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Abstract

We consider the analytic continuation of Riemann’s Zeta Function derived from Dirichlet Eta
Function η(s) which is evaluated at s = 1

2
+ σ + iω, where σ, ω are real and compute inverse Fourier

transform of Γ( s
2
)η(s) and derive Ep(t). We study the properties of Ep(t) and a promising new

method is presented which could be used to show that the Fourier Transform of Ep(t) given by
Epω(ω) = ξ(1

2
+ σ + iω) does not have zeros for finite and real ω when 0 < |σ| < 1

2
, corresponding to

the critical strip excluding the critical line.
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1. Introduction

It is well known that Riemann’s Zeta function given by ζ(s) =
∞∑

m=1

1
ms converges in the half-plane

where the real part of s is greater than 1. Riemann proved that ζ(s) has an analytic continuation to
the whole s-plane apart from a simple pole at s = 1 and that ζ(s) satisfies a symmetric functional
equation given by ξ(s) = ξ(1−s) = 1

2
s(s−1)π− s

2Γ( s
2
)ζ(s) where Γ(s) =

∫∞
0

e−uus−1du is the Gamma
function. [4] [5] We can see that if Riemann’s Xi function has a zero in the critical strip, then Rie-
mann’s Zeta function also has a zero at the same location. Riemann made his conjecture in his 1859
paper, that all of the non-trivial zeros of ζ(s) lie on the critical line with real part of s = 1

2
, which is

called the Riemann Hypothesis.[1]

Hardy and Littlewood later proved that infinitely many of the zeros of ζ(s) are on the critical line
with real part of s = 1

2
.[2] It is well known that ζ(s) does not have non-trivial zeros when real part

of s = 1
2
+ σ + iω, given by 1

2
+ σ ≥ 1 and 1

2
+ σ ≤ 0. In this paper, critical strip 0 < Re[s] < 1

corresponds to 0 ≤ |σ| < 1
2
.

In this paper, a new method is discussed and a specific solution is presented to prove Riemann’s
Hypothesis. If the specific solution presented in this paper is incorrect, it is hoped that the new
method discussed in this paper will lead to a correct solution by other researchers.

In Section 2 to Section 5, we prove Riemann’s hypothesis by taking the analytic continuation
of Riemann’s Zeta Function derived from Dirichlet Eta function η(s) and compute inverse Fourier
transform of Γ( s

2
)η(s) and show that it does not have zeros for finite and real ω when 0 < |σ| < 1

2
,

corresponding to the critical strip excluding the critical line.

In Section 7, it is shown that the new method is not applicable to Hurwitz zeta function and
related functions and does not contradict the existence of their non-trivial zeros away from the
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critical line with real part of s = 1
2
.

We present an outline of the new method below.
.

1.1. Step 1: Dirichlet Eta function

We use the analytic continuation of Riemann’s zeta function given by ζ(s) =
η(s)

1− 21−s
where

ζ(s) =
∞∑
n=1

1

ns
diverges for Re[s] ≤ 1 and η(s) =

∞∑
n=1

(−1)n−1 1

ns
is Dirichlet Eta function which con-

verges for Re[s] > 0. (link and Titchmarsh pp16-17)

We see that if η(s) has a zero in the critical strip, then ζ(s) also has a zero at the same location.
We evaluate A(s) = Γ( s

2
)η(s) at s = 1

2
+ σ + iω in Eq. 10 for 0 < σ < 1

2
and compute its inverse

Fourier Transform a(t) in Eq. 14.

In Section 1.6 and Section 1.7, it is shown that, if η(1
2
+σ+ iω) has a zero at ω = ω0 in the critical

strip, then the Fourier transform of the function Ep(t) = E0(t)e
−σt given by Epω(ω) also has a zero

at ω = ω0, where E0(t) =
∞∑
n=1

(−1)n−1(e−π n2

4
e−2t − e−πn2e−2t

)e−
t
2 derived using a(t).

Statement 1: We assume that the analytic continuation of Riemann’s zeta function derived
from Dirichlet Eta function given by Epω(ω) has a zero at ω = ω0 and then prove that this leads to
a contradiction for 0 < |σ| < 1

2
.

.

1.2. Step 2: On the zeros of a related function G(ω, t2, t0)

Let us consider 0 < σ < 1
2
at first. Let us consider a new function g(t, t2, t0) = f(t, t2, t0)e

−σtu(−t)+

f(t, t2, t0)e
σtu(t), where f(t, t2, t0) = e−2σt0f1(t, t2, t0) + e2σt0f2(t, t2, t0) and f1(t, t2, t0) = eσt0E

′
p(t +

t0, t2) and f2(t, t2, t0) = e−σt0E
′
p(t − t0, t2) and E

′
p(t, t2) = e−σt2Ep(t − t2) − eσt2Ep(t + t2) and t0, t2

are real and g(t, t2, t0) is a real function of variable t and u(t) is Heaviside unit step function. We can
see that g(t, t2, t0)h(t) = f(t, t2, t0) where h(t) = [eσtu(−t) + e−σtu(t)] .

In Section 2.1, we will show that the Fourier transform of the even function geven(t, t2, t0) =
1
2
[g(t, t2, t0) + g(−t, t2, t0)] given by GR(ω, t2, t0) must have at least one zero at ω = ωz(t2, t0) ̸= 0,

for every value of t0, for each nonzero value of t2, where GR(ω, t2, t0) crosses the zero line to the
opposite sign, to satisfy Statement 1, where ωz(t2, t0) is real and finite.

.

1.3. Step 3: On the zeros of the function GR(ω, t2, t0)

In Section 2.3, we compute the Fourier transform of the function g(t, t2, t0) and compute its real
part given by GR(ω, t2, t0) and we can write as follows.
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GR(ω, t2, t0) = e−2σt0

∫ 0

−∞
[E

′

0(τ + t0, t2)e
−2στ + E

′

0n(τ − t0, t2)] cos (ωτ)dτ

+e2σt0
∫ 0

−∞
[E

′

0(τ − t0, t2)e
−2στ + E

′

0n(τ + t0, t2)] cos (ωτ)dτ

(1)

We require GR(ω, t2, t0) = 0 for ω = ωz(t2, t0) for every value of t0, for each non-zero value
of t2, to satisfy Statement 1. In general ωz(t2, t0) ̸= ω0. Hence we can see that P (t2, t0) =
GR(ωz(t2, t0), t2, t0) = 0.

.

1.4. Step 4: Zero Crossing function ωz(t2, t0) is an even function of variable t0

In Section 2.4, we show the result in Eq. 2 and that ωz(t2, t0) = ωz(t2,−t0). It is shown that
P (t2, t0) = GR(ωz(t2, t0), t2, t0) = Podd(t2, t0) + Podd(t2,−t0) = 0 and that Podd(t2, t0) is an odd
function of t0, for each non-zero value of t2 as follows.

Podd(t2, t0) = [cos (ωz(t2, t0)t0)

∫ t0

−∞
E

′

0(τ, t2)e
−2στ cos (ωz(t2, t0)τ)dτ

+sin (ωz(t2, t0)t0)

∫ t0

−∞
E

′

0(τ, t2)e
−2στ sin (ωz(t2, t0)τ)dτ ]

+e2σt0 [cos (ωz(t2, t0)t0)

∫ t0

−∞
E

′

0n(τ, t2) cos (ωz(t2, t0)τ)dτ + sin (ωz(t2, t0)t0)

∫ t0

−∞
E

′

0n(τ, t2) sin (ωz(t2, t0)τ)dτ ]

(2)

.

1.5. Step 5: Final Step

In Section 4, it is shown that ωz(t2, t0) is a continuous function of variable t0 and t2, for all
0 < t0 < ∞ and 0 < t2 < ∞. In Section 6, it is shown that E0(t) is strictly decreasing for t > 0.

In Section 3, we set t0 = t0c and t2 = t2c = 2t0c, such that ωz(t2c, t0c)t0c = π
2
and substitute

in the equation for Podd(t2, t0) in Eq. 2 and show that this leads to the result in Eq. 3. We use
E ′

0(t, t2) = E0(t− t2)− E0(t+ t2) and E ′
0n(t, t2) = E ′

0(−t, t2).

∫ t0c

0

(E0(τ − t2c)− E0(τ + t2c))(cosh (2σt0c)− cosh (2στ)) sin (ωz(t2c, t0c)τ)dτ = 0

(3)

We show that each of the terms in the integrand in Eq. 3 are greater than zero, in the interval
0 < τ < t0c and the integrand is zero at τ = 0 and τ = t0c, where t0c > 0.
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Hence the result in Eq. 3 leads to a contradiction for 0 < σ < 1
2
.

We show this result for 0 < σ < 1
2
and then use the property ξ(1

2
+σ+ iω) = ξ(1

2
−σ− iω) to show

the result for −1
2
< σ < 0. Hence we produce a contradiction of Statement 1 that the Fourier

Transform of the function Ep(t) = E0(t)e
−σt has a zero at ω = ω0 for 0 < |σ| < 1

2
.

.

1.6. Analytic continuation of Riemann Zeta function derived from Dirichlet Eta func-
tion

We consider Riemann’s Xi function ξ(s), where s = 1
2
+ σ + iω. Using the functional equation

of Riemann’s zeta function given by ζ(s) = ζ(1− s)Γ(1− s) sin ( sπ
2
)π(s−1)2s, we get ξ(s) = ξ(1− s).

Titchmarsh pp16-17) Using ζ(s) = η(s)
1−21−s , we write as follows.

ξ(s) = ζ(s)Γ(
s

2
)π

−s
2
s(s− 1)

2
= ξ(1− s)

ξ(s) =
η(s)

1− 21−s
Γ(

s

2
)π

−s
2
s(s− 1)

2

(4)

We define a related analytic continuation E(s) as follows. Given ξ(s) = ξ(1 − s), we see that
E(s) = E(1− s) is analytic in the region 0 < Re[s] < 1 and has simple poles at s = 0 and s = 1.

E(s) =
ξ(s)(1− 21−s)(2s − 1)

s(s− 1)

E(1− s) =
ξ(1− s)(1− 2s)(21−s − 1)

(1− s)(−s)
=

ξ(s)(2s − 1)(1− 21−s)

(s− 1)(s)
= E(s)

(5)

We substitute ξ(s) from Eq. 4 and ζ(s) =
η(s)

1− 21−s
in Eq. 5 and cancel the common terms s(s−1)

and (1− 21−s) as follows.

E(s) =
η(s)

1− 21−s
Γ(

s

2
)π

−s
2
s(s− 1)

2

(1− 21−s)(2s − 1)

s(s− 1)

E(s) =
η(s)

1− 21−s
Γ(

s

2
)π

−s
2
1

2
(1− 21−s)(2s − 1)

E(s) = η(s)Γ(
s

2
)
π

−s
2

2
(2s − 1)

(6)

We evaluate E(s) at s = 1
2
+ σ + iω and use Kiω = eiω log(K) as follows.

E(
1

2
+ σ + iω) = Epω(ω) = η(

1

2
+ σ + iω)Γ(

1
2
+ σ + iω

2
)
π

−( 12+σ)

2

2
e

−iω
2

log(π)(2
1
2
+σeiω log(2) − 1)

4
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(7)

We define Aω(ω) = η(1
2
+ σ + iω)Γ(

1
2
+σ+iω

2
), and we can rearrange the terms as follows.

Epω(ω) = Aω(ω)
π

−( 12+σ)

2

2
e

−iω
2

log(π)(2
1
2
+σeiω log(2) − 1)

(8)

We define a(t) as the Inverse Fourier Transform of Aω(ω). We compute the Inverse Fourier
Transform of Epω(ω) given by Ep(t) as follows, using time shifting property.

Ep(t) =
π

−( 12+σ)

2

2
[2

1
2
+σa(t− log(π)

2
+ log(2))− a(t− log(π)

2
)]

(9)

.

1.7. Derivation of a(t) and Ep(t)

We start with the gamma function Γ( s
2
) =

∫∞
0

y
s
2
−1e−ydy. We evaluate A(s) = Γ( s

2
)η(s) at

s = 1
2
+ σ + iω below. We substitute y = πn2x and dy = πn2dx in Eq. 10 and get y

s
2
−1dy =

(πn2)
s
2
−1x

s
2
−1πn2dx = π

s
2ns(πn2)−1x

s
2
−1πn2dx = π

s
2nsx

s
2
−1dx.

A(s) = Γ(
s

2
)η(s) =

∞∑
n=1

(−1)n−1 1

ns

∫ ∞

0

y
s
2
−1e−ydy = π

s
2

∞∑
n=1

(−1)n−1 1

ns
ns

∫ ∞

0

x
s
2
−1e−πn2xdx (10)

For Re[s] > 0, the gamma function is analytic in the complex plane (link) and η(s) converges
and hence |A(s)| = |Γ( s

2
)η(s)| converges and the integrand in Eq. 10 is an analytic function and

absolutely integrable with exponential asymptotic fall-off rate ( Appendix A.9) and we can find a
suitable dominating function with exponential asymptotic fall-off rate which is absolutely integrable.
Hence we use theorem of dominated convergence and exchange the order of summation and integration
in Eq. 10, cancel the common term ns below.

A(s) = π
s
2

∫ ∞

0

∞∑
n=1

(−1)n−1e−πn2xx
s
2
−1dx (11)

Now we substitute x = e−2t and dx = −2e−2tdt = −2xdt and write Eq. 11 as follows.

A(s) = 2π
s
2

∫ ∞

−∞

∞∑
n=1

(−1)n−1e−πn2e−2t

e−stdt (12)

We substitute s = 1
2
+ σ + iω in Eq. 12 as follows.

A(
1

2
+ σ + iω) = Aω(ω) = 2π

1
2+σ

2 e
iω
2

log π

∫ ∞

−∞

∞∑
n=1

(−1)n−1e−πn2e−2t

e−
t
2 e−σte−iωtdt (13)
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The integrand in Eq. 13 is absolutely integrable given asymptotic exponential fall-off rate. ( Ap-
pendix A.9) We see that the inverse Fourier transform of Aω(ω) is given by a(t) as follows, using the
time shifting property.

a(t) = a0(t+
log π

2
), a0(t) = 2π

1
4
+σ

2

∞∑
n=1

(−1)n−1e−πn2e−2t

e−
t
2 e−σt (14)

We know that Γ( s
2
) does not have zeros for any value of s (link) and the gamma function is

analytic in the complex plane for Re[s] > 0 (link). If η(s) has a zero at ω = ω0 in the critical strip,
then A(1

2
+ σ + iω) in Eq. 10 has a zero at ω = ω0 and the Fourier transform of a(t) given by Aω(ω)

in Eq. 13 has a zero at ω = ω0 (Result E.0)

Now we substitute a(t) in Eq. 14 in Eq. 9 copied below and cancel the common terms log(π)
2

and

2π
1
4
+σ

2 as follows. We use 2
1
2
+σ2−( 1

2
+σ) = 1 in the first term in Ep(t) below.

Ep(t) =
π

−( 12+σ)

2

2
[2

1
2
+σa(t− log(π)

2
+ log(2))− a(t− log(π)

2
)]

Ep(t) =
π−( 1

4
+σ

2
)

2
[2

1
2
+σa0(t−

log(π)

2
+

log(π)

2
+ log(2))− a0(t−

log(π)

2
+

log(π)

2
]

Ep(t) =
π−( 1

4
+σ

2
)

2
[2

1
2
+σa0(t+ log(2))− a0(t)], a0(t+ log(2)) = 2 ∗ 2−( 1

2
+σ)π

1
4
+σ

2

∞∑
n=1

(−1)n−1e−π n2

4
e−2t

e−
t
2 e−σt

Ep(t) =
∞∑
n=1

(−1)n−1e−π n2

4
e−2t

e−
t
2 e−σt −

∞∑
n=1

(−1)n−1e−πn2e−2t

e−
t
2 e−σt

Ep(t) = E0(t)e
−σt, E0(t) =

∞∑
n=1

(−1)n−1(e−π n2

4
e−2t − e−πn2e−2t

)e−
t
2

(15)

We see that E0(t) is the inverse Fourier transform of E(1
2
+ iω) (set σ = 0 in Eq. 7 and Eq. 9)

and it obeys E0(t) = E0(−t) given that E(s) = E(1− s) using Eq. 5(We use the result in Appendix
A.8). (Result E.1)

Using Eq. 8, we have derived the analytic continuation of Riemann’s zeta function derived from
Dirichlet Eta function given by Epω(ω) = η(1

2
+ σ + iω)B(ω) where

B(ω) = Γ(
1
2
+σ+iω

2
)π

−( 12+σ)

2

2
e

−iω
2

log(π)(2
1
2
+σeiω log(2) − 1).

We see that, if η(1
2
+ σ+ iω) has a zero at ω = ω0 in the critical strip, then the Fourier transform

of the function Ep(t) = E0(t)e
−σt given by Epω(ω) also has a zero at ω = ω0, where E0(t) =

∞∑
n=1

(−1)n−1(e−π n2

4
e−2t − e−πn2e−2t

)e−
t
2 .
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.

2. An Approach towards Riemann’s Hypothesis

Theorem 1: The analytic continuation of Riemann’s zeta function derived from Dirichlet Eta
function given by Epω(ω) = η(1

2
+ σ + iω)B(ω) does not have zeros for any real value of −∞ <

ω < ∞, for 0 < |σ| < 1
2
, corresponding to the critical strip excluding the critical line, where

B(ω) = Γ(
1
2
+σ+iω

2
)π

−( 12+σ)

2

2
e

−iω
2

log(π)(2
1
2
+σeiω log(2)−1) given that E0(t) = E0(−t) is an even function of

variable t, where Ep(t) =
1
2π

∫∞
−∞ Epω(ω)e

iωtdω, Ep(t) = E0(t)e
−σt and E0(t) =

∞∑
n=1

(−1)n−1(e−π n2

4
e−2t−

e−πn2e−2t

)e−
t
2 .

Proof : We assume that Riemann Hypothesis is false and prove its truth using proof by contra-
diction.

Statement 1: Let us assume that the analytic continuation of Riemann’s zeta function derived
from Dirichlet Eta function given by Epω(ω) has a zero at ω = ω0 where ω0 is real and finite and
0 < |σ| < 1

2
, corresponding to the critical strip excluding the critical line. We will prove that this

assumption leads to a contradiction.

We will prove it for 0 < σ < 1
2
first and then use the property ξ(1

2
+ σ + iω) = ξ(1

2
− σ − iω) to

show the result for −1
2
< σ < 0 and hence show the result for 0 < |σ| < 1

2
.

We know that ω0 ̸= 0, because ζ(s) has no zeros on the real axis between 0 and 1, when s =
1
2
+ σ + iω is real, ω = 0 and 0 ≤ |σ| < 1

2
. [3] (Titchmarsh pp30-31). This is shown in detail in first

two paragraphs in Appendix A.1.
.

2.1. New function g(t, t2, t0)

Let us consider the function E
′
p(t, t2) = e−σt2Ep(t − t2) − eσt2Ep(t + t2) = (E0(t − t2) − E0(t +

t2))e
−σt = E

′
0(t, t2)e

−σt, where t2 is non-zero and real, and E
′
0(t, t2) = E0(t−t2)−E0(t+t2) (Definition

1). Its Fourier transform is given by E
′
pω(ω, t2) = Epω(ω)(e

−σt2e−iωt2 − eσt2eiωt2) which has a zero at
the same ω = ω0, using Statement 1 and linearity and time shift properties of the Fourier transform
( link). (Result 2.1.1).

Let us consider the function f(t, t2, t0) = e−2σt0f1(t, t2, t0) + e2σt0f2(t, t2, t0) where f1(t, t2, t0) =
eσt0E

′
p(t + t0, t2) and f2(t, t2, t0) = f1(t, t2,−t0) = e−σt0E

′
p(t − t0, t2) where t0 is finite and real and

we can see that the Fourier Transform of this function F (ω, t2, t0) = E
′
pω(ω, t2)(e

−σt0eiωt0 + eσt0e−iωt0)
also has a zero at the same ω = ω0, using Result 2.1.1. (Result 2.1.2)

Let us consider a new function g(t, t2, t0) = g−(t, t2, t0)u(−t) + g+(t, t2, t0)u(t) where g(t, t2, t0) is
a real function of variable t and u(t) is Heaviside unit step function and g−(t, t2, t0) = f(t, t2, t0)e

−σt

and g+(t, t2, t0) = f(t, t2, t0)e
σt . We can see that g(t, t2, t0)h(t) = f(t, t2, t0) where h(t) = [eσtu(−t)+

e−σtu(t)].
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We can write the above equations as follows.

E
′

p(t, t2) = e−σt2Ep(t− t2)− eσt2Ep(t+ t2) = (E0(t− t2)− E0(t+ t2))e
−σt = E

′

0(t, t2)e
−σt

f1(t, t2, t0) = eσt0E
′

p(t+ t0, t2)

f2(t, t2, t0) = f1(t, t2,−t0) = e−σt0E
′

p(t− t0, t2)

f(t, t2, t0) = e−2σt0f1(t, t2, t0) + e2σt0f2(t, t2, t0) = e−σt0E
′

p(t+ t0, t2) + eσt0E
′

p(t− t0, t2)

g(t, t2, t0) = [f(t, t2, t0)e
−σt]u(−t) + [f(t, t2, t0)e

σt]u(t)

g(t, t2, t0)h(t) = f(t, t2, t0), h(t) = [eσtu(−t) + e−σtu(t)]

(16)

We can show that Ep(t), E
′
p(t, t2), h(t) are absolutely integrable functions and go to zero as

t → ±∞. Hence their respective Fourier transforms given by Epω(ω), E
′
pω(ω, t2), H(ω) are finite

for real ω and go to zero as |ω| → ∞, as per Riemann Lebesgue Lemma (link). We can show that
E0(t) and E0(t)e

−2σt are absolutely integrable functions. These results are shown in Appendix A.1.

In Section 2.3 and Section 2.4, it is shown that g(t, t2, t0) is a Fourier transformable function and
its Fourier transform given by G(ω, t2, t0) = e−2σt0G1(ω, t2, t0)+e2σt0G1(ω, t2,−t0) converges. (Eq. 24
and Eq. 27)

If we take the Fourier transform of the equation g(t, t2, t0)h(t) = f(t, t2, t0) where h(t) = [eσtu(−t)+
e−σtu(t)], using Result 2.1.2, we get 1

2π
[G(ω, t2, t0) ∗ H(ω)] = F (ω, t2, t0) = E

′
pω(ω, t2)(e

−σt0eiωt0 +
eσt0e−iωt0) = FR(ω, t2, t0) + iFI(ω, t2, t0) as per convolution theorem (link), where ∗ denotes con-
volution operation given by F (ω, t2, t0) =

1
2π

∫∞
−∞ G(ω′, t2, t0)H(ω − ω′)dω′.

We see that H(ω) = HR(ω) = [ 1
σ−iω

+ 1
σ+iω

] = 2σ
(σ2+ω2)

is real and is the Fourier transform of

the function h(t) (link). G(ω, t2, t0) = GR(ω, t2, t0) + iGI(ω, t2, t0) is the Fourier transform of the
function g(t, t2, t0). We can write g(t, t2, t0) = geven(t, t2, t0) + godd(t, t2, t0) where geven(t, t2, t0) is an
even function and godd(t, t2, t0) is an odd function of variable t.

If Statement 1 is true, then we require the Fourier transform of the function f(t, t2, t0) given
by F (ω, t2, t0) to have a zero at ω = ω0 for every value of t0, for each non-zero value of t2, us-
ing Result 2.1.2. This implies that the real part of the Fourier transform of the even function
geven(t, t2, t0) =

1
2
[g(t, t2, t0) + g(−t, t2, t0)] given by GR(ω, t2, t0)( Appendix B.2) must have at least

one zero at ω = ωz(t2, t0) ̸= 0 where ωz(t2, t0) is real and finite, where GR(ω, t2, t0) crosses the zero
line to the opposite sign, explained below. We note that ωz(t2, t0) can be different from ω0 in general.

Because H(ω) = 2σ
(σ2+ω2)

is real and does not have zeros for any finite value of ω, if GR(ω, t2, t0)

does not have at least one zero for some ω = ωz(t2, t0) ̸= 0, where GR(ω, t2, t0) crosses the zero line to
the opposite sign, then the real part of F (ω, t2, t0) given by FR(ω, t2, t0) =

1
2π
[GR(ω, t2, t0) ∗H(ω)],

obtained by the convolution of H(ω) and GR(ω, t2, t0), cannot possibly have zeros for any non-zero fi-
nite value of ω, which goes against Result 2.1.2 and Statement 1. This is shown in detail in Lemma 1.

The proof for Lemma 1 below is shown for a fixed value of t0 = t0f and t2 = t2f , in the interval
|t0| < ∞ and 0 < |t2| < ∞ (Interval A), where GR(ω, t2, t0) is a function of ω only. The proof
continues to hold for our choice of each and every combination of fixed values of t0 and t2 in
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interval A, where GR(ω, t2, t0) is a function of ω only.

