
Supplementary Materials
A Practical Human Labeling Method for Online Just-in-Time Software Defect Prediction

LIYAN SONG, Southern University of Science and Technology, Shenzhen, China

LEANDRO L. MINKU*, The University of Birmingham, Edgbaston, Birmingham, UK

CONG TENG, Southern University of Science and Technology, Shenzhen, China

XIN YAO*, Southern University of Science and Technology, Shenzhen, China

This supplementary material complements the paper entitled “A Practical Human Labeling Method for
Online Just-in-Time Software Defect Prediction" published in ESEC/FSE’23.

We report overall information of the 14 GitHub open source projects (datasets) in Section 1 of this
supplementary material, including the summary Table 1, the traditional features extracted by Commit
Guru, and the preprocessing on these features. We also reports more comprehensive result tables
and plots relating to RQ1.1, RQ1.2, RQ1.3, and RQ2.1 in Section 2 of this supplementary material,
including the predictive performance of JIT-SDP in terms of various evaluation metrics. The full
experimental results of RQ2.2 and RQ2.3 are available in the main paper; therefore, there is no need to
provide additional details in this supplementary material.

*Liyan Song, Cong Teng, and Xin Yao (Corresponding Author) are with Research Institute of Trustworthy Autonomous Systems, Southern University
of Science and Technology, Shenzhen, China and Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of
Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China.

Leandro L. Minku (Corresponding Author) is with School of Computer Science, the University of Birmingham, Edgbaston, Birmingham, UK

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party

components of this work must be honored. For all other uses, contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

Manuscript submitted to ACM

1

HTTPS://ORCID.ORG/0000-0003-1172-8825
HTTPS://ORCID.ORG/0000-0002-2639-0671
HTTPS://ORCID.ORG/0009-0001-5857-6243
HTTPS://ORCID.ORG/0000-0001-8837-4442


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Liyan Song et al.

1 DATASETS

This paper uses 14 GitHub open source projects similar to previous work [4, 5] to investigate the proposed human labeling
methods for JIT-SDP, as summarized in Table 1. They were chosen randomly among GitHub projects with more than 4
years of duration, rich history (>10k commits) and a wide range of defect-inducing change ratio (2%∼45%). The first 7
projects were made available in [1] and the rest 7 projects were made available in [4].

A previous study [5] showed that, if we use the first 10k changes of the projects in our study, there is at least an estimated
99% confidence level that the fixes corresponding to these changes have already been reported. Therefore, we use the first
10k software changes of each project in the experiments to increase data quality. The second and third columns of Table 1
list the total number of collected software changes and the percentage of defect-inducing software changes over the total
number of changes for each project, respectively. The fourth column of Table 1 lists the percentage of defect-inducing
software changes over the first 10k changes for each project.

Table 1. An overview of the datasets. The first 10,000 (10k) software changes are used in our experiments.

Dataset Total Defect% Defect% Time Period Main
Changes (all) (first 10k) Language

Brackets 11,601 34.02 36.39 12/2011 - 12/2017 JavaScript
Broadleaf 12,336 20.28 22.93 11/2008 - 12/2017 Java

Camel 30,229 20.67 34.5 03/2007 - 12/2017 Java
Fabric8 12,495 20.65 21.11 04/2011 - 12/2017 Java
jGroups 18,003 20.34 11.3 09/2003 - 12/2017 Java

Nova 26,312 44.34 52.95 05/2010 - 01/2018 Python
Tomcat 18,721 27.81 33.25 03/2006 - 12/2017 Java
Corefx 26,627 6.91 6.85 11/2014 - 11/2019 C#
Django 26,352 42.65 47.89 07/2005 - 09/2019 Python
Rails 57,944 25.64 36.85 11/2004 - 09/2019 Ruby
Rust 73,876 2.02 6.30 06/2010 - 10/2019 Rust

Tensorflow 65,034 24.85 30.26 11/2015 - 01/2020 C++
VScode 51,846 2.28 3.82 11/2015 - 10/2019 TypeScript

wp-Calypso 31,206 22.75 24.96 05/2014 - 10/2019 JavaScript

The software change features consist of 14 metrics that can be grouped into 5 dimensions as (1) diffusion: NS (number
of modified subsystems), ND (number of modified directories), NF (number of modified files) and Entropy (distribution of
modified code across each file), (2) size: LA (lines of code added), LD (lines of code deleted) and LT (lines of code in
a file before the change), (3) purpose: FIX (whether or not the change is to fix a defect), (4) history: NDEV (number of
developers that changed the modified files), AGE (average time interval between the last and the current change) and NUC
(number of unique changes to the modified files) and (5) experience: EXP (developer experience), REXP (recent developer
experience) and SEXP (developer experience on a subsystem).

These metrics have shown to be good indicators for JIT-SDP [2]. Prior studies have also recommended to preprocess
the 14 feature metrics for better predictive performance in JIT-SDP [2, 7]. We produce 12 transformed feature metrics
following the same preprocessing procedures as Kamei et al. in [2] as

(1) Removing highly correlated features: (i) LA and LD are normalized by dividing by LT as also recommended by
Nagappan and Ball [3]. (ii) LT and NUC are normalized by dividing by NF since LT and NUC are highly correlated
with NF. (iii) ND and REXP are removed as they are highly correlated with NF and EXP, respectively.

(2) Dealing with skew: Since most features are highly skewed, each metric went through logarithmic transformation
except for FIX (a Boolean variable).

2



Supplementary Materials ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

2 EXPERIMENTAL RESULTS

2.1 RQ1: JIT-SDP with HumLa

2.1.1 Additional Result Tables. Tables in this section report additional performance results for RQ1 in various evaluation
metrics including G-Mean, MCC, recall 0, recall 1, precision and F1 score, providing further insights for readers of interest
in a more detailed analysis of the results.

Table 2. RQ1.1 & RQ1.2 – Average G-Mean of JIT-SDP with HumLa at different amounts of human noise across 100 runs.
The last row reports the statistical tests across datasets. JIT-SDP with HumLa at 0-human noise is chosen as the control
method. Significant difference against the control method is highlighted in yellow (light gray). Smaller rankings represent
better predictive performance for JIT-SDP when there is statistically significant difference.

