
A Machine Learning Approach for Detecting GPS
Location Spoofing Attacks in Autonomous Vehicles

S. Filippou∗, A. Achilleos∗, S. Z. Zukhraf∗, C. Laoudias∗, K. Malialis∗, M. K. Michael∗† and G. Ellinas∗†
∗KIOS Research and Innovation Center of Excellence, University of Cyprus, Nicosia, 1678, Cyprus
†Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, 1678, Cyprus

Abstract—Connected and Autonomous Vehicles (CAV) depend
on satellite systems, such as the Global Positioning System (GPS),
for location awareness. Location data are streamed in real-time
to the CAV’s perception engine from its onboard GPS receiver for
autonomous driving and navigation. However, these receivers are
vulnerable to location spoofing attacks that can be easily launched
using Commercial-Off-The-Self (COTS) equipment and open-
source software. Existing data-driven attack detection solutions
typically require data associated with ‘normal’ and ‘attack’
labels. The latter are hard to collect in operational conditions
or even in controlled experiments. To this end, we formulate the
GPS location spoofing attack detection as an outlier detection
problem. The proposed solution based on Machine Learning
(ML) relies solely on normal location data for training during
attack-free operation. Our solution demonstrates more than 98%
detection accuracy according to standard metrics on realistic data
produced with the CARLA driving simulator and outperforms
by 15% another (non ML-based) state-of-the-art solution.

Index Terms—Location spoofing, attack detection, machine
learning, autonomous vehicles, cybersecurity.

I. INTRODUCTION

Accurate location data are crucial for the safe operation of
Connected and Autonomous Vehicles (CAV). These data are
provided as input to the Advanced Driver Assistance System
(ADAS) and the perception engine of the CAV enabling it
to understand and interpret its surroundings; thus, supporting
the autonomous driving and navigation functionalities, while
preventing undesirable collisions with nearby vehicles and/or
Vulnerable Road Users (VRU) like pedestrians, cyclists, etc.
Location awareness is also important for the adoption of
Vehicle-to-Vehicle/Infrastructure (V2V/V2I) protocols and the
deployment of Vehicular Ad-hoc NETworks (VANET) [1],
which are both important ingredients for wider acceptance of
Intelligent Transportation Systems (ITS).

Reliable location information on the CAVs is of paramount
importance for increased safety in ITS. Recently, however,
threats against the security of autonomous driving have been
recognized [2], raising concerns and questions about the
trustworthiness of location data and how this could be ensured.
Typically, CAVs rely on Global Satellite Navigation Systems

This work was supported by the European Union’s H2020 research and
innovation programme under the CARAMEL project (Grant agreement No
833611). It has also been supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement No 739551 (KIOS
CoE) and from the Republic of Cyprus through the Deputy Ministry of
Research, Innovation and Digital Policy.

(GNSS), such as the Global Positioning System (GPS), to
determine their location through onboard GPS signal receivers.
However, current GPS receivers are still susceptible to jam-
ming and spoofing attacks. Both attacks are easy to implement
and launch using Commercial-Off-The-Self (COTS) equip-
ment, e.g., a laptop, a Software-Defined Radio board, an
antenna, and a signal amplifier, and open-source software.
Jamming attacks create disruptive signals that essentially block
the satellite signals; while, they affect the availability of
location data, such attacks are easy to detect [3]. On the
other hand, location spoofing attacks deceive the user via the
transmission of signals that have the same characteristics as
those of the legitimate GPS satellite signals [4]. Such attacks
are harder to detect and pose a serious threat to the safety of
all actors in ITS.

Obviously, attacks first need to be detected to be able to
defend against them. In order to detect GPS spoofing attacks,
existing works either apply signal processing techniques [5],
[6] that require additional hardware or follow data-driven
approaches [7]–[10] that depend on the availability of GPS
data. In many cases, however, GPS data need to include
ground truth labels, i.e., normal or attack. Labeled data are
hard to acquire in real-life scenarios, especially attack data
from previous known attacks that are extremely rare or hard to
reproduce in controlled scenarios for experimentation. To this
end, this work introduces a data-driven approach for detecting
GPS location spoofing attacks based on Machine Learning
(ML). Specifically, the contribution of this work is threefold:

• We formulate the GPS location spoofing attack against
autonomous vehicles, for the first time, as an anomaly
detection problem. In this way, only attack-free training
data are required to train any underlying ML algorithm
that is able to learn the normal behavior and identify any
deviation as anomaly (i.e., attack).

