1.6, since s(C3

3) = 19 (see [22, Satz 4]); also cf. [7,
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Corollary 4.5].
4. The results are due to A. Kemnitz [24, Theorem 3] and H. Harborth [22, Beweis von Satz
4], respectively. The latter result was also obtained in other contexts; see [7, Section 5] for
details. !

Let G′ be a finite abelian group. For every map φ : G → G′ there exists a unique
continuation to a monoid homomorphism F(G) → F(G′), which we thus denote by φ as
well; it is given by φ(

∏l
i=1 gi) =

∏l
i=1 φ(gi). In particular, |S| = |φ(S)| and φ(supp(S)) =

supp(φ(S)), and if φ : G → G′ is a homomorphism, then σ(φ(S)) = φ(σ(S)).

We call a map α : G → G′ affine if there exists a homomorphism φα : G → G′ and an
element hα ∈ G′ such that α(g) = φα(g)+hα for every g ∈ G; furthermore, we call a bijective
affine map an affinity. Obviously, for α an affine map, φα and hα are uniquely determined,
and α is an affinity if and only if φα is an isomorphism.

We will frequently and freely make use of the following result (see [7, Lemma 2.2]).

Lemma 2.3. Let G and G′ be finite abelian groups, let S ∈ F(G), and let φ : G → G′.
Suppose that φ is an affinity (in particular exp(G′) = exp(G)). Then S has a zero-sum
subsequence of length exp(G) if and only if φ(S) has a zero-sum subsequence of length exp(G).

Elementary p-groups are in a natural way vector spaces over Fp, the field with p elements;
whenever it is convenient we consider elementary p-groups as vector spaces over Fp. Clearly,
in this case our definition of an affinity coincides with the usual one.

As in [7], we use the following well-known geometric notion in our investigations (cf., e.g.,
the monograph [23, Chapters 16 and 18]): a set of points C (in some geometry) is called a
cap if no three distinct points in C are collinear. Considering elementary p-groups as vector
spaces these are naturally affine geometries. Explicitly, a subset C of an elementary p-group
is a cap if and only if for each three distinct elements f, g, h ∈ C we have 〈g − f〉 (= 〈h− f〉.
At one point, in Lemma 6.1, we need to embed an elementary p-group into a projective
geometry in order to apply geometric results; we give the details there.

As discussed in [7] in detail, the investigation of (the maximal cardinality) of caps and
of s(G) and g(G) for elementary p-groups is closely related. In particular, for p = 3 these
problems are equivalent. We make use of this relation in Sections 5 and 6.

3. Proof of Theorem 1.3 and its Corollary

First, we prove Theorem 1.3 and then Corollary 1.4.

Proof of Theorem 1.3. We prove the three statements separately. In each case, we suppose
that n fulfills the respective condition and assume to the contrary that vg(S)=n− i for some
g ∈ G, where i equals 2, 3, and 4, respectively. By Lemma 2.3 we may assume that g = 0.
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1. For n = 1 the claim is trivial and we thus assume n ≥ 2. Let S = 0n−2T . We have
|T | ≥ η(G). Thus, by definition of η(G), there exists a short zero-sum subsequence W | T
and, since 0 ! T , we have |W | ≥ 2. Therefore, W0n−|W | is a subsequence of S, and its sum
equals 0 and its length equals n, a contradiction.

2. Let S = 0n−3T . We have |T | ≥ η(G) + 1. Thus, there exists a short zero-sum
subsequence W | T . If |W | ≥ 3, the sequence W0n−|W | yields a contradiction. Thus, since
|W | > 1, we have |W | = 2, i.e., W = (−g)g for some g ∈ G. Indeed, we may assume that
every short zero-sum subsequence of T has length 2. Consequently, since n ≥ 5, the sequence
W−1T has no short zero-sum subsequence. However, the sequences g−1T = (−g)W−1T and
(−g)−1T = gW−1T , since they are of length η(G), each have a short zero-sum subsequence,
which consequently contains −g and g, respectively. By assumption, these short zero-sum
sequences are of length 2 and thus are both equal to (−g)g. Consequently, g | g−1T and
−g | (−g)−1T . Since 2 ! n, we have −g (= g and therefore (−g)2g2 is a short zero-sum
subsequence of T of length 4, a contradiction.

3. Let S = 0n−4T . The sequence T has a short zero-sum subsequence W , which is
of length at least 2. If |W | ≥ 4, then W0n−|W | is a subsequence of S, which yields a
contradiction. Moreover, if W−1T contains a short zero-sum sequence W ′, then, since n ≥ 7,
we get that W , W ′, or WW ′ is a short zero-sum subsequence of T of length at least 4.
Thus, we may assume that W−1T has no short zero-sum subsequence, and consequently
|W−1T | < η(G) and |W | > 2.

In other words, we may assume that for each short zero-sum subsequence V of T

• |V | = 3 and

• V −1T has no short zero-sum subsequence (in particular, if V ′ is a short zero-sum
subsequence of T , then supp(V ) ∩ supp(V ′) (= ∅).

Now, we distinguish two cases.

Case 1. Every short zero-sum subsequence of T is squarefree. Let V be a short zero-
sum subsequence of T and let g ∈ supp(V ). Since V −1T does not have a short zero-sum
subsequence, gV −1T has a short zero-sum subsequence V ′ and g ∈ supp(V ′). By assumption
V ′ is squarefree. Thus, it follows that vg(T ) = 1, since otherwise V ′ | V −1T , a contradiction.
We write V = g1g2g3. By the above reasoning, for each 1 ≤ j ≤ 3, there exists a short
zero-sum subsequence Uj | gjV −1T with gj ∈ supp(Uj). We distinguish two subcases.