Dataset Waiting time HumLa at different amounts of human noise
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Bracket 0.643 0.639 0.641 0.642 0.640 0.640 0.638 0.641 0.639 0.637 0.633 0.627
Broadleaf 0.607 0.663 0.661 0.654 0.647 0.637 0.626 0.614 0.604 0.593 0.582 0.570

Camel 0.669 0.681 0.678 0.676 0.670 0.667 0.669 0.667 0.664 0.660 0.653 0.649
Fabric8 0.653 0.661 0.659 0.658 0.657 0.655 0.654 0.652 0.647 0.641 0.633 0.623
jGroup 0.568 0.600 0.596 0.591 0.586 0.582 0.578 0.574 0.570 0.563 0.552 0.537
Nova 0.682 0.688 0.689 0.689 0.689 0.688 0.687 0.684 0.684 0.678 0.668 0.650

Tomcat 0.613 0.638 0.637 0.637 0.636 0.633 0.630 0.628 0.623 0.615 0.596 0.573
Corefx 0.639 0.636 0.638 0.634 0.632 0.633 0.626 0.625 0.622 0.618 0.614 0.607
Django 0.690 0.698 0.697 0.696 0.696 0.697 0.698 0.698 0.696 0.691 0.680 0.665
Rails 0.562 0.623 0.626 0.625 0.623 0.616 0.605 0.594 0.583 0.569 0.554 0.539
Rust 0.584 0.586 0.589 0.589 0.590 0.586 0.587 0.584 0.579 0.573 0.565 0.564

Tensorflow 0.691 0.678 0.676 0.675 0.677 0.683 0.688 0.691 0.690 0.684 0.674 0.663
VScode 0.527 0.527 0.524 0.520 0.515 0.514 0.509 0.500 0.493 0.486 0.479 0.469

wp-Calypso 0.551 0.622 0.622 0.618 0.615 0.608 0.598 0.583 0.565 0.538 0.496 0.453
aveRank 6.39 (*) 2.79 2.89 3.61 4.29 5.32 5.75 6.46 8.07 9.43 11.00 12.00

Table 3. RQ1.1 & RQ1.2 – Average MCC of JIT-SDP with HumLa at different amounts of human noise across 100 runs.
Please refer to Table 2 for more description.

Dataset Waiting time HumLa at different amounts of human noise
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Bracket 0.300 0.297 0.302 0.302 0.300 0.299 0.299 0.305 0.302 0.299 0.292 0.282
Broadleaf 0.292 0.347 0.343 0.336 0.328 0.320 0.310 0.303 0.294 0.286 0.279 0.270

Camel 0.356 0.378 0.375 0.371 0.366 0.359 0.359 0.353 0.348 0.341 0.329 0.321
Fabric8 0.320 0.333 0.331 0.329 0.328 0.325 0.322 0.320 0.312 0.301 0.289 0.275
jGroup 0.193 0.242 0.238 0.232 0.227 0.223 0.221 0.219 0.218 0.215 0.208 0.202
Nova 0.380 0.391 0.392 0.393 0.392 0.389 0.387 0.383 0.382 0.375 0.363 0.345

Tomcat 0.282 0.309 0.309 0.309 0.308 0.304 0.301 0.298 0.293 0.285 0.269 0.247
Corefx 0.362 0.360 0.357 0.353 0.351 0.350 0.340 0.345 0.344 0.338 0.344 0.344
Django 0.413 0.430 0.427 0.427 0.427 0.429 0.432 0.430 0.429 0.422 0.408 0.389
Rails 0.214 0.296 0.286 0.278 0.279 0.268 0.253 0.244 0.235 0.226 0.217 0.205
Rust 0.250 0.248 0.252 0.256 0.257 0.258 0.259 0.256 0.256 0.249 0.248 0.249

Tensorflow 0.389 0.394 0.390 0.388 0.390 0.394 0.395 0.393 0.388 0.378 0.367 0.355
VScode 0.276 0.302 0.297 0.291 0.287 0.283 0.279 0.269 0.263 0.254 0.251 0.242

wp-Calypso 0.256 0.293 0.293 0.290 0.290 0.286 0.283 0.274 0.267 0.254 0.235 0.215
aveRank 8.04 (*) 3.11 2.96 3.82 4.29 4.82 5.46 6.14 7.36 9.64 10.86 11.50

3



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Liyan Song et al.

Table 4. RQ1.1 & RQ1.2 – Average Recall 1 of JIT-SDP with HumLa at different amounts of human noise across 100 runs.
Please refer to Table 2 for more description.

Dataset Waiting time HumLa at different amounts of human noise
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Bracket 0.652 0.638 0.647 0.650 0.655 0.652 0.647 0.625 0.602 0.589 0.576 0.556
Broadleaf 0.470 0.605 0.595 0.573 0.552 0.528 0.502 0.478 0.459 0.439 0.420 0.401

Camel 0.700 0.736 0.736 0.728 0.733 0.728 0.722 0.711 0.706 0.696 0.676 0.661
Fabric8 0.639 0.662 0.665 0.664 0.660 0.655 0.647 0.637 0.620 0.601 0.574 0.548
jGroup 0.471 0.517 0.507 0.494 0.482 0.475 0.465 0.456 0.443 0.422 0.399 0.365
Nova 0.646 0.660 0.659 0.656 0.655 0.656 0.653 0.643 0.640 0.618 0.588 0.547

Tomcat 0.508 0.629 0.623 0.614 0.608 0.594 0.582 0.567 0.542 0.507 0.459 0.412
Corefx 0.485 0.480 0.486 0.480 0.476 0.478 0.468 0.464 0.456 0.451 0.438 0.426
Django 0.600 0.620 0.616 0.613 0.613 0.615 0.612 0.609 0.600 0.587 0.563 0.535
Rails 0.465 0.764 0.730 0.683 0.650 0.599 0.557 0.518 0.484 0.448 0.415 0.386
Rust 0.452 0.457 0.462 0.457 0.460 0.448 0.446 0.443 0.427 0.421 0.401 0.397

Tensorflow 0.683 0.800 0.799 0.796 0.791 0.777 0.756 0.725 0.694 0.657 0.615 0.577
VScode 0.347 0.328 0.323 0.319 0.311 0.310 0.302 0.292 0.282 0.273 0.264 0.252

wp-Calypso 0.363 0.513 0.518 0.513 0.505 0.479 0.452 0.419 0.384 0.341 0.281 0.231
aveRank 6.64 (*) 2.21 2.00 3.14 3.93 4.71 6.29 7.50 8.57 10.00 11.00 12.00

Table 5. RQ1.1 & RQ1.2 – Average recall 0 of JIT-SDP with HumLa at different amounts of human noise across 100 runs.
Please refer to Table 2 for more description.

Dataset Waiting time HumLa at different amounts of human noise
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Bracket 0.645 0.654 0.650 0.647 0.640 0.642 0.646 0.673 0.693 0.703 0.709 0.718
Broadleaf 0.802 0.736 0.741 0.754 0.766 0.779 0.791 0.805 0.813 0.823 0.831 0.839

Camel 0.650 0.636 0.633 0.636 0.625 0.623 0.630 0.636 0.635 0.639 0.647 0.652
Fabric8 0.678 0.669 0.662 0.661 0.664 0.666 0.671 0.679 0.687 0.696 0.709 0.719
jGroup 0.710 0.716 0.720 0.727 0.732 0.735 0.742 0.747 0.758 0.773 0.786 0.811
Nova 0.729 0.727 0.728 0.732 0.732 0.728 0.729 0.735 0.738 0.751 0.767 0.784

Tomcat 0.762 0.671 0.677 0.686 0.690 0.701 0.710 0.722 0.741 0.765 0.793 0.812
Corefx 0.849 0.853 0.845 0.846 0.847 0.844 0.844 0.851 0.856 0.855 0.869 0.878
Django 0.803 0.799 0.800 0.802 0.803 0.803 0.809 0.810 0.816 0.822 0.830 0.835
Rails 0.730 0.519 0.548 0.588 0.621 0.661 0.687 0.714 0.737 0.759 0.780 0.794
Rust 0.778 0.772 0.772 0.779 0.778 0.788 0.791 0.791 0.804 0.803 0.818 0.822

Tensorflow 0.703 0.582 0.579 0.580 0.588 0.609 0.634 0.664 0.691 0.718 0.746 0.769
VScode 0.869 0.906 0.907 0.906 0.909 0.908 0.911 0.911 0.915 0.916 0.920 0.923

wp-Calypso 0.858 0.769 0.763 0.764 0.771 0.790 0.811 0.830 0.851 0.873 0.903 0.925
aveRank 6.86 (*) 9.93 10.43 9.36 9.00 8.86 7.43 5.50 4.36 3.21 2.07 1.00

4



Supplementary Materials ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 6. RQ1.1 & RQ1.2 – Average Precision of JIT-SDP with HumLa at different amounts of human noise across 100 runs.
Please refer to Table 2 for more description.

