

Speaker S.Giarratana

Prof G. Ghirlanda, Dr. O.S. Salafia, Dr. L. Rhodes, Dr. B. Marcote, Dr. M.E. Ravasio and many more...

Bologna VLBI - Life begins at 40!

Studying the dynamics and the structure of Gamma-Ray Bursts with the VLBI

Supervisor Dr. M. Giroletti

 $\overline{T90} \ge 2s$ (Kouveliotou+93)

 $< z > \simeq 2.0$ (Berger13,...)

High star-forming regions (Berger09, Fong+13, Berger13,...)

Associated with SNe (Galama+98,...)

From the Hubble Legacy Archive. Processing by Judy Schmidt.

Long and Short

T90 < 2s (Kouveliotou+93)

> $< z > \simeq 0.5$ (Berger13,...)

All morphological types of galaxies (Berger09, Fong+13, Berger13,...)

[Recently] Associated with KNe (Tanvir+13,...)

Credits: NASA's Goddard Space Flight Center

GRBs in Radio

Emission mechanism Forward vs Reverse shocks

Geometry

Viewing angle Collimation angle Size and structure

Progenitors Circumburst density profile

Credits: Sergio Poppi (Inaf Cagliari)

High resolution studies of GRBs

Angular diameter increase: GRB From *Taylor et al. (2003)*

High resolution studies of GRBs

Centroid displacement: GRB 170817A From *Mooley et al. (2018)*

Real and simulated images: GRB 170818A From *Ghirlanda et al. (2019)*

GRB 201015A

Multi-wavelength afterglow light curves of GRB 201015A From Giarratana et al. (2022)

See also: Suda et al. (2022), Komesh et al. (2023), Ror et al. (2023)

GRB 201015A

eMERLIN

VLA

EVN & eMERLIN

GRB 201015A

Multi-wavelength afterglow light curves of GRB 20101 From *Giarratana et al. (2022)*

-5	GRB z		mas		pc	if z = 0
6 m ² /s]	170817A	0.0093	2.44		0.46	0.0
Elux [erg/cr	030329A	0.1685	0.	17	0.5	0.0
·13	Disp	lacement	Size			
5A	Gamm	1a(Dec) < 61	< 5 pc at 25 d			
	Gamm	na(RA) < 40	< 16 pc at 47 d			

GRB 221009A: the Brightest Of All Time

- $T_{90} = 327$ s (10 - 1000 keV; GCN 32642) - $E_{iso} \simeq 3 \times 10^{54}$ erg (GCN 32668) - z = 0.151 (GCN 32648, 32686,...)

A Significant Sudden Ionospheric Disturbance associated with Gamma-Ray Burst GRB 221009A

LAURA A. HAYES¹ AND PETER T. GALLAGHER²

¹European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands

²Astronomy & Astrophysics Section, DIAS Dunsink Observatory, Dublin Institute for Advanced Studies, Dublin, Ireland

ABSTRACT

We report a significant sudden ionospheric disturbance (SID) in the D-region of Earth's ionosphere (~60–100 km), which was associated with the massive γ -ray burst GRB 221009A on 2022 October 9. We identified the SID over northern Europe–a result of ionisation by X– and γ -ray emission from the GRB–using very low frequency (VLF) radio waves as a probe of the D–region. These observations demonstrate that an extra–galactic GRB (z~0.151) can have a significant impact on the terrestrial atmosphere and illustrates that the Earth's ionosphere can be used as a giant X– and γ -ray detector. Indeed, these observations may provide an insight into the impacts of GRBs on the ionospheres of planets in our Solar System and beyond.