Subcase 1.1.
⋂3

j=1 supp(Uj) (= ∅. The intersection contains a unique element; we denote it
by h ∈ G. We note that h /∈ supp(V ). For 1 ≤ j ≤ 3, let hj ∈ G such that Uj = gjhhj.
There exists a short zero-sum subsequence R | h1U

−1
1 T with h1 ∈ supp(R1). We have

supp(R) ∩ supp(V ) = {gj} for some 1 ≤ j ≤ 3, and, since g1 /∈ supp(R), we have j ∈ {2, 3}.
Let i ∈ N such that {i, j} = {2, 3}. We note that {h, gi} ∩ supp(R) = ∅ and gj /∈ supp(Ui).
Thus supp(R) ∩ supp(Ui) = {hi} and R = h1higj. We note that V U1Ui = R(g1hgi)2. Since
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σ(V ) = σ(U1) = σ(Ui) = σ(R) = 0, we infer that 2σ(g1hgi) = σ((g1hgi)2) = 0. Thus, since
2 ! n, we have σ(g1hgi) = 0. However, this implies h = −g1 − gi = gj, a contradiction, since
Uj is squarefree.

Subcase 1.2.
⋂3

j=1 supp(Uj) = ∅. Since |supp(Ui)∩ supp(Uj)| = 1 for 1 ≤ i < j ≤ 3, we infer

that |
⋃3

j=1 supp(Ui)\ supp(V )| = 3, and each of these 3 elements is contained in exactly 2 of
the Ujs. Thus U1U2U3 = V R2 for some squarefree sequence R with supp(R)∩ supp(V ) = ∅.
Furthermore, 2σ(R) = σ(R2) = 0 and thus σ(R) = 0. Consequently, R is a short zero-sum
subsequence of V −1T , a contradiction.

Case 2. There exists a short zero-sum subsequence V of T that is not squarefree. Since
|V | = 3 and since 3 ! n, we have V = gh2 with distinct elements g, h ∈ G. There exists a
short zero-sum subsequence U | gV −1T with g ∈ supp(U). We distinguish three cases.

Subcase 2.1. vh(U) ≥ 1. This implies vh(U) = 2, U = V , and vh(T ) ≥ 4. Consequently
vg(T ) = 1. Let R | hV −1T a short zero-sum sequence with h ∈ supp(R). Since g /∈ supp(R)
and since R (= h3, we infer that R | V −1T , a contradiction.

Subcase 2.2. vg(U) = 1 (and vh(U) = 0). We have vg(T ) = 1, otherwise U | V −1T .
Moreover, since vg(U) = 1 and 2 ! n, we know that U is squarefree. Let R | hV −1T be a
short zero-sum sequence with h ∈ supp(R). We have vg(R) = 0 and thus vh(R) = 1. Since
supp(R)∩supp(U) (= ∅, we have U = gff1 and R = hff2 with f, f1, f2 ∈ G. Clearly f1 (= f2.
Let Q | f1U−1T be a short zero-sum sequence with f1 ∈ supp(Q). Since supp(Q)∩supp(V ) (=
∅, we have Q = f1hf3. We have f3 (= h. Moreover, since f (= f1 and f + f2 = f1 + f3, we
have f2 (= f3. Thus Q | R−1T , a contradiction.

Subcase 2.3. vg(U) ≥ 2 (and vh(U) = 0). Let U = g2f with f ∈ G, and we have g (= f . Let
R | fU−1T a short zero-sum sequence with f ∈ supp(R). We may assume that vf (R) ≥ 2
and vg(R) = 0, otherwise we are in the situation of Subcase 2.1 or 2.2. Let R = f 2f ′. On
the one hand we have g (= f , and furthermore

g + 2h = 2g + f = 2f + f ′ = 0,

which implies

• f (= h, since otherwise g = h, a contradiction,

• f ′ (= g, since otherwise f = g, a contradiction,

• f ′ (= h, since otherwise 3(f +g+h) = 0 and f +g+h = 0, a contradiction as (fgh)2 | T .

On the other hand, we have supp(R) ∩ supp(V ) (= ∅, that is {g, h} ∩ {f, f ′} (= ∅, a contra-
diction. !

Proof of Corollary 1.4. If |S| = s(G) − 1 and S has no zero-sum subsequence of length n,
then, since s(G) ≥ η(G)+n− 1, the result is obvious by Theorem 1.3. If |S| = η(G)− 1 and
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S has no short zero-sum subsequence, then we note that 0n−1S has no zero-sum subsequence
of length n and again the claim is obvious by Theorem 1.3. !

4. Proof of Theorem 1.5 and Related Results

To prove Theorem 1.5, we first derive a technical result (Proposition 4.1). From this result,
using known upper and lower bounds for the involved quantities, we derive Theorem 1.5.
Moreover, we discuss some other ways to derive “explicit” results from the technical one.

Proposition 4.1. Let G be a finite abelian group and let H ⊂ G be a subgroup such that
exp(G) = exp(H) exp(G/H). We denote exp(G/H) by n. Then

s(G) ≤ max
{
|G/H|

(
n − 2 +

( n⌈
n+1

2

⌉ − 1
)(

s(G/H) − η(G/H) − 1
))

,

n s(H) + η(G/H) − 1
}
.

Proof. Let S ∈ F(G) such that S is at least as long as the claimed upper bound on s(G). We
have to show that S has a zero-sum subsequence of length exp(G). Let φ : G → G/H be the
canonical epimorphism. Without restriction we assume that v0(φ(S)) = max{vg(φ(S)) : g ∈
G/H}; let v0(φ(S)) = v. We have v ≥ |S|/|G/H|. We write φ(S) = 0vT . Let T1 . . . Ta | T
such that σ(Ti) = 0 ∈ G/H and |Ti| = n for each 1 ≤ i ≤ a. We assume that a is maximal,
i.e., W = T (

∏a
i=1 Ti)−1 has no zero-sum subsequence of length n, and thus |W | ≤ s(G/H)−1.

Further, let W1 . . . Wb | W such that each Wi is a short zero-sum sequence. We may assume
that |W1| ≥ · · · ≥ |Wb| and that |Wi| ≥ 0(n + 1)/21 for each 1 ≤ i ≤ b − 1. Moreover, we
assume that |W | −

∑b
i=1 |Wi| ≤ η(G/H) − 1, and in case b ≥ 1 that |W | −

∑b−1
i=1 |Wi| ≥

η(G/H).