Lemma 1: Let t0, t2 ∈ ℜ be fixed values and t2 ̸= 0 and Epω(ω) has a zero at ω = ω0 using
Statement 1. Then the Fourier transform of the even function geven(t, t2, t0) given by GR(ω, t2, t0)
must have at least one zero at ω = ωz(t2, t0) ̸= 0, where GR(ω, t2, t0) crosses the zero line to the
opposite sign and ωz(t2, t0) is real.

Proof : If Epω(ω) has a zero at ω = ω0 to satisfy Statement 1, then F (ω, t2, t0) has a zero at
ω = ω0, using Result 2.1.2 and its real part given by FR(ω, t2, t0) also has a zero at ω = ω0, where
ω0 ̸= 0(Result 2.1.3).

We do not have a closed form solution for GR(ω, t2, t0) and do not know the exact location of its
zeros at ω = ωz(t2, t0). For a specific choice of t2, t0, only one of the 2 cases is possible:
Case A: GR(ω, t2, t0) does not have a zero crossing for any choice of ω ̸= 0 or
Case B: GR(ω, t2, t0) has at least one zero crossing for a specific ω ̸= 0.
If Statement 1 is true, then Case B is the only possibility and Case A is ruled out, as shown below.

We want to show the Result 2.1.5 that GR(ω, t2, t0) must have at least one zero crossing at
some value of ω = ωz(t2, t0) ̸= 0 (Case B), to satisfy Statement 1, for this choice of fixed t0, t2.

To show Result 2.1.5, we assume the opposite Case A, that GR(ω, t2, t0) does not have at
least one zero for any value of ω ̸= 0, where GR(ω, t2, t0) crosses the zero line to the opposite sign
(zero crossing) and will show that FR(ω, t2, t0) does not have at least one zero at finite ω ̸= 0 for this
case, which contradicts Result 2.1.3 and Statement 1 and hence we rule out Case A and arrive at
Case B (Result 2.1.5).

This does not mean that, proof of Lemma 1 will work only if GR(ω, t2, t0) does not have a zero
crossing for any value of ω ̸= 0, for any choice of t2, t0. The device Proof by Contradiction is used
here to rule out Case A and arrive at Case B. (Details of other cases in Section 2.1.1)

It is noted that, for Case B, we do not use Eq. 17 to Eq. 20 and related arguments, because
Case B is the desired Result 2.1.5. (Note 1)

The arguments above and following proof continue to hold for our choice of each and every
combination of fixed values of t0 and t2 in interval A, where GR(ω, t2, t0) is a function of ω only.

Given that H(ω) is real, we can write the convolution theorem only for the real parts as follows.

FR(ω, t2, t0) =
1

2π

∫ ∞

−∞
GR(ω

′, t2, t0)H(ω − ω′)dω′ (17)

We can show that the above integral converges for real ω, given that the integrand is absolutely
integrable because G(ω, t2, t0) and H(ω) have fall-off rate of 1

ω2 as |ω| → ∞ because the first deriva-
tives of g(t, t2, t0) and h(t) are discontinuous at t = 0.( Appendix A.2 and Appendix A.6)

We substitute H(ω) = 2σ
(σ2+ω2)

in Eq. 17 and we get

FR(ω, t2, t0) =
σ

π

∫ ∞

−∞
GR(ω

′, t2, t0)
1

(σ2 + (ω − ω′)2)
dω′ (18)
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We can split the integral in Eq. 18 using
∫∞
−∞ =

∫ 0

−∞ +
∫∞
0
, as follows.

FR(ω, t2, t0) =
σ

π
[

∫ 0

−∞
GR(ω

′, t2, t0)
1

(σ2 + (ω − ω′)2)
dω′ +

∫ ∞

0

GR(ω
′, t2, t0)

1

(σ2 + (ω − ω′)2)
dω′]

(19)

We see that GR(−ω, t2, t0) = GR(ω, t2, t0) because g(t, t2, t0) is a real function of variable t.
( Appendix B.1) We can substitute ω′ = −ω′′ in the first integral in Eq. 19 and substituting ω′′ = ω′

in the result, we can write as follows.

FR(ω, t2, t0) =
σ

π

∫ ∞

0

GR(ω
′, t2, t0)[

1

(σ2 + (ω − ω′)2)
+

1

(σ2 + (ω + ω′)2)
]dω′

(20)

We note that t0 and t2 are fixed in Eq. 20 and GR(ω, t2, t0) is a function of ω only and the
integrand in Eq. 20 is integrated over the variable ω only.

In Appendix A.2, it is shown that G(ω′, t2, t0) is finite for real ω′ and goes to zero as |ω′| → ∞.
We can see that for ω′ → ∞, the integrand in Eq. 20 goes to zero. For finite ω ≥ 0, and 0 ≤ ω′ < ∞,
we can see that the term 1

(σ2+(ω−ω′)2)
+ 1

(σ2+(ω+ω′)2)
> 0, for 0 < σ < 1

2
. We see that GR(ω

′, t2, t0) is

not an all zero function of variable ω′ (Section 2.2). (Result 2.1.4)

• Case 1: GR(ω
′, t2, t0) ≥ 0 for all finite ω′ ≥ 0

We see that FR(ω, t2, t0) > 0 for all finite ω ≥ 0, using Result 2.1.4. We see that FR(−ω, t2, t0) =
FR(ω, t2, t0) because f(t, t2, t0) is a real function ( Appendix B.1) and link ). Hence FR(ω, t2, t0) > 0
for all finite ω ≤ 0.

This contradicts Statement 1 and Result 2.1.3 which requires FR(ω, t2, t0) to have at least one
zero at finite ω ̸= 0. Therefore GR(ω

′, t2, t0) must have at least one zero at ω′ = ωz(t2, t0) > 0
where it crosses the zero line and becomes negative, where ωz(t2, t0) is real and finite.

• Case 2: GR(ω
′, t2, t0) ≤ 0 for all finite ω′ ≥ 0

We see that FR(ω, t2, t0) < 0 for all finite ω ≥ 0, using Result 2.1.4. We see that FR(−ω, t2, t0) =
FR(ω, t2, t0) because f(t, t2, t0) is a real function ( Appendix B.1) and link ). Hence FR(ω, t2, t0) < 0
for all finite ω ≤ 0.

This contradicts Statement 1 and Result 2.1.3 which requires FR(ω, t2, t0) to have at least one
zero at finite ω ̸= 0. Therefore GR(ω

′, t2, t0) must have at least one zero at ω′ = ωz(t2, t0) > 0 ,
where it crosses the zero line and becomes positive, where ωz(t2, t0) is real.

We have shown that, GR(ω, t2, t0) must have at least one zero at finite ω = ωz(t2, t0) ̸= 0 where
it crosses the zero line to the opposite sign, to satisfy Statement 1, for specific choices of fixed t0, t2.
We call this Result 2.1.5.
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The arguments above and the proof continue to hold for our choice of each and every combi-
nation of fixed values of t0 and t2 in interval A, where GR(ω, t2, t0) is a function of ω only.

In the rest of the sections, we consider only the first zero crossing away from origin, where
GR(ω, t2, t0) crosses the zero line to the opposite sign. Hence 0 < ωz(t2, t0) < ∞, for all |t0| < ∞, for
each non-zero value of t2, to satisfy Statement 1.

.

2.1.1. Discussion of Lemma 1

Result 2.1.5: GR(ω, t2, t0) must have at least one zero at finite ω = ωz(t2, t0) ̸= 0 where it
crosses the zero line to the opposite sign, to satisfy Statement 1.

For each fixed value of t0, t2, only 2 cases are possible for GR(ω, t2, t0). Case A: GR(ω, t2, t0) does
not have a zero crossing for any choice of ω ̸= 0. Case B: GR(ω, t2, t0) has at least one zero crossing
for a specific ω ̸= 0. Proof of Lemma 1 assumes Case A and uses Proof by Contradiction to rule
out Case A and arrive at Case B, for each choice of fixed t0, t2. This does not mean that Proof of
Lemma 1 does not work for Case B. For Case B, we do not use Proof of Lemma 1 and jump to the
end of the proof because we already have the desired Result 2.1.5 which is the same as Case B.

The logic used is this proof is as follows: If Statement 1 is true(RH is false), then Result 2.1.5 is
true (Case B), for each and every combination of fixed values of t0, t2 in interval A (|t0| < ∞ and
0 < |t2| < ∞ )and hence Case A is ruled out and only Case B is possible for GR(ω, t2, t0). Then we
proceed with Result 2.1.5 to Section 2.3, 2.4 and Section 3, to produce a contradiction of Statement
1 in Eq. 50 and thus prove the truth of RH.

We present an alternate method of analyzing all possible cases of GR(ω, t2, t0) below. We can
arrive at Result 2.1.5, for each and every combination of fixed values of t0, t2 in interval A, using
Proof of Lemma 1 for Case C and Case D or using Case E, as explained below.

It is noted that FR(ω, t2, t0) and GR(ω, t2, t0) may have more zeros than F (ω, t2, t0) and G(ω, t2, t0)
respectively. That does not affect the proof of Lemma 1, as explained below.

We do not have a closed form solution for GR(ω, t2, t0) and do not know the exact location of its
zeros at ω = ωz(t2, t0), for each fixed choice of t2, t0. We consider 3 possible cases ofGR(ω, t2, t0) below.

•Case C:We consider the case that GR(ω, t2, t0) does not have at least one zero crossing, for any
value of ω ̸= 0, for each and every choice of t2, t0 and we use Proof of Lemma 1 for each and every
choice of t2, t0, to show that it leads to a contradiction of Statement 1, and hence prove Result 2.1.5.

Hence Case C is ruled out, if Statement 1 is true.

• Case D: We consider the case GR(ω, t
′
2, t

′
0) has a zero crossing, for a specific value of ω =

ωz(t
′
2, t

′
0), corresponding to specific choices of t

′
2, t

′
0.(Not for all possible choices of t

′
2, t

′
0)

For Case D, this means that GR(ω, t
′
2, t

′
0) has at least one zero crossing at ω = ωz(t

′
2, t

′
0) which

is the desired Result 2.1.5 and hence we do not go through the arguments in this proof and we can
jump to end of Proof of Lemma 1 (using Note 1). In this case, we have not assumed Statement 1
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and yet arrived at Result 2.1.5, for specific choices of t
′
2, t

′
0.

For Case D, there may be at least one choice of t2f , t0f for which GR(ω, t2f , t0f ) does not have
at least one zero crossing, for any value of ω ̸= 0. For this choice of t2f , t0f , we use Proof of Lemma
1 to show that it leads to a contradiction of Statement 1, and hence prove Result 2.1.5.

Hence Case D is ruled out, if Statement 1 is true.

• Case E: We consider the case GR(ω, t2, t0) has at least one zero crossing, for a specific value of
ω = ωz(t2, t0), corresponding to each and every choices of t2, t0. We call this Statement 3.

For Case E, this means that GR(ω, t2, t0) has at least one zero crossing at ω = ωz(t2, t0), for
each and every choices of t2, t0 which is the desired Result 2.1.5 and hence we do not go through
the arguments in this proof and we can jump to end of Proof of Lemma 1 (using Note 1). In this
case, we have not assumed Statement 1 and yet arrived at Result 2.1.5, for each and every choices
of t2, t0.

For Case E, we see that we arrive at Result 2.1.5 by assuming Statement 3 only. Then we proceed
with Result 2.1.5 to Section 2.3, 2.4 and Section 3, to produce a contradiction of Statement 3 in
Eq. 50. Hence Statement 3 is false and Case E is ruled out.

There are only 3 possible cases for GR(ω, t2, t0) given by Case C,D and E. We have ruled out
Case E in above para. If Statement 1 is true, Case C and Case D have been ruled out. This means
Statement 1 is false.

Hence we have produced a contradiction of Statement 1 that the Fourier Transform of the
function Ep(t) = E0(t)e

−σt has a zero at ω = ω0 for 0 < |σ| < 1
2
.

Hence the assumption in Statement 1 that Epω(ω) has a zero at ω = ω0, where ω0 is real and
finite, leads to a contradiction for the region 0 < |σ| < 1

2
which corresponds to the critical strip

excluding the critical line. Hence ζ(s) does not have non-trivial zeros in the critical strip excluding
the critical line and we have proved Riemann’s Hypothesis.

.

2.2. GR(ω
′, t2, t0) is not an all zero function of variable ω′

If GR(ω
′, t2, t0) is an all zero function of variable ω′, for each given value of t0, t2 (Statement

2), then FR(ω, t2, t0) in Eq. 17 is an all zero function of ω, for real ω. Hence 2feven(t, t2, t0) =
f(t, t2, t0)+ f(−t, t2, t0) is an all-zero function of t, given that the Fourier transform of feven(t, t2, t0)
is given by FR(ω, t2, t0), using symmetry properties of Fourier transform( Appendix B.2) and link
). Hence f(t, t2, t0) is an odd function of variable t.(Result 2.2).

From Eq. 16 we see that E
′
p(t, t2) = e−σt2Ep(t− t2)− eσt2Ep(t+ t2) = [E0(t− t2)−E0(t+ t2)]e

−σt.

Hence f1(t, t2, t0) = eσt0E
′
p(t+ t0, t2) = [E0(t+ t0 − t2)− E0(t+ t0 + t2)]e

−σt and

f2(t, t2, t0) = e−σt0E
′
p(t − t0, t2) = [E0(t − t0 − t2) − E0(t − t0 + t2)]e

−σt . Hence we can write
f(t, t2, t0) = e−2σt0f1(t, t2, t0) + e2σt0f2(t, t2, t0) in Eq. 16, as follows.

f(t, t2, t0) = e−2σt0 [E0(t+ t0− t2)−E0(t+ t0+ t2)]e
−σt+e2σt0 [E0(t− t0− t2)−E0(t− t0+ t2)]e

−σt (21)
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Case 1: For t0 ̸= 0 and t2 ̸= 0, it is shown that Result 2.2 is false. We will compute f(t, t2, t0) in
Eq. 21 at t = 0 and show that it does not equal zero.

We see that f(0, t2, t0) = e−2σt0 [E0(t0 − t2)− E0(t0 + t2)] + e2σt0 [E0(−t0 − t2)− E0(−t0 + t2)]
= −2 sinh (2σt0)[E0(t0 − t2)− E0(t0 + t2)]. We use the fact that E0(t0) = E0(−t0) ( Appendix A.8)
and hence E0(t0 − t2) = E0(−t0 + t2) and E0(t0 + t2) = E0(−t0 − t2).

If Result 2.2 is true, then we require f(0, t2, t0) = 0 in Eq. 21. For our choice of 0 < σ < 1
2
and

t0 ̸= 0, this implies that E0(t0 − t2) = E0(t0 + t2). Given that t0 ̸= 0 and t2 ̸= 0, we set t2 = Kt0
for real K ̸= 0 and we get E0((1 −K)t0) = E0((1 +K)t0). This is not possible for t0 ̸= 0 because
E0(t0) is strictly decreasing for t0 > 0 (Section 6) and 1 −K ̸= 1 +K or 1 −K ̸= −(1 +K) for
K ̸= 0. Hence Result 2.2 is false and Statement 2 is false and GR(ω

′, t2, t0) is not an all zero function
of variable ω′.

Case 2: For t0 = 0 and t2 ̸= 0, we have f(t, t2, t0) = 2[E0(t − t2) − E0(t + t2)]e
−σt = 2D(t)e−σt

in Eq. 21, where D(t) = E0(t − t2) − E0(t + t2). We see that D(t) + D(−t) = E0(t − t2) −
E0(t + t2) + E0(−t − t2) − E0(−t + t2). Given that E0(t) = E0(−t), we have D(t) + D(−t) =
E0(t − t2) − E0(t + t2) + E0(t + t2) − E0(t − t2) = 0 and hence D(t) = E0(t − t2) − E0(t + t2) is an
odd function of variable t (Result 2.2.1).

If Result 2.2 is true, then we require f(t, t2, t0) = 2D(t)e−σt to be an odd function of variable
t. Using Result 2.2.1, we require D(t) to be an odd function of variable t. This is possible only for
σ = 0. This is not possible for our choice of 0 < σ < 1

2
. Hence Result 2.2 is false and Statement 2 is

false and GR(ω
′, t2, t0) is not an all zero function of variable ω′.

Case 3: For t2 = 0 and |t0| < ∞, we have E
′
p(t, t2) = e−σt2Ep(t − t2) − eσt2Ep(t + t2) = 0 and

f(t, t2, t0) = g(t, t2, t0) = 0 for all t in Eq. 16 and Lemma 1 is not applicable for this case.
.

2.3. On the zeros of a related function G(ω, t2, t0)

In this section, we compute the Fourier transform of the function geven(t, t2, t0) =
1
2
[g(t, t2, t0) +

g(−t, t2, t0)] given by GR(ω, t2, t0)( Appendix B.2). We require GR(ω, t2, t0) = 0 for ω = ωz(t2, t0) for
every value of t0, for each non-zero value of t2, to satisfy Statement 1, using Lemma 1 in Section 2.1.

We define g1(t, t2, t0) = f1(t, t2, t0)e
−σtu(−t) + f1(t, t2, t0)e

σtu(t) = eσt0E
′
p(t + t0, t2)e

−σtu(−t) +

eσt0E
′
p(t+ t0, t2)e

σtu(t), using Eq. 16 (Definition 3). First we compute the Fourier transform of the
function g1(t, t2, t0) given by G1(ω, t2, t0) = G1R(ω, t2, t0) + iG1I(ω, t2, t0).

G1(ω, t2, t0) =

∫ ∞

−∞
g1(t, t2, t0)e

−iωtdt =

∫ 0

−∞
g1(t, t2, t0)e

−iωtdt+

∫ ∞

0

g1(t, t2, t0)e
−iωtdt

G1(ω, t2, t0) =

∫ 0

−∞
eσt0E

′

p(t+ t0, t2)e
−σte−iωtdt+

∫ ∞

0

eσt0E
′

p(t+ t0, t2)e
σte−iωtdt

(22)

We use E
′
p(t, t2) = E

′
0(t, t2)e

−σt from Eq. 16, where E
′
0(t, t2) = E0(t − t2) − E0(t + t2), using
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Definition 1 in Section 2.1 and we get E
′
p(t + t0, t2) = E

′
0(t + t0, t2)e

−σte−σt0 and write Eq. 22 as
follows. Then we substitute t = −t in the second integral in first line of Eq. 23.

G1(ω, t2, t0) =

∫ 0

−∞
E

′

0(t+ t0, t2)e
−2σte−iωtdt+

∫ ∞

0

E
′

0(t+ t0, t2)e
−iωtdt

G1(ω, t2, t0) =

∫ 0

−∞
E

′

0(t+ t0, t2)e
−2σte−iωtdt+

∫ 0

−∞
E

′

0(−t+ t0, t2)e
iωtdt

(23)

We define E
′
0n(t, t2) = E

′
0(−t, t2) (Definition 2) and get E

′
0(−t + t0, t2) = E

′
0n(t − t0, t2) and

write Eq. 23 as follows. The integral in Eq. 24 converges, given that E0(t)e
−2σt is an absolutely

integrable function ( Appendix A.1) and its t0, t2 shifted versions are absolutely integrable, using
E

′
0(t, t2) = E0(t− t2)− E0(t+ t2) in Definition 1 in Section 2.1 and Definition 2.

G1(ω, t2, t0) =

∫ 0

−∞
E

′

0(t+ t0, t2)e
−2σte−iωtdt+

∫ 0

−∞
E

′

0n(t− t0, t2)e
iωtdt = G1R(ω, t2, t0) + iG1I(ω, t2, t0)

(24)

The above equations can be expanded as follows using the identity eiωt = cos(ωt) + i sin(ωt).
Comparing the real parts of G1(ω, t2, t0), we have

G1R(ω, t2, t0) =

∫ 0

−∞
E

′

0(t+ t0, t2)e
−2σt cos (ωt)dt+

∫ 0

−∞
E

′

0n(t− t0, t2) cos (ωt)dt

(25)

.

2.4. Zero crossing function ωz(t2, t0) is an even function of variable t0, for a given t2

Now we consider Eq. 16 and the function f(t, t2, t0) = e−2σt0f1(t, t2, t0) + e2σt0f2(t, t2, t0) =
e−σt0E

′
p(t+t0, t2)+eσt0E

′
p(t−t0, t2) where f1(t, t2, t0) = eσt0E ′

p(t+t0, t2) and f2(t, t2, t0) = f1(t, t2,−t0) =
e−σt0E ′

p(t−t0, t2) and g(t, t2, t0)h(t) = f(t, t2, t0) where g(t, t2, t0) = f(t, t2, t0)e
−σtu(−t)+f(t, t2, t0)e

σtu(t)
and h(t) = [eσtu(−t) + e−σtu(t)]. We can write the above equations and g1(t, t2, t0) from Definition 3
in Section 2.3, as follows. We define g2(t, t2, t0) below and write g(t, t2, t0) as follows.

g1(t, t2, t0) = f1(t, t2, t0)e
−σtu(−t) + f1(t, t2, t0)e

σtu(t), g1(t, t2, t0)h(t) = f1(t, t2, t0)

g2(t, t2, t0) = f2(t, t2, t0)e
−σtu(−t) + f2(t, t2, t0)e

σtu(t), g2(t, t2, t0)h(t) = f2(t, t2, t0)

g(t, t2, t0) = e−2σt0g1(t, t2, t0) + e2σt0g2(t, t2, t0)

(26)

We compute the Fourier transform of the function g(t, t2, t0) in Eq. 26 and compute its real
part GR(ω, t2, t0) using the procedure in Section 2.3, similar to Eq. 25 and we can write as follows in
Eq. 27. We use G2R(ω, t2, t0) = G1R(ω, t2,−t0) given that f2(t, t2, t0) = f1(t, t2,−t0) and g2(t, t2, t0) =
g1(t, t2,−t0) and G2(ω, t2, t0) = G1(ω, t2,−t0). We substitute t = τ in the equation for G1R(ω, t2, t0)
below, copied from Eq. 25.
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GR(ω, t2, t0) = e−2σt0G1R(ω, t2, t0) + e2σt0G2R(ω, t2, t0) = e−2σt0G1R(ω, t2, t0) + e2σt0G1R(ω, t2,−t0)

G1R(ω, t2, t0) =

∫ 0

−∞
[E

′

0(τ + t0, t2)e
−2στ + E

′

0n(τ − t0, t2)] cos (ωτ)dτ

GR(ω, t2, t0) = e−2σt0

∫ 0

−∞
[E

′

0(τ + t0, t2)e
−2στ + E

′

0n(τ − t0, t2)] cos (ωτ)dτ

+e2σt0
∫ 0

−∞
[E

′

0(τ − t0, t2)e
−2στ + E

′

0n(τ + t0, t2)] cos (ωτ)dτ

(27)

We require GR(ω, t2, t0) = 0 for ω = ωz(t2, t0) for every value of t0, for each non-zero value of t2,
to satisfy Statement 1, using Lemma 1 in Section 2.1. In general ωz(t2, t0) ̸= ω0. Hence we can see
that P (t2, t0) = GR(ωz(t2, t0), t2, t0) = 0 and we can rearrange the terms in Eq. 27 as follows. We
take the first and fourth terms in GR(ω, t2, t0) in Eq. 27 and include them in the first line in Eq. 28.
We take the second and third terms in Eq. 27 and include them in the second line in Eq. 28.

P (t2, t0) = GR(ωz(t2, t0), t2, t0) =

∫ 0

−∞
[e−2σt0E

′

0(τ + t0, t2)e
−2στ + e2σt0E

′

0n(τ + t0, t2)] cos (ωz(t2, t0)τ)dτ

+

∫ 0

−∞
[e2σt0E

′

0(τ − t0, t2)e
−2στ + e−2σt0E

′

0n(τ − t0, t2)] cos (ωz(t2, t0)τ)dτ = 0

(28)

We use the fact that f(t, t2, t0) = e−σt0E
′
p(t + t0, t2) + eσt0E

′
p(t − t0, t2) = f(t, t2,−t0) in Eq. 16,

is unchanged by the substitution t0 = −t0. If f(t, t2, t0) = f(t, t2,−t0) is unchanged by the substi-
tution t0 = −t0, then g(t, t2, t0) = g(t, t2,−t0) is unchanged by the substitution t0 = −t0, using the
fact that g(t, t2, t0)h(t) = f(t, t2, t0) and h(t) = [eσtu(−t) + e−σtu(t)].

Hence the Fourier transform of g(t, t2, t0) given by G(ω, t2, t0) = G(ω, t2,−t0) and its real part
given by GR(ω, t2, t0) = GR(ω, t2,−t0) is unchanged by the substitution t0 = −t0 and the zero
crossing in GR(ω, t2,−t0) given by ωz(t2,−t0) is the same as the zero crossing in GR(ω, t2, t0) given
by ωz(t2, t0) and we get ωz(t2, t0) = ωz(t2,−t0) and hence ωz(t2, t0) is an even function of variable t0,
for each non-zero value of t2.