Dataset Waiting time HumLa at different amounts of human noise
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Bracket 0.653 0.654 0.654 0.653 0.651 0.651 0.654 0.664 0.669 0.671 0.670 0.669
Broadleaf 0.710 0.701 0.702 0.704 0.706 0.710 0.711 0.715 0.716 0.718 0.720 0.720

Camel 0.672 0.673 0.671 0.671 0.667 0.665 0.666 0.667 0.665 0.665 0.664 0.663
Fabric8 0.666 0.668 0.665 0.664 0.665 0.664 0.665 0.667 0.667 0.667 0.667 0.666
jGroup 0.634 0.654 0.653 0.654 0.653 0.654 0.656 0.658 0.661 0.665 0.667 0.673
Nova 0.710 0.713 0.715 0.716 0.716 0.713 0.712 0.713 0.714 0.717 0.720 0.722

Tomcat 0.685 0.664 0.666 0.669 0.670 0.672 0.674 0.677 0.682 0.688 0.692 0.691
Corefx 0.769 0.768 0.762 0.762 0.764 0.761 0.758 0.764 0.768 0.765 0.778 0.786
Django 0.753 0.756 0.756 0.757 0.757 0.757 0.761 0.761 0.764 0.766 0.766 0.763
Rails 0.656 0.618 0.622 0.629 0.639 0.646 0.648 0.653 0.658 0.664 0.669 0.670
Rust 0.687 0.682 0.683 0.688 0.689 0.694 0.695 0.694 0.700 0.697 0.704 0.707

Tensorflow 0.700 0.661 0.659 0.659 0.662 0.669 0.677 0.687 0.695 0.702 0.710 0.717
VScode 0.791 0.816 0.812 0.806 0.805 0.800 0.799 0.793 0.791 0.785 0.786 0.783

wp-Calypso 0.722 0.691 0.689 0.689 0.692 0.699 0.707 0.713 0.722 0.731 0.746 0.757
aveRank 7.07 (*) 7.71 8.71 8.71 8.29 8.50 7.43 5.93 4.71 4.29 3.14 3.50

Table 7. RQ1.1 & RQ1.2 – Average F1 score of JIT-SDP with HumLa at different amounts of human noiseacross 100 runs.
Please refer to Table 2 for more description.

Dataset Waiting time HumLa at different amounts of human noise
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Bracket 0.648 0.641 0.646 0.647 0.648 0.647 0.644 0.638 0.628 0.622 0.614 0.602
Broadleaf 0.557 0.645 0.640 0.628 0.616 0.601 0.584 0.566 0.552 0.535 0.520 0.503

Camel 0.680 0.700 0.698 0.694 0.693 0.690 0.688 0.683 0.679 0.674 0.663 0.655
Fabric8 0.648 0.661 0.661 0.660 0.658 0.655 0.651 0.647 0.638 0.627 0.612 0.596
jGroup 0.530 0.569 0.563 0.554 0.547 0.541 0.535 0.529 0.521 0.507 0.490 0.465
Nova 0.673 0.681 0.681 0.681 0.680 0.679 0.678 0.673 0.671 0.661 0.643 0.617

Tomcat 0.573 0.634 0.631 0.628 0.625 0.618 0.612 0.605 0.593 0.575 0.544 0.510
Corefx 0.591 0.586 0.590 0.585 0.582 0.583 0.575 0.573 0.568 0.563 0.555 0.546
Django 0.663 0.675 0.673 0.671 0.671 0.672 0.672 0.671 0.668 0.660 0.645 0.625
Rails 0.524 0.680 0.667 0.649 0.634 0.610 0.586 0.564 0.543 0.520 0.496 0.472
Rust 0.538 0.540 0.544 0.543 0.544 0.538 0.537 0.534 0.524 0.518 0.504 0.502

Tensorflow 0.689 0.721 0.719 0.718 0.718 0.716 0.712 0.703 0.692 0.676 0.656 0.635
VScode 0.459 0.452 0.447 0.442 0.435 0.433 0.426 0.414 0.405 0.396 0.387 0.373

wp-Calypso 0.475 0.583 0.584 0.579 0.574 0.560 0.543 0.520 0.494 0.456 0.401 0.346
aveRank 6.64 (*) 2.00 2.14 3.43 3.93 4.86 6.07 7.36 8.64 9.93 11.00 12.00

5



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Liyan Song et al.

Table 8. RQ1.3 – Average G-Mean of JIT-SDP with HumLa at different amounts of human effort across 100 runs. The
waiting time method is equivalent to HumLa at 0%-human effort and is chosen as the control method. The last row reports
the statistical tests across datasets. Significant difference against the control method is highlighted in yellow (light gray).
Smaller rankings represent better predictive performance for JIT-SDP when there is statistically significant difference.

Dataset HumLa at different amounts of human effort
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Bracket 0.639 0.639 0.640 0.642 0.642 0.641 0.642 0.643 0.644 0.644 0.643
Broadleaf 0.663 0.661 0.659 0.656 0.652 0.646 0.640 0.634 0.627 0.618 0.607

Camel 0.681 0.678 0.679 0.678 0.676 0.676 0.674 0.674 0.672 0.670 0.669
Fabric8 0.661 0.659 0.659 0.657 0.657 0.657 0.656 0.656 0.656 0.654 0.653
jGroup 0.600 0.598 0.598 0.596 0.590 0.588 0.586 0.583 0.577 0.572 0.568
Nova 0.688 0.688 0.688 0.688 0.688 0.688 0.687 0.687 0.686 0.685 0.682

Tomcat 0.638 0.637 0.637 0.636 0.637 0.634 0.633 0.629 0.627 0.622 0.613
Corefx 0.636 0.638 0.637 0.634 0.637 0.634 0.636 0.635 0.636 0.637 0.639
Django 0.698 0.697 0.697 0.697 0.696 0.695 0.695 0.695 0.694 0.693 0.690
Rails 0.623 0.625 0.625 0.623 0.619 0.616 0.607 0.595 0.584 0.576 0.562
Rust 0.586 0.588 0.592 0.591 0.592 0.592 0.589 0.586 0.580 0.585 0.584

Tensorflow 0.678 0.679 0.681 0.683 0.686 0.688 0.690 0.693 0.694 0.693 0.691
VScode 0.527 0.527 0.524 0.523 0.527 0.529 0.533 0.535 0.536 0.534 0.527

wp-Calypso 0.622 0.623 0.623 0.619 0.615 0.610 0.605 0.593 0.583 0.566 0.551
aveRank 4.04 3.96 4.11 5.36 4.82 6.36 6.54 6.75 7.21 7.86 9.00 (*)

Table 9. RQ1.3 – Average MCC of JIT-SDP with HumLa at different amounts of human effort across 100 runs. The waiting
time method is equivalent to HumLa at 0%-human effort and is chosen as the control method. Please refer to Table 8 for
more description.

