
Anoma Research Topics | COMMUNICATION

Anoma: a unified architecture for full-stack
decentralised applications
Christopher Goesa, Awa Sun Yina, and Adrian Brinka

aHeliax AG

* E-Mail: {cwgoes,awa,adrian}@heliax.dev

Abstract

Programmable settlement architectures do not enable counterparty discovery and solving, both of which are necessary to
build the majority of interactive multi-party applications. The architectural constraints of programmable settlement result
in contemporary application protocols that have at least one Web2 component, which becomes the centralisation point. We
present Anoma, a unified architecture for full-stack decentralised applications. Anoma is designed following the principles of
intent-centricity and homogeneous architecture / heterogeneous security, together constituting a declarative paradigm for
building decentralised applications. In this paper, we first outline the Anoma architecture, provide an intuition for the design
rationale, and describe how Anoma disentangles the choices of protocol and security. We then define the Anoma application
programming model and enumerate several existing and novel decentralised applications that can be built using the novel
primitives. Finally, we outline the current components used to instantiate Anoma and list future research directions.

Keywords: Anoma ; Intent-Centricity and Homogeneous Architecture ; Full-Stack Decentralised Applications ; Counterparty
Discovery ; Programmable Settlement Architectures ;

(Published: August 21, 2022; Version: August 29, 2023)

Contents

1 Background and motivations 2

2 Architectural design philosophy 3
2.1 Intent-centricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Homogeneous architecture, heterogeneous security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Analysis of platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Why decouple these dimensions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Architectural topology 5
3.1 Nodes and network layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Intents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Intent gossip layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.5 Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.6 Mempool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.7 Data availability domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.8 Security domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.9 Concurrency domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.10 Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.11 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.12 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.13 Fractal instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Programming model 7
4.1 Application components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Application portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Application security model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.4 Application state model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Applications 8
5.1 Novel primitives for applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Application examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.2.1 Contemporary decentralised applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2.2 Novel applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

DOI: 10.5281/zenodo.8279842 Anoma Research Topics | August 29, 2023 | 1–14

https://dx.doi.org/10.5281/zenodo.8279842


6 Architectural instantiation 10
6.1 Gossip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.1.1 Node model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.1.2 Path authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.1.3 Gossip incentives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6.2 Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.2.1 Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.2.2 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6.3 Execution environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.3.1 Validity predicate subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.3.2 Taiga Unified EE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.3.3 Typhon Transparent EE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6.4 Compilation stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.4.1 Juvix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.4.2 AnomaVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.4.3 VampIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6.5 Fractal instance components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.5.1 Sybil resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.5.2 Governance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.5.3 Resource pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Future directions 13
7.1 Private counterparty discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.2 End-to-end behavioural verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

8 Acknowledgements 13

References 13

1. Background and motivations
The release of the Bitcoin protocol in 2008 marked the beginning of scriptable settlement, a category of distributed
ledger architectures that is suitable for cryptocurrencies with discrete properties and monetary policies. Although it
is not Turing-complete, Bitcoin Script Bitcoin Wiki (2021) is able to support applications beyond currencies, such
as Namecoin and Colored Coins. As discussed in the Ethereum Whitepaper Buterin (2014), while applications built
on scriptable settlement are functional, this architecture requires too many trade-offs that resulted in constrained
properties and usability.

The introduction of the Ethereum protocol in 2014 set the precedent for programmable settlement, a new category
of architectures for constructing decentralised applications that leverage Turing-complete virtual machine execution,
which adds substantially more expressivity to the settlement layer. Programmable settlement paved the way for
improved versions of applications that scriptable settlement is not able to support, such as fungible tokens (ERC20)
or Ethereum Name Service (ENS), which are today well-established versions of the Colored Coin and Namecoin ideas,
respectively – in addition to many other desirable applications, such as non-fungible tokens (NFTs), Decentralised
Autonomous Organisations (DAOs), or the recently introduced Soulbound Tokens (SBTs) Weyl et al. (2022).

Proposed and deployed blockchain protocols since Ethereum’s release have brought significant improvements
to specific architectural components, for instance: consensus mechanisms (Tendermint Buchman et al. (2018),
Avalanche Rocket (2018)), Sybil-resistance mechanisms (proof-of-stake, proof-of-storage), scaling solutions (sharding,
rollups), and cryptographic schemes (zero-knowledge proofs) – but these improvements to constituent primitives do
not change the basic architecture of programmable settlement.

While programmable settlement is sufficient for certain applications, many contemporary applications have further
requirements. Settlement suffices when the involved parties have already decided what and with whom to settle,
but contemporary applications often also require infrastructure for helping potential counterparties discover each
other and decide with whom and on what to settle. As a workaround, existing applications have usually adopted
an architecture that relies on one or many permissioned or centralised components (such as provers, solvers, or
sequencers), usually implemented as Web2 services, in their stack.

Examples include decentralised exchanges for fungible assets (0x, CoWSwap, Uniswap), for non-fungible assets
(Wyvern, LooksRare, OpenSea), novel voting/funding mechanisms (quadratic voting/funding, Gitcoin), and rollups
(Optimism, Arbitrum, Starknet, zkSync) – their architectures involve at least one centralised component that often
results in a loss of permissionlessness, fault-tolerance, censorship-resistance, or privacy.

One emerging approach for applications seeking to avoid centralisation points in their architecture is to deploy
an application-specific sovereign chain to replace a specific component in the stack. Even though this approach can
solve the immediate centralisation problem, it comes with substantial trade-offs, such as the loss of network effects
(application composability and software re-use) or the addition of disproportionate complexity to developers and users,
who need to reason about multi-layered security, privacy, and latency domains.

DOI: 10.5281/zenodo.8279842 Anoma Research Topics | August 29, 2023 | 2

https://dx.doi.org/10.5281/zenodo.8279842


In this paper we present Anoma. Anoma is a unified architecture for full-stack decentralised applications –
characterised by its intent-centricity, decentralised counterparty discovery and computational outsourcing of NP
search problems to solvers which compute valid state transitions. With this architecture, contemporary applications
can be built without compromising permissionlessness, fault-tolerance, censorship-resistance, or privacy.

Anoma’s architecture also exposes novel primitives, such as composable privacy, which enables applications to
handle transparent, shielded, and private state and operations; and multi-chain atomic settlement, which allows users
and applications with different security preferences to obtain atomicity. These and other novel primitives pave the way
for the development of applications that cannot be built with existing architectures, several of which we enumerate
in Section 5: Applications.

2. Architectural design philosophy
Anoma’s architecture is driven by two design principles: first, intent-centricity; second, a homogeneous protocol
architecture with a heterogeneous security model. Beyond these two design principles, all other architectural choices
are a matter of modularisation and runtime configuration parameters.