• We investigate thoroughly different design options and
assess various ML algorithms for the anomaly detector
in a simulation environment implemented in the real-time
CARLA simulator [11] for autonomous driving systems.

• We test and evaluate the proposed solution in terms of the
G-mean and F1-score metrics through multiple scenarios
using realistic data. Our solution demonstrates more than
98% attack detection accuracy, and outperforms by 15%
another (non ML-based) state-of-the-art solution.

The rest of the paper is structured as follows. Section II
overviews the related works on detecting GPS location attacks.
The system model is described in Section III, while Section IV
presents the framework for ML-based attack detection. Com-
parative results of various ML-based outlier detection methods
are reported and discussed in Section V. Finally, Section VI
provides concluding remarks and directions for future work.

II. RELATED WORKS

In general, solutions for detecting GPS location spoofing
attacks can be categorized as signal processing and data-
driven solutions. For instance, in [5], real-time attack detection
is implemented using Software-Defined Radios (SDR) by
analyzing the phase difference of the GPS signals collected
by different antennas. In [6], the vehicles use dedicated short-
range communication to exchange the GPS pseudo-range
measurements with other vehicles in the vicinity. Each vehicle
uses these measurements to compute statistics that enable
the local detection of possibly spoofed GPS signals on the
high correlation of their arrival times. These locally detected
signals are forwarded to a head vehicle that uses the minimum-
maximum change detection procedure to optimize global
spoofing detection. The main limitation of signal processing
solutions is the requirement for additional hardware.

On the other hand, data-driven attack detection solutions
process data that are readily available by COTS GPS receivers
and try to learn the attack behavior. Such data include raw
GPS data such as number of satellites, pseudo-range mea-
surements, Signal-to-Noise Ratio (SNR) values, etc., or the
computed GPS location coordinates. For instance, authors in
[7] compare the vehicle’s accelerometer readings against the
estimated acceleration measurements of the GPS device, with
the mismatch beyond a certain threshold signifying a GPS
spoofing attack. In [8], Multi-Sensor Fusion (MSF) algorithms
are employed to estimate the vehicle’s location by partially
relying on the GPS readings. Leveraging measurements from
neighboring vehicles, collaborative mechanisms are able to
detect GPS location spoofing attacks within Vehicular Ad-
hoc NETworks (VANET) by means of MSF [9]. In the
collaborative detection paradigm, the measurements include
the relative distances, the relative angles, and the relative
azimuth angles among the vehicles, as well as the absolute
position measurements (i.e., GPS positions) of all vehicles.
In our previous works [10] we employed in-vehicle multi-
sensory data (e.g., accelerometer, gyroscope, steering angle,
etc.) to estimate the GPS-free locations of the vehicle and
compared them with the corresponding locations reported by
the vehicle’s GPS receiver. If the deviation exceeds a pre-
defined threshold (selected during attack-free operation), then
an attack is detected.

With the increasing volume of sensory data produced by
vehicles, ML methods have also been applied for detecting lo-
cation spoofing attacks. Surprisingly, there exists limited work
in the area of autonomous vehicles; thus, we overview existing
works from related domains (e.g., autonomous aerial vehicles).
Typically, ML methods are grouped in supervised methods that

require ground truth information, i.e., data labeled as either
normal or attack in our case, and unsupervised methods that
do not rely on such information.

Regarding supervised ML methods, authors in [12] utilize k-
Nearest Neighbor, and Support Vector Machine (SVM) for the
detection and classification of location spoofing misbehavior
based on features such as location and movement plausibility
check. In [13], an artificial Neural Network (NN) is used to
detect GPS spoofing signals on Unmanned Aerial Vehicles
(UAVs). Information from the incoming GPS signals are
collected to create the input features for the NN, including
the number of satellites, SNR, and doppler shift. In [14], the
authors compared various ML methods for detecting jamming
attacks in wireless networks. Specifically, they investigated
different signal features to recognize jamming signals and
applied the Random Forest, SVM, and NN models. Authors
in [15] provide an extensive review of misbehavior detection
methods in cooperative ITS focusing on jamming and fake
message injection attacks. In [16], a method for detecting
spoofing of the GPS signals is presented that employs a multi-
layer NN. Even though these methods are quite effective, the
requirement for labeled data, especially attack data, limits their
applicability in practice.