If
∑b

i=1(n − |Wi|) ≤ v, then T1 . . . Ta(W10n−|W1|) . . . (Wb0n−|Wb|) | φ(S), i.e., we can
“extend” the Wis to zero-sum subsequences of length n of φ(S). We assert that indeed∑b

i=1(n− |Wi|) ≤ v. If b = 0, this is trivial. If b = 1, then n− |Wb| ≤ n−2 ≤ |S|/|G/H| ≤ v.
We assume b ≥ 2. We have (b − 1)|Wb−1| ≤

∑b−1
i=1 |Wi| ≤ s(G/H) − 1 − η(G/H). Thus

b∑

i=1

(n − |Wi|) ≤ (n − |Wb|) + (b − 1)(n − |Wb−1|)

≤ n − 2 +
s(G/H) − η(G/H) − 1

|Wb−1|
(n − |Wb−1|)

≤ n − 2 +
(
s(G/H) − η(G/H) − 1

)n − 0n+1
2 1

0n+1
2 1

≤ |S|
|G/H| ≤ v.
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Now, we set c = %(v −
∑b

i=1(n − |Wi|))/n& and have

T1 . . . Ta(W10
n−|W1|) . . . (Wb0

n−|Wb|)(0n)c | φ(S).

Thus, we have a + b + c zero-sum subsequences of length n of φ(S).

We assert that a + b + c > s(H) − 1. We have

(a + b)n =
a∑

i=1

|Ti| +
b∑

i=1

|Wi| +
b∑

i=1

(n − |Wi|)

and |S|−v−
∑a

i=1 |Ti|−
∑b

i=1 |Wi| ≤ η(G/H)−1. Moreover, nc ≥ v−
∑b

i=1(n−|Wi|)−(n−1).
Consequently,

n(a + b + c) ≥

|S|− v − η(G/H) + 1 +
b∑

i=1

(n − |Wi|) + v −
b∑

i=1

(n − |Wi|) − (n − 1) ≥

n s(H) + η(G/H) − 1 − η(G/H) + 1 − (n − 1) =

n s(H) − (n − 1) > n(s(H) − 1).

Let S1 . . . Sa+b+c | S such that φ(Si) is equal to Ti, Wi−a0n−|Wi−a| or 0n according as
1 ≤ i ≤ a, a+1 ≤ i ≤ a+b or a+b+1 ≤ i. Since

∏a+b+c
i=1 σ(Si) ∈ F(H) is a sequence of length

at least s(H), it has a zero-sum subsequence of length exp(H). Let I ⊂ {1, . . . , a + b + c}
a subset of cardinality exp(H) such that

∑
i∈I σ(Si) = 0. Then

∏
i∈I Si is a zero-sum

subsequence of S of length n exp(H) = exp(G). !

From this result we can derive the following corollary, which is slightly less precise but
more convenient for the present purpose.

Corollary 4.2. Let G be a finite abelian group and let H ⊂ G be a subgroup such that
exp(G) = exp(H) exp(G/H) and

s(H) ≥ |G/H|
exp(G/H)

(
s(G/H) − η(G/H) + exp(G/H) − 3

)
.

Then s(G) ≤ exp(G/H)s(H) + η(G/H) − 1.

Proof. We denote exp(G/H) by n. For n = 1 the result is trivial and we assume n ≥ 2. By
Proposition 4.1, it suffices to prove that

|G/H|
(
n − 2 +

( n⌈
n+1

2

⌉ − 1
)(

s(G/H) − η(G/H) − 1
))

≤ n s(H) + η(G/H) − 1.

This follows by an easy calculation. !

In order to obtain Theorem 1.5 we need the following bounds on s(·) and η(·). The lower
bounds are fairly obvious. The upper bounds for s(·) and η(·) were obtained in [20] (also
cf. [21, Theorem 5.7.4]). All bounds are sharp for cyclic groups.
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Proposition 4.3. Let G be a finite abelian group with exp(G) = n.

1. n ≤ η(G) ≤ |G|.

2. 2n − 1 ≤ s(G) ≤ |G| + n − 1.

Having all auxiliary results at hand, we prove Theorem 1.5.

Proof of Theorem 1.5. By Corollary 4.2 it suffices to assert that s(H) ≥ |G/H|(s(G/H) −
η(G/H) + n − 3)/n. Furthermore, using the bounds recalled in Proposition 4.3 it thus
suffices to show the inequality 2 exp(H)− 1 ≥ |G/H|(|G/H|− 1 + n− 3)/n. By assumption
n exp(H) = exp(G), thus if exp(G) ≥ |G/H|2 this inequality holds. !

For various types of groups refined upper and lower bounds for s(·) and η(·) are known,
see, e.g., [1] and [7]. Using these bounds or known precise values for s(·) and η(·), instead
of the general bounds, we can obtain refined versions of Theorem 1.5 for various types of
groups. As an example, we state the following result.

Corollary 4.4. Let m, n, r ∈ N with r ≥ 3. If m ≥ n2r−1/2r, then s(Cr
mn) ≤ n s(Cr

m) +
η(Cr

n) − 1.

Proof. For n = 1 the assertion is obvious. Let n ≥ 2. Let H ⊂ Cr
mn denote the subgroup

of elements whose order divides m; it is isomorphic to Cr
m and Cr

mn/H ∼= Cr
n. Using the

classical lower bounds, recalled in Theorem 2.2.2, for η(Cr
n) and s(Cr

m), and the upper bound
of Proposition 4.3 for s(Cr

n), the result follows by Corollary 4.2. !

As indicated in Section 1, the results of this section can be applied to confirm Conjecture
1.1 for certain groups. In particular, this is the case if there exists a “large” subgroup for
which equality holds in Lemma 1.6.

Corollary 4.5. Let G be a finite abelian group and let H ⊂ G be a subgroup such that
exp(G) = exp(H) exp(G/H) and exp(G) ≥ |G/H|2. If s(G) = exp(G/H)s(H) + s(G/H) −
exp(G/H), then s(G/H) = η(G/H) + exp(G/H) − 1.

