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Abstract

We consider the analytic continuation of Riemann’s Zeta Function derived from Dirichlet Eta
Function 7(s) which is evaluated at s = % + 0 + 1w, where o,w are real and compute inverse Fourier
transform of I'(5)n(s) and derive E,(t). We study the properties of E,(f) and a promising new
method is presented which could be used to show that the Fourier Transform of E,(t) given by
Epo(w) = &(2 + 0 + iw) does not have zeros for finite and real w when 0 < |o| < 3, corresponding to
the critical strip excluding the critical line.
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1. Introduction

oo

It is well known that Riemann’s Zeta function given by ((s) = >
m=1
where the real part of s is greater than 1. Riemann proved that {(s) has an analytic continuation to
the whole s-plane apart from a simple pole at s = 1 and that ((s) satisfies a symmetric functional

equation given by £(s) = £(1—s) = 1s(s—1)m 21 (£)((s) where I'(s) = [~ e "u*"'du is the Gamma
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ms

converges in the half-plane

2
function. [4] [5] We can see that if Riemann’s Xi function has a zero in the critical strip, then Rie-

mann’s Zeta function also has a zero at the same location. Riemann made his conjecture in his 1859
paper, that all of the non-trivial zeros of ((s) lie on the critical line with real part of s = %, which is
called the Riemann Hypothesis.[1]

Hardy and Littlewood later proved that infinitely many of the zeros of ((s) are on the critical line
with real part of s = 1.[2] It is well known that ((s) does not have non-trivial zeros when real part
of s = %+ o + iw, given by % +o0 >1and % + o < 0. In this paper, critical strip 0 < Re[s] < 1
corresponds to 0 < |o] < 1.

In this paper, a new method is discussed and a specific solution is presented to prove Riemann’s
Hypothesis. If the specific solution presented in this paper is incorrect, it is hoped that the new
method discussed in this paper will lead to a correct solution by other researchers.

In Section [2] to Section [, we prove Riemann’s hypothesis by taking the analytic continuation
of Riemann’s Zeta Function derived from Dirichlet Eta function n(s) and compute inverse Fourier
transform of I'(£)n(s) and show that it does not have zeros for finite and real w when 0 < |o| < 1,
corresponding to the critical strip excluding the critical line.

In Section [7] it is shown that the new method is not applicable to Hurwitz zeta function and
related functions and does not contradict the existence of their non-trivial zeros away from the
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critical line with real part of s = %

We present an outline of the new method below.

1.1. Step 1: Dirichlet Eta function

We use the analytic continuation of Riemann’s zeta function given by ((s) = % where

= — di for R <1 and = —1)""!' = is Dirichlet Eta functi hich -

¢(s) ; — diverges for els] <1 and n(s) ;( ) — 1s Dirichlet Eta function which con
verges for Re[s] > 0. (link and Titchmarsh pp16-17)

We see that if 7(s) has a zero in the critical strip, then ((s) also has a zero at the same location.

We evaluate A(s) = F(%) (s) at s = 1 + 0 4 iw in Eq. . 10 for 0 < o0 < 1 and compute its inverse
Fourier Transform a(t) in .

In Section and Section , it is shown that, if 77(% + 0 +iw) has a zero at w = wy in the critical

strip, then the Fourier transform of the function E,(t) = Ey(t)e " given by E,,(w) also has a zero

'n,2 — —
at w = wy, where Ey(t) = Z(—l)”_l(e_”Te * e ™ e72 derived using a(t).
n=1
Statement 1: We assume that the analytic continuation of Riemann’s zeta function derived
from Dirichlet Eta function given by E,,(w) has a zero at w = wy and then prove that this leads to
a contradiction for 0 < || < 1.

1.2. Step 2: On the zeros of a related function G(w,t, 1))

Let us consider 0 < o < 1 at first. Let us consider a new function g(t, ts, to) = f(¢, t2, to)e " u(—t)+
[t ta,to)e” u(t), where f(t,ts,to) = €727 f1(t, ta, to) + €27 fo(t, ta, to) and fi(t, ta, tg) = " E,(t +
to,t2) and fa(t, ta,tg) = e "W E,(t — to,t2) and E,(t, 1) = e "2E,(t — t5) — e”E,(t + t2) and to,t
are real and g(¢, to, o) is a real function of variable ¢ and u(t) is Heaviside unit step function. We can
see that g(t,ta, to)h(t) = f(t,t2,to) where h(t) = [eTu(—t) + e "tu(t)] .

In Section , we will show that the Fourier transform of the even function ge,e,(t,t2,ty) =
lg(t, ta, to) + g(—t, b2, t0)] given by Gg(w, t2,ty) must have at least one zero at w = w,(ts,to) # 0,
for every value of ty, for each nonzero value of t5, where Gr(w,ts,ty) crosses the zero line to the
opposite sign, to satisfy Statement 1, where w, (3, o) is real and finite.

1.3. Step 3: On the zeros of the function Gg(w,ts,to)

In Section we compute the Fourier transform of the function g(¢,ts,%y) and compute its real
part given by Gg(w, ts,t) and we can write as follows.
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0
Grlw, ty, tg) = e 27" / [Eo(T + to, t2)e™ 2T + Ey (T — to, t2)] cos (wr)dr

—0o0

0
+e20to / [E(/)(T — to, t2)€_2UT + E(l)n(T + to, to)] cos (wT)dr

(1)
We require Gg(w, ta,ty) = 0 for w = w,(ts,ty) for every value of ¢y, for each non-zero value

of ty, to satisfy Statement 1. In general w,(ts,tg) # wo. Hence we can see that P(ty,ty) =
Gr(w:(t2, ), t2, to) = 0.

1.4. Step 4: Zero Crossing function w,(ts, 1)) is an even function of variable i

In Section 2.4 we show the result in Eq. 2 and that w,(ts,t9) = ws(t2, —t9). It is shown that
P(tg,to) = GR(WZ(tQ,tO)’tQ,tO) = odd(tQ;tO) + Podd(tg,—t0> = 0 and that Podd(tg,to) is an odd
function of ¢y, for each non-zero value of £, as follows.

to
P,aa(te, tg) = [cos (wz(tg,to)to)/ E(l)(T, t2)6_2” cos (w, (te, to)T)dT
o
+ sin (wz(t% to)to) / EO(T, tg)e_z‘” sin (wz (tz, to)T)dT]
to , - to ,
+e2oto [cos (w,(tz2, to)to) / E,, (T, t2) cos (w.(te, to)T)dT + sin (w,(te, to)to) / E,, (T, t2) sin (w,(ta, to)7)dT]

(2)

1.5. Step 5: Final Step

In Section , it is shown that w,(ts,%y) is a continuous function of variable ¢, and t, for all
0 <tp < oo and 0 <ty < co. In Section [} it is shown that Ey(t) is strictly decreasing for ¢ > 0.

In Section |3 we set ty = to. and ty = ty. = 2to., such that w,(toc, to.)to. = 5 and substitute
in the equation for P,y4(ts, o) in Eq. 2 and show that this leads to the result in Eq. 3. We use
E(,)(t, tg) = Eo(t — tg) — Eo(t -+ tg) and E[/)n(t,tg) = Eé(—t,tg)

/0 OC(EO(T — tae) — Eo(T + tae))(cosh (20tg.) — cosh (207)) sin (w, (tac, toe)7)dT = 0

(3)
We show that each of the terms in the integrand in Eq. 3 are greater than zero, in the interval
0 < 7 < to. and the integrand is zero at 7 = 0 and 7 = ty., where ty. > 0.



Hence the result in Eq. 3 leads to a contradiction for 0 < ¢ < %

We show this result for 0 < o < % and then use the property f(% +o0+iw) = &(L — o0 —iw) to show

2
the result for —% < 0 < 0. Hence we produce a contradiction of Statement 1 that the Fourier

Transform of the function E,(t) = Ey(t)e " has a zero at w = wy for 0 < |o| < 3.

1.6. Analytic continuation of Riemann Zeta function derived from Dirichlet Eta func-
tion

We consider Riemann’s Xi function £(s), where s = % + 0 +iw. Using the functional equation
of Riemann’s zeta function given by ((s) = (1 — s)['(1 — s)sin ()r~12%, we get £(s) = £(1 — s).

Titchmarsh ppl6-17) Using ((s) = ljéf),s, we write as follows.

§(s) = (NG ™ == = (1 =)
5( ) _ - 2(;3_8 (2)77_79 3(82— 1)

(4)
We define a related analytic continuation E(s) as follows. Given £(s) = &(1 — s), we see that
E(s) = E(1 — s) is analytic in the region 0 < Re[s] < 1 and has simple poles at s = 0 and s = 1.

E()(1— 22— 1)
s(s—1)

L E1-90-2)@ ) e -na-2)

Bl=s) =59 D Es)

E(s) =

(5)

T](S>_S in Eq. 5 and cancel the common terms s(s—1)

We substitute £(s) from Eq. 4 and {(s) = T

and (1 — 2'7%) as follows.

n(s) 8y zsls =1 (1=-2179(2° — 1)

E(s) = 1_ ol (5)7T 2 9 s(s—1)
B = 28 r e b -2 )

We evaluate E(s) at s = 1 + 0 + iw and use K = e™1°8(5) a5 follows.

1 1 Lt o+iw 77(%2”)
9 s —iw .
E(§ +o0+iw) = Ep(w) = 77(5 + 0 +iw)[(2 5 ) 5 ¢’ log(m) (9z+o giwlos(2) _ 1)
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I to4iw
We define A, (w) =n(3 + o + iw)T( 2+2+ ), and we can rearrange the terms as follows.

T efzmlog(fr)(Q%”ei“log(Q)—1)

(8)

We define a(t) as the Inverse Fourier Transform of A,(w). We compute the Inverse Fourier
Transform of E,,(w) given by E,(t) as follows, using time shifting property.

—(§+o)

1 1 1
By(t) = T — b 7al ~ T 4 10g(2)) — afe - 8T
2 2 2
(9)
1.7. Derivation of a(t) and E,(t)
We start with the gamma function I'(§ fo y2te ¥dy. We evaluate A(s) = T'($)n(s) at
s = 2 4 o +iw below. We substitute y = 7n’r and dy = 7n’dr in Eq. [10] and get y2~'dy =
(an)i_lxg_lﬂnzdx = man®(mn?) e~ trnlde = minfrr " d.
- 1 [~ . s o 1 * 2
A) =TOn(s) = S (-1 / yilevdy = 8 3 (=1t L / sl gy (10)
n® Jo ns 0
n=1 n=1

For Re[s] > 0, the gamma function is analytic in the complex plane (link) and 7(s) converges
and hence |A(s)| = |['(3)n(s)| converges and the integrand in Eq. 10| is an analytic function and
absolutely integrable with exponential asymptotic fall-off rate ([Appendix A.9) and we can find a
suitable dominating function with exponential asymptotic fall-off rate which is absolutely integrable.
Hence we use theorem of dominated convergence and exchange the order of summation and integration
in Eq. cancel the common term n® below.

3/ —mr sy (11)

Now we substitute z = e~ and dx = —26*2tdt = —2zdt and write Eq. |11] as follows.

;/ n le—wn e~ —stdt (12)

We substitute s = % + 0 +iw in Eq. [12| as follows.

A

S Hotiw) = 4w ) = 202 et o / e emh et Tt (13)
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The integrand in Eq. [13|is absolutely integrable given asymptotic exponential fall-off rate. (
pendix A.9) We see that the inverse Fourier transform of A, (w) is given by a(t) as follows, using the
time shifting property.

log
2

w\q

a(t) (t+ ) % Z TL 1 —7’l’n2e*2t6_%€—0't (14)

We know that I'(3) does not have zeros for any value of s (link) and the gamma function is
analytic in the complex plane for Re[s] > 0 (link). If n(s) has a zero at w = wy in the critical strip,
then A(: + o +iw) in Eq. [10| has a zero at w = wy and the Fourier transform of a(t) given by A, (w)

in Eq. 13 . has a zero at w = wy (Result E.0)

Now we substitute a(t) in Eq. [14/in Eq. 9 copied below and cancel the common terms log(” and
2mitE as follows. We use 22772-(279) — 1 in the first term in E,(t) below.
5 log () log(r)
T2 og(m og(m
Ey(t) = 5 —[25*a(t - =5 +log(2) — alt — =5 )]
~G+s) 1 1 1 1
B, (1) = T by — DBy 80 ooy g (¢ — 18T LB
2 2 2 2 2
,(l o L (o] >
E,(t) = u ; 227940 (t 4 1og(2)) — ao(t)], ao(t +log(2)) =2 %2~ GHIgats y “(—1)ntemre Femze0t
n=1
Ep(t) _ Z( 1)n71€f7rn7e 2’56 50t Z( 1)n 1, —mn2e~2 50t
n=1 n=1
Ey(t) = Bo(t)e ™, Bolt) = 3 (~1) ! (™50 ™ — mmie )
n=1
(15)

We see that Fy(t) is the inverse Fourier transform of E(5 + iw) (set o = 0 in Eq. 7 and Eq. 9)

and it obeys Ey(t) = Eo(—t) given that E(s) = E(1 — s) using Eq. 5(We use the result in
A.8). (Result E.1)

Using Eq. 8, we have derived the analytic continuation of Riemann’s zeta function derived from
Dirichlet Eta function given by Ep,(w) = n(3 + ¢ + iw) B(w) where

,(lJr[,)

B(CJ) — I‘( 2+‘72+W)7rT e 2“ log(w)(2%+aeiwlog(2) _ 1)

We see that, if (2 + o + iw) has a zero at w = wy in the critical strip, then the Fourier transform
of the function E,(t ) = Ey(t)e 7" given by E,,(w) also has a zero at w = wy, where Ey(t) =

Z(_l)n71<677r2—26_2t _ emeQe_Qt)ef% )

n=1
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2. An Approach towards Riemann’s Hypothesis

Theorem 1: The analytic continuation of Riemann’s zeta function derived from Dirichlet Eta
function given by Ep,(w) = (3 + 0 + iw)B(w) does not have zeros for any real value of —co <

w < oo, for 0 < |o| < %, corresponding to the critical strip excluding the critical line, where
1o+ ﬁt%«ka) —iw :

B(w) =TI( QJF;FM)7r 5 e 2 log(m) (23 +0¢iwloa(2) _1) given that Ey(t) = Eo(—t) is an even function of

(o)

variable £, where F, (t) = o [, Eyu(w)e“!dw, Ey(t) = Bo(t)e~" and Bo(t) = >_ (1"} (e 5" -

n=1
—Trn2e*2t —t
e Je 2.