To this end, some works have explored unsupervised ML
methods and have approached the intended task through
anomaly detection. In [17], an autoencoder, which is a spe-
cial type of NN, has been proposed for fault detection on
UAVs. Five categories of features are used, including internal
measurements, location, position, orientation, system status,
and control. Further, an unsupervised multivariate Gaussian-
based anomaly detection algorithm is employed in [18] to
spot unusual driving behaviors on semi-autonomous vehicles,
based on accelerometer and GPS sensors of manually driven
automobiles. Finally, in [19], the authors proposed the use
of an autoencoder followed by a one-class SVM to secure
software-defined networks from malicious traffic, by training
the models using only samples from the normal classes. To
the best of our knowledge, we formulate for the first time the
problem of GPS location spoofing in autonomous vehicles as
an anomaly detection problem.

III. SYSTEM MODEL

The main actor in our sytem model for the GPS location
spoofing scenario is a CAV moving on the road network
having location awareness through its onboard GPS receiver.
The receiver computes the location of the CAV using satellite
signals. There is also a wireless network infrastructure (e.g.,
cellular towers of telecommunication operators, Wi-Fi Access
Points or routers, etc.) that can be used for the provision of
GPS-free location information. Finally, there is an attacker that
attempts to spoof the location of the vehicle, e.g., causing it
to divert to an undesirable trajectory with potentially harmful
consequences, as illustrated in Fig. 1. In this context, the
location information that is readily available on the CAV (both
from the GPS receiver and the surrounding wireless network
infrastructure) and the location attack are modeled as follows.

Fig. 1: GPS location spoofing attack scenario on CAVs.

A. Location Model

Assume a CAV that moves on the road network, as shown
in Fig. 1, and its true location and velocity are, respectively,
pk = [xk, yk]

⊤ and uk = [ẋk, ẏk]
⊤, where xk and yk

are the location coordinates at time instance k. The CAV
is equipped with a GPS receiver that processes the satellite
positioning signals and outputs the GPS location of the CAV
pG
k = [xG

k , y
G
k]

⊤, which is modeled as a Gaussian random
variable pG

k ∼ N (pk,Σ
G
k), where ΣG

k = diag2(σ
G
k) is the

2 × 2 diagonal covariance matrix of the GPS readings with
standard deviation of noise σG

k = σG in both coordinates.
The CAV is also equipped with a device for the collection of

location-dependent network measurements from the surround-
ing wireless network infrastructure and connected vehicles,
independently from the GPS measurements, e.g., based on
SDR technology for scanning specific frequency bands. Such
devices are typical in CAVs for enabling V2V/V2I commu-
nications. The device implements a Localization Algorithm
(LA) that estimates the current location of the CAV based on
these signals, i.e., using network-assisted LAs based on radio
signal measurements, e.g., timing, angle, or signal strength
measurements, from the neighboring transmitters (e.g, cellular
towers, Wi-Fi access points, etc.) or using the information
received from connected vehicles by applying cooperative LA;
see [20] for an overview of such algorithms. For instance, the
LA could leverage ambient Signals-of-Opportunity (SoO) to
compute the CAV location, as described in [21].

The device outputs the estimated location of the CAV
pL
k = [xL

k , y
L
k]

⊤ modeled as a Gaussian random variable
pL
k ∼ N (pk,Σ

L
k), where ΣL

k = diag2(σ
L
k) is the covariance

matrix that denotes the uncertainty of the LA, i.e., the noise
of the CAV’s locations estimated by the LA has standard
deviation σL

k = σL in both coordinates. Note that the es-
timated locations pL

k can be used directly as GPS-free raw
location measurements. Alternatively, locations pL

k can be
refined by means of Bayesian filtering, e.g., Extended Kalman
Filter (EKF) combined with an underlying mobility model,
e.g., bicycle model, that fuses them with in-vehicle sensory
data (e.g., accelerometer, gyroscope, steering angle, etc.) to
improve location accuracy as reported in [10]. One might argue

that if an attacker goes all the way to spoof GPS signals,
then he/she could also attack pL

k . However, attacking pL
k

would be much more difficult, e.g., due to the protection and
authentication mechanisms in cellular networks or difficulty is
attacking multiple signals when SoO are used.