GRB 221009A

(1) Ren et al. (2023): top-hat jet in a wind-like environment

(2) Sato et al. (2023): two-component jet in a uniform environment

(3) Laskar et al. (2023): FS from a jet in a low-density wind-like environment

Top-hat jet model From *Ren et al. (2023)*

(1) Ren et al. (2023): top-hat jet in a wind-like environment

(2) Sato et al. (2023): two-component jet in a uniform environment

(3) Laskar et al. (2023): FS from a jet in a low-density wind-like environment

Top-hat jet model From Ren et al. (2023)

(1) Ren et al. (2023): top-hat jet in a wind-like environment

(2) Sato et al. (2023): two-component jet in a uniform environment

(3) Laskar et al. (2023): FS from a jet in a low-density wind-like environment

Top-hat jet model From *Ren et al. (2023)*

From Sato et al. (2023)

(1) Ren et al. (2023): top-hat jet in a wind-like environment

(2) Sato et al. (2023): two-component jet in a uniform environment

(3) Laskar et al. (2023): FS from a jet in a low-density wind-like environment

(1) Ren et al. (2023): top-hat jet in a wind-like environment

(2) Sato et al. (2023): two-component jet in a uniform environment

(3) Laskar et al. (2023): FS from a jet in a low-density wind-like environment

(1) Ren et al. (2023): top-hat jet in a wind-like environment

(2) Sato et al. (2023): two-component jet in a uniform environment

(3) Laskar et al. (2023): FS from a jet in a low-density wind-like environment

GRB 221009A

MWL Afterglow Models:

(1) Ren et al. (2023): top-hat jet in a wind-like environment

(2) Sato et al. (2023): two-component jet in a uniform environment

(3) Laskar et al. (2023): FS from a jet in a low-density wind-like environment

(4) O'Connor et al. (2023): structured jet in a medium with k < 4/3

...[See also Gill & Granot (2023)]

(mJy)05 density 10^{1} $13.3 \mathrm{~GHz}$ • 16.4 GHz Flux $13.9~\mathrm{GHz}$ • 17.1 GHz \bigcirc $14.6~\mathrm{GHz}$ • 17.7 GHz \circ • 15.2 GHz • 14.3 GHz $15.8~\mathrm{GHz}$ • 16.7 GHz 10^{1} 10^{2} Time post discovery (hours)

 10^{-1}

Time post discovery (days)

AMI observations of GRB221009A From Bright, Rhodes et al. (2023)

JIVE Joint Institute for VLBI ERIC

Jodrell Bank

e-MERLIN 1 21 Effelsberg

JIVE

WSRT

Arecibo

GRB 221009A

EVN map of GRB221009A at 4.9 GHz. The surface brightness peak is ~1.4 mJy/b. The synthesized beam is 1.7 x 0.9 mas (PA = 9.25°). EVN map of GRB221009A at 8.3 GHz. The surface brightness peak is ~1.3 mJy/b. The synthesized beam is 0.9×0.5 mas (PA = 7.7°).

Outlook

The Square Kilometer Array

The Square Kilometer Array

Technical Information The Telescopes

The SKA telescopes are made up of arrays of antennas – SKA-mid observing mid to high frequencies and SKA-low observing low frequencies – to be spread over long distances. The SKA is to be constructed in phases: A first phase in South Africa and Australia, with a later expansion representing a significant increase in capabilities and expanding into other African countries, with the component in Australia also being expanded.

SKA1-Mid the SKA's mid-frequency telescope

Frequency range: 350 MHz 4 GHz

197 dishes (including 64 MeerKAT dishes)

SKA info sheet from the public SKAO website

From Ghirlanda et al. (2013)

From 30% to almost 100% of detection rate

From *Ghirlanda et al. (2013)*

From 30% to almost 100% of detection rate

From <15% to almost 50% of detections at the transition time

From Ghirlanda et al. (2013)

From 30% to almost 100% of detection rate

From <15% to almost 50% of detections at the transition time

+VLBI: structure and geometry

From Ghirlanda et al. (2013)

From 30% to almost 100% of detection rate

From <15% to almost 50% of detections at the transition time

+VLBI: structure and geometry

...Unknown!

Radio observations can:

Conclusions

- Break the degeneracy in the afterglow modeling
- Reveal emitting components and/or mechanisms <u>not accessible at other wavelengths</u>
 - (with VLBI) provide a direct access on the size and the geometry of the afterglow
 - ...SKA will enable this for the bulk of the GRB population!

Conclusions

Radio observations can:

Take Home Message Radio is the key to study GRBs... and VLBI can provide a unique view on their dynamics and structure!

- Break the **degeneracy** in the afterglow modeling
- Reveal emitting components and/or mechanisms not accessible at other wavelengths
 - (with VLBI) provide a direct access on the size and the geometry of the afterglow
 - ...SKA will enable this for the bulk of the GRB population!