Proof. By Theorem 1.5 we have s(G) ≤ exp(G/H)s(H) + η(G/H) − 1. Since s(G) =
exp(G/H)s(H)+s(G/H)−exp(G/H), we infer s(G/H) ≤ η(G/H)+exp(G/H)−1. However,
it is well-known that s(G/H) ≥ η(G/H) + exp(G/H) − 1. !

Corollary 4.6. Let n, r ∈ N such that there exists a constant c = c(n, r) with s(Cr
na) =

c(na − 1) + 1 for every a ∈ N. Then s(Cr
na) = η(Cr

na) + na − 1 for every a ∈ N.

Proof. Let a ∈ N. We need to show s(Cr
na) = η(Cr

na)+na − 1. Let b = (2r− 1)a and let G =
Cr

na+b . By assumption we have s(G) = c(na+b−1)+1. Let H ⊂ G be the subgroup isomorphic
to Cr

nb . Clearly G/H ∼= Cr
na . We have s(G) = exp(G/H)s(H) + s(G/H) − exp(G/H) and,

since na+b ≥ (nar)2, it follows by Corollary 4.5 that s(G/H) = η(G/H) + exp(G/H) − 1. !

We point out that r and n that fulfil the condition of Corollary 4.6 actually exist. It
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is well-known that the conditions hold for r ≤ 2 and arbitrary n, where however also the
conclusion of Corollary 4.6 is known; but, in the following section we prove that they hold
for r = 3 and every n whose only prime divisor are 3 and 5 as well, and we conjecture that
they hold in further cases as well (cf. Conjecture 1.10).

5. Proof of Theorem 1.7 and Theorem 1.9

We recall and prove several auxiliary results. We start with the more general ones.

5.1 General Auxiliary Results

Let G be a finite abelian group and let ∅ (= A, B ⊂ G. Then A + B = {a + b : a ∈ A, b ∈ B}
is called the sum of A and B, and

∑
k A = {

∑
a∈A′ a : A′ ⊂ A, |A′| = k} is called the set

of k-term subsums. In the following proposition we recall two well-known results on set
addition. The first result is the classical Theorem of Cauchy–Davenport and the second
one was conjectured by P. Erdős and H. Heilbronn [10] and proved by J. Dias da Silva and
Y. ould Hamidoune [6], and differently by N. Alon, M. B. Nathanson, and I. Ruzsa [2, 3].
We refer to the monograph [25], in particular Theorem 2.2 and Theorem 3.4, for a detailed
account.

Proposition 5.1. Let p be a prime number, k ∈ N, and ∅ (= A, A1, . . . , Ar ⊂ Cp.

1. |A1 + · · · + Ar| ≥ min{p,
∑r

i=1 |Ai|− (r − 1)}.

2. |
∑

k A| ≥ min{p, k(|A|− k) + 1}.

Now, we use these results to establish the following lemma, which was proved in [19] in
the special case r = 2.

Lemma 5.2. Let p be a prime number and r ≥ 2. Let π : Cr
p → Cr

p be a linear projection
onto a subgroup of rank r − 1. Further, let S ∈ F(Cr

p) be a squarefree sequence. If there
exists a zero-sum subsequence T | π(S) such that

∑
h∈im(π) vh(T )(vh(π(S))− vh(T )) ≥ p− 1,

then there exists a zero-sum subsequence T ∗ | S with |T ∗| = |T |.

Proof. Let H = im(π). We assume that T | π(S) is a zero-sum sequence such that∑
h∈H vh(T )(vh(π(S)) − vh(T )) ≥ p − 1

For h ∈ H, let Sh | S such that π(Sh) = hvh(π(S)). Since S is squarefree, we know that
(id−π)(Sh) ∈ F(ker(π)) is squarefree. Clearly ker(π) ∼= Cp. Therefore, by Proposition 5.1.2,

|{σ((id − π)(Th)) : Th | Sh, |Th| = vh(T )}| ≥ min{p, vh(T )(|Sh|− vh(T )) + 1}.
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Furthermore,

{σ((id − π)(T ′)) : T ′ | S, π(T ′) = T} =

{σ((id − π)(
∏

h∈H

Th)) : Th | Sh, |Th| = vh(T ) for each h ∈ H} =

{
∑

h∈H

σ((id − π)(Th)) : Th | Sh, |Th| = vh(T ) for each h ∈ H} =

∑

h∈H

{σ((id − π)(Th)) : Th | Sh, |Th| = vh(T )} = A.

Now, by Proposition 5.1.1, the above inequality, and the assumption, we have

|A| ≥ min
{
p,

∑

h∈H

|{σ((id − π)(Th)) : Th | Sh, |Th| = vh(T )}|− (|H|− 1)
}

≥ min
{
p,

∑

h∈H

min{p, vh(T )(|Sh|− vh(T )) + 1}− (|H|− 1)
}

≥ min{p, 1 +
∑

h∈H

vh(T )(|Sh|− vh(T ))}

= p.

Thus, A = ker(π) ⊃ {0} and consequently there exists a sequence T ∗ | T such that π(T ∗) = T
and σ((id − π)(T ∗)) = 0. Since by definition σ(π(T ∗)) = σ(π(T )) = 0, we have σ(T ∗) = 0
and clearly |T | = |T ∗|. !

5.2 Results for Elementary 5-groups

For elementary 3-groups it is known that the support of a sequence without a zero-sum
subsequence of length equal to the exponent is a cap (cf. [7, Lemma 5.2]). Though, this
cannot hold in general for elementary 5-groups, we prove that this is true for the sequences
that are of maximal length.

Proposition 5.3. Let r ∈ N and let S ∈ F(Cr
5).

1. If |S| = s(Cr
5) − 1 and S has no zero-sum subsequence of length 5, then supp(S) is a

cap.

2. If |S| = η(Cr
5) − 1 and S has no short zero-sum subsequence, then supp(S) is a cap.

Proof. 1. We suppose that |S| = s(Cr
5) − 1 and S has no zero-sum subsequence of length 5.