2.1. Intent-centricity. An intent is an expression of what a user wants to achieve whenever they interact with a
protocol, for instance ”transfer X from A to B” or ”trade X for Y”. Practically, an intent is an off-chain signed
message that encodes which state transitions a user wants to achieve. Unlike transactions, intents are partial, so one
can think of intents as parts of transactions that require other direct or indirect parts as complements in order to
form a final balanced transaction which satisfies all users’ constraints.

Existing protocols are designed with transactions as their most fundamental unit. Anoma takes a radically different
approach: the architecture of Anoma is centred around programmatic intents.

An intent-centric architecture is necessary to enable counterparty discovery, which is crucial for compelling applica-
tions, since they require multiparty coordination and to enable full-stack decentralised applications. Anoma vertically
integrates counterparty discovery, solving, and settlement, and is able to interpret and process intents natively and
generically. Contemporary applications, as described earlier, require both counterparty discovery, solving, and set-
tlement. Intents are the point at which users interact with such applications, and an intent-centric design captures
the requirements of applications which need these two processes to work in tandem and satisfy censorship-resistance,
privacy, and fault-tolerance properties.

Intent-centric design also constitutes a declarative paradigm for building applications, since Anoma is designed to
settle intents as defined by the users – an intent is either settled as defined, or not settled at all. This declarative model
gives users a significantly higher degree of control, without requiring them to understand the underlying protocol
primitives and execution flows, which is crucial in order for decentralised applications to reach mass adoption. This
paradigm presents a radically different approach as compared to existing transaction-centric architectures that default
to an imperative model for applications. In the latter, users are required to understand the full execution trace to
benefit from security and privacy guarantees, because instead of authorising a specific state change, they authorise
specific execution paths. In practice, this is so difficult that users commonly interact with applications without
understanding the risks.

For application developers, Anoma’s intent-centric architecture enables them to build safer by construction appli-
cations by leveraging the combination of intents and validity predicates. Validity predicates are an architecture for
smart contracts which separate out cleanly the task of computing state transitions and the task of verifying correct-
ness of state transitions, as compared to message-passing VM execution models (pervasive in current programmable
settlement architectures) which interleaves computation and verification. Validity predicates allow application devel-
opers to reason about the invariants which they would like their application to satisfy without worrying about how
other applications interact with it, since the validity predicate of their application expresses these invariants directly.

2.2. Homogeneous architecture, heterogeneous security. The Anoma protocol, just like the TCP/IP protocol
stack, follows the principle of homogeneous architecture and heterogeneous security. In TCP/IP, the various layers
of the internet protocol are standardised, but the choice of whom to connect to and what data to entrust them with
is left to the user, and different users can make different choices while using the same protocol stack. In Anoma, the
various layers of counterparty discovery, solving, and settlement are similarly standardised, but the choice of what
security domains to trust and what data to send to whom are left to the user, and different users can make different
choices while using the same protocol stack.

In this framework, protocols can be analysed along two dimensions: architecture and security.

• Architecture: the abstractions and relations constituting the structure of a system. An architecture is syntac-
tical, possessed of properties and syntaxes but with no particular semantics in relation to the exterior world.
Convergence on a singular architecture saves time and verification costs without constraining users to particular
choices.

• Security: the choice of whom and how to trust in the operation of a distributed system. Security is a decision
inseparable from the particular semantics of a specific context of use. While security can be economically
abstracted to a certain degree by limiting the information available to and consequent choice-making capabilities
of system operators, operators will always have choices of: how and from whom to accept messages; when

DOI: 10.5281/zenodo.8279842 Anoma Research Topics | August 29, 2023 | 3

https://dx.doi.org/10.5281/zenodo.8279842


to elect to include them in blocks or other aggregations over which they vote; and when to cease voting or
otherwise alter normal operational procedures in response to exceptional circumstances. Whom to trust with
these responsibilities depends on what the state in the database represents in the real world, and alignment
with the interests of users of the database requires mutual interests beyond the purely economic ones.

2.2.1. Analysis of platforms. Consider distributed ledger platforms, from the perspective of applications running on
top of them, along these two dimensions: protocol architecture and security model, and whether they are homoge-
neous or heterogeneous for different applications running on the same platform.

Protocol architecture refers to the state layout, virtual machine, language support, sharding mechanisms, cross-
contract messaging model, etc. An architecture determines what is required to write an application for a platform,
and applications are specific to a particular architecture.

• Platforms with a homogeneous architecture require that all applications are written in a certain format (e.g.
EVM bytecode or WASM).

• Platforms with a heterogeneous architecture allow applications to be written in different formats, perhaps with
some agreement at the edges, such as cross-chain communication protocols.

Security model refers both to security in theory, such as fault tolerance properties of the consensus, fork detection
and handling; and security in practice, i.e. which miners or validators operate the deployed instances of these
architectures.

• Platforms with a homogeneous security model have the same security for all applications.

• Platforms with a heterogeneous security model have different security characteristics for different applications.

For illustration, Section 2.2.1 situates several platforms on these two axes:

Platform Architecture Security Model

Bitcoin Homogeneous Homogeneous
Ethereum Homogeneous Homogeneous
Ethereum 2.0 Homogeneous Homogeneous
Polkadot Heterogeneous Homogeneous
Near Homogeneous Homogeneous
Cosmos Heterogeneous Heterogeneous
Multichain Heterogeneous Heterogeneous
Anoma Homogeneous Heterogeneous

Table 1: An analysis of platforms based on their architecture and security model

As the table suggests, these dimensions are generally quite correlated: homogeneous architectures come with
homogeneous security models, and heterogeneous architectures come with heterogeneous security models. It is easier
to design a system where they are correlated. If everything is homogeneous, protocols can be fit together neatly, and
functionalities including cross-contract communication are easy; whereas if everything is heterogeneous, protocols
just agree on the edges of interaction, for instance via the Inter-Blockchain Communication protocol (IBC) Goes
(2020), and handling the complexity of security is up to the users and application developers.

2.2.2. Why decouple these dimensions?. Anoma’s fractal instance architecture is designed to decouple these di-
mensions and build a platform which is architecturally homogeneous and with a heterogeneous security model. This
is more complicated, but it separates out the question of what the best protocol architecture is, where there may be
a ”benevolent monopoly” (à la Git or TCP/IP), from the question of what is the best security model, where there is
almost certainly not.

Applications written for fractal instances can standardise on the architecture Anoma offers, which is sufficiently
well-defined to allow for complex interoperability, automatic scaling, etc., without agreeing on any single security
model. Furthermore, in some cases, this flexibility of choice can be extended all the way to users of the applications,
who can choose independently.

User interfaces for Anoma instances can support the same applications deployed with different security models,
and communicate that latter difference to users in a way which allows them to choose their trust assumptions while
retaining the network effects of using the same protocol.