Proof: We assume that Riemann Hypothesis is false and prove its truth using proof by contra-
diction.

Statement 1: Let us assume that the analytic continuation of Riemann’s zeta function derived
from Dirichlet Eta function given by E,,(w) has a zero at w = wy where wy is real and finite and
0<|o| < %, corresponding to the critical strip excluding the critical line. We will prove that this
assumption leads to a contradiction.

We will prove it for 0 < o < % first and then use the property £(5 + 0 + iw) = 5(% — 0 —1iw) to
show the result for —1 < o < 0 and hence show the result for 0 < |o| < 1.

We know that wy # 0, because ((s) has no zeros on the real axis between 0 and 1, when s =
t+o0+iwisreal, w=0and 0 < |o| < 3. [3] (Titchmarsh pp30-31). This is shown in detail in first
two paragraphs in [Appendix A.l|

2.1. New function g(t,1s,10)

Let us consider the function E (1) = e "2 E,(t — ty) — e"2E,(t + t2) = (Eo(t — t2) — Eo(t +
ty))e™ " = Ey(t,ty)e !, where ty is non-zero and real, and Ey(t,t5) = Eo(t—ty)—Eo(t-+t,) (Definition
1). Its Fourier transform is given by E,,(w,t2) = Ep,(w)(e 72e ™" — ¢7'2¢™!2) which has a zero at
the same w = wy, using Statement 1 and linearity and time shift properties of the Fourier transform

(link). (Result 2.1.1).

Let us consider the function f(,ts,ty) = e 27 f1(t,ta, to) + €277 fo(t, ta, ty) where fi(t,t2,t0) =
GUtOEII)(t + to, tg) and fg(t, tg, to) = fl(t,tg, —to) = €_UtOEII)(t — to,tg) where to is finite and real and
we can see that the Fourier Transform of this function F(w,t2,ty) = E,,(w, ) (e 700 4 ¢oloe—ilo)
also has a zero at the same w = wy, using Result 2.1.1. (Result 2.1.2)

Let us consider a new function g(t,ts,tg) = g_(t,ts, to)u(—t) + g (t, ta, to)u(t) where g(t, ta, o) is
a real function of variable ¢ and u(t) is Heaviside unit step function and g_(t,ts,tg) = f(t,t2,t0)e 7"
and gy (t,t2,t0) = f(t,t2,t0)e’" . We can see that g(t,ts,to)h(t) = f(t,ta, to) where h(t) = [eT u(—t) +
e 7 u(t)].


https://www.ocf.berkeley.edu/~araman/files/math_z/Titchmarsh_pp30_31.pdf
https://lpsa.swarthmore.edu/Fourier/Xforms/FXProps.html

We can write the above equations as follows.

E\(t,ty) = e 2 E,(t — t3) — ™2 Ey(t + o) = (Bo(t — ta) — Eo(t + t2))e " = Ey(t, t2)e"
filt ta, to) = €7 B, (t + to, 12)
folt, ta, to) = fi(t,ta, —to) = e TOE, (t — to, t2)
Ftta,to) = €721 fi(t o, to) + €270 fo(t, o, o) = € TOE (t + to, o) + €7 E, (t — to, o)
g(t,ta, to) = [f(t, ta, to)e” " Tu(—t) + [f(t, ta, to)e” Ju(t)
gt ta, to)h(t) = f(t,t2:t0),  h(t) = [e7u(—t) + e "u(t)]

(16)

We can show that E,(t), E,(t,t2),h(t) are absolutely integrable functions and go to zero as
t — Foo. Hence their respective Fourier transforms given by E,,(w), E,,(w,t2), H(w) are finite
for real w and go to zero as |w| — oo, as per Riemann Lebesgue Lemma (link). We can show that
Eo(t) and Ey(t)e~27t are absolutely integrable functions. These results are shown in [Appendix A.1]

In Section and Section , it is shown that g(t,ts,to) is a Fourier transformable function and
its Fourier transform given by G(w, ta,tg) = ¢ 270G (w, ta, ty) + €27 G (w, to, —to) converges. (Eq. 24
and Eq. 27)

If we take the Fourier transform of the equation g(t, t2, to)h(t) = f(t,t2,to) where h(t) = [e”'u(—t)+
e 'u(t)], using Result 2.1.2, we get =[G (w,t2,t0) * H(w)] = F(w,ta,to) = E]/M(w,tg)(ef"toei”to +
e7loe o) = Fp(w, ty, tg) + i Fr(w, ta, tg) as per convolution theorem (link), where * denotes con-
volution operation given by F(w,ta, 1) = 5= [ . G(w', 2, o) H(w — w')dw’.

We see that H(w) = Hgr(w) = [== + 5] = (022wa2) is real and is the Fourier transform of
the function A(t) (link). G(w,ts,ty) = Gr(w,ta,to) + iGr(w,ta,to) is the Fourier transform of the
function g(t,te,tg). We can write g(t,ta,t0) = Geven(t, t2,t0) + Goaa(t, ta, to) Where geyen(t,ta, o) is an

even function and g,qq(t, t2, tp) is an odd function of variable t.

If Statement 1 is true, then we require the Fourier transform of the function f(¢,t,t) given
by F(w,ts,ty) to have a zero at w = wy for every value of t;, for each non-zero value of ¢y, us-
ing Result 2.1.2. This implies that the real part of the Fourier transform of the even function
Geven(t,ta, to) = %[g(t,tg,t0> + g(—t, ta, to)] given by Gr(w,ta, to)( |Appendix B.2|) must have at least
one zero at w = w,(ts,%y) # 0 where w,(t2, o) is real and finite, where Gr(w, ta,to) crosses the zero
line to the opposite sign, explained below. We note that w,(ts,to) can be different from wy in general.

Because H(w) = (UZ,QJF—UMQ) is real and does not have zeros for any finite value of w, if Gr(w, 2, 1)
does not have at least one zero for some w = w,(tq,ty) # 0, where Gr(w, t2,to) crosses the zero line to
the opposite sign, then the real part of F(w, s,t) given by Fr(w,ts,t0) = 5=|Gr(w, ta, to) * H(w)],
obtained by the convolution of H(w) and Gg(w, t2, ty), cannot possibly have zeros for any non-zero fi-

nite value of w, which goes against Result 2.1.2 and Statement 1. This is shown in detail in Lemma 1.

The proof for Lemma 1 below is shown for a fixed value of ¢y = to; and ¢y = t5¢, in the interval
[to] < oo and 0 < [ta] < oo (Interval A), where Gr(w,ts,ty) is a function of w only. The proof
continues to hold for our choice of each and every combination of fixed values of ¢; and ¢; in


https://en.wikipedia.org/wiki/Riemann-Lebesgue_lemma
https://mathworld.wolfram.com/ConvolutionTheorem.html
https://web.stanford.edu/class/ee102/lectures/fourtran#page=6

interval A, where Gr(w,ts,t9) is a function of w only.

Lemma 1: Let ty,t; € R be fixed values and ¢, # 0 and E,,(w) has a zero at w = wy using
Statement 1. Then the Fourier transform of the even function geen(t, t2,to) given by Ggr(w, 2, to)
must have at least one zero at w = w,(ts,tg) # 0, where Gr(w, t2,to) crosses the zero line to the
opposite sign and w,(tq, %) is real.

Proof: If E,,(w) has a zero at w = wy to satisfy Statement 1, then F(w,ts,ty) has a zero at
w = wp, using Result 2.1.2 and its real part given by Fr(w,ts, %) also has a zero at w = wy, where
wo # O(Result 2.1.3).

We do not have a closed form solution for Gg(w,t2,ty) and do not know the exact location of its
zeros at w = w,(ta,ty). For a specific choice of tq,ty, only one of the 2 cases is possible:
Case A: Gg(w,ts,t) does not have a zero crossing for any choice of w # 0 or
Case B: Gg(w, ta, 1) has at least one zero crossing for a specific w # 0.
If Statement 1 is true, then Case B is the only possibility and Case A is ruled out, as shown below.

We want to show the Result 2.1.5 that Gr(w, t2,%y) must have at least one zero crossing at
some value of w = w,(t2, %)) # 0 (Case B), to satisfy Statement 1, for this choice of fixed ¢, to.

To show Result 2.1.5, we assume the opposite Case A, that Gg(w,ts,%y) does not have at
least one zero for any value of w # 0, where Gg(w, ts,ty) crosses the zero line to the opposite sign
(zero crossing) and will show that Fr(w,ts,ty) does not have at least one zero at finite w # 0 for this
case, which contradicts Result 2.1.3 and Statement 1 and hence we rule out Case A and arrive at
Case B (Result 2.1.5).

This does not mean that, proof of Lemma 1 will work only if Gg(w,ts,ty) does not have a zero
crossing for any value of w # 0, for any choice of ¢5,t5. The device Proof by Contradiction is used
here to rule out Case A and arrive at Case B. (Details of other cases in Section [2.1.1])

It is noted that, for Case B, we do not use Eq. [17]to Eq. 20 and related arguments, because
Case B is the desired Result 2.1.5. (Note 1)

The arguments above and following proof continue to hold for our choice of each and every
combination of fixed values of ¢y and 5 in interval A, where Gg(w, s, %) is a function of w only.

Given that H(w) is real, we can write the convolution theorem only for the real parts as follows.

1 oo
FR(CU, la, to) - % / GR<W/7 lo, tO)H(w - w,)dw, (]‘7)

We can show that the above integral converges for real w, given that the integrand is absolutely
integrable because G(w, t2,ty) and H(w) have fall-off rate of 25 as |w| — oo because the first deriva-
tives of g(t,t2,to) and h(t) are discontinuous at ¢ = 0.( [Appendix A.2land |[Appendix A.6))

We substitute H(w) = %2) in Eq. (17 and we get

=

g - / 1 /
FR(w,tg,to) = ;/ GR((.{} ,tg, t()) (02 T (w — w/)2)dw (18)



We can split the integral in Eq. |18 using ffooo = ffoo + fooo, as follows.

o [0 , 1
FR(W7t27t0) = ;[/OO GR(W ’t27t0) (02 + (w _ w/)z)

1

i@ oo

dw'—l— / GR(wl,tg,to)
0

(19)

We see that Gr(—w,ta,t9) = Ggr(w,ta,ty) because g(t, ta,to) is a real function of variable t.
(|Appendix B.1J) We can substitute w’ = —w” in the first integral in Eq. 19 and substituting w” = '
in the result, we can write as follows.

1 i 1
(024 (w—w")?) (024 (w+w)?)

o o0
Fr(w,ta,t9) = ;/ Gr(W', ta, o)
0

(20)

We note that ¢y and ty are fixed in Eq. 20 and Gg(w,ta,1) is a function of w only and the
integrand in Eq. 20 is integrated over the variable w only.

In [Appendix A.2| it is shown that G(w’, ta, o) is finite for real w’ and goes to zero as || — oco.
We can see that for w’ — 0o, the integrand in Eq. 20 goes to zero. For finite w > 0, and 0 < W’ < oo,
we can see that the term T =) + (02+(w1+w, = >0, for 0 <o < % We see that Gr(w, ta, ) is
not an all zero function of variable w’ (Section . (Result 2.1.4)

e Case 1: Gg(w',ta,t9) > 0 for all finite w’ >0

We see that Fr(w,ts,t9) > 0 for all finite w > 0, using Result 2.1.4. We see that Fr(—w,ts,ty) =
Fr(w,ta,t) because f(t,ts,t0) is a real function ( [Appendix B.1|) and link ). Hence Fr(w,ts,t9) > 0
for all finite w < 0.

This contradicts Statement 1 and Result 2.1.3 which requires Fr(w,ts,t) to have at least one
zero at finite w # 0. Therefore Gg(W', t2,ty) must have at least one zero at w' = w,(t2,t9) > 0
where it crosses the zero line and becomes negative, where w, (o, o) is real and finite.

e Case 2: Gg(w',ta,t9) <0 for all finite w’ >0
We see that Fr(w,ts,ty) < 0 for all finite w > 0, using Result 2.1.4. We see that Fr(—w,ts,ty) =

Fr(w,ta,tg) because f(t,tq,t0) is a real function ( [Appendix B.1|) and link ). Hence Fr(w,ts,t9) <0
for all finite w < 0.

This contradicts Statement 1 and Result 2.1.3 which requires Fr(w,ts,t) to have at least one
zero at finite w # 0. Therefore Gr(w', ta,ty) must have at least one zero at ' = w,(t2,%y) > 0,
where it crosses the zero line and becomes positive, where w, (ts, to) is real.

We have shown that, Gr(w, ta, ty) must have at least one zero at finite w = w,(t2,ty) # 0 where

it crosses the zero line to the opposite sign, to satisfy Statement 1, for specific choices of fixed ty, .
We call this Result 2.1.5.
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The arguments above and the proof continue to hold for our choice of each and every combi-
nation of fixed values of ¢y and ¢, in interval A, where Gg(w, ts, ) is a function of w only.

In the rest of the sections, we consider only the first zero crossing away from origin, where
Gr(w, ta,ty) crosses the zero line to the opposite sign. Hence 0 < w,(t2,t) < oo, for all |ty| < oo, for
each non-zero value of 5, to satisfy Statement 1.

2.1.1. Discussion of Lemma 1

Result 2.1.5: Gr(w,ts,ty) must have at least one zero at finite w = w,(t,ty) # 0 where it
crosses the zero line to the opposite sign, to satisfy Statement 1.