Let f, g, h ∈ supp(S) be distinct elements. We have to show that 〈g−f〉 (= 〈h−f〉. By Lemma
2.3 we may assume that f = 0, and we assume to the contrary that h ∈ {2g,−2g,−g}. By
Corollary 1.4 we know that v = v0(S) ∈ {1, 4}. Let S = 0vT . We distinguish several cases.
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Case 1. v = 1 and h = −g. The sequence (gh)−1T has a short zero-sum subsequence |W |.
We have 2 ≤ |W | ≤ 5. Thus, gh0W , ghW , 0W , or W is a zero-sum subsequence of S of
length 5.

Case 2. v = 1 and h = 2g. By Corollary 1.4 we have vg(T ) ∈ {1, 4}. If vg(T ) = 4, then
g3h0 is a zero-sum subsequence of S of length 5. Thus, we assume vg(T ) = 1. The sequence
h−1g2T has a zero-sum subsequence W of length 5; this follows by Corollary 1.4, since the
sequence has length s(Cr

5) − 1 and the multiplicity of g is 3. Since W ! T , we have g2 | W
and therefore 0hg−2W is a zero-sum subsequence of S of length 5.

Case 3. v = 4 and h = −g. The sequence gh03 is a zero-sum subsequence of length 5 of S.

Case 4. v = 4 and h = 2g. If vg(T ) = 4, then 0g3h | S and we are done. Thus, again, we
assume vg(T ) = 1 and proceed similarly to Case 2.

Case 5. v = 1 or v = 4, and h = −2g. Since g = 2h, this follows by Case 2 and Case 4,
respectively.

2. The argument is similar. We omit the details. !

Since clearly each sequence over Cr
5 without a zero-sum subsequences of length 5, contains

no element with multiplicity exceeding 4, Proposition 5.3 yields four times the maximal
cardinality of a cap in Cr

5 as an upper bound for s(Cr
5)−1. One could combine this observation

with results on caps in Cr
5 (see, e.g., [4, Section 8]) to obtain bounds for s(Cr

5). However,
to bound s(Cr

n) by n − 1 times the maximal cardinality of a cap, for n = 5, opposed to the
situation for n = 3, seems to introduce a considerable error. Here, being interested in exact
values, we do not pursue this approach any further. Yet, we make use of Proposition 5.3, in
a different way, in the present investigations.

Now, we turn to the investigation of C3
5 .

Lemma 5.4. Let S ∈ F(C3
5) such that |S| = s(C3

5) − 1 and S has no zero-sum subsequence
of length 5. Further, let T | S be a squarefree sequence. There exists a linear projection
π : C3

5 → C3
5 onto a subgroup of rank 2 such that π(T ) = U2V where UV is a squarefree

sequence and |U | ≥ |T |(|T |− 1)/62.

Proof. Let N be a subgroup of C3
5 of order 5. Let

qN =
∣∣{{g, h} : {g, h} ⊂ supp(T ), g − h ∈ N \ {0}

}∣∣.
We have

∑

N<C3
5 , |N |=5

qN =

(
|T |
2

)
,

where N < C3
5 means that N is a subgroup. We note that C3

5 has (53 − 1)/(5 − 1) = 31
subgroups of order 5. Thus, there exists some N ′ such that

qN ′ ≥ 1

31

|T |(|T |− 1)

2
.
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Let π′ : C3
5 → C3

5 be a linear projection onto N ′ and let π = id − π′, which is a projection
onto ker(π′) = H, a subgroup of C3

5 of rank 2. We observe that

qN ′ =
∑

h∈H

(
vh(π(T ))

2

)
.

By Proposition 5.3, each triple of distinct elements in supp(S) does not lie on a line. Con-
sequently, π maps no three distinct elements in supp(S) to the same element. Since T | S
is squarefree, this implies that vh(π(T )) ≤ 2 for each h ∈ H. Thus, vh(π(T )) = 2 for
qN ′ ≥ |T |(|T |− 1)/62 elements h ∈ H, and the result follows. !

Next, we prove a result on the structure of sequences over C3
5 without a zero-sum subse-

quence of length 5 of maximal length. In particular, this result shows that (C2) is true for
the group C3

5 .

Proposition 5.5. Let S ∈ F(C3
5) such that |S| = s(C3

5) − 1 and S has no zero-sum
subsequence of length 5. Then (e0e1e2e3g)4 | S for some affine basis {e0, e1, e2, e3} of C3

5 and
some g ∈ C3

5 .

Proof. By Corollary 1.4 we have vh(S) ∈ {0, 1, 4} for each h ∈ C3
5 . First, we prove that at

least 5 distinct elements have multiplicity 4 in S. We assume that this is not the case. Then
|supp(S)| ≥ 36 − 3 · 4 = 24. Let T | S denote the maximal squarefree subsequence. By
Lemma 5.4 there exists a linear projection π onto a subgroup of rank 2 such that π(T ) = U2V
where UV is a squarefree sequence and |U | ≥ 24 · 23/62 > 8. Thus by Theorem 2.2.4 there
exists a zero-sum subsequence W | U with |W | = 5. Let U ′ | T such that π(U ′) = U2. By
Lemma 5.2, applied to U ′ and W , there exists a zero-sum subsequence W ∗ of U ′, and thus
of S, of length |W | = 5, a contradiction. Thus, we have S = (g1g2g3g4g5)4S ′ with gi ∈ G.
It remains to show that {g1, g2, g3, g4, g5} contains an affine basis of C3

5 . If this is not the
case, then {g1, g2, g3, g4, g5} is contained in an affine plane of C3

5 . Yet, by Lemma 2.3, since
s(C2

5) = 17 (see Theorem 2.2.1), this implies that (g1g2g3g4g5)4 has a zero-sum subsequence
of length 5, a contradiction. !

We use this (incomplete) structural result as “initial value” for a program, which we
describe below, that yields the following result.

Proposition 5.6. s(C3
5) = 37 and C3

5 has Property D.

Proof and description of program. Let S ∈ F(C3
5) such that |S| = s(C3

5) − 1 and S has no
zero-sum subsequence of length 5. We have to show that |S| = 36 and S = T 4 for some
T ∈ F(C3

5).