Very Long Baseline Interferometry

GRB 201015A

T - To [days]	Freq [GHz]	Peak [uJy/b]	RMS [uJy/b]	Array	
1.4	4.23 - 7.10	132	5	VLA	
20	1.25 - 1.76	213	34	e-MERLIN	
21	4.50 - 5.01	107	17	e-MERLIN	
23	1.25 - 1.76	261	40	e-MERLIN	
24	4.50 - 5.01	116	26	e-MERLIN	
25	4.57 - 5.11	85	9	EVN	1.
47	4.77 - 5.05	73	10	EVN	3.
60	6.55 - 7.06	-	43	e-MERLIN	
85	4.50 - 5.01	-	19	e-MERLIN	
100	4.50 - 5.01	-	16	e-MERLIN	
101	1.25 - 1.76	-	57	e-MERLIN	
117	4.77 - 5.05	-	13	EVN	3.

0.17" x 0.14"

1mas x 3.6mas

GRB 201015A

SKA and ngVLA

SKA1 Telescope Expected Performance – Imaging

Nominal frequency	110 MHz	300 MHz	770 MHz	1.4 GHz	6.7 GHz	12.5 GH
Range [GHz]	0.05-0.35	0.05-0.35	0.35-1.05	0.95-1.76	4.6-8.5	8.3-15.4
Telescope	Low	Low	Mid	Mid	Mid	Mid
FoV [arcmin]	327	120	109	60	12.5	6.7
Max. resolution [arcsec]	9.7	3.5	0.7	0.3	0.06	0.03
Max. bandwidth [MHz]	300	300	700	810	3900	2 x 2500
Cont. rms, 1hr [µJy/beam] ª	26	14	4.4	2	1.3	1.2
Line rms, 1hr [µJy/beam] ^ь	1850	800	300	140	90	85
Resolution range for cont. & line rms [arcsec] ^c	12-600	6-300	1-145	0.6-78	0.13-17	0.07-9
Channel width (uniform resolution across max. bandwidth) [kHz]	5.4	5.4	13.4	13.4	80.6	80.6
Narrowest bandwidth, zoom mode [MHz]	3.9	3.9	3.1	3.1	3.1	3.1
Finest zoom channel width [Hz]	226	226	210	210	210	210

a. Continuum sensitivity at nominal frequency, assuming fractional bandwidth of $\Delta v/v = 0.3$

b. Line sensitivity at nominal frequency, assuming fractional bandwidth per channel of $\Delta v/v = 10^{-4}$ (>10⁻⁶ will be possible]

c. The sensitivity numbers apply to the range of beam sizes listed For more details refer to the document "Anticipated SKA1 Science Performance" (SKA-TEL-SKO-0000818 available on astronomers. skatelescope.org and at arxiv.org/abs/1912.12699)

SKA info sheet from the public SKAO website.

	ngVLA Key Performance Metrics					
Parameter [units]	2.4 GHz	8 GHz	16 GHz	27 GHz	41 GHz	93 GF
Band Lower Frequency, <i>f</i> _L [GHz]	1.2	3.4	12.3	20.5	30.5	70
Band Upper Frequency, <i>f</i> _H [GHz]	3.5	12.3	20.5	34.0	50.5	11
Field of View FWHM [arcmin]	24.852	7.440	3.561	2.143	1.442	0.6
Aperture Efficiency [%]	0.828	0.936	0.941	0.920	0.886	0.6
Effective Area, <i>A</i> _{eff} x 10 ³ [m ²]	51.41	58.15	58.42	57.10	55.03	40
System Temp, <i>T</i> _{sys} [K]	17.07	22.00	24.40	32.42	47.41	65
Max Inst. Bandwidth [GHz]	2.3	8.8	8.2	13.5	20.0	20
Antenna SEFD [Jy]	232.3	264.8	292.2	397.3	602.8	11
Resolution of Max. Baseline θ _{max} [mas]	2.97	0.89	0.43	0.26	0.17	0.0
Naturally Weighted Sensitivity						
Continuum rms, 1 hr [µJy/beam]	0.24	0.14	0.16	0.17	0.21	0.4

ngVLA expected performance. From the public ngVLA website.