For each fixed value of ¢y, to, only 2 cases are possible for Gr(w, s, ). Case A: Ggr(w,ta, 1) does
not have a zero crossing for any choice of w # 0. Case B: Gr(w, ts,to) has at least one zero crossing
for a specific w # 0. Proof of Lemma 1 assumes Case A and uses Proof by Contradiction to rule
out Case A and arrive at Case B, for each choice of fixed tg,t,. This does not mean that Proof of
Lemma 1 does not work for Case B. For Case B, we do not use Proof of Lemma 1 and jump to the
end of the proof because we already have the desired Result 2.1.5 which is the same as Case B.

The logic used is this proof is as follows: If Statement 1 is true(RH is false), then Result 2.1.5 is
true (Case B), for each and every combination of fixed values of ¢, 5 in interval A (|to| < oo and
0 < |t2| < oo )and hence Case A is ruled out and only Case B is possible for Gg(w, t2,ty). Then we
proceed with Result 2.1.5 to Section 2.3, 2.4 and Section 3, to produce a contradiction of Statement
1 in Eq. [50] and thus prove the truth of RH.

We present an alternate method of analyzing all possible cases of Gg(w, ta,%y) below. We can
arrive at Result 2.1.5, for each and every combination of fixed values of ¢, 5 in interval A, using
Proof of Lemma 1 for Case C and Case D or using Case E, as explained below.

It is noted that Fr(w,ts,tg) and Ggr(w, ta, tp) may have more zeros than F'(w, ts, tg) and G(w, ta, to)
respectively. That does not affect the proof of Lemma 1, as explained below.

We do not have a closed form solution for Gg(w, t2,t) and do not know the exact location of its
zeros at w = w,(te, tp), for each fixed choice of t9, tg. We consider 3 possible cases of Gg(w, ta, ty) below.

e Case C: We consider the case that Gg(w, t2,tg) does not have at least one zero crossing, for any
value of w # 0, for each and every choice of ts, ty and we use Proof of Lemma 1 for each and every
choice of tg, ty, to show that it leads to a contradiction of Statement 1, and hence prove Result 2.1.5.

Hence Case C is ruled out, if Statement 1 is true.

e Case D: We consider the case G R(w,t'z,té) has a zero crossing, for a specific value of w =
w.(th, ), corresponding to specific choices of t,, t,.(Not for all possible choices of t,, t;)

For Case D, this means that G'r(w, t,,%,) has at least one zero crossing at w = w,(t}, tj) which

is the desired Result 2.1.5 and hence we do not go through the arguments in this proof and we can
jump to end of Proof of Lemma 1 (using Note 1). In this case, we have not assumed Statement 1
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and yet arrived at Result 2.1.5, for specific choices of t,, tz).

For Case D, there may be at least one choice of ¢y, tos for which Gr(w,tsf,tor) does not have
at least one zero crossing, for any value of w # 0. For this choice of ¢3¢, %or, we use Proof of Lemma
1 to show that it leads to a contradiction of Statement 1, and hence prove Result 2.1.5.

Hence Case D is ruled out, if Statement 1 is true.

e Case E: We consider the case Gg(w, t2, o) has at least one zero crossing, for a specific value of
w = w,(ta, 1), corresponding to each and every choices of t5,ty. We call this Statement 3.

For Case E, this means that Gg(w, ts,ty) has at least one zero crossing at w = w,(ts, tg), for
each and every choices of t5,ty which is the desired Result 2.1.5 and hence we do not go through
the arguments in this proof and we can jump to end of Proof of Lemma 1 (using Note 1). In this
case, we have not assumed Statement 1 and yet arrived at Result 2.1.5, for each and every choices
of tq, 9.

For Case E, we see that we arrive at Result 2.1.5 by assuming Statement 3 only. Then we proceed
with Result 2.1.5 to Section 2.3, 2.4 and Section 3, to produce a contradiction of Statement 3 in
Eq. b0} Hence Statement 3 is false and Case E is ruled out.

There are only 3 possible cases for Gg(w,ts,ty) given by Case C,D and E. We have ruled out
Case E in above para. If Statement 1 is true, Case C and Case D have been ruled out. This means
Statement 1 is false.

Hence we have produced a contradiction of Statement 1 that the Fourier Transform of the
function E,(t) = Eo(t)e " has a zero at w = wy for 0 < |o| < 3.

Hence the assumption in Statement 1 that E,,(w) has a zero at w = wy, where wy is real and
finite, leads to a contradiction for the region 0 < |o| < % which corresponds to the critical strip
excluding the critical line. Hence ((s) does not have non-trivial zeros in the critical strip excluding
the critical line and we have proved Riemann’s Hypothesis.

2.2. Gr(W, ts, ty) is not an all zero function of variable '

If Gr(w',ts,t0) is an all zero function of variable w’, for each given value of tg, ¢, (Statement
2), then Fr(w,ts,ty) in Eq. is an all zero function of w, for real w. Hence 2f.pen(t,t2,t0) =
f(t, ta,to) + f(—t,ta,to) is an all-zero function of ¢, given that the Fourier transform of feyen(t, t2, to)
is given by Fg(w, t2,to), using symmetry properties of Fourier transform( [Appendix B.2)) and link
). Hence f(t,ts,19) is an odd function of variable ¢.(Result 2.2).

From Eq. 16 we see that E(t,ty) = e 72 E,(t — to) — €2 E,(t + t2) = [Eo(t — ta) — Eo(t +t2)]e 7",
Hence fi(t,ta, to) = €70 E (t + to, t2) = [Eo(t + to — t2) — Eo(t + to + t2)]e " and
falt, ta, tg) = e’”tOEZI)(t — to,ta) = [Eo(t — to — t2) — Eo(t — to + t2)]le™?" . Hence we can write
[t b, to) = €270 f1(, ta, o) + €271 fo(t, ta, ty) in Eq. 16, as follows.

f(t, o, tg) = e 27 0[Ey(t+tg—to) — Eo(t +to+ta)]e 7 + e [Ey(t —tg—to) — Eo(t —to+12)]e™"" (21)
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Case 1: For tg # 0 and t5 # 0, it is shown that Result 2.2 is false. We will compute f(¢,ts,t0) in
Eq. 21} at t = 0 and show that it does not equal zero.

We see that f((), tg, to) = 6_2gt0 [Eo(tg — tz) — Eo(to + tg)] + 620t0 [E()(—to — tg) — Eo(—to + tQ)]
= —2sinh (20t0)[E0(t0 — tg) - Eo(to + tQ)] We use the fact that Eo(to) = Eo(—to) (|Append1x A8D
and hence E(](to — tg) = E(](—t(] + t2) and E()(to + t2> = E()(—to — tQ)

If Result 2.2 is true, then we require f(0,ts,t9) = 0 in Eq. . For our choice of 0 < 0 < % and
to # 0, this implies that Ey(to — t2) = Fo(to + t2). Given that ty # 0 and t5 # 0, we set ty = Kt
for real K # 0 and we get Ey((1 — K)tg) = Eo((1 + K)tp). This is not possible for ty # 0 because
Eo(to) is strictly decreasing for ¢y > 0 (Section[f)) and 1 — K #1+ K or 1 — K # —(1+ K) for
K # 0. Hence Result 2.2 is false and Statement 2 is false and Gg(w', t2, ) is not an all zero function
of variable '

Case 2: For tg = 0 and ty # 0, we have f(t,ta,t0) = 2[Fo(t — t2) — Eo(t + t2)]e™ 7" = 2D(t)e 7"
in Eq. where D(t) = Ey(t — t3) — Eo(t + t2). We see that D(t) + D(—t) = Ey(t — t5) —
Eo(t + tg) + E()(—t - tg) — Eo(—t + tQ) Given that Eo(t) = Eo(—t), we have D(t) + D(—t) =
Eo(t - tg) - Eo(t + tg) + Eo(t + t2> — E()(t - tg) = (0 and hence D(t) = E()(t - t2) - Eo(t + tg) is an
odd function of variable ¢ (Result 2.2.1).

If Result 2.2 is true, then we require f(¢,t2,t9) = 2D(t)e™ " to be an odd function of variable
t. Using Result 2.2.1, we require D(¢) to be an odd function of variable ¢. This is possible only for
o = 0. This is not possible for our choice of 0 < 0 < % Hence Result 2.2 is false and Statement 2 is
false and Gr(w', ta, 1) is not an all zero function of variable w’.

Case 3: For t; = 0 and [to| < oo, we have E,(t,ts) = e “2E,(t — t5) — e E,(t + t) = 0 and
f(t ta,to) = g(t, ta,to) = 0 for all ¢ in Eq. 16 and Lemma 1 is not applicable for this case.

2.3.  On the zeros of a related function G(w,ty, 1)

In this section, we compute the Fourier transform of the function geyen(t, ta, %) = %[g(t, to, to) +
g(—t,ta,t0)] given by Gr(w,ta, to)([Appendix B.2). We require Gr(w, ta,tg) = 0 for w = w,(ts, to) for
every value of ¢, for each non-zero value of t5, to satisfy Statement 1, using Lemma 1 in Section|2.1]

We define gl(t7 Lo, to) - fl (t7 t?? to)e_atu<_t) + fl (ta t27 t(])eatu(t) = eatOEle(t + th t2>6_atu(_t) +
e"tOE;(t + to, t2)e u(t), using Eq. 16 (Definition 3). First we compute the Fourier transform of the
function %1 (t, tg, to) given by G1 (Cd, tg, to) = GlR(w, tg, to) -+ z'GH(w, t2, to)

00 0

G1<W,t2,t0) :/ gl<t7t27t0)€_iwtdt :/

—0o0 —00

0

g1 (t, t27 to)e_iwtdt + / g1 (t, tg, t0>€_iwtdt
0

G1<W, t27 tO) - /

—0o0

o)
€atOEI/,<t + t07 t2)e—ote—iwtdt + / eato E;(t + t(), t2)€at€—iwtdt
0

(22)
We use E,(t,t) = Ey(t,ta)e " from Eq. 16, where Ey(t,t2) = Eo(t — ta) — Eo(t + t2), using
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Definition 1 in Section and we get E(t + to,t2) = Ey(t + to, t2)e "'e " and write Eq. 22 as
follows. Then we substitute ¢ = —¢ in the second integral in first line of Eq. 23.

0 [ee)
Gr(w, ta,to) = / Ey(t + to, ta)e 2 e tdt + / Ey(t+ to, ta)e “idt
- ;
O ! 3 0 ! .
Gh(w, g, tg) = / Ey(t + to, ta)e > e ™!dt + / Ey(—t + to, to)e™"dt

(23)
We define Ej (t,ty) = Ey(—t,ty) (Definition 2) and get Ey(—t + to,ty) = Ey,(t — to,t2) and
write Eq. 23 as follows. The integral in Eq. 24 converges, given that Ey(t)e 2! is an absolutely

integrable function ( [Appendix A.1)) and its t¢, t5 shifted versions are absolutely integrable, using
Ey(t,ty) = Eo(t — t3) — Eo(t + t5) in Definition 1 in Section [2.1| and Definition 2.

0 0

Gl (w, t27 tO) = / E(/)(t + to, t2)6_20t6_iwtdt + / E(l)n(t — to, tQ)Gthdt = GlR(w, tQ, to) + iGu(w, tg, to)
(24)
The above equations can be expanded as follows using the identity €' = cos(wt) + isin(wt).
Comparing the real parts of G;(w, ts,ty), we have

0 0

Gir(w, ta, tg) = / Ey(t + to, ta)e™27 cos (wt)dt + / By, (t — to, ) cos (wt)dt

—00 —00

(25)

2.4. Zero crossing function w,(t2,ty) is an even function of variable t,, for a given t,

Now we consider Eq. 16 and the function f(t,ts,tg) = e 270 f)(t,to, tg) + €270 fo(t, ta,ty) =
eiatOEgl)(t—'—tU) t?)—l—egtOE};(t—tO? t2) where fl (ta t2a t[)) - egtOE;/)(t+t07 t2) and fQ(t7 t?: to) = fl (tv t2a _to) -
e "0 B (t—to,t2) and g(t, 2, to)h(t) = f(t, 2, t0) Where g(t,ta,t0) = f(t, 1o, to)e™" u(—1)+f(f, t2, to)e  u(?)
and h(t) = [e”u(—t) + e “"u(t)]. We can write the above equations and g (¢, t2, tg) from Definition 3
in Section [2.3] as follows. We define go(t, t2, t9) below and write g(¢, t2, ) as follows.

g1 (t, tg, to) = fl (t, tz, to)e_"tu(—t) + fl (t, tz, to)e“tu
g2 (t, tg, to) = fQ(t, tQ, to)e_”tu(—t) + fg(t, t27 to)egtu
g(t, ta2,t0) =

(t),  gi(t,ta,t0)h(t) = fi(t, t2, to)
(t)7 g?<t7t2)t0)h<t - f2(t7t27t0>
67201‘/091 (t, tg, to) + 620t0g2 (t, tz, to)

(26)

We compute the Fourier transform of the function g¢(t,ts,%p) in Eq. 26 and compute its real
part Gg(w, ta, o) using the procedure in Section [2.3] similar to Eq. 25 and we can write as follows in
Eq. 27. We use Gag(w, ta, tg) = Gir(w, ta, —to) given that fo(t,ta,t0) = fi(t, t2, —to) and go(t, 12, o) =
g1(t, ta, —to) and Gao(w, ta, tg) = Gi(w,ta, —tg). We substitute t = 7 in the equation for Gig(w, ts, o)
below, copied from Eq. 25.
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Gr(w,ta, tg) = e 270G r(w, ta, tg) + ¥ Gar(w, ta, tg) = e 27 G1g(w, ta, o) + €*7°G1g(w, ta, —to)
0
GlR(w, tg, to) = / [E(/)(T + t(), tg)e_QUT + E(l)n(T - to, tg)] COS (CUT)dT

—00

0
Grlw, ty, ty) = e 2% / [Ey(T 4 to, t2)e” 2T + Ey, (T — to, t3)] cos (wr)dr

—00

0
+te2oto / [E(I)(T — to, t2)6_2UT + E(l)n(T + to, t2)] cos (wT)dT

(27)

We require Gr(w, to,tg) = 0 for w = w,(ts,ty) for every value of ¢y, for each non-zero value of ¢,
to satisfy Statement 1, using Lemma 1 in Section . In general w,(ta,%y) # wo. Hence we can see
that P(te,tg) = Gr(w.(t2,t0),t2,to) = 0 and we can rearrange the terms in Eq. 27 as follows. We
take the first and fourth terms in Gg(w, ts,to) in Eq. 27 and include them in the first line in Eq. 28.
We take the second and third terms in Eq. 27 and include them in the second line in Eq. 28.