We can write Eq. 28 as follows, where Podd(t2, t0) is an odd function of variable t0, for each
non-zero value of t2. We use ωz(t2, t0) = ωz(t2,−t0).

P (t2, t0) = Podd(t2, t0) + Podd(t2,−t0) = 0

Podd(t2, t0) =

∫ 0

−∞
[e−2σt0E

′

0(τ + t0, t2)e
−2στ + e2σt0E

′

0n(τ + t0, t2)] cos (ωz(t2, t0)τ)dτ

(29)
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.

3. Final Step

We expand Podd(t2, t0) in Eq. 29 as follows, using the substitution τ + t0 = τ ′. We get τ = τ ′ − t0
and dτ = dτ ′ and substitute back τ ′ = τ in the second line below. We use e−2σt0e2σt0 = 1 below.

Podd(t2, t0) =

∫ t0

−∞
[e−2σt0E

′

0(τ
′
, t2)e

−2στ
′

e2σt0 + e2σt0E
′

0n(τ
′
, t2)] cos (ωz(t2, t0)(τ

′ − t0)dτ
′

Podd(t2, t0) = [cos (ωz(t2, t0)t0)

∫ t0

−∞
E

′

0(τ, t2)e
−2στ cos (ωz(t2, t0)τ)dτ

+sin (ωz(t2, t0)t0)

∫ t0

−∞
E

′

0(τ, t2)e
−2στ sin (ωz(t2, t0)τ)dτ ]

+e2σt0 [cos (ωz(t2, t0)t0)

∫ t0

−∞
E

′

0n(τ, t2) cos (ωz(t2, t0)τ)dτ + sin (ωz(t2, t0)t0)

∫ t0

−∞
E

′

0n(τ, t2) sin (ωz(t2, t0)τ)dτ ]

(30)

In Section 2.1, it is shown that 0 < ωz(t2, t0) < ∞, for all |t0| < ∞, for each non-zero value of t2.
In this section, we consider t0 > 0 and t2 > 0 only.

In Section 4, it is shown that ωz(t2, t0) is a continuous function of variable t0 and t2, for all
0 < t0 < ∞ and 0 < t2 < ∞.

In Section 6, it is shown that E0(t) is strictly decreasing for t > 0.

Given that ωz(t2, t0) is a continuous function of both t0 and t2, we can find a suitable value of
t0 = t0c and t2 = t2c = 2t0c such that ωz(t2c, t0c)t0c =

π
2
. Given that ωz(t2, t0) is a continuous function

of t0 and t2 and given that t0 is a continuous function, we see that the product of two continuous
functions ωz(t2, t0)t0 is a continuous function and is positive for t0 > 0 because 0 < ωz(t2, t0) < ∞.

We see that ωz(t2, t0) > 0 and is a continuous function of variable t0 and t2, as t0 and t2 increase
to a larger and larger finite value without bounds and that the order of ωz(t2, t0)t0 is greater than 1
(Section 5). As t0 and t2 increase from zero to a larger and larger finite value without bounds, the
continuous function ωz(t2, t0)t0 starts from zero and increases with order greater than O[1] and will
pass through π

2
.

We set t0 = t0c > 0 and t2 = t2c = 2t0c such that ωz(t2c, t0c)t0c =
π
2
in Eq. 30 as follows. We use

the fact that cos (ωz(t2c, t0c)t0c) = 0, sin (ωz(t2c, t0c)t0c) = 1 and ωz(t2c,−t0c) = ωz(t2c, t0c) shown in
Section 2.4.

Podd(t2c, t0c) =

∫ t0c

−∞
E

′

0(τ, t2c)e
−2στ sin (ωz(t2c, t0c)τ)dτ + e2σt0c

∫ t0c

−∞
E

′

0n(τ, t2c) sin (ωz(t2c, t0c)τ)dτ

(31)
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We compute Podd(t2,−t0) in Eq. 30 as follows. We use ωz(t2,−t0) = ωz(t2, t0) (Section 2.4).

Podd(t2,−t0) = [cos (ωz(t2, t0)t0)

∫ −t0

−∞
E

′

0(τ, t2)e
−2στ cos (ωz(t2, t0)τ)dτ

− sin (ωz(t2, t0)t0)

∫ −t0

−∞
E

′

0(τ, t2)e
−2στ sin (ωz(t2, t0)τ)dτ ]

+e−2σt0 [cos (ωz(t2, t0)t0)

∫ −t0

−∞
E

′

0n(τ, t2) cos (ωz(t2, t0)τ)dτ − sin (ωz(t2, t0)t0)

∫ −t0

−∞
E

′

0n(τ, t2) sin (ωz(t2, t0)τ)dτ ]

(32)

We set t0 = t0c > 0 and t2 = t2c = 2t0c such that ωz(t2c, t0c)t0c =
π
2
in Eq. 32 as follows. We use

cos (ωz(t2c, t0c)t0c) = 0, sin (ωz(t2c, t0c)t0c) = 1.

Podd(t2c,−t0c) = −
∫ −t0c

−∞
E

′

0(τ, t2c)e
−2στ sin (ωz(t2c, t0c)τ)dτ − e−2σt0c

∫ −t0c

−∞
E

′

0n(τ, t2c) sin (ωz(t2c, t0c)τ)dτ

(33)

We compute Podd(t2, t0) + Podd(t2,−t0) = 0 in Eq. 29, at t0 = t0c and t2 = t2c using Eq. 31 and
Eq. 33.

∫ t0c

−∞
E

′

0(τ, t2c)e
−2στ sin (ωz(t2c, t0c)τ)dτ + e2σt0c

∫ t0c

−∞
E

′

0n(τ, t2c) sin (ωz(t2c, t0c)τ)dτ

−
∫ −t0c

−∞
E

′

0(τ, t2c)e
−2στ sin (ωz(t2c, t0c)τ)dτ − e−2σt0c

∫ −t0c

−∞
E

′

0n(τ, t2c) sin (ωz(t2c, t0c)τ)dτ = 0

(34)

We split the first two integrals in the left hand side of Eq. 34 using
∫ t0c
−∞ =

∫ −t0c
−∞ +

∫ t0c
−t0c

as follows.

[

∫ −t0c

−∞
E

′

0(τ, t2c)e
−2στ sin (ωz(t2c, t0c)τ)dτ +

∫ t0c

−t0c

E
′

0(τ, t2c)e
−2στ sin (ωz(t2c, t0c)τ)dτ ]

+e2σt0c [

∫ −t0c

−∞
E

′

0n(τ, t2c) sin (ωz(t2c, t0c)τ)dτ +

∫ t0c

−t0c

E
′

0n(τ, t2c) sin (ωz(t2c, t0c)τ)dτ ]

−
∫ −t0c

−∞
E

′

0(τ, t2c)e
−2στ sin (ωz(t2c, t0c)τ)dτ − e−2σt0c

∫ −t0c

−∞
E

′

0n(τ, t2c) sin (ωz(t2c, t0c)τ)dτ = 0

(35)

We cancel the common integral
∫ −t0c
−∞ E

′
0(τ, t2c)e

−2στ sin (ωz(t2c, t0c)τ)dτ in Eq. 35 and rearrange

the terms as follows, using 2 sinh (2σt0c) = e2σt0c − e−2σt0c .

∫ t0c

−t0c

E
′

0(τ, t2c)e
−2στ sin (ωz(t2c, t0c)τ)dτ + e2σt0c

∫ t0c

−t0c

E
′

0n(τ, t2c) sin (ωz(t2c, t0c)τ)dτ

= −2 sinh (2σt0c)

∫ −t0c

−∞
E

′

0n(τ, t2c) sin (ωz(t2c, t0c)τ)dτ
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(36)

We can combine the integrals in the left hand side of Eq. 36 as follows.

∫ t0c

−t0c

[E
′

0(τ, t2c)e
−2στ + E

′

0n(τ, t2c)e
2σt0c ] sin (ωz(t2c, t0c)τ)dτ

= −2 sinh (2σt0c)

∫ −t0c

−∞
E

′

0n(τ, t2c) sin (ωz(t2c, t0c)τ)dτ

(37)

We denote the right hand side of Eq. 37 as RHS. We can split the integral in the left hand side
of Eq. 37 using

∫ t0c
−t0c

=
∫ 0

−t0c
+
∫ t0c
0

as follows.

∫ 0

−t0c

[E
′

0(τ, t2c)e
−2στ + E

′

0n(τ, t2c)e
2σt0c ] sin (ωz(t2c, t0c)τ)dτ

+

∫ t0c

0

[E
′

0(τ, t2c)e
−2στ + E

′

0n(τ, t2c)e
2σt0c ] sin (ωz(t2c, t0c)τ)dτ = RHS

(38)

We substitute τ = −τ in the first integral in Eq. 38 as follows. We use E
′
0(−τ, t2c) = E

′
0n(τ, t2c)

and E
′
0n(−τ, t2c) = E

′
0(τ, t2c) using Definition 2 in Section 2.3.

∫ 0

t0c

[E
′

0n(τ, t2c)e
2στ + E

′

0(τ, t2c)e
2σt0c ] sin (ωz(t2c, t0c)τ)dτ

+

∫ t0c

0

[E
′

0(τ, t2c)e
−2στ + E

′

0n(τ, t2c)e
2σt0c ] sin (ωz(t2c, t0c)τ)dτ = RHS

(39)

Given that
∫ 0

t0c
= −

∫ t0c
0

, we can simplify Eq. 39 as follows.

∫ t0c

0

[E
′

0(τ, t2c)(e
−2στ − e2σt0c) + E

′

0n(τ, t2c)(−e2στ + e2σt0c)] sin (ωz(t2c, t0c)τ)dτ = RHS

(40)

We substitute τ = −τ in the right hand side of Eq. 37 as follows. We use E
′
0n(−τ, t2c) = E

′
0(τ, t2c)

using Definition 2 in Section 2.3.

RHS = 2 sinh (2σt0c)

∫ ∞

t0c

E
′

0(τ, t2c) sin (ωz(t2c, t0c)τ)dτ

(41)

We split the integral on the right hand side in Eq. 41 using
∫∞
t0c

=
∫∞
0

−
∫ t0c
0

, as follows.
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RHS = 2 sinh (2σt0c)[

∫ ∞

0

E
′

0(τ, t2c) sin (ωz(t2c, t0c)τ)dτ −
∫ t0c

0

E
′

0(τ, t2c) sin (ωz(t2c, t0c)τ)dτ

(42)

We consolidate the integrals of the form
∫ t0c
0

E
′
0(τ, t2c) sin (ωz(t2c, t0c)τ)dτ in Eq. 40 and Eq. 42 as

follows. We use 2 sinh (2σt0c) = e2σt0c − e−2σt0c .

∫ t0c

0

[E
′

0(τ, t2c)(e
−2στ − e2σt0c + e2σt0c − e−2σt0c) + E

′

0n(τ, t2c)(−e2στ + e2σt0c)] sin (ωz(t2c, t0c)τ)dτ

= 2 sinh (2σt0c)

∫ ∞

0

E
′

0(τ, t2c) sin (ωz(t2c, t0c)τ)dτ

(43)

We cancel the common term e2σt0c in the first integral in Eq. 43 as follows.

∫ t0c

0

[E
′

0(τ, t2c)(e
−2στ − e−2σt0c) + E

′

0n(τ, t2c)(−e2στ + e2σt0c)] sin (ωz(t2c, t0c)τ)dτ

= 2 sinh (2σt0c)

∫ ∞

0

E
′

0(τ, t2c) sin (ωz(t2c, t0c)τ)dτ

(44)

We substitute E
′
0(τ, t2c) = E0(τ − t2c) − E0(τ + t2c) (using Definition 1 in Section 2.1 ) and

E
′
0n(τ, t2c) = E

′
0(−τ, t2c) = E0(−τ − t2c) − E0(−τ + t2c) (using Definition 2 in Section 2.3). We see

that E0(−τ− t2c) = E0(τ+ t2c) and E0(−τ+ t2c) = E0(τ− t2c) given that E0(τ) = E0(−τ)( Appendix
A.8). Hence we see that E

′
0n(τ, t2c) = E0(τ + t2c)−E0(τ − t2c) = −E

′
0(τ, t2c) (Result 3.1) and write

Eq. 44 as follows.

∫ t0c

0

(E0(τ − t2c)− E0(τ + t2c))(e
−2στ − e−2σt0c + e2στ − e2σt0c) sin (ωz(t2c, t0c)τ)dτ

= 2 sinh (2σt0c)

∫ ∞

0

(E0(τ − t2c)− E0(τ + t2c)) sin (ωz(t2c, t0c)τ)dτ

(45)

We substitute 2 cosh (2στ) = e2στ + e−2στ and 2 cosh (2σt0c) = e2σt0c + e−2σt0c and cancel the
common factor of 2 in Eq. 45 as follows.

∫ t0c

0

(E0(τ − t2c)− E0(τ + t2c))(cosh (2στ)− cosh (2σt0c)) sin (ωz(t2c, t0c)τ)dτ

= sinh (2σt0c)

∫ ∞

0

(E0(τ − t2c)− E0(τ + t2c)) sin (ωz(t2c, t0c)τ)dτ

(46)
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Next Step:

We denote the right hand side of Eq. 46 as RHS
′
. We substitute τ − t2c = τ ′ and τ + t2c = τ ′′ in

the right hand side of Eq. 46 and then substitute τ ′ = τ and τ ′′ = τ in the second line below.

RHS
′
= sinh (2σt0c)[

∫ ∞

−t2c

E0(τ
′) sin (ωz(t2c, t0c)(τ

′ + t2c))dτ
′ −

∫ ∞

t2c

E0(τ
′′) sin (ωz(t2c, t0c)(τ

′′ − t2c))dτ
′′]

RHS
′
= sinh (2σt0c)[cos (ωz(t2c, t0c))t2c)

∫ ∞

−t2c

E0(τ) sin (ωz(t2c, t0c)τ)dτ

+sin (ωz(t2c, t0c)t2c)

∫ ∞

−t2c

E0(τ) cos (ωz(t2c, t0c)τ)dτ

− cos (ωz(t2c, t0c))t2c)

∫ ∞

t2c

E0(τ) sin (ωz(t2c, t0c)τ)dτ + sin (ωz(t2c, t0c)t2c)

∫ ∞

t2c

E0(τ) cos (ωz(t2c, t0c)τ)dτ ]

(47)

In Eq. 47, given that ωz(t2c, t0c)t0c = π
2
and t2c = 2t0c and hence ωz(t2c, t0c)t2c = 2π

2
= π and

sin (ωz(t2c, t0c)t2c) = 0 and cos (ωz(t2c, t0c)t2c) = −1. Hence we cancel common terms and write
Eq. 47 and Eq. 46 as follows.

∫ t0c

0

(E0(τ − t2c)− E0(τ + t2c))(cosh (2στ)− cosh (2σt0c)) sin (ωz(t2c, t0c)τ)dτ

= − sinh (2σt0c)[

∫ ∞

−t2c

E0(τ) sin (ωz(t2c, t0c)τ)dτ −
∫ ∞

t2c

E0(τ) sin (ωz(t2c, t0c)τ)dτ ]

(48)

We use
∫∞
−t2c

E0(τ) sin (ωz(t2c, t0c)τ)dτ =
∫ t2c
−t2c

E0(τ) sin (ωz(t2c, t0c)τ)dτ+
∫∞
t2c

E0(τ) sin (ωz(t2c, t0c)τ)dτ

and cancel the common term
∫∞
t2c

E0(τ) sin (ωz(t2c, t0c)τ)dτ in Eq. 48 as follows. Given that E0(τ) is
an even function of variable τ ( Appendix A.8) and E0(τ) sin (ωz(t2c, t0c)τ) is an odd function of
variable τ , we get

∫ t2c
−t2c

E0(τ) sin (ωz(t2c, t0c)τ)dτ = 0.

We see that I =
∫ t2c
−t2c

E0(τ) sin (ωz(t2c, t0c)τ)dτ =
∫ 0

−t2c
E0(τ) sin (ωz(t2c, t0c)τ)dτ

+
∫ t2c
0

E0(τ) sin (ωz(t2c, t0c)τ)dτ . We substitute τ = −τ in the first integral and get

I =
∫ 0

t2c
E0(τ) sin (ωz(t2c, t0c)τ)dτ +

∫ t2c
0

E0(τ) sin (ωz(t2c, t0c)τ)dτ

= −
∫ t2c
0

E0(τ) sin (ωz(t2c, t0c)τ)dτ +
∫ t2c
0

E0(τ) sin (ωz(t2c, t0c)τ)dτ = 0. We write Eq. 48 as follows.∫ t0c

0

(E0(τ − t2c)− E0(τ + t2c))(cosh (2στ)− cosh (2σt0c)) sin (ωz(t2c, t0c)τ)dτ = 0 (49)

We can multiply Eq. 49 by a factor of −1 as follows.∫ t0c

0

[E0(τ − t2c)− E0(τ + t2c)](cosh (2σt0c)− cosh (2στ)) sin (ωz(t2c, t0c)τ)dτ = 0 (50)

In Eq. 50, given that ωz(t2c, t0c)t0c = π
2
, as τ varies over the interval (0, t0c), ωz(t2c, t0c)τ = πτ

2t0c
varies from (0, π

2
) and the sinusoidal function is > 0, in the interval 0 < τ < t0c, for t0c > 0.
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In Eq. 50, we see that the integral on the left hand side is > 0 for t0c > 0, because each of the
terms in the integrand are > 0, in the interval 0 < τ < t0c as follows. Given that E0(t) is a strictly
decreasing function for t > 0(Section 6), we see that E0(τ − t2c)− E0(τ + t2c) is > 0 (Section 3.1)
in the interval 0 < τ < t0c. The term (cosh (2σt0c)− cosh (2στ)) is > 0 in the interval 0 < τ < t0c.

The integrand is zero at τ = 0 due to the term sin (ωz(t2c, t0c)τ) and the integrand is zero at τ = t0c
due to the term cosh (2σt0c) − cosh (2στ) and hence the integral cannot equal zero, as required by
the right hand side of Eq. 50. Hence this leads to a contradiction, for 0 < σ < 1

2
.

For σ = 0, both sides of Eq. 50 is zero, given the term (cosh (2σt0c) − cosh (2στ)) = 0 and does
not lead to a contradiction.

We have shown this result for 0 < σ < 1
2
. Given that Ep(t) = E0(t)e

−σt is real, its Fourier
transform Epω(ω) = EpRω(ω) + iEpIω(ω) has symmetry properties and hence EpRω(−ω) = EpRω(ω)
and EpIω(−ω) = −EpIω(ω) (Symmetry property of Fourier Transform) also have a zero at ω = ω0

and hence Epω(−ω) = EpRω(ω)− iEpIω(ω) also has a zero at ω = ω0 to satisfy Statement 1.

If Epω(ω) and η(1
2
+ σ + iω) has a zero at ω = ω0 to satisfy Statement 1, then Epω(−ω) and

η(1
2
+ σ − iω) also has a zero at ω = ω0(using last paragraph) and η(1

2
− σ + iω) also has a zero at

ω = ω0 using the functional equation for Dirichlet Eta function derived in Appendix A.10 which
relates η(s) and η(1−s). Hence the results in above sections hold for −1

2
< σ < 0 and for 0 < |σ| < 1

2
.

Hence we have produced a contradiction of Statement 1 that the Fourier Transform of the
function Ep(t) = E0(t)e

−σt has a zero at ω = ω0 for 0 < |σ| < 1
2
.

Hence the assumption in Statement 1 that the analytic continuation of Riemann’s zeta function
derived from Dirichlet eta function given by Epω(ω) has a zero at ω = ω0, where ω0 is real and finite,
leads to a contradiction for the region 0 < |σ| < 1

2
which corresponds to the critical strip excluding

the critical line. Hence ζ(s) does not have non-trivial zeros in the critical strip excluding the critical
line and we have proved Riemann’s Hypothesis.

.

3.1. Result E0(t− t2c)− E0(t+ t2c) > 0

It is shown in Section 6 that E0(t) is strictly decreasing for t > 0. In this section, it is shown
that E0(t− t2c)− E0(t+ t2c) > 0, for 0 < t < t0c and t2c = 2t0c in Eq. 50 .

Given that E0(t) is a strictly decreasing function for t > 0 and E0(t) is an even function of vari-
able t ( Appendix A.8), and t2c = 2t0c, we see that, in the interval 0 < t < t0c, E0(t+t2c) = E0(t+2t0c)
ranges from E0(2t0c) > E0(t + t2c) > E0(3t0c)(Result 6.3.1) and E0(t − t2c) = E0(t − 2t0c) which
ranges from E0(−2t0c) < E0(t− t2c) < E0(−t0c) respectively. Given that E0(t) = E0(−t), we see that
E0(2t0c) < E0(t− t2c) < E0(t0c) in the interval 0 < t < t0c (Result 6.3.2).

Using Result 6.3.1 and Result 6.3.2, we see that E0(t−t2c) > E0(t+t2c), in the interval 0 < t < t0c.
At t = 0, E0(t− t2c) = E0(t+ t2c). At t = t0c, E0(t− t2c) > E0(t+ t2c) because E0(−t0c) > E0(3t0c).

Hence E0(t− t2c)− E0(t+ t2c) > 0 for 0 < t < t0c in Eq. 50 , for t0c > 0 and t2c = 2t0c.
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.

4. ωz(t2, t0) is a continuous function of t0 and t2

It is shown in Lemma 1 in Section 2.1 that GR(ω, t2, t0) = 0 at ω = ωz(t2, t0) where it crosses
the zero line to the opposite sign, if Statement 1 is true, and that ωz(t2, t0) is finite and non-zero
for all |t0| < ∞ and for each non-zero value of t2 and that ωz(t2, t0) is an even function of variable t0,
for a given value of t2(Section 2.4). For a given t2 and t0, ωz(t2, t0) can have more than one value,
corresponding to multiple zero crossings in GR(ω, t2, t0), but we consider only the first zero crossing
away from origin in the section below, where GR(ω, t2, t0) crosses the zero line to the opposite sign,
as detailed in Lemma 1 in Section 2.1.

We consider the Fourier transform of the even part of g(t, t2, t0) given by GR(ω, t2, t0) in the
section below and show that, under this Fourier transformation, as we change t0 and t2, the zero
crossing in GR(ω, t2, t0) given by ωz(t2, t0) is a continuous function of t0 and t2, for all 0 < t0 < ∞
and 0 < t2 < ∞. This is shown in the steps below using Implicit Function Theorem.

• It is shown in Section 4.1 that GR(ω, t2, t0) and GR,2r(ω, t2, t0) are partially differentiable at
least twice with respect to ω, for some value of r ∈ W (element of set of whole numbers including
zero.)

• It is shown in Section 4.4 that GR,2r(ω, t2, t0) is partially differentiable at least twice with re-
spect to t0. It is shown in Section 4.5 that GR,2r(ω, t2, t0) is partially differentiable at least twice with
respect to t2.

• In Section 4.8, it is shown in proof of Lemma 2 that, if GR(ω, t2, t0) = 0 at ω = ±ωz(t2, t0),
for each fixed choice of t0, t2 ∈ ℜ and (2r + 1) is the highest order of the zero at ω = ±ωz(t2, t0)
for some value of r ∈ W (element of set of whole numbers including zero), then GR,2r(ω, t2, t0) =
∂2rGR(ω,t2,t0)

∂ω2r = 0 at ω = ±ωz(t2, t0) and
∂GR,2r(ω,t2,t0)

∂ω
= ∂2r+1GR(ω,t2,t0)

∂ω2r+1 ̸= 0 at ω = ±ωz(t2, t0).

• It is shown in Section 4.6 that the zero crossing in GR,2r(ω, t2, t0) given by ωz(t2, t0), is a con-
tinuous function of t0, for a given t2, for 0 < t0 < ∞, using Implicit Function Theorem in ℜ2.

• It is shown in Section 4.7 that ωz(t2, t0) is a continuous function of t0 and t2, for 0 < t0 < ∞
and 0 < t2 < ∞, using Implicit Function Theorem in ℜ3.

.

4.1. GR(ω, t2, t0) and GR,2r(ω, t2, t0) are partially differentiable twice as a function of ω

GR(ω, t2, t0) in Eq. 27 is copied below.

GR(ω, t2, t0) = e−2σt0

∫ 0

−∞
[E

′

0(τ + t0, t2)e
−2στ + E

′

0n(τ − t0, t2)] cos (ωτ)dτ

+e2σt0
∫ 0

−∞
[E

′

0(τ − t0, t2)e
−2στ + E

′

0n(τ + t0, t2)] cos (ωτ)dτ

(51)
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We could then use E
′
0(τ, t2) = (E0(τ − t2) − E0(τ + t2) (using Definition 1 in Section 2.1 ) and

E
′
0n(τ, t2) = E

′
0(−τ, t2) = −E

′
0(τ, t2) (using Definition 2 in Section 2.3 and Result 3.1 in Section 3).