Noteworthily, Anoma’s architecture is not homogeneous like a straitjacket, as it supports multiple deployment
models. The components in the protocol are layered so that fractal instances can pick and choose which parts they
participate in, even if it involves leveraging Anoma for specific functionalities, such as decentralised counterparty
discovery and solving, whilst anchoring the final settlement on another platform, such as Ethereum. Nonetheless, a
unified and vertically integrated architecture allows developers and users to benefit from standardisation.

DOI: 10.5281/zenodo.8279842 Anoma Research Topics | August 29, 2023 | 4

https://dx.doi.org/10.5281/zenodo.8279842


Fig. 1: The lifecycle of a transparent, shielded, and private intent in the Anoma architecture

3. Architectural topology
Anoma’s architectural topology consists of a set of logical abstractions delineated by their role in dataflow, independent
of particular forms of representation, deployment models, choices of cryptographic implementation, etc, Figure 1
provides an overview of the architectural topology. Particular instantiations carry different concrete performance and
security implications and should be chosen according to requirements of the specific deployment in question. We
offer a sketch of our choices for different deployments in Section 5: Applications.

3.1. Nodes and network layer. The architectural topology of Anoma operates on a substrate of networked Turing
machines, which we refer to as nodes. Nodes may take on different operational roles, such as gossiping intents,
searching for solutions, and voting in consensus. Although different roles will have different hardware requirements,
nodes are a single class and runtime configuration settings determine which roles a node performs.

All nodes compute deterministically, with the ability to generate local randomness (which may be used, for example,
as secret values in cryptography) and have read and write access to local storage. The set of nodes is unbounded
and dynamic with nodes entering and exiting at any times. Nodes are partially connected on an open network,
where different roles require different connections. The network layer is assumed to be unreliable (messages may be
arbitrarily dropped, duplicated, or reordered) and untrustworthy (unencrypted data is not secret). Specific roles may
have more stringent network assumptions such as partial synchrony.

3.2. Intents. An intent is a signed message that describes a partial state transitions. Semantically, intents contain
information about state preferences, such as that Alice wishes to swap X for Y, or any X with property T for any
Y with property U, or Z for some asset A, but only if A was previously owned by Bob, and only if Bob provides an
additional signature. More generally intents are arbitrary code that is evaluated at runtime by the settlement layer.

Intents are partial and hence specific counterparties are not required, albeit they can also be complete (complete
state transitions are a subset of partial state transitions). For example, an intent may express that Alice wishes to
send asset A to Bob, a state change which requires no one except Alice to agree in order to be enacted. Such
intents may still require solvers, if certain information is unknown by Alice. For example, Alice could express that
she wishes to set a bounty value in proportion to the current temperature in Berlin, a value which she does not know
but knows an oracle key for, and which a solver with oracle data access could provide. Intents which need neither
counterparties nor solvers can be immediately converted into transactions. The particular syntax of representation of
assets, properties, etc. is fixed at the application level. At the architectural level, intents are opaque bytestrings.

3.3. Intent gossip layer. The intent gossip layer is a virtual sparse overlay network for dissemination of intents,
counterparty discovery, and solving (when a solver combines multiple intents to craft a valid transaction). The intent
gossip layer consists of sparsely networked intent gossip nodes, where intent gossip is a role any node can play. When
a client authors an intent which requires solving, it broadcast the signed intent to an intent gossip node, which
further relays the intent over the intent gossip layer. This broadcast can be directed, where the node picks specific
other nodes based on privacy, solving specialisation or other criteria, or undirected, where the node broadcasts the
intent as widely as possible. Intents can contain a settlement-conditional fee, to be paid only if the intent is satisfied,
settled and confirmed by consensus. Furthermore this fee can be split between all nodes involved in the gossip and
the ultimate solver. Intents can pay a fee for confirmation and ordering of the (likely encrypted) intent in a data
availability domain where solvers compete to find the best match for each batch of intents.

3.4. Solver. A solver is a node which chooses to observe all or a subset of intents and computes solutions over the
set of intents. It achieves this by running one or many solver algorithms. These algorithms are local and different

DOI: 10.5281/zenodo.8279842 Anoma Research Topics | August 29, 2023 | 5

https://dx.doi.org/10.5281/zenodo.8279842


solvers compete with each other to satisfy the presented constrain system. In practice, solvers will likely specialise in
certain applications, such as fungible token trading or computing rollup states. Solvers are permissionless and anyone
can act as the role of solver. Solvers can decide which intents to accept and should generally only consider those
that are worth the storage and bandwidth costs, perhaps due to a fee or an expected spread from a trade. The solver
algorithm searches the space of possible solutions based on the current state of the settlement layer and the known
intent pool with the aim of finding subsets of combinable intents to generate transactions which are accepted by the
settlement layer.

3.5. Transaction. A transaction is complete state transition which acts as a function from the current state to a new
state. Transactions follow the declarative programming model and describe the desired end state rather than the
imperative steps to compute it. As a result, submitters of transactions, such as solvers or ordinary users, do not have
to consider the execution steps when reasoning about the behaviour of their transaction. In existing systems, such
as Ethereum or other programmable settlement architectures, submitters have to be aware and trust all intermediary
execution steps, including as proxy contracts, since they can modify the imperative computation and change the final
state result. With Anoma’s declarative approach submitters only have to accurately specify the desired end state
without worrying about the compute done in the middle.

Submitters encrypt transactions against the Ferveo Distributed Key Generation (DKG) public key Bebel and Ojha
(2022). Nodes receive and gossip only encrypted transactions. After consensus has ordered the encrypted byte
strings a 2

3 majority of consensus nodes decrypts and reveals the original transactions. Ferveo is non-interactive,
which means that there are no extra economic security guarantees required in order to enforce the revelation of the
original transactions.

3.6. Mempool. The mempool is a virtual dense partitioned overlay network for transactions. The mempool is
partitioned on the basis of security and concurrency domains (fractal instances), where nodes participating in the
mempool gossip only transactions for fractal instances which they are interested in. By contrast to the intent gossip
network, the mempool is dense in the sense that validators of a particular fractal instance must receive all of the
transactions destined for that instance. The mempool is opaque since it only receives, stores and gossips encrypted
byte strings rather than transparent transactions.

3.7. Data availability domain. A data availability domain is a logical clock and data availability layer. These data
availability domains are programmable by all applications. It allows applications to specify batches of intents that
are decrypted all at once at the same time after a particular time interval has passed. Intents can be submitted in
encrypted form (using Ferveo) to the nodes in a particular batch. After the batch is complete the validators decrypt
all intents in a batch and add the decrypted content to the state. These intents are not directly executed by the
state machine, but rather are available to solvers who compete to offer the best solution by a measurable criterion
defined by the application.

3.8. Security domain. A security domain is a set of cryptographically identified nodes executing a particular state
transition function in consensus, for which finality and correctness hold under a particular assumption of a certain
fraction of nodes behaving according to protocol, generally: n ≥ 3f + 1. Different Sybil-resistance mechanisms can
be used to select the set of nodes, such as proof of stake (PoS), proof of work (PoW), proof of identity (PoI) or
proof of authority (PoA).