0
P(ty,ty) = Gr(w.(ta, ty), ta, tg) = / (€720 B (7 4 Lo, t2)e ™27 + €70 Ey (T + to, t3)] cos (ws (Lo, to)T)dT
0
+/ (€270 By (T — to, ty)e™ 2T + e 20 (T — 1o, ty)] cos (w,(te, to)T)dT = 0

(28)

We use the fact that f(f,ts,t0) = e TE (t + to, t2) + " E (t — to, t2) = f(t,t2, —to) in Eq. 16,
is unchanged by the substitution ty = —to. If f(t,ts,t0) = f(t,t2, —to) is unchanged by the substi-
tution tg = —to, then g(t,ts,t0) = g(t,t2, —to) is unchanged by the substitution t, = —to, using the
fact that g(t,ta, to)h(t) = f(t,t2,to) and h(t) = [eTu(—t) + e~ u(t)].

Hence the Fourier transform of g(t,ts,%9) given by G(w,ts,ty) = G(w,ta, —tp) and its real part
given by Ggr(w,ts,tg) = Gr(w,ty, —ty) is unchanged by the substitution ¢y = —t, and the zero
crossing in Gr(w,ta, —to) given by w,(t2, —to) is the same as the zero crossing in Gg(w, ta, ty) given
by w.,(ts,ty) and we get w,(t2, ty) = w,(t2, —to) and hence w,(t2, o) is an even function of variable o,
for each non-zero value of 5.

We can write Eq. 28 as follows, where P,4(t2,%) is an odd function of variable ty, for each
non-zero value of to. We use w,(ts,tg) = w,(ta, —to).

P(ty,t0) = Poaa(ta, to) + Poga(tz, —to) =0
0
Podd(tg, to) = / [672Ut0E{] (T + t(), t2)€720‘r + GQUtOE(Im(T + to, tg)] COS (wz (tg, to)T)dT

—00

(29)
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3. Final Step

We expand P,gq(ts, o) in Eq. 29 as follows, using the substitution 7+ ty = 7. We get 7 = 7/ — t
and d7 = d7r’ and substitute back 7 = 7 in the second line below. We use e 27%¢27% = 1 below.

tO / / ! 1
PLaq(ta, to) = / [e7 270 Ey (1, ty)e ™27 2700 4 270 E (7', t5)] cos (ws (ta, to) (T — to)dr’
o .
P,aq(ta,to) = [cos (wz(tg,to)to)/ Eqy(T, tQ)G_QUT cos (w,(ta, to)T)dT
o
+ sin (w, (t2, to)to) / Eqy(T, tg)e_Q‘” sin (w, (ta, to)T)dT]
to , - to ,
+e20to [cos (wz(tz,to)to)/ E,, (T, t2) cos (w,(ta, to)T)dT + sin (wz(tg,to)to)/ E,, (T, t2) sin (w, (ta, to)7)dT]

(30)

In Section it is shown that 0 < w,(ta,t9) < oo, for all |ty| < oo, for each non-zero value of t,.
In this section, we consider ¢y > 0 and ¢, > 0 only.

In Section , it is shown that w,(t3,19) is a continuous function of variable ¢, and 5, for all
0<tyg<ooand 0 <ty < o00.

In Section 6] it is shown that Eq(t) is strictly decreasing for ¢ > 0.

Given that w,(t2,19) is a continuous function of both ¢y and ¢, we can find a suitable value of
to = toc and ty = ty. = 2t such that w, (tac, toc)to. = 5. Given that w.(t2,10) is a continuous function
of ty and t5 and given that ¢y is a continuous function, we see that the product of two continuous
functions w, (2, t)ty is a continuous function and is positive for ¢, > 0 because 0 < w, (2, ) < 0.

We see that w,(ts,t9) > 0 and is a continuous function of variable ¢y and t,, as ty and ¢, increase
to a larger and larger finite value without bounds and that the order of w,(ts,%0)to is greater than 1
(Section . As ty and ty increase from zero to a larger and larger finite value without bounds, the
continuous function w;, (ts, )ty starts from zero and increases with order greater than O[1] and will
pass through 7.

We set tg = to. > 0 and ty = ty. = 2to. such that w,(ta, toc)toc = 5 in Eq. 30 as follows. We use
the fact that cos (w,(tac, toc)toc) = 0, sin (w,(tac, toe)toe) = 1 and w,(tae, —toe) = w,(tae, toe) shown in
Section 2.41

toc toc
PLaa(tae, toe) :/ Eé(T, tgc)e_Q‘” sin (wz(tQC,tOC)T)dT—l—e%toc/ E(/]n<7', to.) sin (w, (tac, toe)T)dT

—0o0 —00

(31)
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We compute Ppyq(te, —to) in Eq. 30 as follows. We use w,(ta, —tg) = w,(t2,to) (Section .

—to

P,aq(ta, —to) = [cos (wz(tg,to)to)/ E(l)(T, ty)e 27 cos (w,(ta, to)T)dT

— 00

—to
’

— sin (ws (2, £o)to) / (7. £2)e=2" sin (w. (ta, t0)7)d7]

—00
—to

627 cos (w (2, £0)to) / B, (7.2) 008 (s (s, to)7)dr — sin (w- (£, o)) / E, (v, 1) sin (w. (ta, to)7)d7]

—0o0 —00

7t0

(32)

We set g = to. > 0 and ty = ty. = 2to. such that w,(ta, toc)loc = 5 in Eq. 32 as follows. We use
oS (W, (tae, toc)toe) = 0, sin (w, (tae, toc)toc) = 1.

—toc

E(l)(T, th)e_QUT sin (w, (tae, toe)T)dT — g~ 20t0e / E(;n(T, toc) sin (w (tac, toe)T)dT

[e.e]

—toc

Podd(t207 _tOC) = _/

(33)

We compute Pgq(ts,to) + Poaa(ta, —to) = 0 in Eq. 29, at ty = to. and ty = ty. using Eq. 31 and
Eq. 33.

tOc
/ Eqy(T, tgc)e_2” sin (w, (tae, toe)T dT—i—eQ”toc/ EOn T, tae) sin (w, (tae, toe)T)dT

—00 oo
/

—toc —toc
— / Ey(T, t26)6_20T sin (w, (tac, toe)T)dT — ¢~ 20toc / E(l)n(T toe) sin (w, (tac, toe)T)dT = 0

(34)
. . . . . toc —toc toc
We split the first two integrals in the left hand side of Eq. 34 using [0 = [~ "+ [* ;. as follows.

—toc toc
[/ Ey (7, o )e” 27 sin (w; (tae, toe)T)dT + / Ey (7, o )e™ 27 sin (w; (tae, toe)T)dT]
— —toc
. —toc , ’ toc ,
+e27toe| E,, (T, ta) sin (w, (tac, toe)T)dT + / Eq, (7, tac) sin (w, (tac, toc)7)dT]
o —toe
—t0e , —toc (/)
- / Ey (7, tae)e” 27 sin (w, (tae, toe)T)dT — e~ 27t0c / Eo, (T, tae) sin (w, (tae, toe)T)dT =0
(35)
We cancel the common integral f:;? Ey (7, toe)e™ %77 sin (w, (tae, toe)T)dT in Eq. 35 and rearrange

the terms as follows, using 2 sinh (20t ) = 27t — ¢=27%0c,

toc toc
/ (7, tae)e=27 sin (w. (tes toe) 7)dr + €271 / E, (7o) sin (w. (fe, foo) 7)dr

—toc
—toc

= —2sinh (ZUtOC)/ E(l)n(T, toe) sin (w, (tae, toe)T)dT

— 00
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We can combine the integrals in the left hand side of Eq. 36 as follows.

tOc
/ [E(/)(T, t26)6_2UT + E(l)n(’]', tgc)e%toc] sin (w, (tae, toe)T)dT

—toc
—toc

— _9sinh (201p,) / Bl (7, t2e) sin (. (fae, toe) ) dr

(37)

We denote the right hand side of Eq. 37 as RHS. We can split the integral in the left hand side

of Eq. 37 using ff‘;% = fi)t()c + JOC as follows.

0
/ B (7 t20) 62 + Bl (7, £22)€210°] sin (s (fae, foc)7)dr

—toc

toc
+ / [E(,J (7'7 tQC)e_QJT + E(;n(ﬂ t2c)620t06] sin (wz (t207 tOC)T)dT = RHS
0

(38)

We substitute 7 = —7 in the first integral in Eq. 38 as follows. We use Ej(—7,t2.) = Ej, (7, )
and Ey, (—7,ts.) = Fy(T, ta.) using Definition 2 in Section .

0
/ [E(/)n(T, t28)6207 + E(/) (T, tgc)e%toc] sin (w, (tae, toe)T)dT

toc

toc
+/ By tac)e ™™ + Egy (7, 1) sin (ws (tae, to)7)dr = RHS
0

(39)
Given that ft?) =— JOC, we can simplify Eq. 39 as follows.
tOC / /
/ [Ey (7, tae) (€727 — €2710¢) 1 B, (T, tae)(—€* " + €27%°)] sin (w. (tae, toe)7)dT = RHS
0
(40)

We substitute 7 = —7 in the right hand side of Eq. 37 as follows. We use Ey,,(—7, t2.) = Eo(T, tac)
using Definition 2 in Section [2.3]

RHS = 2sinh (20toc)/ Eé(T, toc) sin (w (tac, toe)T)dT

toc
(41)
We split the integral on the right hand side in Eq. 41 using [~ = [~ — 7, as follows.
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[ee) tOc
RHS = 2sinh (20t0.)] / (7, £22) sin (. (fae, too) 7)dT — / (7, tae) sin (ws (oo, foo)7)dr
0 0
(42)

We consolidate the integrals of the form fotoc B, (7, tae) sin (w4 (tae, toe)T)dT in Eq. 40 and Eq. 42 as
follows. We use 2sinh (20tg,) = 27t — ¢=27%0c,

toc
/ [E(/](T, toe) (€277 — ¥toe 4 2toe _ om20loc) 4 E(;n(T, toe)(—e7T 4 e27'0¢)] sin (w, (tae, toe)T)dT
0

:2sinh(20toc)/ E(l)(T, tae) sin (w; (tae, toe)T)dT
0

(43)
We cancel the common term e27%¢ in the first integral in Eq. 43 as follows.
toc , ,
/ [Ey (7, tae) (67277 — e727%0¢) - B (7, tae)(—€*7T + €27%°)] sin (w, (tae, toe)T)dT
0
— 2sinh (200.) / By (7, tae) sin (ws (2, o))
0

(44)

We substitute Fy(7,to) = Eo(T — toe) — Eo(T + ta.) (using Definition 1 in Section ) and
B, (T,t) = Ey(—7,ts.) = Eo(—T — ty.) — Eo(—T + ta.) (using Definition 2 in Section [2.3). We see
that Eo(—7 —ta.) = Eo(T+t2.) and Eo(—7+t2.) = Eo(T —ta.) given that Ey(7) = Eo(—7)(
. Hence we see that Ey, (7,ts.) = Eo(T +toe) — Eo(T — ta.) = —Ey(7,t2.) (Result 3.1) and write
Eq. 44 as follows.

tOc
/ (Eo(T — tae) — Eo(T + tQC))(€_2UT — g7 20te 4 20T _ GQUtOC) sin (w, (tae, toe)T)dT
0
= 2sinh (20t00> / (E[)(T — tgc) — EQ(T + tgc)) sin (U)Z (tgc, tOC)T)dT
0
(45)

We substitute 2cosh (207) = €27 + ¢72°7 and 2cosh (20t.) = e*c 4 ¢727%: and cancel the
common factor of 2 in Eq. 45 as follows.

/0 OC(EO(T — tae) — Eo(T + tae))(cosh (207) — cosh (20t¢.)) sin (w, (tac, toe)T)dT

= sinh (20tq.) / (Eo(T — tae) — Eo(T + tac)) sin (w, (tae, toe)T)dT
0
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Next Step:

We denote the right hand side of Eq. 46 as RHS . We substitute 7 — ty. = 7/ and 7 + to. = 7" in
the right hand side of Eq. 46 and then substitute 7/ = 7 and 7" = 7 in the second line below.

o0

RHS' = sinh (20t06)[/ Eo(7") sin (w, (tae, toe) (7" + toe))dT" — / Eo(7") sin (w, (tae, toe) (T — tac))dT"]

—toc tac
RHS' = sinh (20t0c)[cos (w, (tae, toc) )t2e) / Eo(7) sin (w, (tac, toe)T)dT
—t2¢
i (00 (s oo e / Eo(7) cos (ws (fae, tor)7)dT
—t2c
— cos (s (faes for) e / Eo(r) sin (@ (tae foo) 7 + sin (s (f20s foo)iae) / Eo(r) cos (w. (fae, toe)7)d7]
toc tac
(47)
In Eq. 47, given that w.(fa, toc)toc = 5 and ty, = 2ty and hence w,(tac, toc)loe = 25 = m and
sin (w, (tae, toe)tae) = 0 and cos (w,(tac, toe)ta.) = —1. Hence we cancel common terms and write
Eq. 47 and Eq. 46 as follows.
toc
/ (Eo(T — tae) — Eo(T + tac))(cosh (207) — cosh (20t¢.)) sin (w, (tac, toe)T)dT
0
= —sinh (QO'tOC)[/ Eo(7) sin (w, (tae, toe)T)dT — / Eo(7) sin (w, (tac, toe)T)dT]
—tac toc
(48)

We use f_oi;c Eo(7) sin (w,(tae, toe)T)dT = fi;c Eo(7) sin (w, (tac, tOC)T)d7'+fth Eo(7) sin (w, (tac, toe)T)dT
and cancel the common term ftzo Eo(7) sin (w,(tae, toe)T)dT in Eq. 48 as follows. Given that Ey(7) is
an even function of variable 7 ( |[Appendix A.8) and Ey(7)sin (w,(tac, to.)7) is an odd function of
variable 7, we get ffi; Eo(7) sin (w, (tae, toe)T)dT = 0.