We see that E0(τ) in Eq. 15 and its t0 and t2 shifted versions are analytic functions of τ, t0 and t2,
given that the sum and product of exponential functions are analytic and hence infinitely differen-
tiable.(Result 4.1)

In Eq. 51, GR(ω, t2, t0) is partially differentiable at least twice with respect to ω and the inte-
grals converge in Eq. 51 and Eq. 52 for 0 < σ < 1

2
, because the terms τ rE

′
0(τ ± t0, t2)e

−2στ and

τ rE
′
0n(τ ± t0, t2) = −τ rE

′
0(τ ± t0, t2) have exponential asymptotic fall-off rate as |τ | → ∞, for

r ∈ W (Section 4.2). The integrands in Eq. 51 and Eq. 52 are analytic functions of variables ω and
t0, for a given t2(using Result 4.1 in Section 4.1 and given that the terms cos (ωτ), sin (ωτ) and e−2στ

are analytic functions). The integrands have exponential asymptotic fall-off rate (Section 4.2) and
absolutely integrable and we can find a suitable dominating function with exponential asymptotic
fall-off rate which is absolutely integrable.(Section 4.3) Hence we can interchange the order of partial
differentiation and integration in Eq. 52 using theorem of differentiability of functions defined by
Lebesgue integrals and theorem of dominated convergence, recursively as follows.(theorem)

∂GR(ω, t2, t0)

∂ω
= −[e−2σt0

∫ 0

−∞
τ [E

′

0(τ + t0, t2)e
−2στ + E

′

0n(τ − t0, t2)] sin (ωτ)dτ

+e2σt0
∫ 0

−∞
τ [E

′

0(τ − t0, t2)e
−2στ + E

′

0n(τ + t0, t2)] sin (ωτ)dτ ]

∂2GR(ω, t2, t0)

∂ω2
= −[e−2σt0

∫ 0

−∞
τ 2[E

′

0(τ + t0, t2)e
−2στ + E

′

0n(τ − t0, t2)] cos (ωτ)dτ

+e2σt0
∫ 0

−∞
τ 2[E

′

0(τ − t0, t2)e
−2στ + E

′

0n(τ + t0, t2)] cos (ωτ)dτ ]

(52)

We can use the arguments in the above paras and derive the (2r)th derivative of GR(ω, t2, t0), for
r ∈ W , which is differentiable at least twice, as follows.

GR,2r(ω, t2, t0) =
∂2rGR(ω, t2, t0)

∂ω2r
= (−1)r[e−2σt0

∫ 0

−∞
τ 2r[E

′

0(τ + t0, t2)e
−2στ + E

′

0n(τ − t0, t2)] cos (ωτ)dτ

+e2σt0
∫ 0

−∞
τ 2r[E

′

0(τ − t0, t2)e
−2στ + E

′

0n(τ + t0, t2)] cos (ωτ)dτ ]

(53)

We can prove Eq. 53 using induction. We use Eq. 53 as Induction Hypothesis. We take the
second derivative of Eq. 53 and we interchange the order of differentiation and integration, using the
arguments used in Eq. 52 as follows.

23

http://mathonline.wikidot.com/differentiability-of-functions-defined-by-lebesgue-integrals


∂2r+1GR(ω, t2, t0)

∂ω2r+1
= (−1)r+1[e−2σt0

∫ 0

−∞
τ 2r+1[E

′

0(τ + t0, t2)e
−2στ + E

′

0n(τ − t0, t2)] sin (ωτ)dτ

+e2σt0
∫ 0

−∞
τ 2r+1[E

′

0(τ − t0, t2)e
−2στ + E

′

0n(τ + t0, t2)] sin (ωτ)dτ ]

∂2r+2GR(ω, t2, t0)

∂ω2r+2
= (−1)r+1[e−2σt0

∫ 0

−∞
τ 2r+2[E

′

0(τ + t0, t2)e
−2στ + E

′

0n(τ − t0, t2)] cos (ωτ)dτ

+e2σt0
∫ 0

−∞
τ 2r+2[E

′

0(τ − t0, t2)e
−2στ + E

′

0n(τ + t0, t2)] cos (ωτ)dτ ]

(54)

We see that Eq. 54 is the same as the equation obtained by setting r = r + 1 in Eq. 53. Thus we
have proved Eq. 53 using mathematical induction.

.

4.2. Exponential Fall off rate of B(t) = trE
′
0(t± t0, t2)e

−2σt for r ∈ W

In this section, it is shown that the term B(t) = trE
′
0(t ± t0, t2)e

−2σt has exponential asymp-
totic fall-off rate as |t| → ∞, for r ∈ W where E

′
0(t, t2) = E0(t − t2) − E0(t + t2). Hence

B(t) = tre−2σt[E0(t− t2 ± t0)− E0(t+ t2 ± t0)] (Result B.6.1).

We consider C(t) = tre−2σtE0(t − ta) for finite and real ta. We see that C(t + ta) = (t +
ta)

re−2σte−2σtaE0(t). We see that E0(t)e
−2σt is an absolutely integrable function, for 0 ≤ |σ| < 1

2

given that it has exponential fall-off rates as |t| → ∞. ( Appendix A.5 and Appendix A.6).

Hence C(t+ta) = (t+ta)
re−2σtaE0(t)e

−2σt also has exponential fall-off rates as |t| → ∞, for r ∈ W
and finite ta and is an absolutely integrable function.

Hence C(t) = tre−2σtE0(t − ta) has exponential fall-off rates as |t| → ∞, for finite ta and is an
absolutely integrable function. We set ta = t2±t0 and ta = −t2±t0 and see that B(t) in Result B.6.1,
has exponential fall-off rates as |t| → ∞, for finite t2, t0 and is an absolutely integrable function.

.

4.3. Dominating function

We consider x(t) = E0(t)e
−2σt which has asymptotic exponential fall-off rate of o[e−0.5|t|].( Ap-

pendix A.5) We see that x(t + ta) also has the same asymptotic exponential fall-off rate, for finite
shift of ta = t2 ± t0 and y(t, ta) = trx(t + ta)e

2σta also has the same asymptotic exponential fall-off
rate, for r ∈ W . We consider the intervals 0 < t0 ≤ t0max , 0 < t2 ≤ t2max and 0 < ta ≤ tamax where
t0max , t2max , tamax are finite.

We consider td >> tamax where y(t, ta) = trx(t+ta)e
2σta falls off at the rate of o[e0.5t] for t << −td.

We consider f(t, ta, ω) = y(t, ta) cos (ωt) and we get ∂f(t,ta,ω)
∂ω

= −ty(t, ta) sin (ωt) which falls off at

the rate of o[e0.5t] for t << −td. Let fmax > 0 be the maximum value of |∂f(t,ta,ω)
∂ω

| in the interval
−∞ < t < ∞.
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We can find a suitable dominating function D(t) = e−K|t|fmaxe
Ktd > 0 with a fall off rate of

O[e−K|t|] where 0 < K < 0.5 and hence D(t) has a slower fall off rate than ∂f(t,ta,ω)
∂ω

and D(t) = fmax

at t = −td and hence D(t) > |∂f(t,ta,ω)
∂ω

| for −∞ < t ≤ 0 and hence |∂f(t,ta,ω)
∂ω

| ≤ D(t) in the interval

(−∞, 0] and
∫ 0

−∞ |D(t)|dt =
∫ 0

−∞ eKtfmaxe
Ktddt = 1

K
fmaxe

Ktd [eKt]0−∞ = 1
K
fmaxe

Ktd is finite.(Result
B.6.2)

The first term in Eq. 52 given by B(t) = trE
′
0(t+t0, t2)e

−2σt = tre−2σt[E0(t−t2+t0)−E0(t+t2+t0)]
using Result B.6.1 in Section 4.2. We set ta = t2 + t0 and tb = t2 − t0 and get B(t) = tre−2σt[E0(t−
tb)−E0(t+ ta)]. Hence y(t, ta) = trx(t+ ta)e

2σta = trE0(t+ ta)e
−2σt in the second para, corresponds

to the second term in B(t) and Result B.6.2 holds for this term. The first term in B(t) is obtained
by replacing ta by −tb and Result B.6.2 holds for this term and hence for B(t). We see that Result
B.6.2 holds for the other 3 terms in Eq. 52 using arguments in above paragraphs and replacing t0 by
−t0 and setting σ = 0 as needed.

As t0max , t2max , tamax increase to a larger and larger finite value without bounds, we consider
larger intervals 0 < t0 ≤ t0max , 0 < t2 ≤ t2max and 0 < ta ≤ tamax and fmax and td also increase
correspondingly and the results in above paragraphs are valid in these intervals.

Similarly, we consider f(t, ta, ω) = y(t, ta) cos (ωt) = trE0(t + ta)e
−2σt cos (ωt) = trE0(t + t0 +

t2)e
−2σt cos (ωt) and we see that ∂f(t,ta,ω)

∂t0
and ∂f(t,ta,ω)

∂t2
which fall off at the rate of o[e0.5t] for t << −td,

using Eq. 58 and E0(t) = E0(−t) and due to the term e−πn2e−2t
and we can use arguments in above

paragraphs to get a result similar to Result B.6.2 for the terms in Eq. 55 and Eq. 65. We can use

these arguments to get a result similar to Result B.6.2 for the second derivative terms ∂2f(t,ta,ω)

∂t20
and

∂2f(t,ta,ω)

∂t22
in Eq. 60 and Eq. 69.

.

4.4. GR,2r(ω, t2, t0) are partially differentiable twice as a function of t0, r ∈ W

In Eq. 53, GR,2r(ω, t2, t0) is partially differentiable at least twice as a function of t0 and the integrals
converge in Eq. 55 and Eq. 60 shown as follows. The integrands in the equation for GR,2r(ω, t2, t0)
in Eq. 55 are absolutely integrable because the terms τ 2rE

′
0(τ ± t0, t2)e

−2στ and τ 2rE
′
0n(τ ± t0, t2) =

−τ 2rE
′
0(τ ± t0, t2) have exponential asymptotic fall-off rate as |τ | → ∞, for r ∈ W (Section 4.2).

The integrands in Eq. 55 are absolutely integrable and are analytic functions of variables ω and
t0, for a given t2 (using Result 4.1 in Section 4.1 ). The integrands have exponential asymptotic
fall-off rate(Section 4.2) and we can find a suitable dominating function with exponential asymptotic
fall-off rate which is absolutely integrable.(Section 4.3) Hence we can interchange the order of partial
differentiation and integration in Eq. 55 using theorem of differentiability of functions defined by
Lebesgue integrals and theorem of dominated convergence as follows. (theorem)
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GR,2r(ω, t2, t0) = e−2σt0(−1)r
∫ 0

−∞
τ 2r[E

′

0(τ + t0, t2)e
−2στ + E

′

0n(τ − t0, t2)] cos (ωτ)dτ

+e2σt0(−1)r
∫ 0

−∞
τ 2r[E

′

0(τ − t0, t2)e
−2στ + E

′

0n(τ + t0, t2)] cos (ωτ)dτ

∂GR,2r(ω, t2, t0)

∂t0
= −2σe−2σt0(−1)r

∫ 0

−∞
τ 2r[E

′

0(τ + t0, t2)e
−2στ + E

′

0n(τ − t0, t2)] cos (ωτ)dτ

+e−2σt0(−1)r
∫ 0

−∞
τ 2r

∂(E
′
0(τ + t0, t2)e

−2στ + E
′
0n(τ − t0, t2))

∂t0
cos (ωτ)dτ

+2σe2σt0(−1)r
∫ 0

−∞
τ 2r[E

′

0(τ − t0, t2)e
−2στ + E

′

0n(τ + t0, t2)] cos (ωτ)dτ

+e2σt0(−1)r
∫ 0

−∞
τ 2r

∂(E
′
0(τ − t0, t2)e

−2στ + E
′
0n(τ + t0, t2))

∂t0
cos (ωτ)dτ

(55)

We show that the integrals in Eq. 55 converge, as follows. We see that E
′
0(τ + t0, t2) = E0(τ + t0−

t2)−E0(τ+t0+t2) and E
′
0n(τ−t0, t2) = −E

′
0(τ−t0, t2) = E0(τ−t0+t2)−E0(τ−t0−t2) (using Definition

1 in Section 2.1 and Result 3.1 in Section 3 ).We see that the first and third integrals in the equation

for
∂GR,2r(ω,t2,t0)

∂t0
in Eq. 55 converge because the terms τ 2rE

′
0(τ ± t0, t2)e

−2στ and τ 2rE
′
0n(τ ± t0, t2) =

−τ 2rE
′
0(τ ± t0, t2) have exponential asymptotic fall-off rate as |τ | → ∞(Section 4.2).

We consider the integrand in the second integral in the equation for
∂GR,2r(ω,t2,t0)

∂t0
in Eq. 55 first

and use the results in the above paragraph.

∂(E
′
0(τ + t0, t2)e

−2στ + E
′
0n(τ − t0, t2))

∂t0
=

∂(E0(τ + t0 − t2)e
−2στ − E0(τ + t0 + t2)e

−2στ )

∂t0

+
∂(E0(τ − t0 + t2)− E0(τ − t0 − t2))

∂t0

(56)

We consider the term E0(τ + t0 + t2) first in Eq. 56 and can show that the integrals converge in
Eq. 55, as follows. We take the factor of 2 out of the summation in E0(τ) in Eq. ?? copied below.

E0(τ) = 2
∞∑
n=1

[2π2n4e4τ − 3πn2e2τ ]e−πn2e2τ e
τ
2

E0(τ + t2 + t0) = 2
∞∑
n=1

[2π2n4e4τe4(t2+t0) − 3πn2e2τe2(t2+t0)]e−πn2e2τ e2(t2+t0)e
τ
2 e

(t2+t0)
2

(57)

We can show that ∂
∂t0

E0(τ + t2 + t0) =
∂
∂τ
E0(τ + t2 + t0) as follows, given that the equation for

E0(τ + t2 + t0) in Eq. 57 has terms of the form eτ+t0 and the equation is invariant if we interchange
the variables τ and t0. (Result A)
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∂

∂t0
E0(τ + t2 + t0) = 2

∞∑
n=1

e−πn2e2τ e2(t2+t0)e
τ
2 e

(t2+t0)
2 [8π2n4e4τe4(t2+t0) − 6πn2e2τe2(t2+t0)

+(
1

2
− 2πn2e2τe2(t2+t0))(2π2n4e4τe4(t2+t0) − 3πn2e2τe2(t2+t0))]

∂

∂τ
E0(τ + t2 + t0) = 2

∞∑
n=1

e−πn2e2τ e2(t2+t0)e
τ
2 e

(t2+t0)
2 [8π2n4e4τe4(t2+t0) − 6πn2e2τe2(t2+t0)

+(
1

2
− 2πn2e2τe2(t2+t0))(2π2n4e4τe4(t2+t0) − 3πn2e2τe2(t2+t0))]

(58)

We can replace t0 by t
′
0 = −t0 in Eq. 57 and see that ∂

∂t
′
0

E0(τ+ t2+ t
′
0) =

∂
∂τ
E0(τ+ t2+ t

′
0) (Result

E) given that the equation is invariant if we interchange τ and t
′
0. Given that ∂

∂t
′
0

= ∂
∂t0

dt0
dt

′
0

= − ∂
∂t0

,

we substitute it in Result E and get ∂
∂t0

E0(τ + t2 − t0) = − ∂
∂τ
E0(τ + t2 − t0).(Result B)

We can write the term in the second integral in the equation for
∂GR,2r(ω,t2,t0)

∂t0
in Eq. 55, corre-

sponding to the term E0(τ + t0 + t2)e
−2στ in Eq. 56, using Result A, as follows. We use the fact that∫ 0

−∞
dA(τ)
dτ

B(τ)dτ =
∫ 0

−∞
d(A(τ)B(τ))

dτ
dτ −

∫ 0

−∞A(τ)dB(τ)
dτ

dτ .

∫ 0

−∞

∂(E0(τ + t2 + t0))

∂t0
τ 2re−2στ cos (ωτ)dτ =

∫ 0

−∞

∂(E0(τ + t2 + t0)

∂τ
τ 2re−2στ cos (ωτ)dτ

=

∫ 0

−∞

∂(E0(τ + t2 + t0)τ
2re−2στ cos (ωτ))

∂τ
dτ −

∫ 0

−∞
E0(τ + t2 + t0)

∂(τ 2re−2στ cos (ωτ)

∂τ
dτ

= [E0(τ + t2 + t0)τ
2re−2στ cos (ωτ)]0−∞ + ω

∫ 0

−∞
E0(τ + t2 + t0))τ

2re−2στ sin (ωτ)dτ

+2σ

∫ 0

−∞
E0(τ + t2 + t0))τ

2re−2στ cos (ωτ)dτ − 2r

∫ 0

−∞
E0(τ + t2 + t0))τ

2r−1e−2στ cos (ωτ)dτ

(59)

We see that the integrals in Eq. 59 converge because the integrands are absolutely integrable
because the terms E0(τ + t2 + t0)τ

2re−2στ sin (ωτ), E0(τ + t2 + t0)τ
2re−2στ cos (ωτ) and E0(τ + t2 +

t0))τ
2r−1e−2στ cos (ωτ) have exponential asymptotic fall-off rate as |τ | → ∞(Section 4.2). The term

[E0(τ + t2 + t0)τ
2re−2στ cos (ωτ)]0−∞ is finite, given that τ 2rE0(τ)e

−2στ and its shifted versions go to

zero as t → −∞( Appendix A.5 ). Hence the integral
∫ 0

−∞
∂(E0(τ+t2+t0)τ2re−2στ )

∂t0
cos (ωτ)dτ in Eq. 59

and in Eq. 55 corresponding to the term E0(τ + t2 + t0)e
−2στ in Eq. 56, converges.

We set σ = 0 and t0 = −t0 in the term E0(τ + t2 + t0)e
−2στ and see that the integral∫ 0

−∞
∂(E0(τ+t2−t0))

∂t0
τ 2r cos (ωτ)dτ in Eq. 55 corresponding to the term E0(τ + t2 − t0) in Eq. 56 also

converges, using Result B and the procedure used in Eq. 57 to Eq. 59.

We set t2 = −t2 in the term E0(τ + t2 + t0)e
−2στ in Eq. 57 to Eq. 59 and see that the integral∫ 0

−∞
∂(E0(τ−t2+t0)e−2στ )

∂t0
τ 2r cos (ωτ)dτ in Eq. 55 corresponding to the term E0(τ− t2+ t0)e

−2στ in Eq. 56
also converges.
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We set t2 = −t2, σ = 0 and t0 = −t0 in the term E0(τ + t2 + t0)e
−2στ and see that the integral∫ 0

−∞
∂(E0(τ−t2−t0))

∂t0
τ 2r cos (ωτ)dτ in Eq. 55 corresponding to the term E0(τ − t2 − t0) in Eq. 56 also

converges, using Result B and the procedure used in Eq. 57 to Eq. 59. Hence the second integral in

the equation for
∂GR,2r(ω,t2,t0)

∂t0
in Eq. 55, also converges.

We can see that the last integral in Eq. 55 converges, by setting t0 = −t0 in Eq. 56 and using
Result B and using the procedure in Eq. 57 to Eq. 59. Hence all the integrals in Eq. 55 converge.

.

4.4.1. Second Partial Derivative of GR,2r(ω, t2, t0) with respect to t0

The second partial derivative of GR,2r(ω, t2, t0) with respect to t0 is given by
∂2GR,2r(ω,t2,t0)

∂t20
=

∂
∂t0

∂GR,2r(ω,t2,t0)

∂t0
as follows. We use the result in Eq. 55 and the fact that the integrands are absolutely

integrable using the results in Section 4.4 and are analytic functions of variables ω and t0 for a
given t2 (using Result 4.1 in Section 4.1 ). The integrands have exponential asymptotic fall-off
rate (Section 4.2) and we can find a suitable dominating function with exponential asymptotic fall-
off rate which is absolutely integrable.(Section 4.3) Hence we can interchange the order of partial
differentiation and integration in Eq. 60 using theorem of differentiability of functions defined by
Lebesgue integrals and theorem of dominated convergence as follows. (theorem)

∂2GR,2r(ω, t2, t0)

∂t20
= 4σ2e−2σt0(−1)r

∫ 0

−∞
τ 2r[E

′

0(τ + t0, t2)e
−2στ + E

′

0n(τ − t0, t2)] cos (ωτ)dτ

−4σe−2σt0(−1)r
∫ 0

−∞
τ 2r

∂(E
′
0(τ + t0, t2)e

−2στ + E
′
0n(τ − t0, t2))

∂t0
cos (ωτ)dτ

+e−2σt0(−1)r
∫ 0

−∞
τ 2r

∂2(E
′
0(τ + t0, t2)e

−2στ + E
′
0n(τ − t0, t2))

∂t20
cos (ωτ)dτ

+4σ2e2σt0(−1)r
∫ 0

−∞
τ 2r[E

′

0(τ − t0, t2)e
−2στ + E

′

0n(τ + t0, t2)] cos (ωτ)dτ

+4σe2σt0(−1)r
∫ 0

−∞
τ 2r

∂(E
′
0(τ − t0, t2)e

−2στ + E
′
0n(τ + t0, t2))

∂t0
cos (ωτ)dτ

+e2σt0(−1)r
∫ 0

−∞
τ 2r

∂2(E
′
0(τ − t0, t2)e

−2στ + E
′
0n(τ + t0, t2))

∂t20
cos (ωτ)dτ

(60)

The first two integrals and fourth and fifth integrals in Eq. 60 are the same as the integrals in the

equation for
∂GR,2r(ω,t2,t0)

∂t0
in Eq. 55 and have been shown to converge in Section 4.4. We will show

that the third and sixth integrals in Eq. 60 converge, as follows.

We consider the integrand in the third integral in Eq. 60 first. We see that E
′
0(τ + t0, t2) =

E0(τ + t0− t2)−E0(τ + t0+ t2) and E
′
0n(τ − t0, t2) = −E

′
0(τ − t0, t2) = E0(τ − t0+ t2)−E0(τ − t0− t2)

(using Definition 1 in Section 2.1 and Result 3.1 in Section 3 ). We write an equation similar to
Eq. 56.
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∂2(E
′
0(τ + t0, t2)e

−2στ + E
′
0n(τ − t0, t2))

∂t20
=

∂2(E0(τ + t0 − t2)e
−2στ − E0(τ + t0 + t2)e

−2στ )

∂t20

+
∂2(E0(τ − t0 + t2)− E0(τ − t0 − t2))

∂t20

(61)

We consider the term E0(τ + t0 + t2) first in Eq. 61 and copy Eq. 57 below.

E0(τ) = 2
∞∑
n=1

[2π2n4e4τ − 3πn2e2τ ]e−πn2e2τ e
τ
2

E0(τ + t2 + t0) = 2
∞∑
n=1

[2π2n4e4τe4(t2+t0) − 3πn2e2τe2(t2+t0)]e−πn2e2τ e2(t2+t0)e
τ
2 e

(t2+t0)
2

(62)

We can see that ∂2

∂t20
E0(τ + t2 + t0) =

∂2

∂τ2
E0(τ + t2 + t0), given that the equation has terms of the

form eτ+t0 and the equation is invariant if we interchange the variables τ and t0.(Result A’)

We can replace t0 by t
′
0 = −t0 in Eq. 62 and see that ∂2

∂(t
′
0)

2
E0(τ + t2 + t

′
0) =

∂2

∂τ2
E0(τ + t2 + t

′
0)

(Result E’) given that the equation has terms of the form eτ+t
′
0 and the equation is invariant if we

interchange the variables τ and t
′
0.

Given that ∂
∂t0

= ∂

∂t
′
0

∂t
′
0

∂t0
= − ∂

∂t
′
0

, we get ∂2

∂t20
= ∂

∂t0
( ∂
∂t0

) = − ∂
∂t0

( ∂

∂t
′
0

) = ∂

∂t
′
0

( ∂

∂t
′
0

) = ∂2

∂(t
′
0)

2
, we substi-

tute it in Result E’ and get ∂2

∂t20
E0(τ + t2 − t0) =

∂2

∂τ2
E0(τ + t2 − t0) .(Result B’)

We can write the term in the third integral in Eq. 60, corresponding to the term E0(τ+t0+t2)e
−2στ

in Eq. 61, using Result A
′
, as follows. We use the fact that

∫ 0

−∞
dA(τ)
dτ

B(τ)dτ =
∫ 0

−∞
d(A(τ)B(τ))

dτ
dτ −∫ 0

−∞A(τ)dB(τ)
dτ

dτ .