3.9. Concurrency domain. A concurrency domain is a total ordering over a set of transactions within the domain
which may be partially ordered or unordered with respect to other concurrency domains. Concurrency domains always
operate within particular security domains, since the total order is enforced by the consensus of the security domain.

3.10. Consensus. Consensus is an algorithm for agreement between many parties (some possibly Byzantine) that
forms a security domain and quantizes time. The consensus algorithm is responsible for grouping transactions into
blocks which are agreed upon by consensus participants.

3.11. Execution. An execution environment is an algorithm for taking the current state and a set of transactions and
applying those transactions to the state resulting in a new state. Anoma provides a unified execution environment
which can handle transparent, shielded, and private state transitions.

• Transparent data is public to execution nodes and observers.

• Shielded data is private to execution nodes and observers, but known to a single user, who can prove properties
of it using ZKPs.

• Private data is known by no one independently and is computed and stored in encrypted form using various
forms of homomorphic encryption (HE).

Anoma provides a general framework for reasoning about the privacy of data independently of the kind of verifica-
tion performed, but performance characteristics of the underlying cryptographic schemes will determine the practical

DOI: 10.5281/zenodo.8279842 Anoma Research Topics | August 29, 2023 | 6

https://dx.doi.org/10.5281/zenodo.8279842


feasibility and execution costs of various applications. It is important to note that the delineation here is purely on
the basis of state privacy. Technologies such as zero-knowledge or optimistic rollups can be used with transparent,
shielded, and private state transitions.

3.12. Application. An application is a semantic domain governing the form and logic of a particular partition of
state which many users may interact with. Figure 2 illustrates the interfaces for end-users in Anoma. An application
consists of:

• State, which may be partitioned across multiple fractal instances and shards within those instances;

• application validity predicates, which govern changes to the application’s state;

• user validity predicate components, which can be included by the user in order to authorise certain interactions
with the application;

• intent formats, which allow intents to be created by clients, reasoned about by solvers, and processed by
application validity predicates;

• solver algorithms, which allow solvers to craft transactions satisfying intents from a specific application or
possibly from many other applications;, - - and interfaces, which provide users visual, spatial, and temporal
abstractions for interacting with the application.

Fig. 2: End-user interfaces of applications on Anoma

3.13. Fractal instance. A fractal instance is an instance of the Anoma consensus and execution protocols operated
by a set of networked validators. In general, fractal instances are security domains, in that they are operated by a
particular set of validators, of which the user must trust a quorum; concurrency domains, in that they maintain a full
order of only the transactions which they execute; and data availability domains, in that external observers can query
the fractal instance to retrieve parts of its state. Fractal instances are sovereign, in that they do not depend on any
other part of the fractal instance graph for continued correct execution, although their validator sets may overlap, a
property which can be exploited in certain cases to provide multi-chain atomic settlement. Fractal instances, in order
to be compatible with all features of the network, must implement the Anoma consensus and settlement protocols
according to the specification, but they can vary in their chosen sybil-resistance mechanisms, execution pricing, and
local governance of protocol versioning, economic distribution regime, and irregular state transitions handling.

4. Programming model
Considering the architecture of Anoma from the perspective of users with preferences over states of the system,
one might ask the question: why are there applications at all? Cannot users merely articulate their preferences
and the system enact them, without further component intermediation? In principle, they can, but the search
space of solvers and difficulty of coordinating the relations between the state of the ledger and state of the world
would be computationally intractable without coordination on particular forms of representation and particular logics
of preference expression and settlement. Applications describe these particular forms, on which it is necessary to
coordinate in order to express, match, and settle intents, and in order to provide simple and accurate interfaces for
users.

4.1. Application components. An application on the Anoma architecture consists of intent formats, an application
state validity predicate, user validity predicate components, solver algorithms, and one or many user interfaces.

• Intent formats describe the form and semantics of particular intents utilised by the application, which must be
created by the user interfaces, understood by intent gossip nodes, matched by solvers, and validated by the
application’s validity predicates.

• The application state validity predicate encodes the relation governing valid state transitions of the application’s
state.

• User validity predicate components encode the relations which users can approve in order to allow for safe
interactions with this application.

DOI: 10.5281/zenodo.8279842 Anoma Research Topics | August 29, 2023 | 7

https://dx.doi.org/10.5281/zenodo.8279842


• Solver algorithms instruct a solver how to match this application’s intents and form valid transactions.

• Finally, user interfaces present users with a graphical or textual view of and controller for the application in
question.

4.2. Application portability. By default, applications are portable across fractal instances, and application state
validity predicates may also reason about security and concurrency domains in order to allow for safe interaction
between users of an application across these domains.

Although nothing ties a particular interface to a particular application, Anoma’s intent gossip network is capable
of acting as a data availability layer for interface code, in a way which allows secure synchronised interface and
application versions.

4.3. Application security model. In Anoma, users distrust applications. Applications are never granted un-restricted
access to modify a user’s state. All state entries carry an explicit owner, and the validity predicate associated with that
owner must authorise all changes to that state. Instead of authorising à la transferFrom, users add components to
their validity predicates which allow for specific interactions with a specific application, which can then be performed
non-interactively from the perspective of the user, if they have granted the application license to do so. These
components can be altered or revoked at any time, and allow for ”defence-in-depth”, e.g. prevent transfers of more
than X within time bound t.

4.4. Application state model. Anoma assumes clients are stateful - they are treated as components of the distributed
system. Messages will only be sent once, and can be marked as delivered, in which case they will not be kept around.
Message history can be reconstructed by reprocessing historical transaction archives.

5. Applications
The architecture of Anoma is suitable for any application desiring to provide counterparty discovery, solving, and
settlement for particular forms of preferences over a particular semantic domain. Here we enumerate several prim-
itives that Anoma exposes to application developers. We then list several examples of contemporary decentralised
applications and how they would benefit from Anoma’s architecture. Followed by the description of novel decen-
tralised applications which have hitherto been impractical or impossible to develop due to the constraints of existing
architectures.

5.1. Novel primitives for applications. Anoma exposes several new primitives to application developers:

• Incentivised data availability, for data which is expected to be used in the creation of future transactions,
provided by the intent gossip layer (see Section 6: Architectural instantiation).

• Programmable solvers, provided by intent gossip nodes running solver algorithms, to which can be outsourced
the computational task of finding an atomic state transition (transaction) involving many parties which simul-
taneously satisfies all of their preferences.

• Programmable threshold decryption, provided by Ferveo Bebel and Ojha (2022), which can be used to imple-
ment on-demand batching and enforce configurable fairness properties on the processing of application-specific
state transitions submitted within a quantised period of logical time.