We see that I= ftQC Eo(7) sin (w, (tae, toe)T)dT = fEtQC Eo(7) sin (w, (tac, toe)T)dT
f b g ) sin (w, (tae, toe)T)dT. We substitute 7 = —7 in the first integral and get
I= ft EO ) sin (w: (tae, toe)T)dT + [3* Eo(7) sin (w. (fae, toc) 7)dr
t2° Eo(7) sin (w, (tae, to.)T)dT + fOtQC Eo(7) sin (w; (tae, toe)T)dT = 0. We write Eq. 48 as follows.
toc
/ (Eo(T — tae) — Eo(T + tac))(cosh (207) — cosh (20t¢.)) sin (w, (tac, toe)T)dT = 0 (49)
0

We can multiply Eq. [d9] by a factor of —1 as follows.

/0 : [Eo(T — tae) — Eo(T + tac)](cosh (20tg.) — cosh (207)) sin (w, (tae, toe)7)dT = 0 (50)

In Eq. , given that w;(tac, toc)toc = 5, as 7 varies over the interval (0,to.), w(toc, toc)T = ST
varies from (0, g) and the sinusoidal function is > 0, in the interval 0 < 7 < %y, for to. > 0.
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In Eq. 50 we see that the integral on the left hand side is > 0 for t,. > 0, because each of the
terms in the integrand are > 0, in the interval 0 < 7 < t. as follows. Given that Ey(t) is a strictly
decreasing function for ¢ > 0(Section [f]), we see that Eq(7 — ta.) — Eo(T + t2) is > 0 (Section
in the interval 0 < 7 < to.. The term (cosh (20t¢.) — cosh (207)) is > 0 in the interval 0 < 7 < tq..

The integrand is zero at 7 = 0 due to the term sin (w, (2., to.)7) and the integrand is zero at 7 = ¢,
due to the term cosh (20ty.) — cosh (207) and hence the integral cannot equal zero, as required by
the right hand side of Eq. . Hence this leads to a contradiction, for 0 < g < %

For o = 0, both sides of Eq. [50|is zero, given the term (cosh (20t,.) — cosh (207)) = 0 and does
not lead to a contradiction.

We have shown this result for 0 < o < 1. Given that E,(t) = Ey(t)e 7" is real, its Fourier
transform E,,(w) = Eypo(w) + iE,,(w) has symmetry properties and hence Epg,(—w) = E,py,(w)
and E,r,(—w) = —E,,(w) (Symmetry property of Fourier Transform)) also have a zero at w = wy

and hence E,,(—w) = Eppo(w) — iE,,(w) also has a zero at w = wy to satisfy Statement 1.

If E,.(w) and n(3 + o + iw) has a zero at w = wy to satisfy Statement 1, then E,,(—w) and
n( + o — iw) also has a zero at w = wy(using last paragraph) and 7(3 — o + iw) also has a zero at
w = wp using the functional equation for Dirichlet Eta function derived in |[Appendix A.10| which
relates 7)(s) and n(1—s). Hence the results in above sections hold for —3 < o < 0 and for 0 < |o| < 3.

Hence we have produced a contradiction of Statement 1 that the Fourier Transform of the
function E,(t) = Eo(t)e " has a zero at w = wy for 0 < |o| < 3.

Hence the assumption in Statement 1 that the analytic continuation of Riemann’s zeta function
derived from Dirichlet eta function given by E,,(w) has a zero at w = wp, where wy is real and finite,
leads to a contradiction for the region 0 < |o| < % which corresponds to the critical strip excluding
the critical line. Hence ((s) does not have non-trivial zeros in the critical strip excluding the critical
line and we have proved Riemann’s Hypothesis.

3.1.  Result Ey(t — ta.) — Eo(t + tae) > 0

It is shown in Section @ that Ey(t) is strictly decreasing for ¢ > 0. In this section, it is shown
that E0<t — tgc) — E()(t + tQC) > 0, for0<t< toe and ty, = 2to. In Eq .

Given that Ey(t) is a strictly decreasing function for t > 0 and Ey(t) is an even function of vari-
able t (|Appendix A.8), and t5. = 2., we see that, in the interval 0 < t < to., Eo(t+ta.) = Eo(t+2to.)
ranges from FEy(2to.) > Eo(t + ta.) > Fo(3to.)(Result 6.3.1) and Ey(t — ta.) = Eo(t — 2to.) which
ranges from FEy(—2to.) < Eo(t —ta.) < Eo(—to.) respectively. Given that Ey(t) = Ey(—t), we see that
Eo(QtOC) < E()(t — tgc) < Eo(toc) in the interval 0 < t < toe (Result 632)

Using Result 6.3.1 and Result 6.3.2, we see that Ey(t—ta.) > Eo(t+ta), in the interval 0 < t < t.
At t = O, Eo(t — tgc) = Eo(t + tgc). At t = tOc; Eo(t — t26> > E()(t + t26> because EO(_tOc) > Eo(?)toc).

Hence Ey(t — ta.) — Eo(t + ta.) > 0 for 0 <t < to. in Eq. [50|, for to. > 0 and t5. = 2tg,.
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4. w,(ta,tp) is a continuous function of ¢y, and t,

It is shown in Lemma 1 in Section that Gr(w,ts,to) = 0 at w = w,(t2,ty) where it crosses
the zero line to the opposite sign, if Statement 1 is true, and that w, (s, %) is finite and non-zero
for all |ty] < oo and for each non-zero value of t5 and that w,(t,ty) is an even function of variable o,
for a given value of ¢(Section . For a given ty and tg, w,(t2,%9) can have more than one value,
corresponding to multiple zero crossings in Gr(w, 2, t), but we consider only the first zero crossing
away from origin in the section below, where Gg(w, 2, ty) crosses the zero line to the opposite sign,
as detailed in Lemma 1 in Section 2.1]

We consider the Fourier transform of the even part of g(t,ts,ty) given by Ggr(w,ts,tg) in the
section below and show that, under this Fourier transformation, as we change ¢, and ¢, the zero
crossing in Gg(w, ta,ty) given by w,(ts,ty) is a continuous function of ¢y and ¢, for all 0 < ¢y < oo
and 0 < ty < co. This is shown in the steps below using Implicit Function Theorem.

e It is shown in Section that Gr(w, ta,t9) and Ggar(w,ts,ty) are partially differentiable at
least twice with respect to w, for some value of r € W (element of set of whole numbers including
zero.)

e It is shown in Section that Gra.(w,t2,t) is partially differentiable at least twice with re-
spect to ty. It is shown in Sectionthat Grar(w,t2,t) is partially differentiable at least twice with
respect to ts.

e In Section [4.8] it is shown in proof of Lemma 2 that, if Gr(w,ts,t)) = 0 at w = Fw,(ts, ty),
for each fixed choice of ty,to € R and (2r + 1) is the highest order of the zero at w = Fw,(ts, )
for some value of r € W (element of set of whole numbers including zero), then Gg o (w,ts,ty) =

aQTGR(w,tQ,to) . . 8GR12T(w,t2,to) . 62T+1GR(w,t2,t0) .
e = 0 at w = Fw,(ty, 1) and o = St # 0 at w = Fw,(t2, to).

e It is shown in Section that the zero crossing in Gr o, (w, ta, 1) given by w, (s, 1), is a con-
tinuous function of ty, for a given t,, for 0 < ¢, < oo, using Implicit Function Theorem in R2.

e It is shown in Section that w,(t9,to) is a continuous function of ¢y and ¢s, for 0 < ¢y < c©
and 0 < ty < 00, using Implicit Function Theorem in R?.

4.1.  Gpr(w,ts, ty) and Grar(w,ts, ty) are partially differentiable twice as a function of w
Gr(w,ts,tp) in Eq. 27 is copied below.

0
Grlw, ty, ty) = e 27" / [Ey(T 4 to, t2)e 2T + Ey, (T — to, t2)] cos (wT)dr

—0o0

0
+He2oto / [EE)(T — to, tg)G_QUT + E(l)n(T + to, t2)] cos (wT)dr

—0o0

(51)
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We could then use Ey(7,ty) = (Eo(T — to) — Eo(T + t2) (using Definition 1 in Section ) and
B, (1,t) = Ey(—7,ts) = —Ey(7, 1) (using Definition 2 in Section and Result 3.1 in Section .
We see that Ey(7) in Eq. 15 and its tg and ¢y shifted versions are analytic functions of 7,¢y and ¢,
given that the sum and product of exponential functions are analytic and hence infinitely differen-
tiable.(Result 4.1)

In Eq. 51, Gg(w,ts,ty) is partially differentiable at least twice with respect to w and the inte-
1

grals converge in Eq. 51 and Eq. 52 for 0 < o < 3, because the terms TTE(I)(T + tg,t2)e 2" and
7" By, (T + to,ty) = —7"Ey(T % to,t5) have exponential asymptotic fall-off rate as |7| — oo, for
r € W (Section . The integrands in Eq. 51 and Eq. 52 are analytic functions of variables w and
to, for a given to(using Result 4.1 in Section and given that the terms cos (w), sin (wr) and e=2°7
are analytic functions). The integrands have exponential asymptotic fall-off rate (Section and
absolutely integrable and we can find a suitable dominating function with exponential asymptotic
fall-off rate which is absolutely integrable.(Section Hence we can interchange the order of partial
differentiation and integration in Eq. 52 using theorem of differentiability of functions defined by

Lebesgue integrals and theorem of dominated convergence, recursively as follows. (theorem)

OG (w, ta, t R '
r(W, t2,t0) _ _[620'750/ T[Ey(T + to, t2)e 27 + By, (T — to, t2)] sin (w7)dr

Oow

0
+€20t0 / T[Eé(T o tO; 252)67207' + E(l)n<7- + th f;2)] sin (CL)T)dT]
62GR((U,t2, tO) _ _[672Ut0 /0

D2 T2[Ey (T + to, t2)e™ 2T 4 Ey, (T — to, Ly)] cos (wr)dr

—0o0

0
+e2oto / TQ[E(I)(T — to, t2)€_2m + E(I]n(T + to, to)] cos (wT)dr]

(52)

We can use the arguments in the above paras and derive the (2r)™ derivative of Gr(w, ta, o), for
r € W, which is differentiable at least twice, as follows.

Grar(w,ta, tg) = T [E(/J(T +to, ta)e 27T + E(l)n(T — to, t2)] cos (wT)dr

82TGR(w7t27t0) _ (_l)r[e—QJto /0

8w2r

— 00

0
+e2ato / T Ey(T — to, t2)e 2T + E, (T + to, t3)] cos (wr)dr]

(53)

We can prove Eq. 53 using induction. We use Eq. 53 as Induction Hypothesis. We take the
second derivative of Eq. 53 and we interchange the order of differentiation and integration, using the
arguments used in Eq. 52 as follows.
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82T+1GR(W, tQ, to)
D21 = (-1

o0

0
1)rtie—20to / T HUEY (T + to, t)e” 2T + By, (T — to, ty)] sin (wr)dr
0 /
+e20to / T HE (T — to, ta)e > + E,, (T + to, t2)] sin (wr)d7]
r—i—l

O P2G p(w, ta, to)
D22 = (-1

20t / T2 (T 4 to, ta)e 27T + E(l)n(r — to, to)] cos (wT)dr
+e2oto / r2rt? [EO(T —to,ta)e 2T + E(,)n(T + to, t2)] cos (wT)dT]

(54)

We see that Eq. 54 is the same as the equation obtained by setting » = r 4+ 1 in Eq. 53. Thus we
have proved Eq. 53 using mathematical induction.

4.2.  Exponential Fall off rate of B(t) =t"Ey(t + to, ts)e > for r € W

In this section, it is shown that the term B(t) = t"Ey(t + to,t5)e°" has exponential asymp-
totic fall-off rate as |t| — oo, for 1 € W where Ey(t,ty) = Eo(t — t3) — Eo(t + t5). Hence
B(t) = t"e 2" [Ey(t — ta £ t9) — Eo(t + ta £ to)] (Result B.6.1).

We consider C(t) = t"e 2'Ey(t — t,) for finite and real t,. We see that C(t +t,) = (t +
to) e 2te 27t Fy(t). We see that Ey(t)e " is an absolutely integrable function, for 0 < |o| < 3
given that it has exponential fall-off rates as |t| — oco. (|Appendix A.5|and |[Appendix A.6]).

Hence C(t+t,) = (t+t,)"e 2" Ey(t)e~ 27" also has exponential fall-off rates as [t| — oo, forr € W
and finite ¢, and is an absolutely integrable function.

Hence C(t) = t"e 7' Ey(t — t,) has exponential fall-off rates as |t| — oo, for finite ¢, and is an
absolutely integrable function. We set t, = to+t; and t, = —t5 £ty and see that B(t) in Result B.6.1,
has exponential fall-off rates as |t| — oo, for finite ¢5,t; and is an absolutely integrable function.

4.3.  Dominating function

We consider z(t) = Fy(t)e 2 which has asymptotic exponential fall-off rate of o[e=*1].(
We see that z(t + t,) also has the same asymptotic exponential fall-off rate, for finite
shift of t, = to &ty and y(t,t,) = t"x(t + t,)e*7' also has the same asymptotic exponential fall-off
rate, for r € W. We consider the intervals 0 < tg < tg,.., 0 <ty <ty —and 0<t, <t where
L0mans 12, 0ns tar., are finite.

Amaz

where y(t,t,) = t"x(t+1,)e* ' falls off at the rate of o[e"5] for t << —t4.