B. Attack Model

Assume an attacker who uses COTS equipment, including
Software Defined Radio (SDR) hardware, amplifier, and an-
tenna, combined with open-source SDR software, to interfere
with the legitimate GPS signals and disturb the original GPS
data. The COTS equipment can be either mounted on an
Unmanned Aerial Vehicle (UAV) or user-carried at the ground
level, as shown in Fig. 1. Similarly to [10], it is assumed that
the attacker spoofs the GPS location and introduces a user-
defined constant bias value in both GPS location coordinates.

Following the definition of the attack-free GPS location
above, the GPS location of the CAV under attack is modeled
as a Gaussian random variable pG

k ∼ N (pk+BA,Σ
G
k), where

BA = b[1, 1]⊤ is the attack vector and b denotes the attack
bias, i.e., the magnitude of the attack to each coordinate (in
terms of meters). Thus, b = 0 represents the attack-free case.
Note that during the attack, and while the CAV moves inside
the attack range, the GPS receiver reports the spoofed location
(i.e., b ̸= 0), which the CAV perceives as its valid location, if
it is not equipped with a reliable spoofing detection solution.

IV. MACHINE LEARNING-BASED ATTACK DETECTION

A. Problem Formulation

In this work, we formulate the problem of GPS location
spoofing in autonomous vehicles as an anomaly detection
problem. Let the location from the GPS readings at time
step k be pG

k = [xG
k , y

G
k], and the estimated CAV location

be pL
k = [xL

k , y
L
k]. A feature generating process creates the

differential feature dk ∈ R2, corresponding to the positional
vector defined as

dk = pG
k − pL

k = [xd
k, y

d
k], (1)

where xd
k = xG

k − xL
k and ydk = yGk − yLk .

We consider a learning model (anomaly detector) f : R2 →
{0, 1}, which receives an input dk ∈ R2 at time step k and
predicts its label Lk ∈ {0, 1}, such that Lk = f(dk); the value
Lk = 0 corresponds to an attack-free location, while Lk = 1
corresponds to a spoofed location.

In order to take into consideration the temporal aspects of
the data, for spoofing attacks presented in/present at previous
time steps, a sliding window is introduced to help with the
prediction task, i.e., Lk = f(dk,dk−1, . . . ,dk−W), where W
is the sliding window size.

B. Attack Detection Pipeline

The pipeline of the proposed approach for detecting GPS
location spoofing attacks is depicted in Fig. 2. In the Training
stage the anomaly detector f is trained to learn the normal
behavior of the data. In order to achieve this we utilize the

Fig. 2: Machine learning-based anomaly detection pipeline.

Fig. 3: Experimental setup.

train dataset Dtr, which consists only of attack-free locations,
that is, Dtr = {dk}|Dtr|

k=1 .
Part of the training process is to determine which learning

model and its hyper-parameters are more suitable. For this,
we consider the validation set Dval, which is considerably
smaller than the size of the training set, i.e., |Dval| << |Dtr|.
This separate dataset, i.e., Dval = {(dk, Lk)}|Dval|

k=1 , consists
of attack-free locations and a much smaller number of attacked
locations.

The Testing stage is performed on an independent test
dataset, i.e., data which the model did not encounter during
the training and validation stages. It consists of attack-free and
attacked locations, defined as Dt = {(dk, Lk)}|Dt|

k=1.

V. PERFORMANCE EVALUATION

A. Experimental Setup

Our experimental setup is based on a Linux-based work-
station PC with 8 GB RAM and GPU running the CARLA
simulator which is a development, training, and validation tool
for autonomous driving systems [11]. At the Training stage a
moving vehicle is instantiated in the simulation environment
driving under normal conditions (i.e., no attack) along a pre-
defined trajectory with user-selected noise profiles for the sim-
ulated GPS data and the GPS-free estimated vehicle locations
(e.g., based on cellular networks). The simulated sensor data
are collected and forwarded, via a publish-subscribe protocol
implemented using the Robot Operating System (ROS), to the
(untrained) Anomaly Detector developed in Python for training
the underlying ML model, as depicted in Fig. 3.

In the Testing stage, a moving vehicle is simulated driving
along different trajectories under normal and attack scenarios
assuming noise profiles for the simulated GPS data and the
GPS-free estimated vehicle locations similar to the Training
stage. The attack prediction labels Lk are sent back to the
CARLA simulator for verification. To this end, a simple
visualization interface was implemented within CARLA as
two lights inside the vehicle’s cockpit (see bottom left in
Fig. 3). The right light provides the ground truth with respect
to the attack status, i.e., it is turned off under normal conditions
and turns yellow when an attack is actually ongoing. The left
light reflects the attack detection, i.e., it is green when no
attack is detected and turns red when attacks are detected.
While we are able to collect the simulation data including
the attack prediction labels to analyze offline, this interface
provides an easy way to assess the performance of various
attack detection solutions in real-time.