Dataset HumLa at different amounts of human effort
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Bracket 0.297 0.298 0.299 0.302 0.302 0.301 0.301 0.302 0.304 0.303 0.300
Broadleaf 0.347 0.345 0.343 0.339 0.334 0.329 0.323 0.318 0.312 0.303 0.292

Camel 0.378 0.374 0.377 0.376 0.372 0.373 0.369 0.368 0.365 0.360 0.356
Fabric8 0.333 0.331 0.331 0.329 0.329 0.328 0.327 0.326 0.324 0.321 0.320
jGroup 0.242 0.241 0.238 0.233 0.226 0.220 0.217 0.208 0.201 0.195 0.193
Nova 0.391 0.391 0.391 0.391 0.391 0.390 0.389 0.388 0.387 0.384 0.380

Tomcat 0.309 0.308 0.309 0.308 0.309 0.307 0.305 0.299 0.295 0.290 0.282
Corefx 0.360 0.360 0.359 0.348 0.355 0.350 0.351 0.348 0.354 0.356 0.362
Django 0.430 0.427 0.427 0.427 0.424 0.423 0.422 0.423 0.421 0.419 0.413
Rails 0.296 0.295 0.292 0.285 0.277 0.272 0.258 0.243 0.233 0.228 0.214
Rust 0.248 0.250 0.256 0.255 0.258 0.253 0.251 0.247 0.244 0.250 0.250

Tensorflow 0.394 0.394 0.395 0.397 0.397 0.397 0.398 0.397 0.397 0.393 0.389
VScode 0.302 0.299 0.292 0.290 0.293 0.293 0.298 0.297 0.295 0.287 0.276

wp-Calypso 0.293 0.294 0.294 0.291 0.291 0.289 0.288 0.281 0.274 0.265 0.256
aveRank 3.36 3.71 3.86 4.79 4.57 5.71 6.29 7.21 7.93 8.86 9.71 (*)

6



Supplementary Materials ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 10. RQ1.3 – Average Recall 1 of JIT-SDP with HumLa at different amounts of human effort across 100 runs. The
waiting time method is equivalent to HumLa at 0%-human effort and is chosen as the control method. Please refer to Table 8
for more description.

Dataset HumLa at different amounts of human effort
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Bracket 0.638 0.644 0.647 0.652 0.655 0.663 0.666 0.662 0.664 0.659 0.652
Broadleaf 0.605 0.597 0.590 0.578 0.568 0.552 0.537 0.525 0.509 0.491 0.470

Camel 0.736 0.734 0.737 0.735 0.732 0.734 0.728 0.723 0.719 0.710 0.700
Fabric8 0.662 0.665 0.665 0.663 0.663 0.665 0.660 0.656 0.653 0.646 0.639
jGroup 0.517 0.507 0.516 0.516 0.509 0.515 0.517 0.520 0.506 0.494 0.471
Nova 0.660 0.661 0.661 0.661 0.661 0.661 0.660 0.658 0.657 0.652 0.646

Tomcat 0.629 0.628 0.624 0.619 0.614 0.603 0.596 0.579 0.568 0.545 0.508
Corefx 0.480 0.483 0.481 0.484 0.485 0.482 0.485 0.485 0.483 0.483 0.485
Django 0.620 0.618 0.618 0.616 0.615 0.613 0.613 0.610 0.606 0.603 0.600
Rails 0.764 0.748 0.739 0.705 0.670 0.650 0.600 0.552 0.520 0.495 0.465
Rust 0.457 0.461 0.470 0.467 0.466 0.473 0.464 0.463 0.450 0.452 0.452

Tensorflow 0.800 0.798 0.794 0.788 0.779 0.771 0.760 0.742 0.725 0.701 0.683
VScode 0.328 0.328 0.325 0.325 0.329 0.333 0.340 0.344 0.348 0.348 0.347

wp-Calypso 0.513 0.519 0.526 0.520 0.503 0.486 0.472 0.445 0.422 0.388 0.363
aveRank 4.64 4.79 4.00 4.50 4.79 5.21 5.57 6.43 7.93 8.71 9.43 (*)

Table 11. RQ1.3 – Average Recall 0 of JIT-SDP with HumLa at different amounts of human effort across 100 runs. The
waiting time method is equivalent to HumLa at 0%-human effort and is chosen as the control method. Please refer to Table 8
for more description.

Dataset HumLa at different amounts of human effort
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Bracket 0.654 0.649 0.647 0.645 0.643 0.633 0.630 0.637 0.636 0.640 0.645
Broadleaf 0.736 0.740 0.745 0.753 0.757 0.766 0.773 0.780 0.787 0.794 0.802

Camel 0.636 0.635 0.633 0.633 0.634 0.632 0.634 0.638 0.638 0.643 0.650
Fabric8 0.669 0.663 0.662 0.662 0.662 0.659 0.663 0.667 0.668 0.671 0.678
jGroup 0.716 0.724 0.712 0.708 0.707 0.696 0.690 0.679 0.684 0.691 0.710
Nova 0.727 0.725 0.725 0.725 0.725 0.725 0.724 0.725 0.725 0.727 0.729

Tomcat 0.671 0.672 0.676 0.680 0.687 0.695 0.700 0.710 0.718 0.735 0.762
Corefx 0.853 0.850 0.850 0.839 0.844 0.841 0.840 0.838 0.844 0.846 0.849
Django 0.799 0.798 0.798 0.800 0.799 0.799 0.799 0.802 0.804 0.805 0.803
Rails 0.519 0.535 0.543 0.571 0.597 0.613 0.648 0.680 0.699 0.717 0.730
Rust 0.772 0.770 0.769 0.770 0.774 0.763 0.769 0.767 0.774 0.778 0.778

Tensorflow 0.582 0.585 0.591 0.599 0.610 0.619 0.632 0.652 0.668 0.690 0.703
VScode 0.906 0.904 0.902 0.900 0.900 0.897 0.895 0.892 0.886 0.879 0.869

wp-Calypso 0.769 0.763 0.756 0.758 0.773 0.787 0.798 0.814 0.827 0.847 0.858
aveRank 5.79 6.36 7.36 7.32 6.89 7.79 7.36 6.36 4.71 3.43 2.64 (*)

7



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Liyan Song et al.

Table 12. RQ1.3 – Average Precision of JIT-SDP with HumLa at different amounts of human effort across 100 runs. The
waiting time method is equivalent to HumLa at 0%-human effort and is chosen as the control method. Please refer to Table 8
for more description.