Roughly speaking, our program recursively constructs sequences without a zero-sum sub-
sequence of length 5, i.e., for S ′ ∈ F(C3

5) without a zero-sum subsequence of length 5 it
determines all g ∈ G such that S ′g has no zero-sum subsequence of length 5 (we refer to
these elements as admissible elements of S ′). It turns out that the set of admissible elements
of (all) sequences of length 36 without a zero-sum subsequence of length 5 is empty, i.e.
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s(C3
5) − 1 ≤ 36 and moreover every sequence of length 36 without a zero-sum subsequence

of length 5 is equal to T 4 for some T ∈ F(C3
5).

However, actually our program does not start “from scratch” when constructing these
sequences. By Proposition 5.5 we know that for every S ∈ F(C3

5) with |S| = s(C3
5) − 1 and

without a zero-sum subsequence of length 5 there exists some U ∈ F(C3
5) such that U4 | S,

|U | = 5, and supp(U) contains an affine basis C3
5 . Moreover, by Lemma 2.3 we may assume

that this affine basis is equal to {0, e1, e2, e3} for some (fixed) basis {e1, e2, e3} of C3
5 . Thus,

since we are only interested in sequences of length s(C3
5) − 1 we can restrict to considering

sequences that have a subsequence with the above mentioned properties. Therefore, instead
of starting the recursive construction with the empty sequence we can start it with a fixed
sequence of length 16, and additionally we can make use of the fact that at least one (further)
element has to occur with multiplicity 4.

To implement this procedure we represent the elements of C3
5 by (unsigned) integers

in the following way: Every g ∈ C3
5 has a unique representation age1 + bge2 + cge3 with

0 ≤ ag, bg, cg ≤ 4. For each g ∈ C3
5 let ng = 25ag +5bg +cg. (Note that we are only interested

in sums of at most 5 elements of C3
5 .) For the complete code and the detailed output of the

program see http://www.combinatorics.net.cn/homepage/hou/C53.html. !

Finally, we use the results on C3
5 to prove Theorems 1.7 and 1.9.

Proof of Theorem 1.7. By Theorem 2.2.4 s(C3
3) = 27 − 8 and by Proposition 5.6 s(C3

5) =
45− 8. Thus, the claim follows by [7, Corollary 4.5]; having all auxiliary results at hand, we
sketch the argument for a more self-contained exposition: By Theorem 2.2.3 we known that
s(C3

n) ≥ 9n − 8 and we have to prove that 9n − 8 is an upper bound as well. We know this
for C3

3 and C3
5 . Using Lemma 1.6, the general case follows by induction on a + b. Finally,

noting that s(C3
n) − n + 1 ≥ η(C3

n) ≥ 8n − 7, the proof is complete. !

Proof of Theorem 1.9. By Proposition 5.6 we know that C3
5 has Property D. By [18, Theorem

1], this implies that C3
5a has Property D for every a ∈ N. !

6. Proof of Theorem 1.8

Throughout this section we use the following convention and notation. We consider C3
6 as

C3
3 ⊕ C3

2 , and we denote by π3 : C3
6 → C3

3 and π2 : C3
6 → C3

2 the canonical epimorphisms.

We need a further results on caps in C3
3 , or in other words squarefree sequences with-

out a zero-sum subsequence of length 3. It is essentially well-known (cf. the monograph of
J.W.P. Hirschfeld [23]), however only in the context of projective geometries. For conve-
nience, we provide a detailed “translation.”

Lemma 6.1. Let A ⊂ C3
3 be a cap with |A| = 8. Then there exists at most one cap B ⊂ C3

3

with A " B.
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Proof. If A is inclusion-maximal the statement is obvious. Thus, we assume that A is not
inclusion-maximal. We embed C3

3 into PG(3, 3), the projective space of dimension 3 over
the field of order 3; we denote the embedding by ι. We recall (cf. [23, Theorem 16.1.5]) that
the maximal cardinality of a cap in PG(3, 3) is 10, and a cap with maximal cardinality is
called an ovaloid.

First, we assert that ι(A) is contained in some ovaloid. Since A is not an inclusion
maximal cap, ι(A) is not an inclusion-maximal cap, and there exists a cap C ⊂ PG(3, 3)
such that ι(A) " C. Since |C| ≥ 9, it follows by [23, Theorem 18.4.2] or [23, Theorem 16.1.7]
that C is contained in a (unique) elliptic quadric E. The quadric E is an ovaloid (cf. [23,
Proof of Theorem 16.1.5]) and obviously ι(A) ⊂ E.

Now, let B ⊂ C3
3 be a cap with A " B. Then ι(A) " ι(B) and, since ι(A) ⊂ E and

|ι(A)| = 8, it follows by [23, Theorem 18.4.2] that ι(B) ⊂ E. Since A, B ⊂ C3
3 , we have

ι(A) " ι(B) ⊂ (E ∩ ι(C3
3)) " E; the last inclusion is proper, since every plane and thus in

particular the plane “at infinity” intersects E (cf. [23, Lemma 16.1.6]). Since |ι(A)| = 8 and
|E| = 10, this implies ι(B) = E ∩ ι(C3

3). Consequently, ι(B) and thus B is unique. !

In the following lemma we obtain basic properties of sequences over C3
6 without a zero-

sum subsequence of length 6.

Lemma 6.2. Let S ∈ F(C3
6) such that S has no zero-sum subsequence of length 6.

1. Let S1 . . . Sm | S with |Si| = 3 and σ(π3(Si)) = 0 for each 1 ≤ i ≤ m. If |S| ≥ 40 + ε,
with ε ∈ {0, 1, 2}, then there exists a squarefree sequence T ∈ F(C3

3) of length 7 + ε
such that T 2 | π3(S(

∏m
i=1 Si)−1). In particular, m ≤ 8.

2. For g ∈ C3
3 , let Sg | S such that supp(π3(Sg)) = {g}. If |S| ≥ 40 + ε, with ε ∈ {0, 1},

and |Sg| ≥ 4, then |supp(Sg)| ≤ 2 − ε.