• Programmable privacy, provided by ZKP systems and fully homomorphic encryption (FHE), which can be used
to separate verification of properties of data from knowledge of the data itself. Application developers can
leverage programmable privacy to build applications that handle transparent, shielded, and private state in the
same application.

These primitives taken together provide the flexibility required to build complex user-friendly applications which pro-
vide the desired game-theoretic, privacy, and latency properties, such as decentralised quadratic voting and quadratic
funding, voting through incentivised data availability, settlement through solvers, privacy & receipt-freeness through
ZKPs and HE.

5.2. Application examples.

5.2.1. Contemporary decentralised applications. Here we list example of collections of contemporary applications
that follow the intent, counterparty discovery, and solving design pattern, but that are at the moment application
specific and rely on at least one single-operator component.

DOI: 10.5281/zenodo.8279842 Anoma Research Topics | August 29, 2023 | 8

https://dx.doi.org/10.5281/zenodo.8279842


Decentralised exchanges Contemporary decentralised exchanges for both fungible and non-fungible tokens, such as
0x, CoWSwap, Uniswap, Wyvern, and Seaport, require both counterparty discovery, solving, and settlement, besides
other requirements such as batched/fair execution. At the moment, such projects either use the blockchain itself for
counterparty discovery (Uniswap) or operate single-operator orderbooks controlled by specific parties (0x, Wyvern,
Seaport, CoWSwap), which tend to be trusted for fair ordering and optimal execution. Using Anoma, these parties
could be replaced by the peer-to-peer intent gossip and distributed solving layer, which generalises through arbitrary
trades. Orders to buy or sell particular assets would instead be broadcasted across the intent gossip network as
intents, matched by a solver, who could collect any number of intents in order to balance a trade, and submitted
for settlement to the fractal instance holding the assets in question. Threshold decryption can be used for fairness
across batches.

Rollups Existing rollup architectures, both optimistic ones such as Arbitrum, Optimism; and zero-knowledge ones,
such as ZkSync or StarkNet, operate with a single-operator sequencer and solver responsible for ordering transactions,
calculating state updates, and submitting updated states to the root chain, in these cases, Ethereum. This sequencer
is trusted with fair ordering and optimal solving, and can selectively omit transactions, so some projects have expressed
a desire to decentralise the sequencer. As a decentralised sequencer is simply a consensus instance, such rollups could
instantiate an Anoma fractal instance, using Typhon consensus, to operate their sequencer, and submit zero-knowledge
or optimistic proofs of execution to Ethereum as they currently do.

Public goods funding Quadratic funding (QF), as implemented by Gitcoin, requires both counterparty discovery,
solving (as the funding provider’s payouts depend on individual donations), and settlement. Using Anoma, QF can
be implemented in a manner which preserves individual privacy and provides excellent UX (e.g., donating to projects
carries no fees). The funding provider, project creators, and all individual donators each author intents reflecting
their willingness to commit funds, execute on a project, and donate, respectively. A solver algorithm matches these
intents and creates a single transaction to settle at the end of the QF round, while the funding provider can pay
the settlement fees. Amounts of donations must be public in order to perform the QF calculations, but individual
identities can be kept private using Anoma’s private execution environment. Expressive intents can also capture
additional dimensionality which is difficult to represent in a simpler QF model - for example, many projects require
a certain amount of funding in order to do anything at all, and only wish to receive funding (and commit to action)
should a certain threshold be met. This can be expressed as a constraint in the intent, and the solver must either
find enough funding to meet the threshold or omit the project, as desired, in order for the final settlement transaction
to be valid.

5.2.2. Novel applications. Here we sketch some novel decentralised applications that can be built using Anoma’s
architecture: DAOs 2.0, runtime rollups, multiparty multivariate bartering, private auctions, and local episodic games.

DAOs 2.0 Decentralised autonomous organisations (DAOs) hold the twin promises of organisational operational
transparency, in that the rules for decision-making are articulated and executed in the same code, which anyone
can read, and operational verifiability, in that any past actions of the organisation can be proven to a third party
to be consistent with this rule set. In present instantiations, however, they obtain transparency and verifiability by
execution on a public blockchain, which comes at the cost of privacy.

Operational privacy allows organisations to present, and prove with verifiability, specific data about the organ-
isations inputs and outputs (e.g. quarterly funding disclosure for a non-profit) without revealing every aspect of
decision-making, which is a lot of data from which someone can easily cherry-pick to misrepresent what’s really
happening, or which members of the public with other agendas (perhaps operating a competing organisation, or with
a personal bone to pick with a member of the one in question) can use to start bike-shedding debates or otherwise
interfere with organisational operations.

Anoma’s architecture allows for the creation of private DAOs which need make no such compromise: they can
keep both decision-making rules and data private, visible only to parties within the organisation, but prove arbitrary
properties of each to the world as they choose.

In particular, this system could be used to instantiate something like the plural money system Prewitt (2022).
Communities could themselves create private DAOs, controlled by members of the community, with internal com-
munity currencies, community-owned SALSA-allocated assets, and limitations/taxes on wealth transfer outside the
community.

Runtime rollups Let us take a ”rollup” to be the separation of computation and verification such that the verification
can be suitably replicated for improved fault-tolerance while the computation need not be. In systems which rely on
imperative semantics, and where end-users are signing particular imperative execution paths, rollups are long-lived
and must be specifically specified by users. In Anoma’s declarative architecture, since users sign intents expressing
properties which the execution is required to satisfy rather than any particular execution path, rollups can be created
at runtime depending on dynamic demand, and markets for compute may be used rather than replication where doing
so is cheaper.

Multiparty, multivariate private bartering Consider three friends, Alice, Bob, and Charlie, a hotel operator David,
a festival producer Eve, and a train company Deutsche Bahn. The festival runs for three weekends in July near
Potsdam. Alice, Bob, and Charlie wish to attend the festival together, on the same weekend, and take trains from

DOI: 10.5281/zenodo.8279842 Anoma Research Topics | August 29, 2023 | 9

https://dx.doi.org/10.5281/zenodo.8279842


their respective home towns of Berlin, Zurich, and Amsterdam. They’re flexible about the particular weekend, and
would like the combined price of train tickets, hotel rooms, and festival passes to be as low as possible. Eve wants to
sell tickets to his festival, which are fixed-price based on his costs plus markup, but sometimes resold by parties who
purchase them early on then later realise that they cannot attend. Deutsche Bahn sells train tickets with variable
prices based on demand, David likewise for hotel rooms (and she has both single rooms suitable to host one person
and quadruple rooms suitable to host four). Alice, Bob, and Charlie are happy to room with another person, as long
as they are also attending the festival (they view this as good evidence of a likely friendship).

In the world today, Alice, Bob, and Charlie might go to the festival’s website to look for ticket availability, then
try to check hotel and train prices across the three possible weekends and compile a spreadsheet in order to figure
out what their costs might be. Of course, while they’re busy compiling the spreadsheet, someone else looking to
travel could book their hotel room or train seat, and they’d be out of luck. Worse, they could book a hotel room for
a particular weekend, then find out that the train tickets are unavailable and be unable to change the hotel room (at
least without paying a cancellation fee).