∫ 0

−∞

∂2(E0(τ + t2 + t0))

∂t20
τ 2re−2στ cos (ωτ)dτ =

∫ 0

−∞

∂2(E0(τ + t2 + t0))

∂τ 2
τ 2re−2στ cos (ωτ)dτ

=

∫ 0

−∞

∂(∂E0(τ+t2+t0)
∂τ

τ 2re−2στ cos (ωτ))

∂τ
dτ −

∫ 0

−∞

∂E0(τ + t2 + t0)

∂τ

∂(τ 2re−2στ cos (ωτ))

∂τ
dτ

= [
∂E0(τ + t2 + t0)

∂τ
τ 2re−2στ cos (ωτ)]0−∞ + ω

∫ 0

−∞

∂E0(τ + t2 + t0)

∂τ
τ 2re−2στ sin (ωτ)dτ

+2σ

∫ 0

−∞

∂E0(τ + t2 + t0)

∂τ
τ 2re−2στ cos (ωτ)dτ − 2r

∫ 0

−∞

∂E0(τ + t2 + t0)

∂τ
τ 2r−1e−2στ cos (ωτ)dτ

(63)

We see that the integrals
∫ 0

−∞
∂E0(τ+t2+t0)

∂τ
τ 2re−2στ cos (ωτ)dτ and

∫ 0

−∞
∂E0(τ+t2+t0)

∂τ
τ 2r−1e−2στ cos (ωτ)dτ

in Eq. 63 converge, using Eq. 59 in the previous subsection. We see the term [∂E0(τ+t2+t0)
∂τ

τ 2re−2στ cos (ωτ)]0−∞

29



also converges, given that E0(τ) = E0(−τ) and E0(τ + t2 + t0) = E0(−τ − t2 − t0) and we consider
∂E0(τ+t2+t0)

∂τ
τ 2re−2στ = ∂E0(−τ−t2−t0)

∂τ
τ 2re−2στ using Eq. 58 and see that the term e−πn2e−2τ

goes to zero
faster than the rising term τ 2re−2στe−6τe−

τ
2 , as τ → −∞. (Result 4.2.1.1)

It is shown below that the term
∫ 0

−∞
∂E0(τ+t2+t0)

∂τ
τ 2re−2στ sin (ωτ)dτ in Eq. 63 also converges.

∫ 0

−∞

∂(E0(τ + t2 + t0))

∂τ
τ 2re−2στ sin (ωτ)dτ

=

∫ 0

−∞

∂(E0(τ + t2 + t0)τ
2re−2στ sin (ωτ))

∂τ
dτ −

∫ 0

−∞
E0(τ + t2 + t0)

∂(τ 2re−2στ sin (ωτ)

∂τ
dτ

= [E0(τ + t2 + t0)τ
2re−2στ sin (ωτ)]0−∞ − ω

∫ 0

−∞
E0(τ + t2 + t0)τ

2re−2στ cos (ωτ)dτ

+2σ

∫ 0

−∞
E0(τ + t2 + t0)τ

2re−2στ sin (ωτ)dτ − 2r

∫ 0

−∞
E0(τ + t2 + t0)τ

2r−1e−2στ sin (ωτ)dτ

(64)

We see that the integrals in Eq. 64 converge because the integrands are absolutely integrable
because the terms E0(τ + t2 + t0)τ

2re−2στ sin (ωτ), E0(τ + t2 + t0)τ
2r−1e−2στ sin (ωτ) and E0(τ + t2 +

t0)τ
2re−2στ cos (ωτ) have exponential asymptotic fall-off rate as |τ | → ∞(Section 4.2). The term

[E0(τ + t2 + t0)τ
2re−2στ sin (ωτ)]0−∞ is finite, given that τ 2rE0(τ)e

−2στ and its shifted versions go to

zero as t → −∞( Appendix A.5 ). Hence the integral
∫ 0

−∞
∂2(E0(τ+t2+t0)τ2re−2στ )

∂t20
cos (ωτ)dτ in Eq. 63

and in Eq. 60 corresponding to the term E0(τ + t2 + t0)e
−2στ in Eq. 61, also converges.

We set σ = 0 and t0 = −t0 in the term E0(τ + t2 + t0)e
−2στ and see that the integral∫ 0

−∞
∂2(E0(τ+t2−t0))

∂t20
τ 2r cos (ωτ)dτ in Eq. 60 corresponding to the term E0(τ + t2 − t0) in Eq. 61 also

converges, using Result B
′
and the procedure used in Eq. 62 to Eq. 64.

We set t2 = −t2 in the term E0(τ + t2 + t0)e
−2στ in Eq. 62 to Eq. 64 and see that the integral∫ 0

−∞
∂2(E0(τ−t2+t0)τ2re−2στ )

∂t20
cos (ωτ)dτ in Eq. 60 corresponding to the term E0(τ−t2+t0)e

−2στ in Eq. 61

also converges.

We set t2 = −t2, σ = 0 and t0 = −t0 in the term E0(τ + t2 + t0)e
−2στ and see that the integral∫ 0

−∞
∂2(E0(τ−t2−t0))

∂t20
τ 2r cos (ωτ)dτ in Eq. 60 corresponding to the term E0(τ − t2 − t0) in Eq. 61 also

converges, using Result B
′
and the procedure used in Eq. 62 to Eq. 64. Hence the third integral in

Eq. 60, also converges.

We can see that the sixth integral in Eq. 60 converges, by setting t0 = −t0 in Eq. 61 to Eq. 64
and using Result B

′
and the procedure used in Eq. 62 to Eq. 64. Hence all the integrals in Eq. 60

converge.
.

4.5. GR,2r(ω, t2, t0) is partially differentiable twice as a function of t2 for r ∈ W

In Eq. 53, GR,2r(ω, t2, t0) is partially differentiable at least twice as a function of t2 and the integrals
converge in Eq. 65 and Eq. 69 shown as follows. The integrands in the equation for GR,2r(ω, t2, t0)
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in Eq. 65 are absolutely integrable because the terms τ 2rE
′
0(τ ± t0, t2)e

−2στ and τ 2rE
′
0n(τ ± t0, t2) =

−τ 2rE
′
0(τ±t0, t2) have exponential asymptotic fall-off rate as |τ | → ∞(Section 4.2). The integrands

are analytic functions of variables ω and t2, for a given t0 (using Result 4.1 in Section 4.1 ). The
integrands have exponential asymptotic fall-off rate (Section 4.2) and we can find a suitable domi-
nating function with exponential asymptotic fall-off rate which is absolutely integrable.(Section 4.3)
Hence we can interchange the order of partial differentiation and integration in Eq. 65 using theorem
of differentiability of functions defined by Lebesgue integrals and theorem of dominated convergence
as follows. (theorem)

GR,2r(ω, t2, t0) = e−2σt0(−1)r
∫ 0

−∞
τ 2r[E

′

0(τ + t0, t2)e
−2στ + E

′

0n(τ − t0, t2)] cos (ωτ)dτ

+e2σt0(−1)r
∫ 0

−∞
τ 2r[E

′

0(τ − t0, t2)e
−2στ + E

′

0n(τ + t0, t2)] cos (ωτ)dτ

∂GR,2r(ω, t2, t0)

∂t2
= e−2σt0(−1)r

∫ 0

−∞
τ 2r

∂(E
′
0(τ + t0, t2)e

−2στ + E
′
0n(τ − t0, t2))

∂t2
cos (ωτ)dτ

+e2σt0(−1)r
∫ 0

−∞
τ 2r

∂(E
′
0(τ − t0, t2)e

−2στ + E
′
0n(τ + t0, t2))

∂t2
cos (ωτ)dτ

(65)

We use the procedure outlined in Eq. 56 to Eq. 59, with t0 replaced by t2 and show that all the
integrals in Eq. 65 converge, as follows.

We see that E
′
0(τ + t0, t2) = E0(τ + t0− t2)−E0(τ + t0+ t2) and E

′
0n(τ − t0, t2) = −E

′
0(τ − t0, t2) =

E0(τ − t0 + t2)−E0(τ − t0 − t2) (using Definition 1 in Section 2.1 and Result 3.1 in Section 3 ). We

consider the integrand in the first integral in the equation for
∂GR,2r(ω,t2,t0)

∂t2
in Eq. 65 first.

∂(E
′
0(τ + t0, t2)e

−2στ + E
′
0n(τ − t0, t2))

∂t2
=

∂(E0(τ + t0 − t2)e
−2στ − E0(τ + t0 + t2)e

−2στ )

∂t2

+
∂(E0(τ − t0 + t2)− E0(τ − t0 − t2))

∂t2

(66)

We consider the term E0(τ + t0 + t2) first and can show that the integrals converge in Eq. 65, as
follows. We copy Eq. 57 below.

E0(τ) = 2
∞∑
n=1

[2π2n4e4τ − 3πn2e2τ ]e−πn2e2τ e
τ
2

E0(τ + t2 + t0) = 2
∞∑
n=1

[2π2n4e4τe4(t2+t0) − 3πn2e2τe2(t2+t0)]e−πn2e2τ e2(t2+t0)e
τ
2 e

(t2+t0)
2

(67)

We see that ∂
∂t2

E0(τ + t2 + t0) =
∂
∂τ
E0(τ + t2 + t0) given that the equation has terms of the form

eτ+t2 and hence the equation is invariant if we interchange τ and t2.(Result C)
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We can replace t2 by t
′
2 = −t2 in Eq. 67 and see that ∂

∂t
′
2

E0(τ + t
′
2 + t0) =

∂
∂τ
E0(τ + t

′
2 + t0) given

that the equation is invariant if we interchange τ and t
′
2(Result F). Given that ∂

∂t
′
2

= ∂
∂t2

dt2
dt

′
2

= − ∂
∂t2

,

we use it in Result F and we get ∂
∂t2

E0(τ − t2 + t0) = − ∂
∂τ
E0(τ − t2 + t0).(Result D)

We consider the term in the first integral in the equation for
∂GR,2r(ω,t2,t0)

∂t2
in Eq. 65 , correspond-

ing to the term E0(τ + t0 + t2)e
−2στ in Eq. 66, as follows, using Result C. We use the fact that∫ 0

−∞
dA(τ)
dτ

B(τ)dτ =
∫ 0

−∞
d(A(τ)B(τ))

dτ
dτ −

∫ 0

−∞A(τ)dB(τ)
dτ

dτ .

∫ 0

−∞

∂(E0(τ + t2 + t0))

∂t2
τ 2re−2στ cos (ωτ)dτ =

∫ 0

−∞

∂(E0(τ + t2 + t0))

∂τ
τ 2re−2στ cos (ωτ)dτ

=

∫ 0

−∞

∂(E0(τ + t2 + t0)τ
2re−2στ cos (ωτ))

∂τ
dτ −

∫ 0

−∞
E0(τ + t2 + t0)

∂(τ 2re−2στ cos (ωτ)

∂τ
dτ

= [E0(τ + t2 + t0)τ
2re−2στ cos (ωτ)]0−∞ + ω

∫ 0

−∞
E0(τ + t2 + t0)τ

2re−2στ sin (ωτ)dτ

+2σ

∫ 0

−∞
E0(τ + t2 + t0)τ

2re−2στ cos (ωτ)dτ − 2r

∫ 0

−∞
E0(τ + t2 + t0)τ

2r−1e−2στ cos (ωτ)dτ

(68)

We see that the integrals in Eq. 68 converge because the integrands are absolutely integrable
because the terms E0(τ + t2 + t0)τ

2re−2στ sin (ωτ), E0(τ + t2 + t0)τ
2r−1e−2στ cos (ωτ) and E0(τ +

t2 + t0)τ
2re−2στ cos (ωτ) have exponential asymptotic fall-off rate as |τ | → ∞(Section 4.2). The term

[E0(τ + t2 + t0)τ
2re−2στ cos (ωτ)]0−∞ is finite, given that τ 2rE0(τ)e

−2στ and its shifted versions go to

zero as t → −∞( Appendix A.5 ). Hence the integral
∫ 0

−∞
∂(E0(τ+t2+t0)e−2στ )

∂t2
τ 2r cos (ωτ)dτ in Eq. 68

and Eq. 65 corresponding to the term E0(τ + t2 + t0)e
−2στ in Eq. 66 also converges.

We set σ = 0 and t0 = −t0 in the term E0(τ + t2 + t0)e
−2στ and use the procedure in Eq. 67 to

Eq. 68 and see that the integral
∫ 0

−∞
∂(E0(τ+t2−t0))

∂t2
τ 2r cos (ωτ)dτ in Eq. 65 corresponding to the term

E0(τ + t2 − t0) in Eq. 66 also converges.

We set t2 = −t2 in the term E0(τ + t2 + t0)e
−2στ and use the procedure in Eq. 67 to Eq. 68

and see that the integral
∫ 0

−∞
∂(E0(τ−t2+t0)e−2στ )

∂t2
τ 2r cos (ωτ)dτ in Eq. 65 corresponding to the term

E0(τ − t2 + t0)e
−2στ in Eq. 66 also converges, using Result D.

We t2 = −t2, σ = 0 and t0 = −t0 in the term E0(τ + t2+ t0)e
−2στ and use the procedure in Eq. 67

to Eq. 68 and see that the integral
∫ 0

−∞
∂(E0(τ−t2−t0))

∂t2
τ 2r cos (ωτ)dτ in Eq. 65 corresponding to the

term E0(τ − t2 − t0) in Eq. 66 also converges, using Result D. Hence the first integral in the equation

for
∂GR,2r(ω,t2,t0)

∂t2
in Eq. 65 also converges.

We can see that the last integral in Eq. 65 converges, by setting t0 = −t0 in Eq. 68. Hence all the
integrals in Eq. 65 converge.

.

4.5.1. Second Partial Derivative of GR,2r(ω, t2, t0) with respect to t2 for r ∈ W

The second partial derivative of GR,2r(ω, t2, t0) with respect to t2 is given by
∂2GR,2r(ω,t2,t0)

∂t22
=
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∂
∂t2

∂GR,2r(ω,t2,t0)

∂t2
as follows. We use the result in Eq. 65 and the fact that the integrands are absolutely

integrable using the results in Section 4.5 and the integrands are analytic functions of variables ω
and t2 for a given t0 (using Result 4.1 in Section 4.1 ). The integrands have exponential asymptotic
fall-off rate(Section 4.2) and we can find a suitable dominating function with exponential asymptotic
fall-off rate which is absolutely integrable.(Section 4.3) Hence we can interchange the order of partial
differentiation and integration in Eq. 69 using theorem of differentiability of functions defined by
Lebesgue integrals and theorem of dominated convergence as follows. (theorem)

∂2GR,2r(ω, t2, t0)

∂t22
= e−2σt0(−1)r

∫ 0

−∞
τ 2r

∂2(E
′
0(τ + t0, t2)e

−2στ + E
′
0n(τ − t0, t2))

∂t22
cos (ωτ)dτ

+e2σt0(−1)r
∫ 0

−∞
τ 2r

∂2(E
′
0(τ − t0, t2)e

−2στ + E
′
0n(τ + t0, t2))

∂t22
cos (ωτ)dτ

(69)

We consider the first integral in Eq. 69 and using E
′
0(τ + t0, t2) = E0(τ + t0 − t2)−E0(τ + t0 + t2)

and E
′
0n(τ−t0, t2) = −E

′
0(τ−t0, t2) = E0(τ−t0+t2)−E0(τ−t0−t2)(using Definition 1 in Section 2.1

and Result 3.1 in Section 3 ), we write an equation similar to Eq. 66.

∂2(E
′
0(τ + t0, t2)e

−2στ + E
′
0n(τ − t0, t2))

∂t22
=

∂2(E0(τ + t0 − t2)e
−2στ − E0(τ + t0 + t2)e

−2στ )

∂t22

+
∂2(E0(τ − t0 + t2)− E0(τ − t0 − t2))

∂t22

(70)

We consider the term E0(τ + t0 + t2) first in Eq. 70 as follows. We copy Eq. 57 below.

E0(τ) = 2
∞∑
n=1

[2π2n4e4τ − 3πn2e2τ ]e−πn2e2τ e
τ
2

E0(τ + t2 + t0) = 2
∞∑
n=1

[2π2n4e4τe4(t2+t0) − 3πn2e2τe2(t2+t0)]e−πn2e2τ e2(t2+t0)e
τ
2 e

(t2+t0)
2

(71)

We can see that ∂2

∂t22
E0(τ + t2 + t0) =

∂2

∂τ2
E0(τ + t2 + t0), given that the equation has terms of the

form eτ+t2 and the equation is invariant if we interchange the variables τ and t2.(Result C’)

We can replace t2 by t
′
2 = −t2 in Eq. 71 and see that ∂2

∂(t
′
2)

2
E0(τ + t

′
2 + t0) =

∂2

∂τ2
E0(τ + t

′
2 + t0)

(Result F’) given that the equation has terms of the form eτ+t
′
2 and the equation is invariant if we

interchange the variables τ and t
′
2.

Given that ∂
∂t2

= ∂

∂t
′
2

∂t
′
2

∂t2
= − ∂

∂t
′
2

, we get ∂2

∂t22
= ∂

∂t2
( ∂
∂t2

) = − ∂
∂t2

( ∂

∂t
′
2

) = ∂

∂t
′
2

( ∂

∂t
′
2

) = ∂2

∂(t
′
2)

2
, we substi-

tute it in Result F’ and get ∂2

∂t22
E0(τ − t2 + t0) =

∂2

∂τ2
E0(τ − t2 + t0) .(Result D’)
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We can write the term in the first integral in Eq. 69 corresponding to the term E0(τ+ t0+ t2)e
−2στ

in Eq. 70, using Result C
′
, as follows. We use the fact that

∫ 0

−∞
dA(τ)
dτ

B(τ)dτ =
∫ 0

−∞
d(A(τ)B(τ))

dτ
dτ −∫ 0

−∞A(τ)dB(τ)
dτ

dτ .

∫ 0

−∞

∂2(E0(τ + t2 + t0))

∂t22
τ 2re−2στ cos (ωτ)dτ =

∫ 0

−∞

∂2(E0(τ + t2 + t0))

∂τ 2
τ 2re−2στ cos (ωτ)dτ

=

∫ 0

−∞

∂(∂E0(τ+t2+t0)
∂τ

τ 2re−2στ cos (ωτ))

∂τ
dτ −

∫ 0

−∞

∂E0(τ + t2 + t0)

∂τ

∂(τ 2re−2στ cos (ωτ)

∂τ
dτ

= [
∂E0(τ + t2 + t0)

∂τ
τ 2re−2στ cos (ωτ)]0−∞ + ω

∫ 0

−∞

∂E0(τ + t2 + t0)

∂τ
τ 2re−2στ sin (ωτ)dτ

+2σ

∫ 0

−∞

∂E0(τ + t2 + t0)

∂τ
τ 2re−2στ cos (ωτ)dτ − 2r

∫ 0

−∞

∂E0(τ + t2 + t0)

∂τ
τ 2r−1e−2στ cos (ωτ)dτ

(72)

We see that the integrals
∫ 0

−∞
∂E0(τ+t2+t0)

∂τ
τ 2re−2στ cos (ωτ)dτ and

∫ 0

−∞
∂E0(τ+t2+t0)

∂τ
τ 2r−1e−2στ cos (ωτ)dτ

in Eq. 72 converge, using Eq. 68 in the previous subsection. We see the term [∂E0(τ+t2+t0)
∂τ

τ 2re−2στ cos (ωτ)]0−∞
also converges, using Result 4.2.1.1 in Section 4.4.1. It is shown in Eq. 64 that the remaining term∫ 0

−∞
∂E0(τ+t2+t0)

∂τ
τ 2re−2στ sin (ωτ)dτ also converges.

We see that the integrals in Eq. 72 converge and hence the integral
∫ 0

−∞
∂2(E0(τ+t2+t0)τ2re−2στ )

∂t22
cos (ωτ)dτ

in Eq. 69 corresponding to the term E0(τ + t2 + t0)e
−2στ in Eq. 70 also converges.

We set σ = 0 and t0 = −t0 in Eq. 72 and see that the integral
∫ 0

−∞
∂2(E0(τ+t2−t0))

∂t22
τ 2r cos (ωτ)dτ in

Eq. 69 corresponding to the term E0(τ + t2 − t0) in Eq. 70 also converges.

We set t2 = −t2 in the term E0(τ + t0 + t2)e
−2στ and use the procedure in Eq. 71 to Eq. 72

and see that the integral
∫ 0

−∞
∂2(E0(τ+t0−t2)e−2στ )

∂t22
τ 2r cos (ωτ)dτ in Eq. 69 corresponding to the term

E0(τ − t2 + t0)e
−2στ in Eq. 70 converges, using Result D

′
.

We set t2 = −t2, σ = 0 and t0 = −t0 in the term E0(τ + t2 + t0)e
−2στ and use the procedure in

Eq. 71 to Eq. 72 and Result D
′
and see that the integral

∫ 0

−∞
∂2(E0(τ−t0−t2))

∂t22
τ 2r cos (ωτ)dτ in Eq. 69

corresponding to the term E0(τ − t2 − t0) in Eq. 70 also converges. Hence the first integral in Eq. 69,
also converges.

We can see that the second integral in Eq. 69 converge, by setting t0 = −t0 in Eq. 70 to Eq. 72 .
Hence all the integrals in Eq. 69 converge.

.

4.6. Zero Crossings in GR,2r(ω, t2, t0) move continuously as a function of t0, for a given
t2, for r ∈ W .

Result 4.7.1: It is shown in Lemma 1 in Section 2.1 that GR(ω, t2, t0) = 0 at ω = ωz(t2, t0)
where it crosses the zero line to the opposite sign, if Statement 1 is true. It is shown in Section 4.8

that GR,2r(ω, t2, t0) = 0 and
∂GR,2r(ω,t2,t0)

∂ω
̸= 0 at ω = ωz(t2, t0), for some value of r ∈ W where (2r+1)
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is the highest order of the zero of GR(ω, t2, t0) at ω = ωz(t2, t0). (example plot)

We use Implicit Function Theorem for the two dimensional case ( link and link). Given
that GR,2r(ω, t2, t0) is partially differentiable with respect to ω and t0, for a given value of t2, with
continuous partial derivatives (Section 4.1 and Section 4.4) and given that GR,2r(ω, t2, t0) = 0 at

ω = ωz(t2, t0) and
∂GR,2r(ω,t2,t0)

∂ω
̸= 0 at ω = ωz(t2, t0), for some value of r ∈ W where (2r + 1) is the

highest order of the zero of GR(ω, t2, t0) at ω = ωz(t2, t0) (using Lemma 1 in Section 2.1 , Lemma 2 in
Section 4.8 and Result 4.7.1), we see that ωz(t2, t0) is a differentiable function of t0, for 0 < t0 < ∞,
for each value of t2 in the interval 0 < t2 < ∞.

Hence ωz(t2, t0) is a continuous function of t0 for 0 < t0 < ∞, for each value of t2 in the interval
0 < t2 < ∞.

• It is shown in Section 4.5 that GR,2r(ω, t2, t0) is partially differentiable at least twice with
respect to t2. We can use the procedure in previous paras and Implicit Function Theorem and show
that ωz(t2, t0) is a continuous function of t2, for 0 < t2 < ∞, for each value of t0 in the interval
0 < t0 < ∞.

.

4.7. Zero Crossings in GR,2r(ω, t2, t0) move continuously as a function of t0 and t2, for
r ∈ W

We can use the procedure in previous subsection and show that ωz(t2, t0) is a continuous function
of t2 and t0, for 0 < t0 < ∞ and 0 < t2 < ∞, using Implicit Function Theorem in ℜ3.

We use Implicit Function Theorem for the three dimensional case (link and Theorem 3.2.1 in
page 36). Given that GR,2r(ω, t2, t0) is partially differentiable with respect to ω and t0 and t2, with
continuous partial derivatives, for r ∈ W (Section 4.1, Section 4.4 and Section 4.5) and given that

GR,2r(ω, t2, t0) = 0 at ω = ωz(t2, t0) and
∂GR,2r(ω,t2,t0)

∂ω
̸= 0 at ω = ωz(t2, t0), for some value of r ∈ W

where (2r + 1) is the highest order of the zero of GR(ω, t2, t0) at ω = ωz(t2, t0) (using Lemma 1 in
Section 2.1,Lemma 2 in Section 4.8 and Result 4.7.1), we see that ωz(t2, t0) is a differentiable function
of t0 and t2, for 0 < t0 < ∞ and 0 < t2 < ∞.

Hence ωz(t2, t0) is a continuous function of t0 and t2, for 0 < t0 < ∞ and 0 < t2 < ∞.
.

4.8. Proof of Lemma 2

In this section, it is shown that, if GR(ω, t2, t0) = 0 at ω = ±ωz(t2, t0), for each fixed choice of
positive t0, t2 ∈ ℜ and (2r + 1) is the highest order of the zero at ω = ±ωz(t2, t0) for some value of

r ∈ W (element of set of whole numbers including zero), then GR,2r(ω, t2, t0) =
∂2rGR(ω,t2,t0)

∂ω2r = 0 at

ω = ±ωz(t2, t0) and
∂GR,2r(ω,t2,t0)

∂ω
= ∂2r+1GR(ω,t2,t0)

∂ω2r+1 ̸= 0 at ω = ±ωz(t2, t0).