M = —ty(t,t,)sin (wt) which falls off at
of( tta w)

We consider tg >>t,, ..
We consider f(t,t,,w) = y(t,t,) cos (wt) and we get

the rate of 0[] for t << —t4. Let fnae > 0 be the maximum value of |
—00 < t < 0.

| in the interval
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We can find a suitable dominating function D(t) = e KM f -eft > 0 with a fall off rate of
Ole %] where 0 < K < 0.5 and hence D(t) has a slower fall off rate than W nd D(t) = faz
at t = —t4 and hence D(t) > ]M| for —oo < t < 0 and hence |8f o) | < D(t) in the interval
(—00,0] and f (t)|dt = f K frape™tadt = % frage™a[eX° = Kfmaxe ta is finite.(Result
B.6.2)

The first term in Eq. 52 given by B(t) = trE(/)(t—{—to, ty)e 2t = t"e 27 [Eo(t—ta+to) — Eo(t+ta+to)]
using Result B.6.1 in Section . We set t, =ty +to and t, = ty — ty and get B(t) = t"e 27! [Ey(t —
ty) — Eo(t + t,)]. Hence y(t,t,) = t"z(t +t,)e* ' = t"Fy(t + t,)e 2" in the second para, corresponds
to the second term in B(t) and Result B.6.2 holds for this term. The first term in B(¢) is obtained
by replacing t, by —t;, and Result B.6.2 holds for this term and hence for B(t). We see that Result
B.6.2 holds for the other 3 terms in Eq. 52 using arguments in above paragraphs and replacing ¢y by
—to and setting o = 0 as needed.

As to,.,.,to, . t,, . increase to a larger and larger finite value without bounds, we consider
larger intervals 0 < ¢y < tg,,,.., 0 < ta <ty and 0 < t, < ¢, .. and fn. and t; also increase
correspondingly and the results in above paragraphs are valid in these intervals.

Similarly, we consider f(t,t,,w) = y(t,t,)cos(wt) = t"Ey(t + t,)e 2t cos (wt) = t"Ey(t + to +

ty)e~27 cos (wt) and we see that af(g’fg’ “) and 8f(gtt“’ “) which fall off at the rate of o[e®%] for t << —tg,

using Eq. 58 and Ey(t) = Eo(—t) and due to the term e~™¢"" and we can use arguments in above

paragraphs to get a result similar to Result B.6.2 for the terms in Eq. 55 and Eq. 65. We can use

2 a,w
P o

these arguments to get a result similar to Result B.6.2 for the second derivative terms

—82fgt€“’w) in Eq. 60 and Eq. 69.
2

4-4.  Gpar(w,ta, tg) are partially differentiable twice as a function of t,, r € W

In Eq. 53, GRa(w, ta, ty) is partially differentiable at least twice as a function of ¢, and the integrals
converge in Eq. 55 and Eq. 60 shown as follows. The integrands in the equation for Gg o (w,ts, to)
in Eq. 55 are absolutely integrable because the terms 72 Ey(7 + to, t2)e 2" and 72" Ey, (7 £ to, 1) =
— 72 Ey(T = to, t5) have exponential asymptotic fall-off rate as || — oo, for r € W (Section
The integrands in Eq. 55 are absolutely integrable and are analytic functions of variables w and
to, for a given t5 (using Result 4.1 in Section ). The integrands have exponential asymptotic
fall-off rate(Section and we can find a suitable dominating function with exponential asymptotic
fall-off rate which is absolutely integrable.(Section Hence we can interchange the order of partial
differentiation and integration in Eq. 55 using theorem of differentiability of functions defined by
Lebesgue integrals and theorem of dominated convergence as follows. (theorem)
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Grar(w, ty, tg) = e 20 (—1)" T [Ey (T + to, t2)e™ 2T 4+ By, (T — to, t5)] cos (wr)dr

Heoto(—1)" T2 [E(/)(T —to,ta)e 2T + E(l)n(T + to, t2)] cos (wT)dT

0GR o (W, tg, 0 , ,
R.2 ég;d’ 2, to) = —20e 27 (1) T [Ey(T + to, ta)e 27T + By, (T — to,t2)] cos (wT)dr
0 —00
0 ’ _92 ’
o(E, to, t T+ E —to, 1
+€—2ato(_1)r/ 7_2r ( 0(7— + lo, 2)6 + On(T 05 2)) COS (OJT)dT
. Ot
0 / /
420670 (1) / 7By (T — to, t2)e 2" + Ey,, (T + to, t2)] cos (wr)dT
0 ! —20T !
0(E, — 1o, t E to,t
+e20t°(—1)r/ T (Ey(T = to,to)e 5 * BT + 1o, 12)) cos (wr)dr
—00 0

(55)

We show that the integrals in Eq. 55 converge, as follows. We see that E, (7 +to,t2) = Eo(T +to—
tg)-Eo(T‘i‘to‘th) and E(l)n(T—to, tg) = —E(/)<T—t0, tg) = Eo(T—t0+t2)—E0(T—t0—t2) (using Definition
1 in Section and Result 3.1 in Section |3|).We see that the first and third integrals in the equation
for %{;’tzm in Eq. 55 converge because the terms 72" E (1 = to, to)e 2" and 77 E,, (T & to, ts) =
—72 Ey(T + Lo, ) have exponential asymptotic fall-off rate as |7| — oo(Section .

0GR 2r(w,t2,t0)

We consider the integrand in the second integral in the equation for Bt

and use the results in the above paragraph.

in Eq. 55 first

a(E(l)(T + to, t2)6_2m— + E(/)n(T — to, tQ)) _ a(E()(T + to — t2)6_2m— — EQ(T + to + t2)€_207—)
Jtg Otg
+8<E0(T — t(] -+ t2) — EO(T — t(] — tg))

Oty

(56)

We consider the term Ey(7 + tg + o) first in Eq. 56 and can show that the integrals converge in
Eq. 55, as follows. We take the factor of 2 out of the summation in Ey(7) in Eq. ?? copied below.

oo
_ 2. 27 T
:QE [272nte!” — 3mn?e e ™ ¢ e
1
o
12nledT Atz tto) 2 27 2(ta+t)],—mn2e2Te(ta+to) T (2t
Eo(T+ta+to) = g ne’e — 3mn e e le eze 2

(57)

We can show that - i Eo(T +ta +10) = L Eo(T 4+ t2 + to) as follows, given that the equation for

Eo(T +ts +tp) in Eq. 57 has terms of the form "% and the equation is invariant if we interchange
the variables 7 and ;. (Result A)
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0 > 02,27 2(tg+tg) T (tatitg)
—Eo(T+ta+1y) =2 E e TR o s e T [ intedT et o) _ G227 e2(t2 o)

0t0 n=1
+(% o 27Tn2627'62(t2+t0))(27T2n464T€4(t2+t0) _ 37rn2€2T62(t2+t0))]
aﬁEo(T + 1ty +to) = 2 Z TR P [8r2ntetmettztt) _ Grp2eT iz tio)
-
n=1
+(% . 27Tn2627'62(t2+t0)) (27T2n464T€4(t2+t0) o 37Tn2€2T62(t2+t0))]
(58)
We can replace ty by tz) = —tp in Eq. 57 and see that %E{)(T‘i‘tQ —i—t/o) = %Eo(T‘i_tQ —i—ti)) (Result
E) given that the equation is invariant if we interchange 7 and tg. Given that % = a%)% = —3%,
0 0

we substitute it in Result E and get a%)EO(T +ity—ty) = —a%EO(T +ty — ty).(Result B)

We can write the term in the second integral in the equation for %}M in Eq. 55, corre-
sponding to the term Ey(7 +to + t2)e 2°" in Eq. 56, using Result A, as follows. We use the fact that
fo dAT) B () gy — fo d(A(Td)B(T))dT B fo A(7) di(T) dr.

oo dr

O 9(E to +t O 9(E to+t
/ O(Eo(7 + 12 + 0>)72T6_2‘” cos (wT)dr = / OE(7 + 12 + 0)72’"6_2‘” cos (wr)dr
—co 6t0 — 0o or
_ /0 I(Eo(T + t2 + togTQ”e_Q‘” cos (wT)) g /O Eo(r + ta + o) 8(7’2’"6_2;T cos (wT) i
oo T - -

0
= [Eo(1T +t2 +to)T*" e 27" cos (wr)]°, + w / Eo(T +ty + 1)) 7> e " sin (wT)dr

— 00

0 0
+20/ Eo(T 4ty + 1)) 72 e 7 cos (wT)dT — Qr/ Eo(T 4ty + 1)) e 277 cos (wr)dT

(59)

We see that the integrals in Eq. 59 converge because the integrands are absolutely integrable

because the terms Ey(T + to + to)72 e 27 sin (wT), Eo(T + ta + to)72 €727 cos (wT) and Eo(T + to +

to))T"1e™2°7 cos (wT) have exponential asymptotic fall-off rate as |7| — oo(Section [4.2)). The term

[Eo(T + ta + to) 7€ 27 cos (wT)]% , is finite, given that 72" Ey(7)e 2°7 and its shifted versions go to

zero as t — —oo( |Appendix A.5|). Hence the integral ffoo B(EO(THQ;S)TQTK%T) cos (wr)dr in Eq. 59
and in Eq. 55 corresponding to the term Ey(7 + to + to)e 2T in Eq. 56, converges.

We set o = 0 and ty = —t in the term FEo(T + to + to)e 2°" and see that the integral

fi)oo %};2_“))7” cos (wr)dr in Eq. 55 corresponding to the term FEy(7 + to — ) in Eq. 56 also

converges, using Result B and the procedure used in Eq. 57 to Eq. 59.

We set ty = —to in the term Ey(T + to + to)e 2°7 in Eq. 57 to Eq. 59 and see that the integral

ffoo 8(EO(T_t;ZJt°)672M)72’" cos (w7)dr in Eq. 55 corresponding to the term Ey(7 —to+t9)e 2" in Eq. 56

also converges.
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We set ty = —to, 0 = 0 and tg = —tg in the term Ey(7 + to + tg)e 2°" and see that the integral
ffoo %ﬁrm))r% cos (wr)dr in Eq. 55 corresponding to the term Ey(7 — o — ty) in Eq. 56 also

converges, using Result B and the procedure used in Eq. 57 to Eq. 59. Hence the second integral in
8GR,2r(w,t2,t0)

Bl in Eq. 55, also converges.

the equation for
We can see that the last integral in Eq. 55 converges, by setting t, = —t; in Eq. 56 and using
Result B and using the procedure in Eq. 57 to Eq. 59. Hence all the integrals in Eq. 55 converge.

4.4.1. Second Partial Derivative of Grar(w,ts,ty) with respect to t,
BQG&QT(w,tQ,to) o

The second partial derivative of Gga,(w,ts,ty) with respect to ¢y is given by 52 =
0

%%};’tm as follows. We use the result in Eq. 55 and the fact that the integrands are absolutely

integrable using the results in Section and are analytic functions of variables w and t; for a
given ty (using Result 4.1 in Section ). The integrands have exponential asymptotic fall-off
rate (Section and we can find a suitable dominating function with exponential asymptotic fall-
off rate which is absolutely integrable.(Section Hence we can interchange the order of partial
differentiation and integration in Eq. 60 using theorem of differentiability of functions defined by
Lebesgue integrals and theorem of dominated convergence as follows. (theorem)

D*Gror(w, ta,to)

0
= do?e 270 (—1)" / T2T[E/ (T + to, t2)e™ 27 + By, (1 — to, ty)] cos (wr)dr

ot?
0 et / 2 (T +to, t2)e _;‘: + B, (T — to, 1)) cos (wr)dr
o0 0
20’t0 /0 o (T + to, ta)e _;;T + EO (T —to,t2)) cos (wr)dr
0
+40%e7 0 ( / T2 [Ey (1T — to, t2)e” 2T + By, (T + to, ty)] cos (wr)dr
40t (— / T ~to,ta)e 2: = Eon(T + o, 2) cos (wr)dr
0
et (— 1)7~/ - o O (Ey (T — to, t2)e _;;T + Eq, (T + to, 2)) cos (wr)dr
o 0

(60)

The first two integrals and fourth and fifth integrals in Eq. 60 are the same as the integrals in the
equation for w in Eq. 55 and have been shown to converge in Section H We will show
that the third and sixth integrals in Eq. 60 converge, as follows.