Alice, Bob, Charlie, David, Eve, and Deutsche Bahn could all use Anoma as a substrate for multiparty private
bartering. Each party would author an intent with their preferences, and all intents would either be matched
atomically (meaning that train tickets, hotel rooms, and festival passes are booked for all of Alice, Bob, and Charlie
in correspondence at once) or not at all. Using private bartering, what all parties want is public, but who they are
need not be revealed.

This can also be used for simpler cases, such as fungible tokens. Users can author intents capturing the semantics
of market & limit orders, and also more complex algorithms such as an AMM. Expressed in intent form, an AMM
order is simply a price curve along which one is willing to swap two assets (xy = k). Users can author AMM intents
for the full price range or any subrange (similar to Uniswap v3). Unlike on-chain AMMs, this does not require sending
transactions or locking any assets up.

Private auctions Independent of more long-term reasons, auctions often benefit from privacy for game-theoretic
reasons: a sealed-bid second-price auction gives bidders reason to bid their true value, but requires bid privacy in
order to work. Using Anoma, such auctions could be conducted privately, in two different ways. The first and most
immediately feasible way is to use programmable threshold decryption to keep all bids encrypted until the auction
deadline has passed, then decrypt them all at once, select the highest bidder as the winner and charge them the
second-highest price. This can be combined with other privacy techniques for concealment of identity. FHE can also
be used to implement private auctions, by performing the bid selection directly as operations on the bids submitted
as ciphertexts.

Local episodic private games Consider a digital re-enactment of a game of poker. Games of poker are episodic, in
that (even if bets are being placed and winners reported to a leaderboard) no interaction or ordering takes place
between different games - if users are submitting actions, actions taken by users within the same game must be
ordered with respect to actions taken by other users in that game, but not with respect to actions taken by any
others. Anoma’s fractal instance architecture can instantiate this structure efficiently: players, when they start a
poker game, launch a temporary consensus instance (simply operated between themselves) to order state transitions
within that game, then submit the results at the end to a poker tracking/statistics application on a more long-running
fractal instance. This fractal instance can be run on LAN for low-latency, and transactions need not have any cost
(since the set of who can submit them is restricted to the players).

Poker also requires privacy, primarily keeping a private hand and periodically revealing cards, and randomness (for
the deck shuffle), which can be provided by the private execution system and threshold signatures from the threshold
cryptosystem in Anoma, respectively.

6. Architectural instantiation
The Anoma architecture requires many individually intricate subcomponents which can be instantiated in a variety
of ways with different performance, complexity, and ergonomic trade-offs. Here we sketch the abstract interfaces
required of necessary subcomponents and summarise our current development directions in instantiating them.

6.1. Gossip. The Anoma gossip system is a pseudonymously identified, path-authenticated, fault-accountable sparse
overlay network. In contrast to conventional peer-to-peer gossip networks, this system is designed to operate privately
by default, with optional attestations. Nodes are identified by cryptographic keys and all messages are encrypted to
their recipient and signed by their sender. Nodes craft & enforce local rules around message validity, rebroadcast, and
retention. Combined with a settlement ledger and path-authentication-based fees, this provides an incentivised data
availability layer for transaction-relevant data, which is used within the Anoma architecture by users to broadcast
intents, which are sent around until solvers find counterparties, create transactions, and submit them to fractal
instances for settlement. Nodes maintain a local trust graph and ruleset around message content validity and
rebroadcast criteria. The Anoma gossip system uses an explicit trust model, where the underlying physical network is
distrusted, new nodes bootstrap with a set of trusted peer public keys, and nodes maintain trust relations over time,
keeping track of who introduced them to whom and applying changes in trust recursively along the trust graph.

DOI: 10.5281/zenodo.8279842 Anoma Research Topics | August 29, 2023 | 10

https://dx.doi.org/10.5281/zenodo.8279842


6.1.1. Node model. Nodes in the gossip network are assumed to possess a private key, the corresponding public key
to which is used as identification. Nodes must totally order and sign all messages which they send, which are unique.
Signing two messages with the same nonce is an accountable fault.

In traditional P2P gossip systems, nodes are primarily identified by their IP address, which refers to a physical
network destination and is assumed to be long-lived. By contrast, in the Anoma gossip system, nodes are primarily
identified by their public key, which can list and periodically rotate IP addresses at which it could potentially be
reached (but which a sender does not necessarily need to know in order to send messages). This can be seen as
a sort of virtual gossip network, with identity persistence based on secret information (the private keys) which can
be freely moved across physical substrates. Local caches of physical routing latency are kept in order to maintain a
relatively efficient mapping of the spatially non-local virtualised network into the spatially local physical one.

This choice of structure also allows for a conceptually elegant virtualisation of fault-tolerant subsystems: a
threshold cryptosystem in combination with consensus (in order to provide ordering) effectively virtualises many nodes
as one node, with the threshold key used for incoming and outgoing messages and shares for threshold decryption
and threshold signing internally rebroadcast around for reconstruction (encrypted to individual node public keys for
privacy). In contrast to other blockchain systems, Anoma’s gossip network is not sharded on the basis of security
domains (compare to independent blockchain mempools), but rather simply sparse, where real-time demand can
inform connection choices and routing tables.

6.1.2. Path authentication. Anoma’s gossip system provides path authentication: the receiver of a message can
verify a chain of signatures recursively back all the way to the original sender, such that each party in the message
chain can be verified to have authorised the next send, and can be both potentially paid for participating in gossip and
held accountable for inconsistent ordering across messages. This is accomplished simply by keeping an ordered list of
signatures in the message header, which can all be checked by the recipient for correctness and linkage consistency.
For efficiency and privacy, validity checks may be compressed and inner path identities may be hidden using ZKPs,
which the recipient then verifies as a part of receiving the message.

6.1.3. Gossip incentives. The path authentication system described above can be used to provide a form of gossip
incentive whereby a user can broadcast an intent and offer payment to any nodes who participate in a chain of gossip
which leads to its eventual settlement. The user simply includes a small fee (the semantics of which are chosen at
runtime) which they allow gossip nodes to malleate, so that each node, when forwarding the message, can choose
to take a portion of the fee for themselves. If the node can settle the intent by combining it with others, crafting
a valid transaction, and submitting it to the appropriate fractal instance, they can claim the fee immediately. If
not, the node can choose how much fee to take for themselves before they forward the message. Of course, they
can take all the fee, but then there would be no reason for other nodes to rebroadcast or settle the intent, so the
node would receive nothing. Nodes can thus be expected to rebroadcast intents taking only enough of the fee such
that the expected benefits of potential settlement outweigh the opportunity cost of potentially being able to settle it
themselves (but the user can broadcast their intent to many parties, so an individual node who cannot immediately
settle it is unlikely to be the first to be able to).