B. Simulation Parameters & Datasets

Different test cases are investigated for which the attack
bias b in the GPS measurements varies for different trajectories
traversed by the vehicle. The other parameters are the same
for all test cases including σL = 10m, σG = 3m (i.e.,
the standard deviation for locations pL

k and pG
k provided

by the network-based LA and the GPS, respectively), and
sampling interval ∆t = 0.05 s. In summary, we produced
seven trajectories Ti, i = 1, . . . , 7, as shown in TABLE I,
corresponding to ten datasets, as T6 and T7 were simulated
with various values for the attack bias. All trajectories are
depicted in Figure 4.

The data are split into train, validation, and test sets. The
train set includes three normal datasets that represent T2, T3

and T4 without any “spoofed” data. Recall that since we have
formulated the problem as an anomaly detection problem, a
learning model is trained using only normal data, i.e., without
any GPS spoofing attack. The validation set consists of two
“spoofed” datasets that represent T1 and T5 with attack bias
b = 5. The test set consists of five “spoofed” datasets that
represent T6 and T7 with attack biases b = {5, 6, 9}, and b =
{5, 9}, respectively. Notice that the attack biases encountered
in the test set are different from the bias (b = 5) each model
experienced in training (indirectly through the validation set).

No Total Normal Attacked Attack bias [m]
T1 6,020 3,302 2,718 5

T2 13,433 13,433 0 0

T3 10,265 10,265 0 0

T4 11,730 11,730 0 0

T5 4,542 2,272 2,270 5

T6 4,193 2,097 2,096 5, 6, 9

T7 9,129 4,566 4,563 5, 9

TABLE I: Number of total, normal, and attacked data points
in each trajectory.

Fig. 4: The CARLA simulation environment (top left) and the seven trajectories used in our experiment, i.e., T1, T5, T6, and
T7 with attack bias b = 5 and T2, T3, and T4 with attack bias b = 0.

C. Performance Metrics

We analyze the detection results of the proposed solution
using a confusion matrix. The confusion matrix classifies
the results into True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN). We assess the
performance of our attack detection solution in terms of two
popular metrics, namely the harmonic mean (or F1-score) and
the geometric mean (G-mean). These are both appropriate
metrics as they are less sensitive to class imbalance [22]; recall
that our problem suffers from severe imbalance, as anomalies
(i.e., attacks) constitute rare events.

The F1-score (F1) is defined as the harmonic mean of
Precision and Recall. Specifically, Precision (P) provides
information concerning the rate at which the algorithm detects
attacks. In our application scenario, it is the ratio of the
true attacks detected over all detected attacks including false
positives given by

P =
of true attacks detected

of true and false attacks detected
=

TP

TP + FP
.

(2)
Similarly, Recall (R) is the ratio of the true attacks detected

over all true attacks including the missed detections, i.e., false
negatives. This is given by

R =
of true attacks detected

of true attacks
=

TP

TP + FN
. (3)

Finally, the F1-score (F1) is the weighted average of P and
R that measures accuracy on the data set given by

F1 = 2

(
P ×R

P +R

)
. (4)

F1 gets a higher value (near 1) when the FP and FN are
low. If a system is performing poorly by generating more FP

and FN , the F1-score will be low (near 0).
The G-mean (Gm) is defined as the geometric mean of

Recall and Specificity and is given by

Gm =
√
R× S, (5)

where the Specificity (S), which is defined as the true negative
rate, is given by

S =
TN

TN + FP
. (6)

Note that Gm has the desirable property of being high when
both R and S are high, and when their difference is small [22].

D. Compared Methods

Our experimental study considers various ML-based
anomaly detection methods as well as a traditional data-driven
(non-learning) state-of-the-art method. All methods that we
include in our comparison are described below.

Isolation Forest (iForest) [23]: An anomaly detection
algorithm that isolates anomalies by building an ensemble of
trees, for which anomalies are identified as those which have
short average path lengths on trees.

Local Outlier Factor (LOF) [24]: An outlier detection
algorithm that calculates for a given sample the local density
deviation with respect to its neighbors. An anomaly corre-
sponds to a sample that has a lower density than its neighbors.