We consider the integrand in the third integral in Eq. 60 first. We see that Ey(1 + to,ts) =
Eo(T +t0 — tg) — Eo(T +t0 +t2> and E(l)n(T — to, tQ) = —E(/)(T — to, tg) = Eo(T — to —|—t2) — E()(T — to — tQ)
(using Definition 1 in Section and Result 3.1 in Section [3| ). We write an equation similar to
Eq. 56.
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aQ(E(I)(T + o, t2)6_2UT + E(/)n(T — 1o, tQ)) B 62(E0(T +ty — t2)6_2UT — Eo(T +to + t2)€_207)

o2 o3
+82(E0(7' - to + tg) — Eo(T — to — tz))
o1
(61)
We consider the term Ey(7 + to + t2) first in Eq. 61 and copy Eq. 57 below.
—9 Z 27T2 447 371'712627—]6_7”126276%
Eo(T + 1ty + 1) =2 Z[2ﬂ2n4e4764(t2+t0) 3mn2e” 2(t2+t°)]e‘””QGQT@Q(tQHO)e%e@
n=1

(62)

We can see that 2 oz EO(T +ty+ty) = 5 2EO(T +t3 + to), given that the equation has terms of the
form e and the equation is invariant if we interchange the variables 7 and ¢.(Result A”)

We can replace ty by t, = —to in Eq. 62 and see that EO(T +ty+ty) = a—QQEO(T + ty + tp)

8( 0)?
(Result E’) given that the equation has terms of the form e+t and the equation is invariant if we
interchange the variables 7 and t,.

aat_a _ 9 (D _ _ 0 (Dd\_ D D\ _ _o* -
Given that Bt = 8t atg = at , We get W = 3_(8_150) = —8—t0<8—t6) = 8_156(6_%) = a(tg)Q’ we substi-
tute it in Result E’ and get 2 o EO(T +ty —tg) = E (T + 1t —tp) .(Result B’)

We can write the term in the third integral in Eq. 60, Corresponding to the term Fo(7+to+ty)e 27
in Eq. 61, using Result A’, as follows. We use the fact that f dA( T)B( Ydr = fi)oo A@B@) g7

dr
f_oo AT %dr

0 A2 0 52
0°(F, t t 0°(F, t t
/ ( 0(7—8—; 2 T 0))7'%6_2” cos (wT)dr = / ( 0(7'(;‘2 2+ 0))72T6_207 cos (wT)dT
—0o0 0 —00 T
0 a(aEO(T;2+tO)T2r€—20’T coS ((,UT)) 0 8E0<T T t2 4 tO) a<7_27’6—207' coS (MT))
= 5 dr — 5 5 dr
- T . T T
OF, b+t 0 OF b+t
= [ O(Tg 2+ 0>T2’“e’2‘” cos (wr)]% . + w/ ol g 2 0)72’"6’2” sin (wr)dr
T . T
0 OF b+t 0 OF ty+ 1
—1—20/ ol ; 2+ 0>7'2Te’2‘” cos (wr)dr — 27”/ ol g 2+ 0)7'2“16’2‘” cos (wr)dr
(63)
We see that the integrals fi)oo OBo(Titatio) 12r =207 (o (wr)dT and ffoo OBo(Thtatio) p2r=16=207 cog (w7 )dr
in Eq. 63 converge, using Eq. 59 in the previous subsection. We see the term [W#T@”” cos (w)]°
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also converges, given that Ey(7) = Eo(—7) and Eo(T + t2 + to) = Eo(—T — t2 — to) and we consider

OEo(r ttatto) por =207 — OBo(=T=tz=to) 12r o207 using Eq. 58 and see that the term e

T or -
faster than the rising term 72"¢ 277¢ %7¢" 2 as 7 — —oco. (Result 4.2.1.1)

—mn2e2

.
goes to zero

It is shown below that the term [°  2E(THetlo) 12re=207 gin (yr)dr in Eq. 63 also converges.

0
/ O(Eo(7 + t2 + 1)) e sin (wr)dT
o or
0 E 2r ,—20T o 0 2r ,—20T &}
:/ ( 0(7’+t2+t0;7' e 7 gin (WT))dT_/ Eolr + 1 —|—t0)8(T e . sin (UJT)dT
e T . T

—00

0
= [Eo(T 4ty + to)T* e 2" sin (w7)]°,, — w / Eo(T + ty + to)7*"e 27 cos (wr)dT

0 0
—|—20/ Eo(T + ty + to)7e 2" sin (wr)dT — 27“/ Eo(T 4ty + to)7 e 7 sin (wT)dr

(64)
We see that the integrals in Eq. 64 converge because the integrands are absolutely integrable
ecause the terms T+1la+1)77 e 77" sin (WT T+1la+1)77 e 77" sin(wT) an T+l +

b the t Eo(T 4+ ta +to) T2 e 7277 sin (wT), Eo(T + ta + to) 7> e 27 sin (w) and Ey(7 + to
to)T¥e™2°7 cos (wT) have exponential asymptotic fall-off rate as |7| — oo(Section 4.2). The term
[Eo(T + to + )7 e 27" sin (w7)]° _ is finite, given that 7" Ey(7)e™2°" and its shifted versions go to
: : 0  0%2(Eo(T4ta+to)T2Te™297)

zero as t — —oo( |Appendix A.5(). Hence the integral [~ " 281%0

and in Eq. 60 corresponding to the term Fy(T + to + to)e 2" in Eq. 61, also converges.

o

cos (wr)dr in Eq. 63

We set o = 0 and ty = —to in the term Eo(7 + ty + t5)e 2°" and see that the integral
fo o2 (EO (T+2t2*t0))
—00 otg

converges, using Result B and the procedure used in Eq. 62 to Eq. 64.

7% cos (wr)dr in Eq. 60 corresponding to the term FEo(7 + to — to) in Eq. 61 also

We set ty = —ty in the term Eo(7 + t9 + to)e_Q‘” in Eq. 62 to Eq. 64 and see that the integral
fo o2 (E(] (T7t2+t0)7'2r6_207-)
—o0 Ot%
also converges.

cos (wT)dr in Eq. 60 corresponding to the term Ey(7 —ty+1t9)e 27" in Eq. 61

We set ty = —ty, 0 = 0 and ty = —tg in the term Eo(7 + to + to)e 2°" and see that the integral

fo 2 (Eo(Tftzfto))
—o0 81%

converges, using Result B and the procedure used in Eq. 62 to Eq. 64. Hence the third integral in
Eq. 60, also converges.

7% cos (wT)d7 in Eq. 60 corresponding to the term Ey(t — ty — ty) in Eq. 61 also

We can see that the sixth integral in Eq. 60 converges, by setting ¢ty = —ty in Eq. 61 to Eq. 64
and using Result B" and the procedure used in Eq. 62 to Eq. 64. Hence all the integrals in Eq. 60
converge.

4.5, Gprar(w,ta, ty) is partially differentiable twice as a function of ty for re W

In Eq. 53, GRar(w, ta, tp) is partially differentiable at least twice as a function of ¢, and the integrals
converge in Eq. 65 and Eq. 69 shown as follows. The integrands in the equation for G, (w,t2, o)
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in Eq. 65 are absolutely integrable because the terms 72 Ey(7 4 to, t2)e 2" and 72" Ey, (7 £ to, o) =
—72" By (T %0, t5) have exponential asymptotic fall-off rate as |7| — oo(Section . The integrands
are analytic functions of variables w and t,, for a given ¢y (using Result 4.1 in Section ). The
integrands have exponential asymptotic fall-off rate (Section and we can find a suitable domi-
nating function with exponential asymptotic fall-off rate which is absolutely integrable.(Section [4.3))
Hence we can interchange the order of partial differentiation and integration in Eq. 65 using theorem
of differentiability of functions defined by Lebesgue integrals and theorem of dominated convergence
as follows. (theorem)

0
Groar(w,ta,ty) = e_%to(—l)’"/ TQT[E(,)(T + to, t2)6_2” + E(;n(T — to, to)] cos (wT)dr

—00

0
+e2t(—1)" / T2 [Ey (1 — to, t2)e” 2T 4 By, (T + to, ty)] cos (wr)dr

—00

OG R o (w, ta, t 0 I(E, to, ta)e 20T + B (1 — to, 1
Rrar(W, ta, o) ZGQUto(_1>r/ 2r O(EQ(T + o, t2)e™" + gy (T — to, t2)) cos (wr)dr
8252 — oo 8152
0 4 —20 !
o E, — 1o, 1 T+ E to, 1
+€20t0(_1)r/ 7_27" ( 0(7— 05 2)6 gy + 0n(7—+ 05 2)) COS(WT)dT
—00 2

(65)

We use the procedure outlined in Eq. 56 to Eq. 59, with ¢, replaced by t; and show that all the
integrals in Eq. 65 converge, as follows.

We see that E(l)(T+t0,t2) = E0(7+t0 —tg) —E0(7+t0+t2) and E(l)n(T—to,tg) = —E(/)(T—to,tg) =
Eo(T —tg + ta) — Eo(T — to — t2) (using Definition 1 in Section and Result 3.1 in Section 3| ). We

consider the integrand in the first integral in the equation for %W in Eq. 65 first.

8<E£)<T + to, t2)€_207— + E(;n(T — to, t?)) _ a(E10(7— +to — t2>€_2UT — E()(T +ty + t2)6_207—)
6252 o 8152
LOE(T —to + 1) = Eo(T — to — 1))

Oty

(66)

We consider the term Ey(7 + to + t2) first and can show that the integrals converge in Eq. 65, as
follows. We copy Eq. 57 below.

Ey(1) =2 Z[2ﬂ2n4e4T — 3rn2e¥ e ™ ¢ et
n=1

o0
EO(T + t2 4 to) _ 2 § [27_‘,27,’1464T€4(t2+t0) o 37Tn2€2762(t2+t0)]e*ﬂ'nzez'rez(tQ“'tO)egew

(67)

We see that a%EO(T + s +1tg) = L Eo(T + t2 + to) given that the equation has terms of the form
e™"2 and hence the equation is invariant if we interchange 7 and ¢,.(Result C)
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We can replace t; by t, = —t, in Eq. 67 and see that %EQ(T +ty+to) = ZEo(T+ 1ty +1o) given
2

. .. . . . ’ . o 9 dty __ 9
that the equation is invariant if we interchange 7 and ¢,(Result F). Given that o = 8_t2d_t§ = 3

we use it in Result F and we get 8%EO(T — by +tg) = —ZEy(T — ta + ty).(Result D)

We consider the term in the first integral in the equation for %‘:’m’to) in Eq. 65 , correspond-
ing to the term FEo(T + to + t2)e 2°" in Eq. 66, as follows, using Result C. We use the fact that
fO dA(T)B(T)dT _ fO d(A(:l)B(T))dT B fO A(T) di(r) dr.

oo dr

O I(E ty+t O I(E ty+t
/ O(Eo(r + 12 + O))T2T€_2UT cos (wr)dr = / O(En(T + 2 + 0>)T2T€_2GT cos (wr)dr
—0 atQ —00 87—
0 E 2r ,—20T 0 2r ,—20T
_ / O(Eo(T +ta + t();T e oS (w7'))d7_ B / Eo(r + s + to)(?(T e . cos (wT) gr
. T . T

0
= [Eo(1T 4ty +to)T* e 27" cos (wr)]°, + w / Eo(T + ty + to)7*" e 77 sin (wr)dT

— 00

0 0
—1—20/ Eo(T + ty + to)7*e 27 cos (wr)dT — 27“/ Eo(T + ty 4 to)7 e 27 cos (wT)dr

(68)

We see that the integrals in Eq. 68 converge because the integrands are absolutely integrable
because the terms Eo(T + to + to)7% e 27 sin (wT), Eo(T + to + to)7* "t 27" cos (wr) and Eo(T +
to + 1) 7% "2 cos (w) have exponential asymptotic fall-off rate as |7| — oo(Section 4.2). The term
[Eo(T + t2 + to) T2 e 727" cos (wT)]° ., is finite, given that 72" FEy(7)e 27 and its shifted versions go to

zero as t — —oo( |Appendix A.5|). Hence the integral ff)oo B(EO(TH;;tO)e_zM)TzT cos (wr)dr in Eq. 68

and Eq. 65 corresponding to the term Ey(T + t3 + tg)e 27 in Eq. 66 also converges.

We set 0 = 0 and tg = —t in the term FEy(7 + t2 + to)e 2T and use the procedure in Eq. 67 to
Eq. 68 and see that the integral ff)oo %ﬁ*to))ﬁr cos (w7)dr in Eq. 65 corresponding to the term
Eo(T +t2 — tp) in Eq. 66 also converges.

We set ty = —to in the term FEo(7 + to + to)e_zﬂ and use the procedure in Eq. 67 to Eq. 68

and see that the integral ff)oo 8(E0(7_t§;:°)672”)7'27’ cos (wr)dr in Eq. 65 corresponding to the term

Eo(T —ta + t9)e 2" in Eq. 66 also converges, using Result D.

We ty = —ty, 0 = 0 and ty = —tg in the term Ey(7 4ty +to)e 2°7 and use the procedure in Eq. 67

to Eq. 68 and see that the integral ffoo %}t;rto))ﬁr cos (wr)dr in Eq. 65 corresponding to the
term Eo(T —ty —to) in Eq. 66 also converges, using Result D. Hence the first integral in the equation

OG R,2r(w,t2,t0)

for 5t in Eq. 65 also converges.

We can see that the last integral in Eq. 65 converges, by setting ¢ty = —t; in Eq. 68. Hence all the
integrals in Eq. 65 converge.

4.5.1. Second Partial Derivative of Gra(w,ts,ty) with respect to ty for re W

02GRor(witato)

The second partial derivative of Gga.(w,ts,ty) with respect to ty is given by 52 =
2
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%%&”tm as follows. We use the result in Eq. 65 and the fact that the integrands are absolutely

integrable using the results in Section and the integrands are analytic functions of variables w
and t5 for a given ¢y (using Result 4.1 in Section ). The integrands have exponential asymptotic
fall-off rate(Section and we can find a suitable dominating function with exponential asymptotic
fall-off rate which is absolutely integrable.(Section Hence we can interchange the order of partial
differentiation and integration in Eq. 69 using theorem of differentiability of functions defined by
Lebesgue integrals and theorem of dominated convergence as follows. (theorem))

DG Ror(w, ta,t 0 O?(E; to, ta)e 20T + B (1 — to,t
R2 (fja 2, 10) :e—QUto(_l)r/ L2 (Eo(T +to, t2)e ' + B, (T — to,t2)) cos (w7)dr
o2 . o2
0 2 ! —20T !
0“(E — 19,1 E, to,t
+€20to(_1>r/ L2 (Eo(T —to, t2)e 2 + Eo, (T + 1o, 12)) cos (wr)dr
—oo 2

(69)

We consider the first integral in Eq. 69 and using Ey(7 + to, ta) = Eo(T +to — to) — Eo(T +to + Lo
and B, (T —to, to) = —Ey(T —to, ta) = FEo(T —tg+1t9) — Eo(T —to—to)(using Definition 1 in Section
and Result 3.1 in Section [3] ), we write an equation similar to Eq. 66.

62(E6<T + to, t2)6_2UT + E(/)n(T - to, tg)) . 82<E0(T + to - tg)e_z(ﬂ— - E()(T + t(] + t2)6_2‘”)

ot3 ot3
+(‘32(E0(7' - to + tg) - Eo(T — to - tg))
ot
(70)
We consider the term Ey(7 + to + o) first in Eq. 70 as follows. We copy Eq. 57 below.
_ QZ 27_[_2 4 47’ 37Tn2 27]6 7rn262"e%
oo

E (T Tty to Z 9 r2n el pAltatto) 37Tn262762(t2+t0)]e*ﬂ'nzeQTeQ(tz‘Ho)egew

(71)

We can see that 2 oz EO(T +ity+tg) = 7_22 Eo(T +t9 + to), given that the equation has terms of the
form ™" and the equation is invariant if we interchange the variables 7 and ¢,.(Result C’)

We can replace t, by t, = —t, in Eq. 71 and see that -7 Eo(T + ty +to) = aTQ S Eo(T + t + )

)
(Result F’) given that the equation has terms of the form eT+t2 and the equation is invariant if we
interchange the variables 7 and t,.