Dataset HumLa at different amounts of human effort
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Bracket 0.654 0.652 0.652 0.653 0.652 0.649 0.648 0.651 0.651 0.652 0.653
Broadleaf 0.701 0.702 0.703 0.705 0.705 0.707 0.708 0.709 0.710 0.710 0.710

Camel 0.673 0.671 0.671 0.671 0.671 0.670 0.670 0.671 0.671 0.671 0.672
Fabric8 0.668 0.666 0.665 0.664 0.664 0.663 0.663 0.664 0.664 0.664 0.666
jGroup 0.654 0.656 0.651 0.648 0.645 0.641 0.638 0.632 0.631 0.631 0.634
Nova 0.713 0.713 0.713 0.713 0.713 0.712 0.711 0.712 0.711 0.711 0.710

Tomcat 0.664 0.664 0.666 0.666 0.669 0.671 0.671 0.673 0.674 0.678 0.685
Corefx 0.768 0.767 0.767 0.756 0.762 0.759 0.758 0.756 0.763 0.764 0.769
Django 0.756 0.755 0.755 0.756 0.754 0.754 0.753 0.755 0.756 0.756 0.753
Rails 0.618 0.622 0.623 0.629 0.635 0.638 0.644 0.648 0.651 0.656 0.656
Rust 0.682 0.682 0.684 0.685 0.687 0.681 0.682 0.680 0.682 0.686 0.687

Tensorflow 0.661 0.662 0.664 0.666 0.670 0.673 0.677 0.683 0.689 0.696 0.700
VScode 0.816 0.811 0.805 0.802 0.803 0.801 0.805 0.801 0.798 0.793 0.791

wp-Calypso 0.691 0.689 0.687 0.687 0.693 0.699 0.703 0.708 0.712 0.719 0.722
aveRank 4.86 6.07 6.00 6.07 6.36 7.71 7.50 6.36 5.93 5.21 3.93 (*)

Table 13. RQ1.3 – Average F1 score of JIT-SDP with HumLa at different amounts of human effort across 100 runs. The
waiting time method is equivalent to HumLa at 0%-human effort and is chosen as the control method. Please refer to Table 8
for more description.

Dataset HumLa at different amounts of human effort
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Bracket 0.641 0.643 0.645 0.648 0.649 0.652 0.653 0.652 0.654 0.652 0.648
Broadleaf 0.645 0.641 0.638 0.631 0.625 0.615 0.605 0.597 0.586 0.573 0.557

Camel 0.700 0.697 0.699 0.698 0.695 0.696 0.693 0.691 0.689 0.684 0.680
Fabric8 0.661 0.661 0.661 0.659 0.659 0.660 0.657 0.656 0.654 0.651 0.648
jGroup 0.569 0.564 0.568 0.566 0.560 0.561 0.561 0.560 0.551 0.543 0.530
Nova 0.681 0.682 0.681 0.682 0.682 0.681 0.681 0.680 0.679 0.677 0.673

Tomcat 0.634 0.633 0.631 0.629 0.627 0.622 0.618 0.610 0.604 0.593 0.573
Corefx 0.586 0.589 0.587 0.586 0.589 0.586 0.588 0.588 0.588 0.588 0.591
Django 0.675 0.673 0.674 0.672 0.672 0.670 0.671 0.670 0.668 0.667 0.663
Rails 0.680 0.675 0.671 0.657 0.641 0.631 0.607 0.579 0.560 0.545 0.524
Rust 0.540 0.543 0.550 0.548 0.549 0.551 0.545 0.543 0.533 0.538 0.538

Tensorflow 0.721 0.721 0.720 0.720 0.718 0.716 0.714 0.709 0.705 0.696 0.689
VScode 0.452 0.451 0.448 0.447 0.451 0.454 0.460 0.462 0.465 0.463 0.459

wp-Calypso 0.583 0.585 0.588 0.583 0.573 0.564 0.555 0.537 0.521 0.496 0.475
aveRank 3.86 3.64 3.93 4.93 5.07 5.57 6.14 7.07 7.71 8.57 9.50 (*)

8



Supplementary Materials ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

2.1.2 Additional Result Plots for RQ1.1. This section provides additional plots including the continuous predictive
performance of HumLa against the waiting time method throughout time steps for further insights for readers who are
interested in a more detailed analysis of the results in performance.

Figure 1 shows continuous performance of HumLa against the waiting time method throughout test time steps on two
dataset where HumLa led to substantially better predictive performance than the waiting time method. We can see that
HumLa led to prolonged periods of time with consistently and considerably better performance in these two datasets, even
though the performance was not always better throughout all time steps.

(a) Rails in G-Mean (b) wp-Calypso in G-Mean

(c) Rails in MCC (d) wp-Calypso in MCC

Fig. 1. RQ1.1 – Continuous performance comparison throughout time between HumLa at the default setup (orange lines)
and the waiting time method (blue lines) on two representative dataset where HumLa provides significant benefit to the
performance compared with the waiting time method in sustantially large magnitudes.

9



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Liyan Song et al.

Plots of additional datasets are presented in Figure 2 and Figure 3 of the supplementary material, illustrating the trends
in G-Mean and MCC, respectively. These plots provide further insights for readers who are interested in a more detailed
analysis of the results, which especially illustrates the cases when HumLa does not bring large improvement in performance.

(a) Brackets (b) Broadleaf (c) Camel

(d) Fabric8 (e) jGroups (f) Nova

(g) Tomcat (h) Corefx (i) Django

(j) Rust (k) Tensorflow (l) VScode

Fig. 2. RQ1.1 – Continuous predictive performance in terms of average G-Mean across 100 runs throughout test between
HumLa at the default setup (orange lines) and the waiting time method (blue lines).

10



Supplementary Materials ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

(a) Brackets (b) Broadleaf (c) Camel

(d) Fabric8 (e) jGroups (f) Nova

(g) Tomcat (h) Corefx (i) Django

(j) Rust (k) Tensorflow (l) VScode

Fig. 3. RQ1.1 – Continuous predictive performance in terms of average MCC across 100 runs throughout test between
HumLa at the default setup (orange lines) and the waiting time method (blue lines).

11



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Liyan Song et al.

2.1.3 Additional Result Plot for RQ1.3. Figure 4 of this supplementary material shows the relationship between the
cumulative code churn and the human labeling percentage on the investigated datasets. We can see that higher human
labeling percentage almost always accounts for larger value of the cumulative code churn, showing a good correlation
between these two metrics. Therefore, given a project for which practitioners may be interested in creating a JIT-SDP
predictive model, reducing the inspection rate is really likely to correlate with a decrease in churn for this project.

Table 14 contains the code churn values for all datasets. We can see that, for example, HumLa at 40%- and 60%-human
effort would reduce around up 40% and 60% code churns, respectively, being consistent to the human labeling percentages.

Fig. 4. RQ1.3 – Relationship between the human labeling percentage and the cumulative code churn for HumLa at varying
amounts of human effort on each dataset.

Table 14. RQ2.2 – Saved human effort of the proposed ECo-HumLa against HumLa at different amounts of human effort in
terms of the human labeling percentage and the cumulative code churn (in kilo).