One Class Support Vector Machine (OC-SVM) [25]:
An unsupervised algorithm that separates data using a hyper-
sphere boundary, which is created from the available data. An
anomaly is any data point that lies outside that boundary.

AutoEncoder (AE) [26]: A special type of neural network
that is often used for anomaly detection. An AE consists
of an encoder followed by a decoder and attempts to copy
its input. Specifically, the reconstructed error of normal data
is minimized after training. An anomaly is detected if the
reconstructed error is larger than a pre-specified threshold.

Threshold-based Attack Detection (TAD) [10]: A data-
driven (non-learning) method that during the threshold se-
lection phase uses the GPS locations pG

k and the estimated
CAV locations pL

k to compute their deviation by means of
Euclidean distance assuming attack-free conditions. A thresh-
old is selected based on the percentage of FP that are tolerable
under normal conditions. During standard operation, an attack
is signified if the average deviation between the GPS locations
and the estimated CAV locations within a given time window
exceeds the pre-selected threshold.

To facilitate the reproducibility of the results, in this work
TABLE II provides the values of the hyper-parameters for
each method, after tuning on the validation set. For the
implementation of iForest, LOF, and OC-SVM algorithms
we have used the popular scikit-learn library. The reader is
directed towards the library’s documentation [27] for more
information on each algorithm’s hyper-parameters and their
default values. The TAD method is implemented in Python
according to [10].

Algorithm Hyper-parameters
iForest Num. of Estimators = 100, Maximum num. of features

= 0.9, Maximum num. of samples = 0.8, Proportion of
outliers = 0.04

LOF Num. of neighbors = 1000, Leaf size = 1, Proportion of
outliers = 0.02

OC-SVM Kernel = Radial Basis Function, NU: Upper bound of
training errors and Lower bound of support vectors = 0.01,
Kernel coefficient γ = 0.1

AE Num. of layers = 3, Num. of neurons = (256,128,32),
Learning rate = 0.0001, Mini-batch size = 64, Num. of
epochs = 200

TAD Percentage of FP for selecting the threshold 1−γ = 5%,
window size w = 5

TABLE II: Hyper-parameters used for each method.

E. Simulation Results

In this subsection, we present and discuss the simulation
results. These can be reproduced using the software capsule
that is released openly on the Code Ocean reproducible
research platform1.

1) Role of the sliding window: In this section we examine
the impact of the sliding window size on the performance of
the tested ML-based anomaly detection methods. TABLE III
presents the Gm and F1 obtained on the validation set for all
the methods given window sizes equal to 0, 3, 5, 10, 20.

1https://doi.org/10.24433/CO.0550935.v1

As we can see from TABLE III, performance is very low
when we do not take into consideration any previous data (i.e.,
w = 0), compared to varying window sizes. As the window
size increases, performance increases up to a point, beyond
which it declines again. This happens because the short-term
temporal correlations among sequential data points help avoid
erroneous oscillations between ‘normal’ and ‘attack’ detection;
however, considering many past data points does not work
well when the ground truth switches from ‘normal’ to ‘attack’
and vice versa. The best window sizes for iForest, LOF, OC-
SVM, and AE are 5, 10, 10, and 20, respectively. Results of
the iForest and AE models are averaged over 50 repetitions to
address the stochastic nature of the algorithms.

Window
size

Metric/
Algo-
rithm

iForest LOF OC-
SVM

AE

w=0 Gm 87.41 78.75 85.29 86.97
F1 86.69 76.56 84.22 86.13

w=3 Gm 97.54 96.03 96.95 91.93
F1 97.56 95.96 96.91 91.61

w=5 Gm 97.78 97.69 97.19 95.05
F1 97.80 97.68 97.16 94.88

w=10 Gm 97.60 97.85 97.36 94.34
F1 97.63 97.84 97.33 93.96

w=20 Gm 97.30 97.71 97.15 95.49
F1 97.34 97.72 97.14 95.31

TABLE III: G-mean and F1-score results obtained by each
algorithm for different window sizes on the validation set.

2) Role of the learning model: In this section, we in-
vestigate the performance of the ML-based outlier detection
methods, using a window size equal to 10, as this window size
provides the best performance for most of our methods. In
particular, the LOF model, achieved the highest performance
with Gm = 97.85% and F1 = 97.84%, while the AE algo-
rithm achieved the lowest performance with a Gm = 94.34%
and F1 = 93.96%. The performance of OC-SVM and iForest
was slightly worse than the LOF model.