In Section 2.1, it is shown using Proof of Lemma 1 that GR(ω, t2, t0) must have at least one
zero at finite ω = ωz(t2, t0) ̸= 0 where it crosses the zero line to the opposite sign, for each fixed
t0, t2 ∈ ℜ and t2 ̸= 0, to satisfy Statement 1. (Result 4.8.1)
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We see that GR(ω, t2, t0) is a real and even function of ω because g(t, t2, t0) is a real function of
variable t ( Appendix B.1) and hence if GR(ω, t2, t0) has a zero at ω = +ωz(t2, t0), then it also has a
zero at ω = −ωz(t2, t0). Hence GR(ω, t2, t0) has its first zero crossing at ω = ±ωz(t2, t0) ̸= 0 where
it changes sign, using Result 4.8.1.

Hence we can write GR(ω, t2, t0) = (ωz(t2, t0)
2 − ω2)2r+1N ′(ω, t2, t0), for r ∈ W , where

N ′(ω, t2, t0) ̸= 0 at ω = ±ωz(t2, t0), for each fixed positive t0, t2 ∈ ℜ and (2r+ 1) is the highest order
of the zero at ω = ωz(t2, t0). It is noted that ωz(t2, t0) represent the zero crossing in GR(ω, t2, t0), for
each fixed positive t0, t2 ∈ ℜ. It is noted that N ′(ω, t2, t0) may or may not be zero at ω ̸= ±ωz(t2, t0)
and we do not claim otherwise.

The case of (ωz(t2, t0)
2 − ω2)2r is ruled out because GR(ω, t2, t0) changes sign at ω = ±ωz(t2, t0)

and N ′(ω, t2, t0) does not change sign at ω = ±ωz(t2, t0) and (ωz(t2, t0)
2 − ω2)2r ≥ 0 for real ω and

does not change sign at ω = ±ωz(t2, t0).

In Section 2.3 and Section 2.4, it is shown that g(t, t2, t0) is a Fourier transformable function and
its Fourier transform given by G(ω, t2, t0) = e−2σt0G1(ω, t2, t0) + e2σt0G1(ω, t2,−t0) converges (Eq. 24
and Eq. 27) and its real part given by GR(ω, t2, t0) is finite and hence the order of the zero given by
(2r + 1) is finite.

In Section 4.1, it is shown that GR(ω, t2, t0) is partially differentiable (2r+2) times, as a function
of ω, where r ∈ W .

For a fixed positive t0, t2 ∈ ℜ, let GR(ω, t2, t0) = M(ω),N ′(ω, t2, t0) = N(ω) and ωz(t2, t0) = ωz.

We consider the case of M(ω) = Mr(ω) = (ω2
z −ω2)2r+1Nr(ω) for each r ∈ W , where Nr(ωz) ̸= 0.

In the section below, Nr(ωz) ̸= 0 means that Nr(ω) ̸= 0 at ω = ωz. It is noted that Nr(ω) may or
may not be zero at ω ̸= ωz. Using Result 4.8.1 and ωz(t2, t0) = ωz, we see that ωz ̸= 0.

Lemma 2: If Mr(ω) = (ω2
z − ω2)2r+1Nr(ω) where Nr(ωz) ̸= 0 and r ∈ W and (2r + 1) is the

highest order of the zero at ω = ωz and Mr(ω) is differentiable (2r+1) times as a function of ω, then
d2rMr(ω)

dω2r = 0 and d2r+1Mr(ω)
dω2r+1 ̸= 0 at ω = ωz using principle of mathematical induction.

Proof: For r=0, we see that M0(ω) = (ω2
z − ω2)N0(ω) where N0(ωz) ̸= 0 . We see that

M0(ωz) = 0 (Result 0.a) and M
′
0(ω) =

dM0(ω)
dω

= (ω2
z − ω2)dN0(ω)

dω
+N0(ω)(−2ω). At ω = ωz, we see

that M
′
0(ωz) = N0(ωz)(−2ωz). Given that ωz ̸= 0 and N0(ωz) ̸= 0, we get M

′
0(ωz) ̸= 0 and hence

dM0(ω)
dω

̸= 0 at ω = ωz (Result 0.b).

.

4.8.1. r=1 and s = 0, 1, 2, 3

For r = 1, we see that M1(ω) = (ω2
z − ω2)3N1(ω) where N1(ω) ̸= 0 at ω = ωz. We will compute

dsMr(ω)
dωs and show that dsMr(ω)

dωs =
2r+1∑

r′=2r+1−s

(ω2
z −ω2)r

′
As,r′,r(ω), for r = 1 and s = 0, 1, ...(2r+1). Hence
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we write M1(ω) =
3∑

r′=3

(ω2
z − ω2)r

′
A0,r′,1(ω) where A0,3,1(ω) = N1(ω), for s = 0.

We define Kp,r = 2(2r + 2 − p) ̸= 0 where p ≤ s and s ≤ 2r + 1 and compute As,r′,r(ω) for r
′ =

2r+1−s, as a recursive product and will show that As,2r+1−s,r(ωz) = (−1)s
∏s

p=1Kp,rω
s
zNr(ωz) ̸= 0,

for s = 0, 1, ..2r + 1, for a given r = 1 in Eq. 73 to Eq. 75.

We compute the first derivative of M1(ω), using s = 1. We combine the two terms in the first line

in Eq. 73 and write concisely in the second line using dM1(ω)
dω

=
3∑

r′=2

(ω2
z − ω2)r

′
A1,r′,1(ω), as follows.

dM1(ω)

dω
= (ω2

z − ω2)3
dN1(ω)

dω
+N1(ω)(3(ω

2
z − ω2)2)(−2ω)

dM1(ω)

dω
=

3∑
r′=2

(ω2
z − ω2)r

′
A1,r′,1(ω), A1,2,1(ω) = −6ωN1(ω) = −6ωA0,3,1(ω) = −

1∏
p=1

Kp,1ω
1N1(ω)

(73)

We see that Kp,r = 2(2r + 2 − p) and K1,1 = 6 for p = 1, r = 1 and A1,3,1(ω) =
dN1(ω)

dω
. We see

that 2r + 1 − s = 2 for r = 1, s = 1 and hence As,2r+1−s,r(ωz) = A1,2,1(ωz) = −6ωzN1(ωz) ̸= 0 given
that ωz ̸= 0 and N1(ωz) ̸= 0.(Result 4.6.1)

We take the derivative of dM1(ω)
dω

in Eq. 73, using s = 2. The second term (ω2
z−ω2)r

′−1 = (ω2
z−ω2)1

for r′ = 2, in the summation in the first line in Eq. 74 and hence we combine the two terms in the
first line, by including r′ = 1 in the summation in the second line and write concisely as follows.

d2M1(ω)

dω2
=

3∑
r′=2

(ω2
z − ω2)r

′ dA1,r′,1(ω)

dω
+ A1,r′,1(ω)r

′(ω2
z − ω2)r

′−1(−2ω)

d2M1(ω)

dω2
=

3∑
r′=1

(ω2
z − ω2)r

′
A2,r′,1(ω), A2,1,1(ω) = −4ωA1,2,1(ω) = 24ω2N1(ω) =

2∏
p=1

Kp,1ω
2N1(ω)

(74)

We see that K2,1 = 2(2r + 2− p) = 4 for p = 2, r = 1 and A2,2,1(ω) =
dA1,2,1(ω)

dω
− 6ωA1,3,1(ω) and

A2,3,1(ω) =
dA1,3,1(ω)

dω
. We see that 2r+1−s = 1 for r = 1, s = 2 and hence As,2r+1−s,r(ω) = A2,1,1(ω) =

−4ωA1,2,1(ω) = 24ω2N1(ω) using Eq. 73 and Result 4.6.1 and A2,1,1(ωz) = 24ω2
zN1(ωz) ̸= 0, given

that ωz ̸= 0 and N1(ωz) ̸= 0 (Result 4.6.2)

We take the next derivative of d2M1(ω)
dω2 in Eq. 74 and combine the two terms as follows, using s = 3.

d3M1(ω)

dω3
=

3∑
r′=1

(ω2
z − ω2)r

′ dA2,r′,1(ω)

dω
+ A2,r′,1(ω)r

′(ω2
z − ω2)r

′−1(−2ω)

d3M1(ω)

dω3
=

3∑
r′=0

(ω2
z − ω2)r

′
A3,r′,1(ω), A3,0,1(ω) = −2ωA2,1,1(ω) = −48ω3N1(ω) = −

3∏
p=1

Kp,1ω
3N1(ω)
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(75)

We see that K3,1 = 2(2r + 2 − p) = 2 for p = 3, r = 1 and A3,1,1(ω) = dA2,1,1(ω)

dω
− 4ωA2,2,1(ω),

A3,2,1(ω) =
dA2,2,1(ω)

dω
−6ωA2,3,1(ω) and A3,3,1(ω) =

dA2,3,1(ω)

dω
. We see that 2r+1−s = 0 for r = 1, s = 3

and hence As,2r+1−s,r(ω) = A3,0,1(ω) = −2ωA2,1,1(ω) = −48ω3N1(ω) using Eq. 74 and Result 4.6.2
and A3,0,1(ωz) = −48ω3

zN1(ωz) ̸= 0, given that ωz ̸= 0 and N1(ωz) ̸= 0 .(Result 4.6.3)

We see that d2M1(ω)
dω2 = 0 at ω = ωz in Eq. 74 (Result 1.a). We evaluate B3(ω) = d3M1(ω)

dω3

at ω = ωz and see that all terms become zero except the term with r′ = 0 in Eq. 75. Hence

B3(ωz) = A3,0,1(ωz) ̸= 0 using Result 4.6.3 and hence d3M1(ω)
dω3 ̸= 0 at ω = ωz (Result 1.b).

.

4.8.2. r=2 and s = 0, 1, 2, 3, 4, 5

For r = 2, we see that M2(ω) = (ω2
z − ω2)5N2(ω) where N2(ω) ̸= 0 at ω = ωz. We will compute

dsMr(ω)
dωs and show that dsMr(ω)

dωs =
2r+1∑

r′=2r+1−s

(ω2
z −ω2)r

′
As,r′,r(ω), for r = 2 and s = 0, 1, ...(2r+1). Hence

we write M2(ω) =
5∑

r′=5

(ω2
z − ω2)r

′
A0,r′,2(ω) where A0,5,2(ω) = N2(ω), for s = 0.

We define Kp,r = 2(2r + 2− p) ̸= 0 where p ≤ s and s ≤ 2r + 1. We compute As,r′,r(ω) for r
′ =

2r+1−s, as a recursive product and will show that As,2r+1−s,r(ωz) = (−1)s
∏s

p=1Kp,rω
s
zNr(ωz) ̸= 0

for s = 0, 1, ..2r + 1, for a given r = 2 in Eq. 76 to Eq. 80. We compute the first derivative of M2(ω)
and combine the two terms as follows, using s = 1.

dM2(ω)

dω
= (ω2

z − ω2)5
dN2(ω)

dω
+N2(ω)(5(ω

2
z − ω2)4)(−2ω)

dM2(ω)

dω
=

5∑
r′=4

(ω2
z − ω2)r

′
A1,r′,2(ω), A1,4,2(ω) = −10ωN2(ω) = −10ωA0,5,2(ω) = −

1∏
p=1

Kp,2ω
1N2(ω)

(76)

We see that Kp,r = 2(2r + 2 − p) = 10 for p = 1, r = 2 and A1,5,2(ω) = dN2(ω)
dω

. We see that
2r + 1− s = 4 for r = 2, s = 1 and hence As,2r+1−s,r(ωz) = A1,4,2(ωz) = −10ωzN2(ωz) ̸= 0 given that
ωz ̸= 0 and N2(ωz) ̸= 0.(Result 4.6.4)

We take the next derivative of dM2(ω)
dω

in Eq. 76, using s = 2. The second term (ω2
z − ω2)r

′−1 =
(ω2

z − ω2)3 for r′ = 4, in the summation in the first line in Eq. 77 and hence we combine the two
terms in the first line, by including r′ = 3 in the summation in the second line and write concisely
as follows.

d2M2(ω)

dω2
=

5∑
r′=4

(ω2
z − ω2)r

′ dA1,r′,2(ω)

dω
+ A1,r′,2(ω)r

′(ω2
z − ω2)r

′−1(−2ω)

d2M2(ω)

dω2
=

5∑
r′=3

(ω2
z − ω2)r

′
A2,r′,2(ω), A2,3,2(ω) = −8ωA1,4,2(ω) = 80ω2N2(ω) =

2∏
p=1

Kp,2ω
2N2(ω)
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(77)

We see that K2,2 = 2(2r+2− p) = 8 for p = 2, r = 2 and A2,4,2(ω) =
dA1,4,2(ω)

dω
− 10ωA1,5,2(ω) and

A2,5,2(ω) =
dA1,5,2(ω)

dω
. We see that 2r+1−s = 3 for r = 2, s = 2 and hence As,2r+1−s,r(ω) = A2,3,2(ω) =

−8ωA1,4,2(ω) = 80ω2N2(ω) using Eq. 76 and Result 4.6.4 and A2,3,2(ωz) = 80ω2
zN2(ωz) ̸= 0, given

that ωz ̸= 0 and N2(ωz) ̸= 0 (Result 4.6.5)

We take the next derivative of d2M2(ω)
dω2 in Eq. 77 and combine the two terms as follows, using s = 3.

d3M2(ω)

dω3
=

5∑
r′=3

(ω2
z − ω2)r

′ dA2,r′,2(ω)

dω
+ A2,r′,2(ω)r

′(ω2
z − ω2)r

′−1(−2ω)

d3M2(ω)

dω3
=

5∑
r′=2

(ω2
z − ω2)r

′
A3,r′,2(ω), A3,2,2(ω) = −6ωA2,3,2(ω) = −480ω3N2(ω) = −

3∏
p=1

Kp,2ω
3N2(ω)

(78)

We see that K3,2 = 2(2r + 2 − p) = 6 for p = 3, r = 2 and A3,3,2(ω) = dA2,3,2(ω)

dω
− 8ωA2,4,2(ω),

A3,4,2(ω) =
dA2,4,2(ω)

dω
−10ωA2,5,2(ω) and A3,5,2(ω) =

dA2,5,2(ω)

dω
. We see that 2r+1−s = 2 for r = 2, s = 3

and hence As,2r+1−s,r(ω) = A3,2,2(ω) = −6ωA2,3,2(ω) = −480ω3N2(ω) using Eq. 77 and Result 4.6.5
and A3,2,2(ωz) = −480ω3

zN2(ωz) ̸= 0, given that ωz ̸= 0 and N2(ωz) ̸= 0 .(Result 4.6.6)

We take the next derivative of d3M2(ω)
dω3 in Eq. 78 and combine the two terms as follows, using s = 4.

d4M2(ω)

dω4
=

5∑
r′=2

(ω2
z − ω2)r

′ dA3,r′,2(ω)

dω
+ A3,r′,2(ω)r

′(ω2
z − ω2)r

′−1(−2ω)

d4M2(ω)

dω4
=

5∑
r′=1

(ω2
z − ω2)r

′
A4,r′,2(ω), A4,1,2(ω) = −4ωA3,2,2(ω) = 480 ∗ 4ω4N2(ω) =

4∏
p=1

Kp,2ω
4N2(ω)

(79)

We see that K4,2 = 2(2r + 2 − p) = 4 for p = 4, r = 2. We see that 2r + 1 − s = 1 for
r = 2, s = 4 and hence As,2r+1−s,r(ω) = A4,1,2(ω) = −4ωA3,2,2(ω) = 480∗4ω4N2(ω) using Result 4.6.6
and A4,1,2(ωz) = 480 ∗ 4ω4

zN2(ωz) ̸= 0, given that ωz ̸= 0 and N2(ωz) ̸= 0 .(Result 4.6.7)

We take the next derivative of d4M2(ω)
dω4 in Eq. 79 and combine the two terms as follows, using s = 5.

d5M2(ω)

dω5
=

5∑
r′=1

(ω2
z − ω2)r

′ dA4,r′,2(ω)

dω
+ A4,r′,2(ω)r

′(ω2
z − ω2)r

′−1(−2ω)

d5M2(ω)

dω5
=

5∑
r′=0

(ω2
z − ω2)r

′
A5,r′,2(ω), A5,0,2(ω) = −2ωA4,1,2(ω) = −480 ∗ 4 ∗ 2ω5N2(ω) = −

5∏
p=1

Kp,2ω
5N2(ω)

(80)

We see that K5,2 = 2(2r+ 2− p) = 2 for p = 5, r = 2. We see that 2r+ 1− s = 0 for r = 2, s = 5
and hence As,2r+1−s,r(ω) = A5,0,2(ω) = −2ωA4,1,2(ω) = −480 ∗ 4 ∗ 2ω5N2(ω) using Result 4.6.7 and
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A5,0,2(ωz) = −480 ∗ 4 ∗ 2ω5
zN2(ωz) ̸= 0, given that ωz ̸= 0 and N2(ωz) ̸= 0 .(Result 4.6.8)

We see that d4M2(ω)
dω4 = 0 at ω = ωz in Eq. 79 (Result 2.a). We evaluate B5(ω) = d5M2(ω)

dω5

at ω = ωz and see that all terms become zero except the term with r′ = 0 in Eq. 80. Hence

B5(ωz) = A5,0,2(ωz) ̸= 0 using Result 4.6.8 and hence d5M2(ω)
dω5 ̸= 0 at ω = ωz (Result 2.b).

.

4.8.3. Induction Proof for each r ∈ W

For a general r ∈ W , we see that Mr(ω) = (ω2
z − ω2)2r+1Nr(ω) where Nr(ωz) ̸= 0. Using the

equations for r = 1 in Section 4.8.1 and r = 2 in Section 4.8.2 , we build the equation used in
Induction hypothesis for dsMr(ω)

dωs , for s = 0, 1, ...(2r + 1), for each r ∈ W , as follows. (Set r = 1,
s = 2 in Eq. 81 and we get Eq. 74 and Result 4.6.2. Set r = 2, s = 5 in Eq. 81 and we get Eq. 80
and Result 4.6.8.)

dsMr(ω)

dωs
=

2r+1∑
r′=2r+1−s

(ω2
z − ω2)r

′
As,r′,r(ω), As,2r+1−s,r(ω) = As−1,2r+2−s,r(ω)(−2ω)(2r + 2− s)

As,2r+1−s,r(ωz) = (−1)s
s∏

p=1

Kp,rω
s
zNr(ωz) ̸= 0, Kp,r = 2(2r + 2− p) ̸= 0

(81)

It is noted that we only need the coefficient As,r′,r(ω) corresponding to r′ = 2r + 1 − s because

the terms for r′ ̸= 0 in the equation for dsMr(ω)
dωs for s = 2r + 1 vanish at ω = ωz, as shown in Eq. 85.

• Induction Hypothesis: We assume that Eq. 81 holds for s = S, for S < 2r + 1.

dSMr(ω)

dωS
=

2r+1∑
r′=2r+1−S

(ω2
z − ω2)r

′
AS,r′,r(ω), AS,2r+1−S,r(ω) = AS−1,2r+2−S,r(ω)(−2ω)(2r + 2− S)

AS,2r+1−S,r(ωz) = (−1)S
S∏

p=1

Kp,rω
S
z Nr(ωz) ̸= 0, Kp,r = 2(2r + 2− p) ̸= 0

(82)

• Induction Step: We take the first derivative of Eq. 82 given by d
dω

dSMr(ω)
dωS = dS+1Mr(ω)

dωS+1 . The

second term (ω2
z − ω2)r

′−1 = (ω2
z − ω2)2r−S for r′ = 2r + 1 − S, in the summation in the first line

in Eq. 83 and hence we combine the two terms in the first line, by including r′ = 2r − S in the
summation in the second line and write concisely as follows.

dS+1Mr(ω)

dωS+1
=

2r+1∑
r′=2r+1−S

(ω2
z − ω2)r

′ dAS,r′,r(ω)

dω
+ AS,r′,r(ω)r

′(ω2
z − ω2)r

′−1(−2ω)

dS+1Mr(ω)

dωS+1
=

2r+1∑
r′=2r−S

(ω2
z − ω2)r

′
AS+1,r′,r(ω), AS+1,2r−S,r(ω) = AS,2r+1−S,r(ω)(−2ω)(2r + 1− S)

AS+1,2r−S,r(ωz) = −AS,2r+1−S,r(ωz)(ωz)2(2r + 1− S) = (−1)S+1

S+1∏
p=1

Kp,rω
S+1
z Nr(ωz) ̸= 0
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(83)

We see that KS+1,r = 2(2r + 1 − S) ̸= 0 for S < 2r + 1 and we use AS,2r+1−S,r(ωz) in Eq. 82 to
get AS+1,2r−S,r(ωz) in Eq. 83.

We see that Eq. 83 is exactly the same as the equation we get, if we set s = S + 1 in Eq. 81.
Thus we have proved Eq. 81 by principle of mathematical induction.

• We set s = 2r in Eq. 81 and get

d2rMr(ω)

dω2r
=

2r+1∑
r′=1

(ω2
z − ω2)r

′
A2r,r′,r(ω), A2r,1,r(ω) = A2r−1,2,r(ω)(−4ω)

A2r,1,r(ωz) = (−1)2r
2r∏
p=1

Kp,rω
2r
z Nr(ωz) ̸= 0

(84)

We see that all the terms in d2rMr(ω)
dω2r in Eq. 84 become zero at ω = ωz and hence d2rMr(ω)

dω2r = 0 at
ω = ωz. (Result r.a)

• We set s = 2r + 1 in Eq. 81 and get

d2r+1Mr(ω)

dω2r+1
=

2r+1∑
r′=0

(ω2
z − ω2)r

′
A2r+1,r′,r(ω), A2r+1,0,r(ω) = A2r,1,r(ω)(−2ω)

A2r+1,0,r(ωz) = (−1)2r+1

2r+1∏
p=1

Kp,rω
2r+1
z Nr(ωz) ̸= 0

(85)

We see that all the terms in d2r+1Mr(ω)
dω2r+1 in Eq. 85 become zero at ω = ωz except the term for r′ = 0

and A2r+1,0,r(ωz) ̸= 0 and hence d2r+1Mr(ω)
dω2r+1 ̸= 0 at ω = ωz. (Result r.b)

Corollary: The Induction proof presented in this section and Result r.a and Result r.b are valid

for each r ∈ W . Hence we see that d2rMr(ω)
dω2r = 0 at ω = ωz and d2r+1Mr(ω)

dω2r+1 ̸= 0 at ω = ωz, for each
r ∈ W , where Mr(ω) = (ω2

z − ω2)2r+1Nr(ω), where Nr(ωz) ̸= 0, and (2r + 1) is the highest order of
the zero of Mr(ω) at ω = ωz.

Given that GR(ω, t2, t0) = Mr(ω) for some value of r ∈ W and fixed choice of t0, t2, we see that
∂2rGR(ω,t2,t0)

∂ω2r = 0 at ω = ±ωz and ∂2r+1GR(ω,t2,t0)
∂ω2r+1 ̸= 0 at ω = ±ωz, given that M(ω) = GR(ω, t2, t0)

is a real and even function of ω, where (2r + 1) is the highest order of the zero of GR(ω, t2, t0) at
ω = ωz(t2, t0). This induction proof continues to hold for each fixed choice of positive t0, t2 ∈ ℜ.

.
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5. ωz(t2, t0)t0 = π
2
can be reached for specific t0, t2

It is noted that we do not use limt0→∞ in this section. Instead we consider real t0 > 0 which
increases to a larger and larger finite value without bounds. We use 0 < σ < 1

2
below.

We write Podd(t2, t0) in Eq. 30 derived assuming Statement 1, concisely as follows.

Podd(t2, t0) =

∫ t0

−∞
E

′

0(τ, t2)e
−2στ cos (ωz(t2, t0)(τ − t0))dτ + e2σt0

∫ t0

−∞
E

′

0n(τ, t2) cos (ωz(t2, t0)(τ − t0))dτ

Podd(t2, t0) + Podd(t2,−t0) = 0

(86)

We note that E
′
0(τ, t2) = E0(τ − t2) − E0(τ + t2) and E

′
0n(τ, t2) = E

′
0(−τ, t2) = −E

′
0(τ, t2) =

E0(τ + t2)−E0(τ − t2) (using Result 3.1 in Section 3). We choose t2 = 2t0 and we choose t1 such that
E0(t) approximates zero for |t| > t1, given that E0(t) has an asymptotic exponential fall-off rate of
o[e−1.5|t|] ( Appendix A.5). We choose t0 >> t1 and hence E0(τ − t2) = E0(τ − 2t0) approximates
zero in the interval (−∞, t0]. Hence in the interval (−∞, t0], we see that E

′
0(τ, t2) ≈ −E0(τ + t2)

and E
′
0n(τ, t2) ≈ E0(τ + t2), for sufficiently large t0. We can write Eq. 86 as follows. We use

ωz(t2,−t0) = ωz(t2, t0) (Section 2.4). We note that t2 = 2t0 in the rest of this section and we
continue to use the notation ωz(t2, t0) where t2 = 2t0.