Dataset
Human effort (in kilo) of HumLa Eco-HumLa Human effort (in kilo) of HumLa

100% 90% 80% 70% 60% autohuman% 50% 40% 30% 20% 10%
Bracket 664.8 [b] 593.2 [b] 530.4 [b] 466.0 [b] 403.9 [m] 371.0 55.51% 331.5 [-m] 261.1 [-b] 223.2 [-b]137.9 [-b] 74.3 [-b]

Broadleaf 2715.4 [b]2418.2 [b]2171.9 [*]1884.0 [-b]1612.6 [-b]2162.6 46.60%1326.4 [-b]1002.0 [-b] 777.2 [-b]506.9 [-b]258.2 [-b]
Camel 913.3 [b] 818.0 [b] 727.8 [b] 633.0 [b] 553.6 [-m] 578.2 54.57% 455.0 [-b] 360.5 [-b] 271.8 [-b]177.9 [-b] 87.6 [-b]
Fabric8 2099.6 [b]1941.0 [b]1733.7 [b] 1528.7 [b]1297.5 [m]1165.2 46.85% 1071.2 [-s] 844.6 [-b] 651.0 [-b]403.9 [-b]214.5 [-b]
jGroup 302.8 [b] 276.2 [b] 255.3 [b] 224.4 [b] 203.8 [-*] 200.0 45.55% 174.8 [-b] 147.8 [-b] 118.6 [-b] 83.4 [-b] 35.6 [-b]
Nova 612.7 [b] 555.1 [b] 488.5 [b] 434.7 [b] 380.4 [m] 332.7 62.09% 338.5 [*] 267.1 [-b] 199.3 [-b]134.2 [-b] 73.1 [-b]

Tomcat 564.9 [b] 510.0 [b] 450.8 [b] 386.8 [m] 329.3 [-b] 373.2 58.01% 273.5 [-b] 214.7 [-b] 156.0 [-b]104.1 [-b] 50.5 [-b]
Corefx 4486.7 [b]4129.2 [b]3631.0 [b]3382.0 [-*]2904.6 [-b]3305.1 51.95%2384.0 [-b]1913.4 [-b]1450.3 [-b]985.9 [-b]512.4 [-b]
Django 867.6 [b] 793.3 [b] 711.8 [b] 605.3 [b] 509.1 [-*] 499.8 71.28% 426.5 [-b] 321.5 [-b] 255.6 [-b]171.3 [-b] 79.6 [-b]
Rails 940.6 [b] 834.8 [b] 733.1 [b] 619.4 [b] 500.5 [b] 359.1 47.07% 416.2 [m] 317.9 [-s] 195.5 [-b] 93.6 [-b] 38.5 [-b]
Rust 547.8 [b] 479.8 [b] 418.9 [b] 356.6 [b] 323.1 [b] 234.2 40.73% 289.7 [m] 241.7 [*] 179.0 [-m]130.7 [-b] 55.0 [-b]

Tensorflow 1140.3 [b]1106.2 [b]1058.1 [b] 979.3 [m] 902.2 [*] 900.4 55.94% 796.3 [-b] 655.1 [-b] 506.2 [-b]328.5 [-b]164.5 [-b]
VScode 286.1 [b] 262.6 [b] 232.6 [b] 206.7 [*] 170.2 [-b] 203.4 48.64% 144.4 [-b] 123.8 [-b] 83.4 [-b] 57.5 [-b] 35.6 [-b]

wp-Calypso 301.9 [b] 273.5 [b] 245.8 [b] 211.6 [b] 178.9 [-b] 187.8 51.41% 145.3 [-b] 114.4 [-b] 82.6 [-b] 52.1 [-b] 24.0 [-b]

median 766.2 693.3 621.1 535.7 452.2 372.1 51.68% 377.3 292.5 211.3 136.1 73.7
The proposed Eco-HumLa was the control method. A12 effect size [6] was performed for each dataset to rule out insignificant differences against the
control method. Symbols [*], [s], [m] and [b] denote insignificant (<0.56), small (≥0.56), medium (≥0.64), and large (≥0.71) effect size against the
control method, respectively. Presence / absence of the sign “-" in A12 means that the corresponding approach was worse/better than the control method.

12



Supplementary Materials ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

2.2 RQ2: JIT-SDP with Eco-HumLa

This section reports additional results in performance relating to RQ2.1 in various evaluation metrics. The full experimental
results to answer RQ2.2 and RQ2.3 are available in the main paper and thus there is no need to provide additional details in
this supplementary material.

Table 15. RQ2.1 – Average G-Mean of JIT-SDP with ECo-HumLa vs HumLa at different amounts of human effort across
100 runs. HumLa at 0%-human effort is equivalent to the waiting time method. HumLa at 100%-human effort is chosen as
the control method. Significant difference against the control method is highlighted in yellow (light gray). Smaller rankings
represent better predictive performance for JIT-SDP when there is significant difference.

Dataset ECo-HumLa vs HumLa at different amounts of human effort
100% 90% 80% 70% 60% 50% ECo-HumLa 40% 30% 20% 10% 0%

Bracket 0.639 0.639 0.640 0.642 0.642 0.641 0.643 0.642 0.643 0.644 0.644 0.643
Broadleaf 0.663 0.661 0.659 0.656 0.652 0.646 0.640 0.640 0.634 0.627 0.618 0.607

Camel 0.681 0.678 0.679 0.678 0.676 0.676 0.678 0.674 0.674 0.672 0.670 0.669
Fabric8 0.661 0.659 0.659 0.657 0.657 0.657 0.657 0.656 0.656 0.656 0.654 0.653
jGroup 0.600 0.598 0.598 0.596 0.590 0.588 0.587 0.586 0.583 0.577 0.572 0.568
Nova 0.688 0.688 0.688 0.688 0.688 0.688 0.687 0.687 0.687 0.686 0.685 0.682

Tomcat 0.638 0.637 0.637 0.636 0.637 0.634 0.630 0.633 0.629 0.627 0.622 0.613
Corefx 0.636 0.638 0.637 0.634 0.637 0.634 0.631 0.636 0.635 0.636 0.637 0.639
Django 0.698 0.697 0.697 0.697 0.696 0.695 0.695 0.695 0.695 0.694 0.693 0.690
Rails 0.623 0.625 0.625 0.623 0.619 0.616 0.605 0.607 0.595 0.584 0.576 0.562
Rust 0.586 0.588 0.592 0.591 0.592 0.592 0.584 0.589 0.586 0.580 0.585 0.584

Tensorflow 0.678 0.679 0.681 0.683 0.686 0.688 0.701 0.690 0.693 0.694 0.693 0.691
VScode 0.527 0.527 0.524 0.523 0.527 0.529 0.534 0.533 0.535 0.536 0.534 0.527

wp-Calypso 0.622 0.623 0.623 0.619 0.615 0.610 0.601 0.605 0.593 0.583 0.566 0.551
aveRank 4.29 (*) 4.00 4.36 5.57 5.21 6.71 6.93 7.07 7.36 8.00 8.57 9.93

Table 16. RQ2.1 – Average MCC of JIT-SDP with ECo-HumLa vs HumLa at different amounts of human effort across 100
runs. HumLa at 0%-human effort is equivalent to the waiting time method. HumLa at 100%-human effort is chosen as the
control method. Please refer to Table 15 for more description.