3) Comparative study: For the comparison between the
ML-based methods and the data-driven TAD method for
detecting location spoofing attacks, we selected the best per-
forming ML-based method, i.e., LOF. As mentioned earlier,
we have used a window size of 10 and therefore we removed
the first 10 data from TAD in order to have the same amount
of data when testing our algorithms. As we can see in
TABLE IV, LOF significantly outperforms TAD in terms of
all performance metrics. Notice that the values in TABLE IV
correspond to the performance on the test set, unlike the ones
in TABLE III which correspond to the validation set. Specifi-
cally, attack detection using the LOF outlier detection method
achieved Gm = 98.43% and F1 = 98.45%, i.e., around
15% better than TAD which achieved Gm = 83.49% and
F1 = 83.92% on the test set. Table V presents the confusion
matrix of the LOF and TAD methods on the test set. We
observe that the proposed solution based on the LOF model,
reduces false detections and misdetections significantly, i.e.,
FP decreases approximately 7× and even more importantly
FN is reduced approximately 20×.

Method P R S Gm F1
LOF 97.61 99.31 97.56 98.43 98.45
TAD 82.08 85.85 81.20 83.49 83.92

TABLE IV: Precision, Recall, Specificity, G-mean, and f1-
score results on the test set.

Method TN FP FN TP
LOF 14,998 375 107 15,307

TAD 12,483 2,890 2,181 13,233

TABLE V: Confusion matrix of LOF adn TAD on the test set.

VI. CONCLUSION

We treat GPS location spoofing attacks as anomalies and
develop an ML-based anomaly detection solution for identify-
ing such attacks. The proposed solution does not require any
attack data during the training stage and achieves remarkable
classification accuracy in terms of F1 and Gm, ranging from
95% to 98% in both metrics depending on the underlying ML
model. The variant that relies on the LOF model achieved the
highest detection accuracy amongst all ML-based techniques
investigated, as well as a 15% higher detection accuracy as
compared to a non ML-based state-of-the-art solution.

For our future work we plan to implement the proposed
solution on an embedded computing device (e.g., Nvidia
Jetson) and deploy it on one of our CAVs at scale that is part of
our research infrastructure at the KIOS Center of Excellence,
University of Cyprus2. This will give us the opportunity to test
the solution while the vehicle is moving and a GPS location
spoofing attack is launched using COTS SDR hardware and
open-source spoofing software. We also plan to investigate
online ML-based algorithms that are able to adapt on-the-fly to
changing conditions, e.g., lower uncertainty in GPS locations
in open-sky rural areas compared to urban areas, without
degrading detection accuracy or increasing false positives.

REFERENCES

[1] R. K. Jaiswal and C. Jaidhar, “A performance evaluation of location
prediction position-based routing using real GPS traces for VANET,”
Wireless Personal Communications, vol. 102, no. 1, pp. 275–292, 2018.

[2] K. Ren, Q. Wang, C. Wang, Z. Qin, and X. Lin, “The security of au-
tonomous driving: Threats, defenses, and future directions,” Proceedings
of the IEEE, vol. 108, no. 2, pp. 357–372, 2019.

[3] R. Ferreira, J. Gaspar, P. Sebastião, and N. Souto, “Effective GPS
jamming techniques for UAVs using low-cost SDR platforms,” Wireless
Personal Communications, vol. 115, no. 4, pp. 2705–2727, 2020.

[4] M. L. Psiaki and T. E. Humphreys, “GNSS spoofing and detection,”
Proceedings of the IEEE, vol. 104, no. 6, pp. 1258–1270, 2016.

[5] J. Friedt, W. Feng, D. Rabus, and G. Goavec-Merou, “Real time GNSS
spoofing detection and cancellation on embedded systems using software
defined radio,” in Proc. 15th European Conference on Antennas and
Propagation (EuCAP), 2021.

[6] F. A. Milaat and H. Liu, “Decentralized detection of GPS spoofing
in vehicular ad hoc networks,” IEEE Communications Letters, vol. 22,
no. 6, pp. 1256–1259, 2018.

[7] K.-C. Kwon and D.-S. Shim, “Performance analysis of direct GPS
spoofing detection method with AHRS/Accelerometer,” Sensors, vol. 20,
no. 4, pp. 1–22, 2020.