Proof. 1. Without restriction we may assume that π3(S(
∏m

i=1 Si)−1) has no zero-sum sub-
sequence of length 3. On the one hand, we have |π3(S(

∏m
i=1 Si)−1)| ≤ 18 = s(C3

3) − 1,
|supp(π3(S(

∏m
i=1 Si)−1))| ≤ 9 = g(C3

3) − 1 (see Theorem 2.2), and vg(π3(S(
∏m

i=1 Si)−1)) ≤ 2
for each g ∈ C3

3 . On the other hand, since S has no zero-sum subsequence of length 6, the se-
quence

∏m
i=1 σ(Si) ∈ F(C3

2) has no zero-sum sequence of length 2 and thus m ≤ s(C3
2)−1 = 8,

which implies |π3(S(
∏m

i=1 Si)−1)| = |S| − 3m ≥ 16 + ε. These conditions imply that
π3(S(

∏m
i=1 Si)−1) contains at least 7 + ε distinct elements with multiplicity 2, which is just

what we claimed.

2. We suppose that |S| ≥ 40+ε with ε ∈ {0, 1} and |Sg| ≥ 4 for some g ∈ C3
3 , and assume

to the contrary that |supp(Sg)| ≥ 3 − ε. Let Tg | Sg with |Tg| = 4 and |supp(Tg)| ≥ 3 − ε.
Let W = T−1

g S. Since |W | ≥ 36 + ε = (18 + ε) + s(C3
3) − 1, it follows that there exist

W1 . . . W6+ε | W such that σ(π3(Wi)) = 0 and |Wi| = 3 for each 1 ≤ i ≤ 6 + ε. Since
W has no zero-sum subsequence of length 6, we have |{σ(Wi) : 1 ≤ i ≤ 6 + ε}| = 6 + ε.
Since π3(Tg) = g4, it is clear that σ(π3(W ′)) = 0 for every subsequence W ′ | Tg of length 3.
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However, since |supp(Tg)| ≥ 3 − ε, we infer that there exist subsequences W ′
1, . . . , W

′
3−ε of

Tg of length 3 with pairwise distinct sums. Thus, {σ(W ′
i ) : 1 ≤ i ≤ 3− ε}∩ {σ(Wi) : 1 ≤ i ≤

6 + ε} (= ∅ and consequently S has a zero-sum subsequence of length 6, a contradiction. !

The following proposition, in particular, shows that (C2) holds for C3
6 . Moreover, it is a

key tool in the proof of Theorem 1.8.

Proposition 6.3. Let S ∈ F(C3
6) such that |S| = 40 and S has no zero-sum subsequence of

length 6. Then there exists a squarefree T ∈ F(C3
6) with |T | = 6 such that T 5 | S. Moreover,

at least one of the following statements holds:

1. for some g ∈ G, we have vg(T−5S) = 5.

2. for distinct g, g′ ∈ G, we have vg(T−5S) = vg′(T−5S) = 4.

3. for some h ∈ C3
3 , we have vh(π3(S)) ≥ 6.

Proof. Since |S| = 22 + s(C3
3)− 1, we have S1 . . . S8 | S such that σ(π3(Si)) = 0 and |Si| = 3

for each i. Since S has no zero-sum subsequence of length 6, we have |{σ(Si) : 1 ≤ i ≤ 8}| = 8
and W = π3(S(

∏8
i=1 Si)−1) has no zero-sum subsequence of length 3. Thus, |supp(W )| ≤ 9

and vg(W ) ≤ 2 for each g ∈ supp(W ). Consequently, W = T 2rs where T is squarefree
|T | = 7 and r, s /∈ supp(T ). We distinguish two cases.

Case 1. r (= s. For each 1 ≤ j ≤ 8, we consider the sequence π3(Sj)W .

Subcase 1.1. π3(Sj) is squarefree, say π3(Sj) = h1h2h3. If |supp(T ) ∩ {h1, h2, h3}| ≥ 2,
say h1h2 | T , then h3

1h
3
2 | π3(Sj)W , a contradiction to Lemma 6.2.1, since the product

of 9 zero-sum sequence of length 3 would divide π3(S). If |supp(T ) ∩ {h1, h2, h3}| = 1,
say h1 | T , then h2h3 (= rs, say h2 ! rs. By Lemma 6.1, the sequence h−1

1 Trsh2 has a
zero-sum subsequence U of length 3, and consequently h3

1U | π3(Sj)W , a contradiction.
Thus, |supp(T ) ∩ {h1, h2, h3}| = 0. If rs ! h1h2h3, say h1, h2 /∈ {r, s}, then by Lemma 6.1
Trh1 and Tsh2 both have a zero-sum subsequence of length 3, a contradiction. Therefore,
π3(Sj) = rs(−r − s).

Subcase 1.2. π3(Sj) is not squarefree, and thus π3(Sj) = h3
j for some hj ∈ C3

3 . If hj ! W ,
then Trhj and Tshj both have a zero-sum subsequence of length 3, a contradiction. Thus
hj | W . We assert that |π−1

3 (hj) ∩ supp(S)| = 1. The argument is similar to Lemma 6.2.2.
Let S ′ = SjS(

∏8
i=1 Si)−1. First, we assert that |π−1

3 (hj) ∩ supp(S ′)| = 1. Assume this is
not true. We note that vhj(π3(S ′)) ≥ 4. There exist subsequences U and U ′ of S ′ such that
π3(U) = π3(U ′) = h3

j and σ(U) (= σ(U ′). Since {σ(Si) : 1 ≤ i ≤ 8, i (= j}∩{σ(U), σ(U ′)} (= ∅,
we get a zero-sum subsequence of S of length 6, a contradiction. Now, we assume there
exists some k (= j such that hj | π3(Sk), say gk | Sk and π3(gk) = hj. Let gj | Sj, and define
S ′

k = g−1
k gjSk and S ′

j = gkg
−1
j Sj. By the above argument |π−1

3 (hj) ∩ supp(S ′
j)| = 1. This

proves the assertion.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A21 20

Thus for each 1 ≤ j ≤ 8, either we have π3(Sj) = rs(−r− s) or we have π3(Sj) = h3
j and

|π−1
3 (hj) ∩ supp(S)| = 1. We note that we may assume that the former is the case at most

once, since, if j (= j′ such that π3(Sj) = π3(S ′
j) = rs(−r−s), then SjSj′W = r3s3T 2(−r−s)2

and we are in the situation of Case 2.