Dataset ECo-HumLa vs HumLa at different amounts of human effort
100% 90% 80% 70% 60% 50% ECo-HumLa 40% 30% 20% 10% 0%

Bracket 0.297 0.298 0.299 0.302 0.302 0.301 0.303 0.301 0.302 0.304 0.303 0.300
Broadleaf 0.347 0.345 0.343 0.339 0.334 0.329 0.327 0.323 0.318 0.312 0.303 0.292

Camel 0.378 0.374 0.377 0.376 0.372 0.373 0.374 0.369 0.368 0.365 0.360 0.356
Fabric8 0.333 0.331 0.331 0.329 0.329 0.328 0.329 0.327 0.326 0.324 0.321 0.320
jGroup 0.242 0.241 0.238 0.233 0.226 0.220 0.220 0.217 0.208 0.201 0.195 0.193
Nova 0.391 0.391 0.391 0.391 0.391 0.390 0.389 0.389 0.388 0.387 0.384 0.380

Tomcat 0.309 0.308 0.309 0.308 0.309 0.307 0.305 0.305 0.299 0.295 0.290 0.282
Corefx 0.360 0.360 0.359 0.348 0.355 0.350 0.350 0.351 0.348 0.354 0.356 0.362
Django 0.430 0.427 0.427 0.427 0.424 0.423 0.425 0.422 0.423 0.421 0.419 0.413
Rails 0.296 0.295 0.292 0.285 0.277 0.272 0.254 0.258 0.243 0.233 0.228 0.214
Rust 0.248 0.250 0.256 0.255 0.258 0.253 0.251 0.251 0.247 0.244 0.250 0.250

Tensorflow 0.394 0.394 0.395 0.397 0.397 0.397 0.408 0.398 0.397 0.397 0.393 0.389
VScode 0.302 0.299 0.292 0.290 0.293 0.293 0.288 0.298 0.297 0.295 0.287 0.276

wp-Calypso 0.293 0.294 0.294 0.291 0.291 0.289 0.285 0.288 0.281 0.274 0.265 0.256
ave-rank 3.57 (*) 3.93 4.00 5.07 4.93 6.07 6.21 6.93 8.14 8.71 9.79 10.64

13



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Liyan Song et al.

Table 17. RQ2.1 – Average Recall 1 of JIT-SDP with ECo-HumLa vs HumLa at different amounts of human effort across
100 runs. HumLa at 0%-human effort is equivalent to the waiting time method. HumLa at 100%-human effort is chosen as
the control method. Please refer to Table 15 for more description.

Dataset ECo-HumLa vs HumLa at different amounts of human effort
100% 90% 80% 70% 60% 50% 40% 30% ECo-HumLa 20% 10% 0%

Bracket 0.638 0.644 0.647 0.652 0.655 0.663 0.666 0.662 0.645 0.664 0.659 0.652
Broadleaf 0.605 0.597 0.590 0.578 0.568 0.552 0.537 0.525 0.528 0.509 0.491 0.470

Camel 0.736 0.734 0.737 0.735 0.732 0.734 0.728 0.723 0.724 0.719 0.710 0.700
Fabric8 0.662 0.665 0.665 0.663 0.663 0.665 0.660 0.656 0.652 0.653 0.646 0.639
jGroup 0.517 0.507 0.516 0.516 0.509 0.515 0.517 0.520 0.505 0.506 0.494 0.471
Nova 0.660 0.661 0.661 0.661 0.661 0.661 0.660 0.658 0.662 0.657 0.652 0.646

Tomcat 0.629 0.628 0.624 0.619 0.614 0.603 0.596 0.579 0.589 0.568 0.545 0.508
Corefx 0.480 0.483 0.481 0.484 0.485 0.482 0.485 0.485 0.472 0.483 0.483 0.485
Django 0.620 0.618 0.618 0.616 0.615 0.613 0.613 0.610 0.604 0.606 0.603 0.600
Rails 0.764 0.748 0.739 0.705 0.670 0.650 0.600 0.552 0.588 0.520 0.495 0.465
Rust 0.457 0.461 0.470 0.467 0.466 0.473 0.464 0.463 0.444 0.450 0.452 0.452

Tensorflow 0.800 0.798 0.794 0.788 0.779 0.771 0.760 0.742 0.726 0.725 0.701 0.683
VScode 0.328 0.328 0.325 0.325 0.329 0.333 0.340 0.344 0.344 0.348 0.348 0.347

wp-Calypso 0.513 0.519 0.526 0.520 0.503 0.486 0.472 0.445 0.452 0.422 0.388 0.363
aveRank 4.86 (*) 5.00 4.14 4.64 4.93 5.36 5.71 6.93 8.43 8.43 9.43 10.14

Table 18. RQ2.1 – Average Recall 0 of JIT-SDP with ECo-HumLa vs HumLa at different amounts of human effort across
100 runs. HumLa at 0%-human effort is equivalent to the waiting time method. HumLa at 100%-human effort is chosen as
the control method. Please refer to Table 15 for more description.

Dataset ECo-HumLa vs HumLa at different amounts of human effort
100% 90% 80% 70% 60% 50% 40% 30% 20% ECo-HumLa 10% 0%

Bracket 0.654 0.649 0.647 0.645 0.643 0.633 0.630 0.637 0.636 0.654 0.640 0.645
Broadleaf 0.736 0.740 0.745 0.753 0.757 0.766 0.773 0.780 0.787 0.785 0.794 0.802

Camel 0.636 0.635 0.633 0.633 0.634 0.632 0.634 0.638 0.638 0.643 0.643 0.650
Fabric8 0.669 0.663 0.662 0.662 0.662 0.659 0.663 0.667 0.668 0.673 0.671 0.678
jGroup 0.716 0.724 0.712 0.708 0.707 0.696 0.690 0.679 0.684 0.705 0.691 0.710
Nova 0.727 0.725 0.725 0.725 0.725 0.725 0.724 0.725 0.725 0.723 0.727 0.729

Tomcat 0.671 0.672 0.676 0.680 0.687 0.695 0.700 0.710 0.718 0.705 0.735 0.762
Corefx 0.853 0.850 0.850 0.839 0.844 0.841 0.840 0.838 0.844 0.850 0.846 0.849
Django 0.799 0.798 0.798 0.800 0.799 0.799 0.799 0.802 0.804 0.810 0.805 0.803
Rails 0.519 0.535 0.543 0.571 0.597 0.613 0.648 0.680 0.699 0.656 0.717 0.730
Rust 0.772 0.770 0.769 0.770 0.774 0.763 0.769 0.767 0.774 0.786 0.778 0.778

Tensorflow 0.582 0.585 0.591 0.599 0.610 0.619 0.632 0.652 0.668 0.680 0.690 0.703
VScode 0.906 0.904 0.902 0.900 0.900 0.897 0.895 0.892 0.886 0.882 0.879 0.869

wp-Calypso 0.769 0.763 0.756 0.758 0.773 0.787 0.798 0.814 0.827 0.813 0.847 0.858
aveRank 6.43 (*) 7.07 8.07 8.11 7.68 8.64 8.21 7.00 5.29 4.57 3.93 3.00

14



Supplementary Materials ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 19. RQ2.1 – Average Precision of JIT-SDP with ECo-HumLa vs HumLa at different amounts of human effort across
100 runs. HumLa at 0%-human effort is equivalent to the waiting time method. HumLa at 100%-human effort is chosen as
the control method. Please refer to Table 15 for more description.