6.2. Consensus. The consensus component is an algorithm by which many nodes can be abstracted as one virtual
node, which will be correct subject to certain assumptions about the correctness of the constituent nodes (generally
2
3 ). Just as individual nodes operate a deterministic state machine and send and receive messages in a local total
order, virtual nodes created by use of the consensus algorithm operate a deterministic (replicated) state machine
and send/receive messages in a total order. The consensus algorithm is responsible for abstracting many nodes into
this virtual node by gossiping, ordering, and executing transactions (incoming messages), then finalising the updated
states (outgoing messages) in a verifiable manner.

At present, the consensus component in Anoma is instantiated by Typhon Heliax (2022), which draws substan-
tially from Heterogeneous Paxos Sheff et al. (2021), Narwhal Danezis et al. (2022), and Tendermint Buchman et al.
(2018).

6.2.1. Ordering. The ordering component of consensus is responsible for ordering transactions prior to execution,
where nodes participating in consensus must agree on the ordering and ensure that all transactions so ordered are
available to them for execution.

6.2.2. Execution. The execution component of consensus is responsible for executing transactions on which an order
has already been agreed, updating the state to reflect the results of transaction execution, and finalising the updated
state so that external parties can inexpensively verify properties of it.

6.3. Execution environments. The execution environment of Anoma is a runtime responsible for partitioning and
permissioning state and code to allow for safe interoperation of mutually distrusting programs, abstracting transparent,
shielded, and private state changes and providing appropriate primitives for cryptographic operations, and handling
cross-fractal instance state verification as well as synchronous and asynchronous cross-fractal-instance messaging.
These three responsibilities of abstraction are orthogonalised into three components: the validity predicate subsystem,
the unified transparent/shielded/private execution environment (Taiga), and the transparent execution environment
(Typhon EE).

DOI: 10.5281/zenodo.8279842 Anoma Research Topics | August 29, 2023 | 11

https://dx.doi.org/10.5281/zenodo.8279842


6.3.1. Validity predicate subsystem. The validity predicate (VP) subsystem is responsible for partitioning and permis-
sioning state and code in order to allow for safe interoperation of mutually distrusting programs. This is accomplished
by splitting the keyspace of transparent, shielded, and private state into mutually exclusive prefix spaces, where the
first part of a key corresponds to ownership by a specific validity predicate, stored at a sentinel key within that prefix.
Whenever state within a particular prefix is altered, the validity predicates associated with that prefix are called, and
they can choose to accept or reject the transaction. Validity predicates can also choose to require that other validity
predicates also accept.

The validity predicate subsystem is itself implemented as a validity predicate and can in principle be instantiated
recursively. The subsystem is also responsible for enforcing limitations on what data is accessible to VPs.

6.3.2. Taiga Unified EE. The Taiga unified execution environment is responsible for handling transparent, shielded,
and private data access and operations.

Data privacy domains Transparent data is represented as a mutable key-value tree, where keys can be read, written,
and deleted, and prefixes can be iterated over.

Shielded data is represented as an immutable append-only note set, where each note can be either consumed once
or many times. Each note includes a key, value, and owner key, to which an encryption of the note contents must
be available.

Private data is represented as a mutable key → ciphertext mapping, where keys can be read, written, and deleted,
and ciphertexts can be operated on using special homomorphic instructions.

Cross-domain transit Conversion between the three data realms is handled as follows:

• Transparent → Shielded: Transparent data can be read or computed over in the course of execution, and then
written into a shielded note.

• Transparent → Private: Transparent data can be read or computed over in the course of execution, and then
encrypted to the threshold key.

• Shielded → Private: Shielded data can be computed over in zero-knowledge, and then encrypted to the
threshold key, where correct encryption is proved in zero-knowledge and only the encrypted value is revealed to
the operator.

• Shielded → Transparent: Properties of shielded data can be proved in zero-knowledge and then revealed to the
operator along with the proof.

• Private → Transparent: Private ciphertexts can be decrypted using threshold decryption. This process is
asynchronous.

• Private → Shielded: Private ciphertexts can be re-encrypted to another public key and thus become shielded
data. This process is asynchronous.

6.3.3. Typhon Transparent EE. The Typhon execution environment is the lowest-level execution environment, de-
signed to impose only the minimal requirements and structure required by Typhon for transaction ordering and
concurrent execution.

The Typhon execution environment has only transparent state, which is organised in a key-value tree. Transactions
declare parents of all subtrees of keyspace within which they will read and write. Using this information, Typhon can
identify transactions which touch only non-overlapping regions of state and thus order transactions for concurrent
execution. This execution environment does not itself have any state semantics for private data or state/code
partitioning. Further structure is specified by a root validity predicate, stored at a particular sentinel key, which is
called as a part of all transactions.

The Typhon EE is also responsible for handling asynchronous message passing across fractal instances and syn-
chronous (atomic) message passing within chimera chains. The EE handles transport, ordering, and verification,
while message semantics are left to higher execution abstraction layers.

6.4. Compilation stack. In order to provide a unified black-box application development interface, the Anoma im-
plementation includes a new language, Juvix, and a compiler stack, designed in tandem to allow developers to write
formally verified, privacy-preserving, fault-tolerant distributed applications.

A great deal of research work into the compiler stack remains and this section should be considered a work in
progress. Several components described herein are only partially implemented and alternatives are still under active
consideration.

6.4.1. Juvix. Juvix is a high-level function language which compiles to a variant of the simply typed lambda calculus.
Programs written in Juvix can express and reason about public, shielded, and private data and operations. Juvix’s
lambda calculus output language can be compiled to RISCV or WASM through C, or can be compiled to the abstract
categorical operations of the AVM which can in turn be instantiated as polynomials, the input language of VampIR.

DOI: 10.5281/zenodo.8279842 Anoma Research Topics | August 29, 2023 | 12

https://dx.doi.org/10.5281/zenodo.8279842


6.4.2. AnomaVM. The AnomaVM (AVM) is a distributed abstract categorical virtual machine. The AVM is de-
signed to capture information theoretic semantics of multiparty interactions and compute without fixing concrete
cryptographic representations/instantiations or operational execution semantics. An AVM program directly refer-
ences agents by role, who can reason about each others state transitions and states through proofs of execution and
authentication, and who can send and receive messages to and from each other.

An AVM program itself specifies agents only abstractly, but it can be executed (or compiled, then executed) by
any agent, who must specify the role they wish to play (this is a sort of local naming system). The AVM can be
compiled through LLVM for transparent execution, and through VampIR for circuits suited to ZKP or FHE execution.

As an operationally neutral abstract representation, the AVM is also the level at which the Anoma architecture
defines cost semantics and identity of programs, e.g. different parties may compile AVM programs to different
concrete cryptographic and transparent backends for execution.