Podd(t2, t0) ≈ −
∫ t0

−∞
E0(τ + 2t0)e

−2στ cos (ωz(t2, t0)(τ − t0))dτ

+e2σt0
∫ t0

−∞
E0(τ + 2t0) cos (ωz(t2, t0)(τ − t0))dτ

Podd(t2,−t0) =

∫ −t0

−∞
E

′

0(τ, t2)e
−2στ cos (ωz(t2, t0)(τ + t0))dτ

+e−2σt0

∫ −t0

−∞
E

′

0n(τ, t2) cos (ωz(t2, t0)(τ + t0))dτ

(87)

We see that the term Podd(t2,−t0) in Eq. 87 approaches a value very close to zero, as real t0
increases to a larger and larger finite value without bounds, due to the terms e−2σt0 and the integrals∫ −t0
−∞ , given 0 < σ < 1

2
and t0 > 0 and given that the integrands are absolutely integrable and finite

because the terms E
′
0(τ, t2)e

−2στ and E
′
0n(τ, t2) = −E

′
0(τ, t2) have exponential asymptotic fall-off rate

as |τ | → ∞(Section 4.2) Hence we can ignore Podd(t2,−t0) for sufficiently large t0 and write Eq. 86,
using Eq. 87 and t2 = 2t0.

Q(t0) = Podd(t2, t0) + Podd(t2,−t0) ≈ −
∫ t0

−∞
E0(τ + 2t0)e

−2στ cos (ωz(t2, t0)(τ − t0))dτ

+e2σt0
∫ t0

−∞
E0(τ + 2t0) cos (ωz(t2, t0)(τ − t0))dτ ≈ 0

(88)
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We substitute τ + 2t0 = t, τ = t− 2t0 and dτ = dt in Eq. 88 and write as follows.

Q(t0) ≈ −e4σt0
∫ 3t0

−∞
E0(t)e

−2σt cos (ωz(t2, t0)(t− 3t0))dt

+e2σt0
∫ 3t0

−∞
E0(t) cos (ωz(t2, t0)(t− 3t0))dt ≈ 0

(89)

We multiply Eq. 89 by e−3σt0 and ignore the last integral for sufficiently large t0, given that
e2σt0e−3σt0 = e−σt0 and |

∫ 3t0
−∞ E0(t) cos (ωz(t2, t0)(t− 3t0))dt| ≤

∫ 3t0
−∞ |E0(t)|dt <

∫∞
−∞ |E0(t)|dt is finite.

(link and Appendix A.1)

S(t0) = Q(t0)e
−3σt0 ≈ −eσt0

∫ 3t0

−∞
E0(t)e

−2σt cos (ωz(t2, t0)(t− 3t0))dt = −eσt0R(t0) ≈ 0

R(t0) = cos (ωz(t2, t0)3t0)

∫ 3t0

−∞
E0(t)e

−2σt cos (ωz(t2, t0)t)dt+ sin (ωz(t2, t0)3t0)

∫ 3t0

−∞
E0(t)e

−2σt sin (ωz(t2, t0)t)dt

(90)

In Section 2.1, it is shown that 0 < ωz(t2, t0) < ∞, for all |t0| < ∞, for each non-zero value of
t2. For t0 > 0, we see that ωz(t2, t0)t0 > 0. In Section 4, it is shown that ωz(t2, t0) is a continuous
function of variable t0 and t2, for all 0 < t0 < ∞ and 0 < t2 < ∞. Hence ωz(t2, t0)t0 is a positive
continuous function.

We require ωz(t2, t0)t0 = π
2
in Section 3 for a specific t0 = t0c and t2 = t2c = 2t0c. To show

that ωz(t2, t0)t0 = π
2
can be reached, we assume the opposite case that ωz(t2, t0)t0 < π

2
for all

0 < t0 < ∞ and t2 = 2t0 (Statement C) and show that this leads to a contradiction.

Let ωz(t2, t0)t0 = KF (t2, t0), where 0 < K < π
2
and 0 < F (t2, t0) ≤ 1 is a positive continuous

function for 0 < t0 < ∞ and t2 = 2t0, such that ωz(t2, t0)t0 <
π
2
. Hence ωz(t2, t0) =

KF (t2,t0)
t0

.

We choose t3 such that E0(t)e
−2σt is vanishingly small and approximates zero for |t| > t3 (Result

5.a), given that E0(t)e
−2σt has an asymptotic exponential fall-off rate of o[e−0.5|t|] ( Appendix

A.5).We choose t0 >> t3 and note that t3 is independent of t0. As t0 increase without bounds, in
the interval |t| ≤ t3, we see that the term cos (ωz(t2, t0)t) ≈ 1 and sin (ωz(t2, t0)t) ≈ ωz(t2, t0)t ≈ 0

(Result 5.b), given that ωz(t2, t0)t =
KF (t2,t0)t

t0
≤ KF (t2,t0)t3

t0
<< 1, because t0 >> t3 and F (t2, t0) ≤ 1.

Hence we write Eq. 90 as follows, using Result 5.a and Result 5.b.

R(t0) ≈ cos (ωz(t2, t0)3t0)

∫ 3t0

−∞
E0(t)e

−2σt cos (ωz(t2, t0)t)dt ≈ cos (3KF (t2, t0))

∫ t3

−t3

E0(t)e
−2σtdt

(91)
For sufficiently large t0, the integral R(t0) ≈ cos (3KF (t2, t0))

∫ t3
−t3

E0(t)e
−2σtdt remains finite, be-

cause cos (ωz(t2, t0)3t0) oscillates in the interval [−1, 1] and
∫∞
−∞ E0(t)e

−2σtdt > 0 ( Appendix A.1)
and does not approach zero exponentially, as real t0 increases to a larger and larger finite value
without bounds. This is explained in detail in Section 5.1.

43

http://www.math.ualberta.ca/~isaac/math311/s14/abs_value.pdf


The term eσt0 in S(t0) = −eσt0R(t0) in Eq. 90 increases to a larger and larger finite value ex-
ponentially as t0 increases, and hence the term S(t0) approaches a larger and larger finite value
exponentially, given that R(t0) does not approach zero exponentially and hence S(t0) and Q(t0) in
Eq. 89 and Podd(t2, t0)+Podd(t2,−t0) in Eq. 86 cannot equal zero, to satisfy Statement 1, in this case.

Hence Statement C is false and hence ωz(t2, t0)t0 = π
2
can be reached for specific values of t0

and t2 = 2t0, as finite t0 increases without bounds, given that ωz(t2, t0)t0 is a continuous function
of variable t0 and t2, for all 0 < t0 < ∞ and 0 < t2 < ∞.

.

5.1. A(t0) =
∫ 3t0
−∞E0(t)e

−2σt cos (ωz(t2, t0)t)dt does not have exponential fall off rate

We compute the minimum value of the integral A(t0) =
∫ 3t0
−∞E0(t)e

−2σt cos (ωz(t2, t0)t)dt in

Eq. 90 , for sufficiently large t3 and t0 >> t3 and 0 < σ < 1
2
. We note that t2 = 2t0 and note that t3

is independent of t0 below. We split A(t0) as follows.

A(t0) = B(t3, t0) + C(t3, t0) +D(t3, t0)

B(t3, t0) =

∫ −t3

−∞
E0(t)e

−2σt cos (ωz(t2, t0)t)dt, C(t3, t0) =

∫ t3

−t3

E0(t)e
−2σt cos (ωz(t2, t0)t)dt

D(t3, t0) =

∫ 3t0

t3

E0(t)e
−2σt cos (ωz(t2, t0)t)dt

(92)

We see that E0(t)e
−2σt > 0 for |t| < ∞ and E0(t)e

−2σt is an absolutely integrable function ( Ap-
pendix A.1) and hence C0(t3) =

∫ t3
−t3

E0(t)e
−2σtdt > 0 (Result 5.1.1).

Given that ωz(t2, t0) =
KF (t2,t0)

t0
where 0 < K < π

2
and 0 < F (t2, t0) ≤ 1 in previous subsection

and t0 >> t3, we see that ωz(t2, t0)t = KF (t2,t0)t
t0

≤ KF (t2,t0)t3
t0

<< 1 in the interval |t| ≤ t3 and

hence cos (ωz(t2, t0)t) ≈ 1 and cos (ωz(t2, t0)t) > 1
2
in the interval |t| ≤ t3. Hence we can write

C(t3, t0) =
∫ t3
−t3

E0(t)e
−2σt cos (ωz(t2, t0)t)dt >

C0(t3)
2

> 0, using Result 5.1.1. (Result 5.1.2).

We see that |B(t3, t0)| = |
∫ −t3
−∞ E0(t)e

−2σt cos (ωz(t2, t0)t)dt| ≤
∫ −t3
−∞ |E0(t)e

−2σt|dt ≈ 0 (link) and

|D(t3, t0)| = |
∫ 3t0
t3

E0(t)e
−2σt cos (ωz(t2, t0)t)dt| ≤

∫ 3t0
t3

|E0(t)e
−2σt|dt ≈ 0, for sufficiently large t3 and

t0 >> t3, given that E0(t)e
−2σt has an asymptotic exponential fall-off rate of o[e−0.5|t|] ( Appendix

A.5) and E0(t)e
−2σt > 0 for |t| < ∞ ( Appendix A.1).

As we increase t3 to t′3 and t0 to t′0 >> t′3, we see that C(t′3, t
′
0) > C(t3, t0) > 0, using Result 5.1.1

and Result 5.1.2, given that E0(t)e
−2σt > 0 for |t| < ∞ (Result 5.1.3).

As we increase t3 to t′3 and t0 to t′0 >> t′3, we see that |B(t′3, t
′
0)| < |B(t3, t0)| and |D(t′3, t

′
0)| <

|D(t3, t0)| approach zero (Result 5.1.4), given that E0(t)e
−2σt has an asymptotic exponential fall-

off rate of o[e−0.5|t|] ( Appendix A.5) and E0(t)e
−2σt > 0 for |t| < ∞ ( Appendix A.1).

Hence we see that A(t0) =
∫ 3t0
−∞ E0(t)e

−2σt cos (ωz(t2, t0)t)dt >
C0(t3)

2
− |B(t3, t0)| − |D(t3, t0)| ≈

C0(t3)
2

> 0 using Result 5.1.2, Result 5.1.3 and Result 5.1.4.

44

http://www.math.ualberta.ca/~isaac/math311/s14/abs_value.pdf


For example, we choose t3 = 10 such that E0(t)e
−2σt is vanishingly small and approximates

zero for |t| > t3. Given that E0(t) > 0 for |t| < ∞ ( Appendix A.7) and the term e−2σt has
a minimum value of e−|t| for 0 < σ < 1

2
, we see that the integral C0(t3) =

∫ t3
−t3

E0(t)e
−2σtdt >

2
∫ t3
0

E0(t)e
−|t|dt > C00 = 0.42 where C00 is computed by considering the first 5 terms n = 1, 2, 3, 4, 5

in E0(t) =
∑∞

n=1[4π
2n4e4t − 6πn2e2t]e−πn2e2te

t
2 . Hence C0(t3) > 0.42. (Matlab simulation)

Hence we see that A(t0) =
∫ 3t0
−∞ E0(t)e

−2σt cos (ωz(t2, t0)t)dt >
C0(t3)

2
−|B(t3, t0)|−|D(t3, t0)| ≈ 0.21.

As t0 increases without bounds, we see that A(t0) does not have exponential fall off rate.
.

6. Strictly decreasing E0(t) for t > 0

We show that E0(t) is strictly decreasing for t > 0, by showing that dE0(−t)
dt

< 0 for 0 < t < ∞.
We set y = πe2t in E0(−t) in the second line in Eq. A.5 and then take the first derivative of E0(y) as

follows. We see that dy
dt

= 2πe2t = 2y and dE0(−t)
dt

= dE0(−t)
dy

dy
dt

= dE0(y)
dy

2y and hence we will show that
dE0(y)

dy
< 0 for π < y < ∞.

E0(−t) =
∞∑

n=odd

(e−π n2

4
e2t − e−πn2e2t − e−π

(n+1)2

4
e2t + e−π(n+1)2e2t)e

t
2

E0(y) = (π)−
1
4

∞∑
n=odd

e−
n2

4
yy

1
4 − e−n2yy

1
4 − e−

(n+1)2

4
yy

1
4 + e−(n+1)2yy

1
4

dE0(y)

dy
= (π)−

1
4

∞∑
n=odd

e−
n2

4
yy

1
4 (

1

4y
− n2

4
)− e−n2yy

1
4 (

1

4y
− n2)

−e−
(n+1)2

4
yy

1
4 (

1

4y
− (n+ 1)2

4
) + e−(n+1)2yy

1
4 (

1

4y
− (n+ 1)2)

(93)

We take the common term e−
n2

4
yy

1
4 out and use (n + 1)2 = n2 + 2n + 1 and rearrange the terms

in Eq. 93 as follows.

dE0(y)

dy
= (π)−

1
4

∞∑
n=odd

e−
n2

4
yy

1
4 [(

1

4y
− n2

4
)− e−

3n2

4
y(

1

4y
− n2)

−e−
(2n+1)

4
y(

1

4y
− (n+ 1)2

4
) + e−

3n2

4
ye−(2n+1)y(

1

4y
− (n+ 1)2)]

(94)

We compute themaximum value of dE0(y)
dy

in Eq. 94, by computing the maximum value of positive
terms and minimum value of absolute value of negative terms. We ignore the negative terms inside

the brackets −e−
3n2

4
y 1
4y
, −e−

(2n+1)
4

y 1
4y

and −(n + 1)2e−
3n2

4
ye−(2n+1)y because we want the maximum

value of dE0(y)
dy

in the interval π < y < ∞.
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dE0(y)

dy
< (π)−

1
4

∞∑
n=odd

e−
n2

4
yy

1
4 [(

1

4y
− n2

4
) + e−

3n2

4
yn2

+e−
(2n+1)

4
y (n+ 1)2

4
+ e−

3n2

4
ye−(2n+1)y 1

4y
]

(95)

We see that y = πe2t is in the range y = [π,∞) for 0 ≤ t < ∞, and in the range y = [π, ya) for
0 ≤ t < ta = 0.1, where ya = πe2ta = 3.8371.

• It is shown in Section 6.0.1 that dE0(y)
dy

< 0 for ya ≤ y < ∞ for ya = 3.8371.

• It is shown in Section 6.0.2 that d2E0(y)
dy2

< 0 for π ≤ y < ya and hence dE0(y)
dy

< 0 for π < y < ya.

• Hence dE0(y)
dy

< 0 for π < y < ∞. Given y = πe2t and dy
dt

= 2πe2t = 2y and dE0(−t)
dt

= dE0(−t)
dy

dy
dt

=
dE0(y)

dy
2y, we see that dE0(−t)

dt
< 0 for t > 0. Hence E0(t) = E0(−t) is strictly decreasing for t > 0.

.

6.0.1. dE0(y)
dy

< 0 for ya ≤ y < ∞ for ya = 3.8371

We see that the maximum value of the first term inside brackets ( 1
4y

− n2

4
) in Eq. 95 occurs at

n = 1 and y = ya = 3.8371 given by D1 =
1

4ya
− 1

4
= 1

4∗3.8371 −
1
4
= −0.1848.

We consider the second term inside brackets in Eq. 95 given by I(y, n) = n2e−
3n2

4
y. It is a

strictly decreasing function in the region ya ≤ y < ∞, with maximum value at y = ya, for each
n.

We set y = ya = 3.8371 and compute dI(ya,n)
dn

= e−
3n2

4
ya [2n + n2(−6nya

4
)] which has an inflection

point at 2n+ n2(−6nya
4

) = 0. Given that I(ya, n) > 0 for all finite n and goes to zero as n → ∞ due

to the term e−
3n2

4
ya , this inflection point is a maximum point. We cancel common term n and get

2 + n2(−6ya
4
) = 0 which has roots at n2 = 4

3ya
given by n = ±0.5895. Hence we choose n = 0.5895

as a positive solution and I(ya, n) is strictly decreasing for n > 0.5895 and the nearest positive
integer is n = 1, where I(ya, n) has a maximum value for all positive integer n. (Result E.5.1)

Hence the maximum value of I(y, n) in the interval ya ≤ y < ∞, is at y = ya and n = 1 given

by I(ya, 1) = e−
3
4
ya = 0.0563 = D2.

We consider the third term inside brackets in Eq. 95 given by J(y, n) = (n+1)2

4
e−

(2n+1)
4

y which is
strictly decreasing function in the interval ya ≤ y < ∞, withmaximum value at y = ya, for each n.

We set y = ya = 3.8371 and compute dJ(ya,n)
dn

= e−
(2n+1)

4
ya [2(n+1)

4
+ (n+1)2

4
(− (2ya)

4
)] which has an

inflection point at 2(n+1)
4

+ (n+1)2

4
(− (2ya)

4
) = 0. Given that J(ya, n) > 0 for all finite n and goes to zero

as n → ∞ due to the term e−
(2n+1)

4
ya , this inflection point is a maximum point. We cancel common

term 2(n+1)
4

and get 1 − (n + 1)ya
4
= 0 which has roots at n + 1 = 4

ya
= 1.0424 given by n = 0.0424.

Hence J(ya, n) is strictly decreasing for n > 0.0424 and the nearest positive integer is n = 1 where
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J(ya, n) has a maximum value for all positive integer n.(Result E.5.2)

Hence the maximum value of J(y, n) in the interval ya ≤ y < ∞, is at y = ya and n = 1 given

by J(ya, 1) = e−
3
4
ya = 0.0563 = D3.

The fourth term in Eq. 95 given by e−
3n2

4
ye−(2n+1)y 1

4y
has a maximum at n = 1 and y = ya given

by e−
3
4
yae−3ya 1

4ya
= 3.6706 ∗ 10−8 < 10−7 = D4.

Hence the maximum value of the terms in square bracket in Eq. 95 for ya ≤ y < ∞ and for n = 1,
is given by D1 +D2 +D3 +D4 = −0.1848+ 0.0563+ 0.0563+ 10−7 ≈ −0.0722 < 0. This summation
is negative for n > 1, given Result E.5.1 and Result E.5.2 and D2 + D3 + D4 is a smaller positive
value and D1 is more negative than the case for n = 1. Hence dE0(y)

dy
< 0 for ya ≤ y < ∞, given

summation of negative terms for each odd n and given that e−
n2

4
yy

1
4 > 0 for all finite n and y.

.

6.0.2. d2E0(y)
dy2

< 0 for π ≤ y < ya and hence dE0(y)
dy

< 0 for π < y < ya

We compute the second derivative d2E0(−t)
dt2

from Eq. 93 as follows.

We set y = πe2t in Eq. 93 as follows.

E0(y) = (π)−
1
4

∞∑
n=odd

e−
n2

4
yy

1
4 − e−n2yy

1
4 − e−

(n+1)2

4
yy

1
4 + e−(n+1)2yy

1
4

dE0(y)

dy
= (π)−

1
4

∞∑
n=odd

e−
n2

4
yy

1
4 (

1

4y
− n2

4
)− e−n2yy

1
4 (

1

4y
− n2)

−e−
(n+1)2

4
yy

1
4 (

1

4y
− (n+ 1)2

4
) + e−(n+1)2yy

1
4 (

1

4y
− (n+ 1)2)

(96)

We compute the second derivative d2E0(y)
dy2

as follows.

d2E0(y)

dy2
= (π)−

1
4

∞∑
n=odd

e−
n2

4
yy

1
4 (− 1

4y2
+ (

1

4y
− n2

4
)2)− e−n2yy

1
4 (− 1

4y2
+ (

1

4y
− n2)2)

−e−
(n+1)2

4
yy

1
4 (− 1

4y2
+ (

1

4y
− (n+ 1)2

4
)2) + e−(n+1)2yy

1
4 (− 1

4y2
+ (

1

4y
− (n+ 1)2)2)

(97)

We simplify it as follows.
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d2E0(y)

dy2
= (π)−

1
4

∞∑
n=odd

e−
n2

4
yy

1
4 (− 1

4y2
+

1

16y2
− n2

8y
+

n4

16
)

−e−n2yy
1
4 (− 1

4y2
+

1

16y2
− n2

2y
+ n4)

−e−
(n+1)2

4
yy

1
4 (− 1

4y2
+

1

16y2
− (n+ 1)2

8y
+

(n+ 1)4

16
)

+e−(n+1)2yy
1
4 (− 1

4y2
+

1

16y2
− (n+ 1)2

2y
+ (n+ 1)4)

(98)

We compute the maximum value of d2E0(y)
dy2

with y = πe2t in the range y = [π, ya) for 0 ≤ t <
ta = 0.1, where ya = 3.8371, by computing the maximum value of positive terms and minimum value
of absolute value of negative terms. Let the maximum value of y be ymax = ya = πe2ta and minimum
value of y be ymin = π in the interval y = [π, ya).

The first term in curved brackets in Eq. 98 at n = 1 is given by− 1
4y2

+ 1
16y2

−n2

8y
+n4

16
= − 3

16y2
− 1

8y
+ 1

16

and the maximum value of the whole first term in the interval y = [ymin, ymax) is given by

e−
1
4
ymin(ymax)

1
4

1
16

− e−
1
4
ymax(ymin)

1
4 ( 3

16y2max
+ 1

8ymax
) and similarly we compute the other 3 terms at

n = 1, 3, 5, 7, 9. The maximum value of d2E0(y)
dy2

in Eq. 98 at n = 1, 3, 5, 7, 9 in the interval

y = [ymin, ymax) is given by −0.0097 which is negative. (Result E.5.5) Matlab simulation)

We note that − 1
4y2

+ 1
16y2

= − 3
16y2

and ignore the negative terms in Eq. 98 because we are

computing the maximum value of d2E0(y)
dy2

for n ≥ 11 given by [d
2E0(y)
dy2

]2.

[
d2E0(y)

dy2
]2 < (π)−

1
4

∞∑
n=11,13,...

e−
n2

4
yy

1
4
n4

16
+ e−n2yy

1
4 (

3

16y2
+

n2

2y
)

+e−
(n+1)2

4
yy

1
4 (

3

16y2
+

(n+ 1)2

8y
) + e−(n+1)2yy

1
4 (n+ 1)4

(99)

We compute the maximum value of [d
2E0(y)
dy2

]2 in Eq. 99 for n ≥ 11 by setting first term as

e−
n2

4
ymin(ymax)

1
4 and n+ 1 < 1.1n, n2 < 10e0.1n

2
= 10[1 + 0.1n2 + 0.01

2
n4 + ....] and

n4 < 200e0.1n
2
= 200[1 + 0.1n2 + 0.01

2
n4 + ....] as follows.

[
d2E0(y)

dy2
]2 < (π)−

1
4y

1
4
max

∞∑
n=11,13,...

e−
n2

4
ymin200e0.1n

2 1

16
+ e−n2ymin(

3

16y2min

+ 10e0.1n
2 1

2ymin

)

+e−
(n+1)2

4
ymin(

3

16y2min

+ 10e0.1n
2 (1.1)2

8ymin

) + e−(n+1)2ymin200e0.1n
2

(1.1)4

(100)

48

https://www.ocf.berkeley.edu/~araman/files/math_z/test_Phi_inv_all_n.m


We use n+ 1 > n for the exponent term and simplify above equation as follows.

[
d2E0(y)

dy2
]2 < (π)−

1
4y

1
4
max

∞∑
n=11,13,...

e−n2( 1
4
ymin−0.1)200

16
+ e−n2ymin

3

16y2min

+ e−n2(ymin−0.1) 10

2ymin

+e−n2 1
4
ymin

3

16y2min

+ e−n2( 1
4
ymin−0.1) (1.1)

2 ∗ 10
8ymin

+ e−n2(ymin−0.1)200(1.1)4

(101)

We use the complementary error function given by erfc(z) = 2√
π

∫∞
z

e−u2
du link) and the fact

that
∞∑

n=11,13,...

e−n2K <

∫ ∞

11

e−t2Kdt =
1√
K

∫ ∞

11
√
K

e−u2

du =

√
π

2
√
K

erfc(11
√
K) using the substitution

t
√
K = u and dt

√
K = du and write Eq. 101 as follows.

[
d2E0(y)

dy2
]2 < (π)−

1
4y

1
4
max[

200

16

√
π

2
√

(1
4
ymin − 0.1)

erfc(11

√
(
1

4
ymin − 0.1)) +

3

16y2min

√
π

2
√
ymin

erfc(11
√
ymin)

+
10

2ymin

√
π

2
√

(ymin − 0.1)
erfc(11

√
(ymin − 0.1)) +

3

16y2min

√
π

2
√

1
4
ymin

erfc(11

√
1

4
ymin

+
(1.1)2 ∗ 10

8ymin

√
π

2
√

(1
4
ymin − 0.1)

erfc(11

√
(
1

4
ymin − 0.1))

+200(1.1)4
√
π

2
√

(ymin − 0.1)
erfc(11

√
(ymin − 0.1))]

(102)

We compute Eq. 102 numerically and get [d
2E0(y)
dy2

]2 < 8.65 ∗ 10−37. The maximum value of

[d
2E0(y)
dy2

]2 in Eq. 101 at n = 11, 13, .. in the interval y = [ymin, ymax) is given by 8.65 ∗ 10−37 which is

positive. (Result E.5.6) Matlab simulation)

Using Result E.5.5 and E.5.6, we get the maximum value of d2E0(y)
dy2

in Eq. 98 at n = 1, 3, 5, ..

in the interval y = [ymin, ymax) is given by −0.0097 + 8.65 ∗ 10−37 ≈ −0.0097 which is negative.
(Result E.5.7)

Hence we have shown that d2E0(y)
dy2

< 0 , for π ≤ y < ya and hence dE0(y)
dy

< 0 for π < y < ya given

that dE0(y)
dy

= 0 at y = π.