If none of the sequences π3(Sj) is equal to rs(−r−s), we get S = (
∏6+ε

i=1 g5
i )(

∏8
i=7+ε g4

i )R,
where gi ∈ C3

6 , ε ∈ {0, 1}, and |R| = 2 − ε. We note that supp(R) ∩ {g1, . . . , g8} = ∅ and
thus the result holds with 1. or 2. according as ε equals 1 or 0. If one of the sequences π3(Sj)
is equal to rs(−r − s), we get S = (

∏7
i=1 g5

i )R, where |R| = 5, and the result holds with 1.

Case 2. r = s. Let T0 = Tr, then W = T 2
0 . Again, we consider π3(Sj)W .

Subcase 2.1. π3(Sj) is squarefree, say π3(Sj) = h1h2h3. By Lemma 6.1, there exists at most
one k ∈ {1, 2, 3} such that the sequence T0hk has no zero-sum subsequence of length 3, a
contradiction.

Subcase 2.2. π3(Sj) = h3
j . If hj | T0, then, as in Subcase 1.2, we get |π−1

3 (hj)∩ supp(S)| = 1.
If hj ! T0, it follows that T0hj has no zero-sum subsequence of length 3, and by Lemma 6.1
hj is thus uniquely determined by T0.

Thus, either we have π3(Sj) = h3
0 for some h0 ∈ C3

3 that is independent of j, or π3(Sj) = h3
j

and |π−1
3 (hj) ∩ supp(S)| = 1. Let n = |{j : π3(Sj) = h3

0}|. We note that n ≤ 3, since by
Lemma 6.2.2 |π−1

3 (h0) ∩ supp(S)| ≤ 2 and clearly every element has multiplicity at most 5
in S. If n = 0, we get S = (

∏8
i=1 g5

i ). If n = 1, we get S = (
∏7

i=1 g5
i )R where |R| = 5. If

n = 2, we get S = (
∏6

i=1 g5
i )R where |R| = 10. If n = 3, we get S = (

∏5
i=1 g5

i )g
5
6g

4
7R where

|R| = 6. Thus, for 0 ≤ n ≤ 1 the result holds with 1. and for 2 ≤ n ≤ 3 it holds with 3. !

In the next result, we show that for even longer sequences over C3
6 without a zero-sum

subsequence of length 6 we would obtain very precise structural results. However, actually
we use this result to prove that such sequences do not exist.

Proposition 6.4. Let S ∈ F(C3
6) such that |S| = s(C3

6) − 1 and S has no zero-sum
subsequence of length 6. If |S| ≥ 41, then there exists a T ∈ F(C3

6) with |T | = 8 such that
T 5 | S.

Proof. Obviously, vg(S) ≤ 5 for each g ∈ G. For U ∈ F(G), let m(U) = |{g ∈ G : vg(U) =
5}|. We have to show that m(S) = 8. We assume to the contrary m(S) ≤ 7.

If |S| ≥ 42, then there exists a subsequence S ′ of S of length 40 such that m(S ′) ≤ 5, a
contradiction to Proposition 6.3. Thus, we assume |S| = 41. Let S ′ | S of length 40 such
that m(S ′) = 6. By Lemma 6.2.2 we know that vh(π3(S)) ≤ 5 for each h ∈ C3

3 . Thus by
Proposition 6.3 vg(S ′) = vg′(S ′) = 4 for distinct g, g′ ∈ C3

6 . Consequently, vg(S) or vg′(S) is
equal to 4, a contradiction to Theorem 1.3.1. !

Finally, we are ready to prove Theorem 1.8.
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Proof of Theorem 1.8. By Theorem 2.2.2 we known that s(C3
n) ≥ 8n − 7. We prove that

s(C3
n) ≤ 8n − 7. In view of Lemma 1.6, it suffices to prove the result for a = 1; the general

case follows by induction.

Thus, we have to prove that s(C3
6) ≤ 41. We assume to the contrary that s(C3

6) ≥ 42.
Let S ∈ F(C3

6) such that |S| = s(C3
6)−1 and S has no zero-sum subsequence of length 6. By

Proposition 6.4 we have S = T 5R with |T | = 8 and |R| ≥ 1. Let g0 | R and let T =
∏8

i=1 gi.
Since π3(g3

i ) is a zero-sum subsequence of π3(S) for each 1 ≤ i ≤ 8, it follows by Lemma
6.2.1 that π3(g0T 2) has no zero-sum subsequence of length 3, in particular supp(π3(g0T 2)) =
{π3(gi) : 0 ≤ i ≤ 8} is a cap of cardinality 9. We note that σ(g3

i ) = 3π2(gi) = π2(gi). Thus
|{π2(gi) : 1 ≤ i ≤ 8}| = 8. Let 1 ≤ j ≤ 8 such that π2(g0) = π2(gj).

We consider the sequence W = (
∏8

i=1 σ(g2
i )

2)σ(gjg0) ∈ F(C3
3). Since S has no zero-sum

subsequence of length 6, W has no zero-sum subsequence of length 3. Thus, we have σ(gjg0) /∈
{σ(g2

i ) : 1 ≤ i ≤ 8} and {σ(gjg0)} ∪ {σ(g2
i ) : 1 ≤ i ≤ 8} is a cap in C3

3 of cardinality 9. We
observe that σ(g2

i ) = −π3(gi) and thus by Lemma 6.1 we have σ(gjg0) = −π3(g0). However,
since σ(gjg0) = π3(gj) + π3(g0), this implies π3(gj) = −2π3(g0) = π3(g0), a contradiction.

Since s(C3
n) − n + 1 ≥ η(C3

n) ≥ 7n − 6, the result follows. !
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