Dataset ECo-HumLa vs HumLa at different amounts of human effort
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ECo-HumLa

Bracket 0.654 0.652 0.652 0.653 0.652 0.649 0.648 0.651 0.651 0.652 0.653 0.657
Broadleaf 0.701 0.702 0.703 0.705 0.705 0.707 0.708 0.709 0.710 0.710 0.710 0.715

Camel 0.673 0.671 0.671 0.671 0.671 0.670 0.670 0.671 0.671 0.671 0.672 0.675
Fabric8 0.668 0.666 0.665 0.664 0.664 0.663 0.663 0.664 0.664 0.664 0.666 0.668
jGroup 0.654 0.656 0.651 0.648 0.645 0.641 0.638 0.632 0.631 0.631 0.634 0.643
Nova 0.713 0.713 0.713 0.713 0.713 0.712 0.711 0.712 0.711 0.711 0.710 0.712

Tomcat 0.664 0.664 0.666 0.666 0.669 0.671 0.671 0.673 0.674 0.678 0.685 0.674
Corefx 0.768 0.767 0.767 0.756 0.762 0.759 0.758 0.756 0.763 0.764 0.769 0.763
Django 0.756 0.755 0.755 0.756 0.754 0.754 0.753 0.755 0.756 0.756 0.753 0.761
Rails 0.618 0.622 0.623 0.629 0.635 0.638 0.644 0.648 0.651 0.656 0.656 0.645
Rust 0.682 0.682 0.684 0.685 0.687 0.681 0.682 0.680 0.682 0.686 0.687 0.688

Tensorflow 0.661 0.662 0.664 0.666 0.670 0.673 0.677 0.683 0.689 0.696 0.700 0.696
VScode 0.816 0.811 0.805 0.802 0.803 0.801 0.805 0.801 0.798 0.793 0.791 0.796

wp-Calypso 0.691 0.689 0.687 0.687 0.693 0.699 0.703 0.708 0.712 0.719 0.722 0.710
aveRank 5.50 (*) 6.79 6.71 6.86 7.14 8.57 8.43 7.21 6.71 5.86 4.57 3.64

Table 20. RQ2.1 – Average F1 Score of JIT-SDP with ECo-HumLa vs HumLa at different amounts of human effort across
100 runs. HumLa at 0%-human effort is equivalent to the waiting time method. HumLa at 100%-human effort is chosen as
the control method. Please refer to Table 15 for more description.

Dataset ECo-HumLa vs HumLa at different amounts of human effort
100% 90% 80% 70% 60% 50% 40% 30% ECo-HumLa 20% 10% 0%

Bracket 0.641 0.643 0.645 0.648 0.649 0.652 0.653 0.652 0.646 0.654 0.652 0.648
Broadleaf 0.645 0.641 0.638 0.631 0.625 0.615 0.605 0.597 0.602 0.586 0.573 0.557

Camel 0.700 0.697 0.699 0.698 0.695 0.696 0.693 0.691 0.694 0.689 0.684 0.680
Fabric8 0.661 0.661 0.661 0.659 0.659 0.660 0.657 0.656 0.655 0.654 0.651 0.648
jGroup 0.569 0.564 0.568 0.566 0.560 0.561 0.561 0.560 0.557 0.551 0.543 0.530
Nova 0.681 0.682 0.681 0.682 0.682 0.681 0.681 0.680 0.681 0.679 0.677 0.673

Tomcat 0.634 0.633 0.631 0.629 0.627 0.622 0.618 0.610 0.614 0.604 0.593 0.573
Corefx 0.586 0.589 0.587 0.586 0.589 0.586 0.588 0.588 0.579 0.588 0.588 0.591
Django 0.675 0.673 0.674 0.672 0.672 0.670 0.671 0.670 0.668 0.668 0.667 0.663
Rails 0.680 0.675 0.671 0.657 0.641 0.631 0.607 0.579 0.601 0.560 0.545 0.524
Rust 0.540 0.543 0.550 0.548 0.549 0.551 0.545 0.543 0.535 0.533 0.538 0.538

Tensorflow 0.721 0.721 0.720 0.720 0.718 0.716 0.714 0.709 0.709 0.705 0.696 0.689
VScode 0.452 0.451 0.448 0.447 0.451 0.454 0.460 0.462 0.471 0.465 0.463 0.459

wp-Calypso 0.583 0.585 0.588 0.583 0.573 0.564 0.555 0.537 0.546 0.521 0.496 0.475
aveRank 4.00 (*) 3.79 4.07 5.00 5.14 5.64 6.36 7.57 8.29 8.50 9.36 10.29

15



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Liyan Song et al.

DATA AVAILABILITY

A replication package is available at doi.org/10.5281/zenodo.8272293. The source code is available under a GNU GPL
v3.0 license.

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation of China (NSFC) under Grant Nos. 62002148
and 62250710682, Guangdong Provincial Key Laboratory under Grant No. 2020B121201001, the Program for Guangdong
Introducing Innovative and Enterpreneurial Teams under Grant No. 2017ZT07X386, and Research Institute of Trustworthy
Autonomous Systems (RITAS).

REFERENCES

[1] George G. Cabral, Leandro L. Minku, Emad Shihab, and Suhaib Mujahid. 2019. Class Imbalance Evolution and Verification Latency in Just-in-Time

Software Defect Prediction. In International Conference on Software Engineering. Monteal, Canada, 666–676.

[2] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E. Hassan, Audris Mockus, Anand Sinha, and Naoyasu Ubayashi. 2013. A Large-Scale

Empirical Study of Just-in-Time Quality Assurance. IEEE Transactions on Software Engineering 39, 6 (2013), 757–773.

[3] Nachiappan Nagappan and Thomas Ball. 2005. Use of Relative Code Churn Measures to Predict System Defect Density. In International Conference

on Software Engineering (ICSE). 284–292.

[4] Liyan Song, Shuxian Li, Leandro L. Minku, and Xin Yao. 2022. A Novel Data Stream Learning Approach to Tackle One-Sided Label Noise From

Verification Latency. In International Joint Conference on Neural Networks (IJCNN). 1–8.

[5] Liyan Song and Leandro L. Minku. 2023. A Procedure to Continuously Evaluate Predictive Performance of Just-In-Time Software Defect Prediction

Models During Software Development. IEEE Transactions on Software Engineering 49, 2 (2023), 646–666. https://doi.org/10.1109/TSE.2022.

3158831

[6] Chadd Williams and Jaime Spacco. 2008. SZZ Revisited: Verifying When Changes Induce Fixes. In Proceedings of the 2008 Workshop on Defects in

Large Software Systems. 32–36.

[7] Xingguang Yang, Huiqun Yu, Guisheng Fan, Kai Shi, Liqiong Chen, and Emiliano Tramontana. 2019. Local versus Global Models for Just-In-Time

Software Defect Prediction. Scientific Programming 2019 (2019), 1–13.

Received 2023-02-02; accepted 2023-07-27

16

https://zenodo.org/record/8272293
https://doi.org/10.1109/TSE.2022.3158831
https://doi.org/10.1109/TSE.2022.3158831

	Abstract
	1 Datasets
	2 Experimental Results
	2.1 RQ1: JIT-SDP with HumLa
	2.2 RQ2: JIT-SDP with Eco-HumLa

	Acknowledgments
	References