It is shown in Section 6.0.1 that dE0(y)
dy

< 0 for ya ≤ y < ∞ for all finite n.

Hence dE0(y)
dy

< 0 for π < y < ∞. We see that y = πe2t and dy
dt

= 2πe2t = 2y and dE0(−t)
dt

=
dE0(−t)

dy
dy
dt

= dE0(y)
dy

2y and hence dE0(−t)
dt

< 0 for t > 0. Hence E0(t) = E0(−t) is strictly decreasing for
t > 0.

.
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7. Hurwitz Zeta Function and related functions

We can show that the new method is not applicable to Hurwitz zeta function and related zeta
functions and does not contradict the existence of their non-trivial zeros away from the critical
line given by Re[s] = 1

2
. The new method requires the symmetry relation E(s) = E(1 − s)

and hence E(1
2
+ iω) = E(1

2
− iω) when evaluated at the critical line s = 1

2
+ iω. This results

in E0ω(ω) = E0ω(−ω) and E0(t) = E0(−t) (Section 1.6, Section 1.7 and Appendix A.8) where

E0(t) =
∞∑
n=1

(−1)n−1(e−π n2

4
e−2t − e−πn2e−2t

)e−
t
2 and this condition is satisfied for Riemann’s Zeta func-

tion.

It is not known that Hurwitz Zeta Function given by ζ(s, a) =
∞∑

m=0

1
(m+a)s

satisfies a symmetry

relation similar to E(s) = E(1− s), for a ̸= 1 and hence the condition E0(t) = E0(−t) is not known
to be satisfied [6]. Hence the new method is not applicable to Hurwitz zeta function and does not
contradict the existence of their non-trivial zeros away from the critical line.

Dirichlet L-functions satisfy a symmetry relation ξ(s, χ) = ϵ(χ)ξ(1 − s, χ̄) [7] which does not
translate to E0(t) = E0(−t) required by the new method and hence this proof is not applicable to
them. This proof does not need or use Euler product.

We know that ζ(s) =
∞∑

m=1

1
ms diverges for Re[s] ≤ 1. Hence we derive a convergent function E(s)

and then derive E0(t) =
∞∑
n=1

(−1)n−1(e−π n2

4
e−2t −e−πn2e−2t

)e−
t
2 . In the case of Hurwitz zeta function

and other zeta functions with non-trivial zeros away from the critical line, it is not known if
derivation of a convergent function E(s) results in E0(t) as a Fourier transformable, real, even and
analytic function. Hence the new method presented in this paper is not applicable to Hurwitz zeta
function and related zeta functions.

The proof of Riemann Hypothesis presented in this paper is only for the specific case of Rie-
mann’s Zeta function and only for the critical strip 0 ≤ |σ| < 1

2
. This proof requires both Ep(t)

and Epω(ω) to be Fourier transformable where Ep(t) = E0(t)e
−σt is a real analytic function and uses

the fact that E0(t) is an even function of variable t and E0(t) > 0 for |t| < ∞ ( Appendix A.7) and
E0(t) is strictly decreasing function for t > 0 (Section 6). These conditions may not be satisfied
for many other functions including those which have non-trivial zeros away from the critical line and
hence the new method may not be applicable to such functions.
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.

Appendix A. Properties of Fourier Transforms

.

Appendix A.1. Ep(t), h(t) are absolutely integrable functions and their Fourier Trans-
forms are finite.

The inverse Fourier Transform of the function Epω(ω) is given by Ep(t) = E0(t)e
−σt = 1

2π

∫∞
−∞Epω(ω)e

iωtdω.

In Eq. 15, we see that E0(t) =
∞∑
n=1

(−1)n−1(e−π n2

4
e−2t − e−πn2e−2t

)e−
t
2 > 0 and finite for all −∞ < t <

∞( Appendix A.7). Hence Ep(t) = E0(t)e
−σt > 0 and finite for all −∞ < t < ∞.

It is shown in Appendix A.5 that E0(t) has an asymptotic exponential fall-off rate of at least
O[e−1.5|t|] and hence Ep(t) has an asymptotic exponential fall-off rate of at least O[e−(1.5−σ)|t|] >
O[e−|t|], for 0 ≤ |σ| < 1

2
. Hence Ep(t) = E0(t)e

−σt goes to zero, at t → ±∞ and we showed that
Ep(t) > 0 and finite for all −∞ < t < ∞ in the last paragraph.(Result 21) Hence Epω(ω) =∫∞
−∞Ep(t)e

−iωtdt, evaluated at ω = 0 cannot be zero. Hence Epω(ω) does not have a zero at
ω = 0 and hence ω0 ̸= 0.

Given that Epω(ω) is a holomorphic function in the region 0 < Re[s] < 1, it is finite for real ω and
also for ω = 0. Hence Epω(0) =

∫∞
−∞Ep(t)dt is finite. Using Result 21, we can write

∫∞
−∞ |Ep(t)|dt is

finite and Ep(t) is an absolutely integrable function and its Fourier transform Epω(ω) goes to zero
as ω → ±∞, as per Riemann Lebesgue Lemma (link).

Using the arguments in above paragraph, we replace σ in Ep(t) by 0 and 2σ respectively and see
that E0(t) and E0(t)e

−2σt are absolutely integrable functions and the integrals
∫∞
−∞ |E0(t)|dt < ∞

and
∫∞
−∞ |E0(t)e

−2σt|dt < ∞.

Given that Ep(t) = E0(t)e
−σt is an absolutely integrable function, its shifted versions are abso-

lutely integrable and we see that E
′
p(t, t2) = e−σt2Ep(t−t2)−eσt2Ep(t+t2) = (E0(t−t2)−E0(t+t2))e

−σt

in Eq. 16 is an absolutely integrable function, for a finite shift of t2. ( We substitute t− t2 = τ and
dt = dτ and get

∫∞
−∞ |Ep(t− t2)|dt =

∫∞
−∞ |Ep(τ)|dτ and hence Ep(t− t2) is an absolutely integrable

function, given that Ep(t) is absolutely integrable. Same argument holds for Ep(t+ t2).)

We can see that h(t) = eσtu(−t)+e−σtu(t) is an absolutely integrable function because h(t) > 0
for real t and

∫∞
−∞ |h(t)|dt =

∫∞
−∞ h(t)dt = [

∫∞
−∞ h(t)e−iωtdt]ω=0 = [ 1

σ−iω
+ 1

σ+iω
]ω=0 = 2

σ
, is finite for

0 < σ < 1
2
and its Fourier transform H(ω) goes to zero as ω → ±∞, as per Riemann Lebesgue

Lemma (link).

.
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Appendix A.2. Convolution integral convergence

Let us consider h(t) = eσtu(−t) + e−σtu(t) whose first derivative given by dh(t)
dt

= σeσtu(−t) −
σe−σtu(t) and A0 = [dh(t)

dt
]t=0+ − [dh(t)

dt
]t=0− = −2σ and hence dh(t)

dt
is discontinuous at t = 0, for

0 < σ < 1
2
. The second derivative of h(t) given by h2(t) has a Dirac delta function A0δ(t) where

A0 = −2σ and its Fourier transform H2(ω) has a constant term A0, corresponding to the Dirac delta
function.

This means h(t) is obtained by integrating h2(t) twice and its Fourier transform H(ω) has a term
A0

(iω)2
(link) and has a fall off rate of 1

ω2 as |ω| → ∞ and
∫∞
−∞H(ω)dω converges.(Result B.2)

Let us consider the function g(t, t2, t0) = f(t, t2, t0)e
−σtu(−t) + f(t, t2, t0)e

σtu(t) in Eq. 16 and

its first derivative given by dg(t,t2,t0)
dt

= [−σe−σtf(t, t2, t0) + e−σt df(t,t2,t0)
dt

]u(−t) + [σeσtf(t, t2, t0) +

eσt df(t,t2,t0)
dt

]u(t). We get [dg(t,t2,t0)
dt

]t=0− = −σf(0, t2, t0)+[df(t,t2,t0)
dt

]t=0− and [dg(t,t2,t0)
dt

]t=0+ = σf(0, t2, t0)+

[df(t,t2,t0)
dt

]t=0+(Result B.2.1).

We note that f(t, t2, t0) is a continuous function in Eq. 16 and get [df(t,t2,t0)
dt

]t=0+ = [df(t,t2,t0)
dt

]t=0−

and get [dg(t,t2,t0)
dt

]t=0+ − [dg(t,t2,t0)
dt

]t=0− = 2σf(0, t2, t0) using Result B.2.1. Hence dg(t,t2,t0)
dt

is discon-
tinuous at t = 0, for 0 < σ < 1

2
, if f(0, t2, t0) ̸= 0.

We can see that the first derivatives of g(t, t2, t0), h(t) are discontinuous at t = 0 and hence
G(ω, t2, t0), H(ω) have fall-off rate of 1

ω2 as |ω| → ∞, using Result B.2. Hence the convolution
integral below converges to a finite value for real ω, for the case f(0, t2, t0) ̸= 0.

F (ω, t2, t0) =
1

2π

∫ ∞

−∞
G(ω′, t2, t0)H(ω − ω′)dω′ =

1

2π
[G(ω, t2, t0) ∗H(ω)] (A.1)

If f(0, t2, t0) = 0, and if the N th derivative of g(t, t2, t0) is discontinuous at t = 0 where N > 1,
we see that G(ω, t2, t0) has fall-off rate of 1

ω(N+1) as |ω| → ∞( Appendix A.3). G(ω, t2, t0) has a
minimum fall-off rate of 1

ω2 as |ω| → ∞ for this case. Hence the convolution integral in Eq. A.1
converges to a finite value for real ω.

.

Appendix A.3. Fall off rate of Fourier Transform of functions

Let us consider a real Fourier transformable function P (t) = P+(t)u(t) + P−(t)u(−t) whose
(N − 1)th derivative is discontinuous at t = 0. The (N)th derivative of P (t) given by PN(t)

has a Dirac delta function A0δ(t) where A0 = [d
N−1P+(t)
dtN−1 − dN−1P−(t)

dtN−1 ]t=0 and its Fourier transform
PNω(ω) has a constant term A0, corresponding to the Dirac delta function.

This means P (t) is obtained by integrating PN(t), N times and its Fourier transform Pω(ω) has a
term A0

(iω)N
(link) and has a fall off rate of 1

ωN as |ω| → ∞.

We have shown that if the (N − 1)th derivative of the function P (t) is discontinuous at t = 0
then its Fourier transform Pω(ω) has a fall-off rate of 1

ωN as |ω| → ∞ .
.
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Appendix A.4. Exponential Fall off rate of analytic functions.

We know that the order of Riemann’s Xi function ξ(1
2
+ iω) = Ξ(ω) is given by O(ωAe−

|ω|π
4 ) where

A is a constant [3] (Titchmarsh pp256-257 and Titchmarsh pp28-31).

We consider x(t) = E0(t)e
−2σt and its Fourier transform is given byX(ω) =

∫∞
−∞E0(t)e

−2σte−iωtdt =∫∞
−∞E0(t)e

−i(ω−i2σ)tdt = E0ω(ω − i2σ) = E(1
2
+ i(ω − i2σ)) = E(1

2
+ 2σ + iω) = E0ω(ω − i2σ). Given

that E(s) = ξ(s)(1−21−s)(2s−1)
s(s−1)

in Eq. 5, E0ω(ω) and X(ω) = E0ω(ω − i2σ) have exponential fall-off

rate O(ωAe−
|ω|π
4 ) as |ω| → ∞ and they are absolutely integrable ( Appendix A.6) and Fourier trans-

formable, given that they are derived from E(s).

Given that E(s) is a holomorphic function in the region 0 < Re[s] < 1, we see that X(ω) is an
analytic function which is infinitely differentiable which produces no discontinuities for real ω and
0 < σ < 1

2
. Hence its inverse Fourier transform x(t) has fall-off rate faster than limM→∞

1
tM

, as
|t| → ∞ ( Appendix A.3) and hence x(t) = E0(t)e

−2σt should have exponential fall-off rate of
e−B|t|, as |t| → ∞, where B > 0 is real.

.

Appendix A.5. Exponential Fall off rate of x(t) = E0(t)e
−2σt

Given that E0(t) = E0(−t) ( Appendix A.8), we write E0(t) in Eq. 15 as follows.

E0(t) =
∞∑
n=1

(−1)n−1(e−π n2

4
e2t − e−πn2e2t)e

t
2 =

∞∑
n=1

(−1)n−1e−π n2

4
e2t(1− e−π 3n2

4
e2t)e

t
2

(A.2)

We use Taylor series expansion around t = 0 for e2t =
∞∑
r=0

(2t)r

!r
, given that e2t is an analytic

function for real t.

E0(t) =
∞∑
n=1

(−1)n−1e−π n2

4
(1+2t)e−π n2

4
(
(2t)2

!2
+

(2t)3

!3
....)(1− e−π 3n2

4
e2t)e

t
2

(A.3)

We take the term e−
π
2
te

t
2 = e−1.0708t out of the summation, corresponding to n = 1 and write

Eq. A.3 as follows.

E0(t) = e−
π
2
te

t
2

∞∑
n=1

(−1)n−1e−π n2

4 e−
π
2
(n2−1)te−π n2

4
(
(2t)2

!2
+

(2t)3

!3
....)(1− e−π 3n2

4
e2t) (A.4)

For t > 0, we see that the term corresponding to n = 1 in Eq. A.4 has an asymptotic fall-off rate
of at least O[e−1.0708t] > O[e−t]. The terms corresponding to n > 1 have fall-off rates higher than
O[e−t], due to the term e−

π
2
(n2−1)t.
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Hence we see that E0(t) has an asymptotic fall-off rate of at least O[e−t], for t > 0. Given that
E0(t) = E0(−t)( Appendix A.8), we see that E0(t) has an exponential asymptotic fall-off rate of
at least O[e−|t|].

Similarly, Ep(t) = E0(t)e
−σt has an asymptotic exponential fall-off rate of at least O[e−(1−σ)|t|] >

O[e−0.5|t|], for 0 ≤ |σ| < 1
2
.

Similarly, x(t) = E0(t)e
−2σt has an asymptotic exponential fall-off rate of at leastO[e−(1−2σ)|t|] >

O[e−δ|t|], for 0 ≤ |σ| < 1
2
and δ > 0.

.

Appendix A.6. Absolutely integrable functions

We see that a real function y(t) which is finite for all t and has an asymptotic falloff rate of at

least O[ 1
t2
] is an absolutely integrable function, given that

∫∞
−∞ |y(t)|dt =

∫ −T

−∞ |y(t)|dt+
∫ T

−T
|y(t)|dt+∫∞

T
|y(t)|dt is finite, for non-zero and finite T , because when we integrate the integrand |y(t)| with

order O[ 1
t2
] , we get the result O[1

t
], which is finite at the limit t = ±T and the result O[1

t
] is zero at

the limit t → ±∞. If y(t) has an exponential asymptotic falloff rate, when we integrate the integrand
|y(t)| with order O[e−A|t|] for real A > 0, we get the result O[ 1

A
e−A|t|], which is finite at the limit

t = ±T and the result is zero at the limit t → ±∞ and hence y(t) is an absolutely integrable function.

.

Appendix A.7. E0(t) > 0 for −∞ < t < ∞

It is shown in this section that E0(t) > 0 for −∞ < t < ∞. We take the term e−π n2

4
e2te

t
2 out of

the brackets in Eq. A.5 for E0(−t) and use (n+1)2 = n2+2n+1 and rearrange the terms in the last
line below.

E0(−t) =
∞∑
n=1

(−1)n−1(e−π n2

4
e2t − e−πn2e2t)e

t
2

E0(−t) =
∞∑

n=odd

(e−π n2

4
e2t − e−πn2e2t − e−π

(n+1)2

4
e2t + e−π(n+1)2e2t)e

t
2

E0(−t) =
∞∑

n=odd

e−π n2

4
e2te

t
2 (1− e−π 3n2

4
e2t − e−π

(2n+1)
4

e2t + e−π 3n2

4
e2te−π(2n+1)e2t)

(A.5)

We compute theminimum value of E0(−t) in Eq. A.5 for 0 ≤ t < ∞, by computing the minimum
value of positive terms and maximum value of absolute value of negative terms. We ignore the last

term e−π 3n2

4
e2te−π(2n+1)e2t > 0 because we want the minimum value of E0(−t).

The minimum value of the first term inside brackets in Eq. A.5 is A1 = 1. The maximum value

of the absolute value of the second term inside brackets e−π 3n2

4
e2t occurs at n = 1 and t = 0, given by
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A2 = e−π 3
4 . The maximum value of the absolute value of the third term e−π

(2n+1)
4

e2t occurs at n = 1
and t = 0, given by A3 = e−π 3

4 . Hence the minimum value of the terms inside the brackets is given
by A1 − A2 − A3 = 1− 2e−π 3

4 = 0.8104 > 0 for all n and hence E0(−t) > 0 for 0 ≤ t < ∞.
.

Appendix A.8. E0(t) is real and even

We see that E(1
2
+ iω) = E0ω(ω) = E0ω(−ω) (Result 13) because E(s) = E(1− s) in Eq. 5 and

hence E(1
2
+ iω) = E(1

2
− iω) when evaluated at s = 1

2
+ iω.

We take the Inverse Fourier transform of E0ω(ω) and use E0ω(ω) = E0ω(−ω) from Result 13 and
then substitute ω = −ω

′
in the integrand, as follows.

E0(t) =
1

2π

∫ ∞

−∞
E0ω(ω)e

iωtdω =
1

2π

∫ ∞

−∞
E0ω(−ω)eiωtdω

=
1

2π

∫ ∞

−∞
E0ω(ω

′
)e−iω

′
tdω

′
= E0(−t)

(A.6)

We see that E0(t) in Eq. 15 is real and E0(t) in Eq. A.6 is even and hence we have derived the
result that E0(t) is a real and even function of variable t.

.

Appendix A.9. Exponential fall-off rate of Dirichlet Eta function

The integrand in Eq. 13 given by
∞∑
n=1

(−1)n−1e−πn2e−2t

e−
t
2 e−σt goes to zero with exponential

fall-off rate, as t → −∞ because the term e−πn2e−2t
has a faster fall-off rate than the term e−

t
2 e−σt.

The integrand in Eq. 13 given by
∞∑
n=1

(−1)n−1e−πn2e−2t

e−
t
2 e−σt goes to zero with exponential

fall-off rate, as t → +∞ because the term limt→∞ e−πn2e−2t
= 1− 1+ 1− 1... = 1

2
(Eq.1.2.7 in page 2)

for each n and hence limt→∞

∞∑
n=1

(−1)n−1e−πn2e−2t

=
1

2
and the term limt→∞ e−

t
2 e−σt = 0 for 0 < σ < 1

2
.

The above results also hold for each n = 1, 2, ...
.

Appendix A.10. Functional equation for Dirichlet Eta function

We use the functional equation for Riemann’s zeta function given by ζ(s) = ζ(1 − s)Γ(1 −

s) sin ( sπ
2
)π(s−1)2s and use ζ(s) =

η(s)

1− 21−s
and s = 1

2
+ σ + iω and 1− s = 1

2
− σ − iω.

ζ(s) = ζ(1− s)Γ(1− s) sin (
sπ

2
)π(s−1)2s

η(s)

1− 21−s
=

η(1− s)

1− 2s
Γ(1− s) sin (

sπ

2
)π(s−1)2s
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(A.7)

We use well known properties of Gamma function Γ(s)Γ(1−s) = π
sin (sπ)

= π
2 sin ( sπ

2
) cos ( sπ

2
)
in Eq. A.7

as follows. (link)

η(s)

1− 21−s
=

η(1− s)

1− 2s
π

2 sin ( sπ
2
) cos ( sπ

2
)Γ(s)

sin (
sπ

2
)π(s−1)2s (A.8)

We cancel the common term sin ( sπ
2
) in Eq. A.8 for 0 < Re[s] < 1 and rearrange the terms as

follows.

η(1− s) = η(s)Γ(s) cos (
sπ

2
)

(1− 2s)

(1− 21−s)πs2s−1
(A.9)

In the modified functional equation in Eq. A.9 , we see that, if Dirichlet Eta function η(s) has a
zero in the region 0 < Re[s] < 1 at s = s0, then η(s) also has a zero at s = 1− s0, due to the term
η(1− s), given that for Re[s] > 0, the gamma function is analytic in the complex plane (link).

.

Appendix B. Properties of Fourier Transforms Part 1

In this section, some well-known properties of Fourier transforms are re-derived.
.

Appendix B.1. Fourier transform of Real g(t)

In this section, we show that the Fourier transform of a real function g(t), given by G(ω) =
GR(ω) + iGI(ω) has the properties given by GR(−ω) = GR(ω) and GI(−ω) = −GI(ω). We use the
fact that g(t) is real and cos (ωt) is an even function of ω and sin (ωt) is an odd function of ω below.

G(ω) =

∫ ∞

−∞
g(t)e−iωtdt = GR(ω) + iGI(ω)

GR(ω) =

∫ ∞

−∞
g(t) cos (ωt)dt = GR(−ω)

GI(ω) = −
∫ ∞

−∞
g(t) sin (ωt)dt = −GI(−ω)

(B.1)

.

Appendix B.2. Even part of g(t) corresponds to real part of Fourier transform G(ω)

In this section, we take the even part of real function g(t), given by geven(t) =
1
2
[g(t) + g(−t)]

and show that its Fourier transform is given by the real part of G(ω).

G(ω) =

∫ ∞

−∞
g(t)e−iωtdt = GR(ω) + iGI(ω)∫ ∞

−∞
geven(t)e

−iωtdt =

∫ ∞

−∞

1

2
[g(t) + g(−t)]e−iωtdt =

G(ω)

2
+

1

2

∫ ∞

−∞
g(−t)e−iωtdt
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(B.2)

We substitute t = −t in the second integral in Eq. B.2. We use the fact that GR(−ω) = GR(ω)
and GI(−ω) = −GI(ω) for a real function g(t). ( Appendix B.1)

∫ ∞

−∞
geven(t)e

−iωtdt =
G(ω)

2
+

1

2

∫ ∞

−∞
g(t)eiωtdt =

G(ω)

2
+

G(−ω)

2

=
1

2
[GR(ω) + iGI(ω) +GR(−ω) + iGI(−ω)] =

1

2
[GR(ω) + iGI(ω) +GR(ω)− iGI(ω)] = GR(ω)

(B.3)

.

Appendix B.3. Odd part of g(t) corresponds to imaginary part of Fourier transform
G(ω)

In this section, we take the odd part of real function g(t), given by godd(t) =
1
2
[g(t)− g(−t)] and

show that its Fourier transform is given by the imaginary part of G(ω).

G(ω) =

∫ ∞

−∞
g(t)e−iωtdt = GR(ω) + iGI(ω)∫ ∞

−∞
godd(t)e

−iωtdt =

∫ ∞

−∞

1

2
[g(t)− g(−t)]e−iωtdt =

G(ω)

2
− 1

2

∫ ∞

−∞
g(−t)e−iωtdt

(B.4)

We substitute t = −t in the second integral in Eq. B.4. We use the fact that GR(−ω) = GR(ω)
and GI(−ω) = −GI(ω) for a real function g(t). ( Appendix B.1)

∫ ∞

−∞
godd(t)e

−iωtdt =
G(ω)

2
− 1

2

∫ ∞

−∞
g(t)eiωtdt =

G(ω)

2
− G(−ω)

2

=
1

2
[GR(ω) + iGI(ω)−GR(−ω)− iGI(−ω)] =

1

2
[GR(ω) + iGI(ω)−GR(ω) + iGI(ω)] = iGI(ω)

(B.5)

.

Appendix B.4. Fourier transform of a real and even function g(t)

In this section, we show that the Fourier transform of a real and even function g(t), given by
G(ω) is also real and even. We use the fact that

∫∞
−∞ g(t) sinωtdt = 0 because g(t) is even and the

integrand is an odd function of variable t.

G(ω) =

∫ ∞

−∞
g(t)e−iωtdt =

∫ ∞

−∞
g(t) cosωtdt− i

∫ ∞

−∞
g(t) sinωtdt

G(ω) =

∫ ∞

−∞
g(t) cosωtdt
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(B.6)

We see that G(ω) =
∫∞
−∞ g(t) cosωtdt is real function of ω, given that g(t) and the integrand are

real functions. We see that G(ω) is an even function of ω because cosωt is a even function of ω.
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