6.4.3. VampIR. VampIR is a language and compiler designed to provide an abstract representation of polynomials,
circuits, and constraint systems which can be compiled to different concrete proof systems. The IR is designed to
capture the denotational semantics of circuits while remaining agnostic to operational semantics of instantiation in
various proof systems and cryptographic backends, including ZKP and FHE.

6.5. Fractal instance components.

6.5.1. Sybil resistance. Fractal instances must provide a Sybil resistant mechanism in order to assign voting power
in consensus. This can be proof-of-stake, proof-of-authority, hybrid (partially fungible) proof-of-stake, or some form
of liquid democracy based on the cryptographic identity substrate.

6.5.2. Governance. Fractal instances may provide a governance mechanism for enacting irregular state changes by a
(somewhat) more regular process than what would take place without any such system. This governance mechanism
itself requires Sybil resistance, which can be the same as used in consensus or a slight variant.

6.5.3. Resource pricing. Fractal instances must provide a Sybil resistance mechanism for performing expensive
computational operations upon the receipt of messages which can be sent by anyone in an open network. This
Sybil resistance mechanism could be based on fees paid in a network token, identity-based quotas or subscriptions of
compute, storage, etc., or low flat per-message limits in combination with network-based rate limiting.

7. Future directions
7.1. Private counterparty discovery. The trade-off axis between counterparty discovery, fairness, and privacy is quite
fundamental: in order to find a counterparty in any way more efficient than random testing, you must provide some
information about your preferences, which entails a corresponding loss of privacy, and in order to provide fairness
across a larger set of parties in cases of uncertain information (e.g. variable prices), you must make your preferences
public to a larger set of solvers who can see more intents at once and compete to find the fairest solutions.

Encrypted solving (solving intents which are completely private to the solver), while possible in principle, pairs
the already NP problem of solving with the overhead of heavy-duty HE, and is likely to remain infeasible in the
near future, but research into improved algorithms, application-specific solutions, and dedicated hardware could bring
these overhead costs down over time.

7.2. End-to-end behavioural verification. Anoma’s architecture covers the domain from (abstract) Turing machines
operating node software to (abstract) users authoring intents, and provides guarantees for the behaviours of the system
with respect to the latter given certain assumptions about the behaviours of the former. In practice, safe usage of a
deployment of Anoma depends not only on the correctness of this system but also on the correctness of the hardware
utilised by nodes and the correctness of interfaces utilised by users. Eventually, this verification could be extended
further into the interface and hardware domains.

8. Acknowledgements

References
Bitcoin Wiki. Bitcoin Script, 2021. URL https://en.bitcoin.it/wiki/Script. [Online; accessed 29-July-2022]. (cit. on p. 2.)
Vitalik Buterin. Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform, 2014. URL https://ethereum.org/

669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf. [Online; accessed 29-July-2022]. (cit. on p. 2.)
E Glen Weyl, Puja Ohlhaver, and Vitalik Buterin. Decentralized society: Finding web3’s soul. Available at SSRN 4105763, 2022. (cit. on p. 2.)
Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on bft consensus. arXiv preprint arXiv:1807.04938, 2018. (cit. on pp. 2 and 11.)
Team Rocket. Snowflake to avalanche: A novel metastable consensus protocol family for cryptocurrencies. Available [online].[Accessed: 4-12-2018], 2018. (cit. on p. 2.)
Christopher Goes. The interblockchain communication protocol: An overview. arXiv preprint arXiv:2006.15918, 2020. (cit. on p. 4.)
Joseph Bebel and Dev Ojha. Ferveo: Threshold decryption for mempool privacy in bft networks. Cryptology ePrint Archive, 2022. (cit. on pp. 6 and 8.)
Matt Prewitt. PLURAL MONEY: A NEW CURRENCY DESIGN, 2022. URL https://www.radicalxchange.org/media/blog/plural-money-a-new-currency-design/. [Online;

accessed 29-July-2022]. (cit. on p. 9.)
Heliax. Typhon, 2022. URL https://specs.anoma.net/master/architecture/consensus/typhon.html. [Online; accessed 29-July-2022]. (cit. on p. 11.)
Isaac Sheff, Xinwen Wang, Robbert van Renesse, and Andrew C Myers. Heterogeneous paxos. In OPODIS: International Conference on Principles of Distributed Systems,

number 2020, 2021. (cit. on p. 11.)

DOI: 10.5281/zenodo.8279842 Anoma Research Topics | August 29, 2023 | 13

https://en.bitcoin.it/wiki/Script
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://www.radicalxchange.org/media/blog/plural-money-a-new-currency-design/
https://specs.anoma.net/master/architecture/consensus/typhon.html
https://dx.doi.org/10.5281/zenodo.8279842


George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Narwhal and tusk: a dag-based mempool and efficient bft consensus. In Proceedings
of the Seventeenth European Conference on Computer Systems, pages 34–50, 2022. (cit. on p. 11.)

Lukasz Czajka. Juvix to vampir pipeline, August 2023. URL https://doi.org/10.5281/zenodo.8246535. This document is based on Juvix v0.4.1, Geb v0.4.0, and VampIR
v0.1.3.

Artem Gureev and Jonathan Prieto-Cubides. Geb Pipeline. Anoma Research Topics, August 2023. doi:10.5281/zenodo.8262815. URL https://doi.org/10.5281/zenodo.
8262815. This document is based on Geb v0.4.1.

DOI: 10.5281/zenodo.8279842 Anoma Research Topics | August 29, 2023 | 14

https://doi.org/10.5281/zenodo.8246535
https://doi.org/10.5281/zenodo.8262815
https://doi.org/10.5281/zenodo.8262815
https://doi.org/10.5281/zenodo.8262815
https://dx.doi.org/10.5281/zenodo.8279842

	Background and motivations
	Architectural design philosophy
	Intent-centricity
	Homogeneous architecture, heterogeneous security
	Analysis of platforms
	Why decouple these dimensions?


	Architectural topology
	Nodes and network layer
	Intents
	Intent gossip layer
	Solver
	Transaction
	Mempool
	Data availability domain
	Security domain
	Concurrency domain
	Consensus
	Execution
	Application
	Fractal instance

	Programming model
	Application components
	Application portability
	Application security model
	Application state model

	Applications
	Novel primitives for applications
	Application examples
	Contemporary decentralised applications
	Novel applications


	Architectural instantiation
	Gossip
	Node model
	Path authentication
	Gossip incentives

	Consensus
	Ordering
	Execution

	Execution environments
	Validity predicate subsystem
	Taiga Unified EE
	Typhon Transparent EE

	Compilation stack
	Juvix
	AnomaVM
	VampIR

	Fractal instance components
	Sybil resistance
	Governance
	Resource pricing


	Future directions
	Private counterparty discovery
	End-to-end behavioural verification

	Acknowledgements
	References