2https://www.kios.ucy.ac.cy/intelligent-transportation-systems/

[8] J. Shen, J. Y. Won, Z. Chen, and Q. A. Chen, “Drift with Devil: Security
of multi-sensor fusion based localization in high-level autonomous driv-
ing under GPS spoofing,” in Proc. 29th USENIX Security Symposium,
2020, pp. 931–948.

[9] M. Kamal, C. Kyrkou, N. Piperigkos, A. Papandreou, A. Kloukiniotis,
J. Casademont, N. P. Mateu, D. B. Castillo, R. D. Rodriguez, N. G. Du-
rante, P. Hofmann, P. Kapsalas, A. S. Lalos, K. Moustakas, C. Laoudias,
T. Theocharides, and G. Ellinas, “A comprehensive solution for securing
connected and autonomous vehicles,” in Proc. Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2022, pp. 790–795.

[10] M. Kamal, A. Barua, C. Vitale, C. Laoudias, and G. Ellinas, “GPS
location spoofing attack detection for enhancing the security of au-
tonomous vehicles,” in Proc. IEEE 94th Vehicular Technology Confer-
ence (VTC2021-Fall), 2021, pp. 1–7.

[11] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proc. Conference on
Robot Learning (CoRL), 2017, pp. 1–16.

[12] S. So, P. Sharma, and J. Petit, “Integrating plausibility checks and
machine learning for misbehavior detection in VANET,” in Proc. 17th
IEEE International Conference on Machine Learning and Applications
(ICMLA), 2018, pp. 564–571.

[13] M. R. Manesh, J. Kenney, W. C. Hu, V. K. Devabhaktuni, and
N. Kaabouch, “Detection of GPS spoofing attacks on unmanned aerial
systems,” in Proc. 16th IEEE Annual Consumer Communications &
Networking Conference (CCNC), 2019, pp. 1–6.

[14] Y. Arjoune, F. Salahdine, M. S. Islam, E. Ghribi, and N. Kaabouch, “A
novel jamming attacks detection approach based on machine learning
for wireless communication,” in Proc. IEEE International Conference
on Information Networking (ICOIN), 2020, pp. 459–464.

[15] R. W. van der Heijden, S. Dietzel, T. Leinmüller, and F. Kargl, “Survey
on misbehavior detection in cooperative intelligent transportation sys-
tems,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp.
779–811, 2019.

[16] E. Shafiee, M. R. Mosavi, and M. Moazedi, “Detection of spoofing
attack using machine learning based on multi-layer neural network in
single-frequency GPS receivers,” The Journal of Navigation, vol. 71,
no. 1, pp. 169–188, 2018.

[17] K. H. Park, E. Park, and H. K. Kim, “Unsupervised fault detection
on unmanned aerial vehicles: Encoding and thresholding approach,”
Sensors, vol. 21, no. 6, pp. 1–17, 2021.

[18] C. Ryan, F. Murphy, and M. Mullins, “Semiautonomous vehicle risk
analysis: A telematics-based anomaly detection approach,” Risk analysis,
vol. 39, no. 5, pp. 1125–1140, 2019.

[19] M. Said Elsayed, N.-A. Le-Khac, S. Dev, and A. D. Jurcut, “Network
anomaly detection using LSTM based autoencoder,” in Proc. 16th ACM
Symposium on QoS and Security for Wireless and Mobile Networks,
2020, pp. 37–45.

[20] C. Laoudias, A. Moreira, S. Kim, S. Lee, L. Wirola, and C. Fischione,
“A survey of enabling technologies for network localization, tracking,
and navigation,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 4, pp. 3607–3644, 2018.

[21] N. Souli, P. Kolios, and G. Ellinas, “Online relative positioning of
autonomous vehicles using signals of opportunity,” IEEE Transactions
on Intelligent Vehicles, vol. 7, no. 4, pp. 873–885, 2022.

[22] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp.
1263–1284, 2009.

[23] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proc. IEEE
International Conference on Data Mining, 2008, pp. 413–422.

[24] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
density-based local outliers,” ACM SIGMOD Rec., vol. 29, no. 2, p.
93–104, 2000.

[25] D. Tax and R. Duin, “Support vector data description,” Machine Learn-
ing, vol. 54, pp. 45–66, 2004.

[26] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders
with nonlinear dimensionality reduction,” in Proc. ACM Workshop on
Machine Learning for Sensory Data Analysis, 2014, p. 4–11.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, no. 2011, pp. 2825–2830, 2011.