/
: o _ 90, 9 _aa__aa_aa_a :
Given that 57 = o B = i e get at2 a5 (35;) = 8tz(at’2) = at;(at;) = py e substi-

tute it in Result F” and get 2 Eo(T — ty + to) = 88—;2E0(T —ty+ 1) .(Result D’)

8t2
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We can write the term in the first integral in Eq. 69 corresponding to the term FEo(7+to+t2)e 27
in Eq. 70, using Result C’, as follows. We use the fact that f?oo %(:)B(T)dT = ffoo Wcﬁ —
fi)oo A(T)di—y)dr

e e cos (wr)dT

/0 O*(Eo(T +t2 + 1)) o, ~207 o (wr)dr = /0 O*(Eo(T +t2 +to)) o,

e ot . or?
0 8(—6E°(Tgt2+to)72"6_2‘” cos (wT)) O OFEy(T +ty +t9) O(T%"e™27 cos (wT)
= T dr — dr
oo or oo or or
OF, ty+t 0 OF ty +t
= [ o(7 +t2 + 0)72’"@_2” cos (wr)]° ., + w/ o7 + 2+ O)TQTG_ZUT sin (wr)dr
or e or
0 0
OF t t OF t t
+20/ o7+t + 0)7'27"6_2” cos (wT)dT — 27"/ o+t + 0)7‘27"_16_2” cos (wT)dT
o or o or
(72)

. 0 E — 0 E -1 —
We see that the integrals [©  2Z(tatlo) 2r =207 ¢og (7 )dr and I WT% le=297 cos (wT)dT

—0o0 or
in Eq. 72 converge, using Eq. 68 in the previous subsection. We see the term 220 Hz410) 22r =207 g (1o7)]0

also converges, using Result 4.2.1.1 in Section [£.4.1] It is shown in Eq. 64 that the remaining term

0 OBo(r+tatt Zoor
i OBo(ritatto) 12r =207 gin (w7 )d7 also converges.
—o0 or

—20T

We see that the integrals in Eq. 72 converge and hence the integral | f)oo aQ(EO(THQ;;O)T%%M) cos (wr)dr
2

in Eq. 69 corresponding to the term Ey(7 + to + t9)e™2°7 in Eq. 70 also converges.

92 (Eo (T+t2 —to))

o 7% cos (wT)dT in

We set 0 = 0 and ty = —ty in Eq. 72 and see that the integral fi)oo
Eq. 69 corresponding to the term Ey(7T + ¢t — tg) in Eq. 70 also converges.

We set ty = —ty in the term FEy(7 + to + t2)e 27 and use the procedure in Eq. 71 to Eq. 72
2 —20T
and see that the integral ono g (EO(”?;ME ) 22 cos (wr)dr in Eq. 69 corresponding to the term
2

Eo(T —ty +tg)e 2" in Eq. 70 converges, using Result D',

We set ty = —ty, 0 = 0 and ty = —t( in the term Ey(T + t5 + t9)e~2°7 and use the procedure in
’ . 2 T—tg— .
Eq. 71 to Eq. 72 and Result D and see that the integral fi)oo WT% cos (wr)dr in Eq. 69
2

corresponding to the term Fo(T —ts —to) in Eq. 70 also converges. Hence the first integral in Eq. 69,
also converges.

We can see that the second integral in Eq. 69 converge, by setting tg = —ty in Eq. 70 to Eq. 72 .
Hence all the integrals in Eq. 69 converge.

4.6.  Zero Crossings in Gra,(w,ts,t)) move continuously as a function of ¢y, for a given
ty, for re W.

Result 4.7.1: It is shown in Lemma 1 in Section that Gr(w,ta,tp) = 0 at w = w,(ts, to)
where it crosses the zero line to the opposite sign, if Statement 1 is true. It is shown in Section [4.8
that Gro(w,t2,tp) = 0 and w # 0 at w = w,(t2, to), for some value of r € W where (2r+1)
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is the highest order of the zero of Gr(w,ts,ty) at w = w,(t2,ty). (example plot)

We use Implicit Function Theorem for the two dimensional case ( link and link). Given
that Grar(w, 2, to) is partially differentiable with respect to w and ¢y, for a given value of t,, with
continuous partial derivatives (Section and Section and given that Ggar(w,t2,t)) = 0 at
w = w,(ta,tp) and W # 0 at w = w,(t2, o), for some value of r € W where (2r + 1) is the
highest order of the zero of Gg(w, ts,ty) at w = w,(t2, ty) (using Lemma 1 in Section [2.1|, Lemma 2 in
Section and Result 4.7.1), we see that w,(t2, o) is a differentiable function of ¢y, for 0 < ty < oo,

for each value of t5 in the interval 0 < £ < o0.

Hence w,(t2, 1) is a continuous function of ¢y for 0 < ¢y < oo, for each value of ¢y in the interval
0 <ty < o00.

e It is shown in Section that Grar(w,t2,to) is partially differentiable at least twice with
respect to t,. We can use the procedure in previous paras and Implicit Function Theorem and show
that w,(t2,1%9) is a continuous function of o, for 0 < ty < oo, for each value of ¢y in the interval
0 <ty <oo.

4.7. Zero Crossings in Gpa.(w,ta, 1)) move continuously as a function of t, and t,, for
reWw

We can use the procedure in previous subsection and show that w,(t2, %) is a continuous function
of ty and g, for 0 < ty < oo and 0 < t5 < oo, using Implicit Function Theorem in R3.

We use Implicit Function Theorem for the three dimensional case (link and [Theorem 3.2.1 in
page 36). Given that Gga,(w,t2,to) is partially differentiable with respect to w and t, and ¢, with
continuous partial derivatives, for r € W (Section , Section and Section and given that

Groar(w, ta,tg) = 0 at w = w,(t2, o) and w # 0 at w = w,(ts, o), for some value of r € W
where (2r + 1) is the highest order of the zero of Gg(w, s, %)) at w = w,(t2,%p) (using Lemma 1 in
Section [2.1] Lemma 2 in Section [4.8/and Result 4.7.1), we see that w,(¢», o) is a differentiable function

of tg and t5, for 0 <ty < oo and 0 < ty < 0.

Hence w,(ts,t9) is a continuous function of ¢y and ¢,, for 0 < ¢y < 0o and 0 < t5 < occ.

4.8. Proof of Lemma 2

In this section, it is shown that, if Gr(w,ts,ty) = 0 at w = Fw,(t2,ty), for each fixed choice of

positive tg,to € R and (2r + 1) is the highest order of the zero at w = fw. (s, ) for some value of

27
0% GRr(wita;to) _ 0 at

r € W (element of set of whole numbers including zero), then Ggro,(w,ts,ty) = s

w = tw,(ts, ty) and QGR’Qg(f’tQ’tO) = 82T+1(9i§£fit2’to) £ 0 at w = Fw, (g, 1g).

In Section , it is shown using Proof of Lemma 1 that Gr(w,ts,ty) must have at least one
zero at finite w = w,(t2,%y) # 0 where it crosses the zero line to the opposite sign, for each fixed
to,t2 € R and ty # 0, to satisfy Statement 1. (Result 4.8.1)
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We see that Gr(w,t2,to) is a real and even function of w because g(t,t2, o) is a real function of
variable ¢ (|Appendix B.1)) and hence if Gg(w,ts,1) has a zero at w = 4w, (t2, 1), then it also has a
zero at w = —w,(t9,tg). Hence Gg(w,ts, o) has its first zero crossing at w = fw,(t2, ty) # 0 where
it changes sign, using Result 4.8.1.

Hence we can write Gg(w, ta, to) = (w,(ta, t0)* — wW?)* T N'(w, ta, ty), for r € W, where
N'(w,tg,tg) # 0 at w = tw,(ts, ty), for each fixed positive tg,to € R and (2r + 1) is the highest order
of the zero at w = w,(t2,ty). It is noted that w,(t2, ty) represent the zero crossing in G(w, 2, ty), for
each fixed positive tg, to € R. It is noted that N'(w, t2,ty) may or may not be zero at w # tw,(t2, to)
and we do not claim otherwise.

The case of (w,(t2,t9)* —w?)?" is ruled out because Gr(w, t2,ty) changes sign at w = +w, (¢, o)
and N'(w, ta,tg) does not change sign at w = dw,(t2,%y) and (w,(ts, ) — w?)* > 0 for real w and
does not change sign at w = tw, (¢, to).

In Section [2.3 and Section [2.4] it is shown that g(¢,t2, ) is a Fourier transformable function and
its Fourier transform given by G(w, ta,ty) = e 270Gy (w, ta, tg) + 270Gy (w, ta, —ty) converges (Eq. 24
and Eq. 27) and its real part given by Gg(w, ta, ) is finite and hence the order of the zero given by
(2r + 1) is finite.

In Section [4.1] it is shown that Gg(w, t2, ) is partially differentiable (21 +2) times, as a function
of w, where r € W.

For a fixed positive tg,t2 € R, let Gr(w, ta,ty) = M(w),N'(w, t2,t0) = N(w) and w,(t2,ty) = w..

We consider the case of M(w) = M,(w) = (w? — w?)* TN, (w) for each r € W, where N, (w,) # 0.
In the section below, N, (w,) # 0 means that N,(w) # 0 at w = w,. It is noted that N,(w) may or
may not be zero at w # w,. Using Result 4.8.1 and w,(ts,ty) = w,, we see that w, # 0.

Lemma 2: If M, (w) = (w? — w?)* TN, (w) where N,(w,) # 0 and r € W and (2r + 1) is the
highest order of the zero at w = w, and M, (w) is differentiable (2r+ 1) times as a function of w, then
% =0 and ‘PTJQ—%:I # (0 at w = w, using principle of mathematical induction.

Proof: For r=0, we see that MO( ) = (w?

My(w,) = 0 (Result 0.a) and M, (w) = o) — (2 — )dNO(w) + No(w)(—2 ) At w = w,, we see
that My(w.) = No(w,)(—2w.). Given that wz # 0 and Ny(w.) # 0, we get My(w,) # 0 and hence
%w(w) # 0 at w = w, (Result 0.b).

— w?)Ny(w) where No(wz) # 0 . We see that

4.8.1. r=1and s=0,1,2,3

For r = 1, we see that M;(w) = (w? — w?)3N;(w) where N;(w) # 0 at w = w,. We will compute
2r4-1

dsi\f and show that % = Z (W?—w?)" Ay p(w), forr =1and s = 0,1,...(2r+1). Hence

r’'=2r4+1-—s
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3
we write M;(w) = Z(wf — W) Ag,1(w) where Agsq(w) = Ny(w), for s = 0.
r’'=3
We define K,,, = 2(2r +2 —p) # 0 where p < s and s < 2r + 1 and compute A, ,(w) for v’ =
2r+1—s, as a recursive product and will show that A, 9,415, (w,) = (—1)° szl K, ,wiN,(w,) # 0,
for s =0,1,..2r + 1, for a given r = 1 in Eq. 73 to Eq. 75.

We compute the first derivative of M;(w), using s = 1. We combine the two terms in the first line
3

in Eq. 73 and write concisely in the second line using M = Z(wg — W) Ay (w), as follows.

r'=2
dMl(OJ) 2 2 3dN1(W) 2 212
B) _ 2 ) v )32 - )20
dM(w) < : 1
dluf ) = Z(wz — W) A (W), Argi(w) = —6wN;(w) = —6wAgz(w HK 1w Ny (w

(73)

We see that K,, =22r+2—p)and K1; =6 for p=1,7r=1and A131(w) = d]\;l We see
that 2r +1—s =2 for r = 1,s = 1 and hence A, 2,115, (w,) = A121(w,) = —6w, Ny (w,) 7é 0 given
that w, # 0 and N;(w,) # 0.(Result 4.6.1)

We take the derivative o in Eq. 73, using s = 2. The second term (w? —w?)" ! = (w? —w?)!
for = 2, in the summation in the first line in Eq. 74 and hence we combine the two terms in the

first line, by including " = 1 in the summation in the second line and write concisely as follows.

fdMl w) -

2 3
I St —ty Pl (e =ty (=)

2 z
dw = dw

d2M w 3 ’
A = Z(W2 — u}2)T AQ’T/J(CO), A271’1(C«J) = —4(,&)14172 1( ) = 24W2N1 H p,1W N1

(74)

We see that Ky3 =2(2r+2—p) =4forp=2,r =1 and Ays;(w) = M%:(w) — 6wA; 31(w) and
A z1(w) = dAld#(w We see that 2r+1—s = 1forr = 1, s = 2 and hence A; 9 41-s5,(w) = Ag11(w) =
—4wA; 21 (w) = 24w? Ny (w) using Eq. 73 and Result 4.6.1 and Ag;(w,) = 24w?N;(w,) # 0, given

that w, # 0 and Ny (w,) # 0 (Result 4.6.2)

We take the next derivative of % I

in Eq. 74 and combine the two terms as follows, using s = 3.

dSMl(W) : 2 gy A 1 1 (W) 12 2\ —1
— = D (W —w?) e Ay (@) (W = W) (—2w)

d3 M 3 ) 3
EMw) _ D (W= W) Aga(w),  Ason(w) = —2wAs1(w) = =480 Ny (w) = — [ [ Kpaw® M (w)

r'=0 p=1
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(75)

We see that K33 = 2(2r+2—p) =2for p =3,7r =1 and A3, (w ):M dwAs g1 (W),

Aso1(w) = % 6wAs31(w) and Azs;(w) = d‘%% We see that 2r+1—s=0forr=1,s =3

and hence Agor11-s,(w) = Asg1(w) = —2wAs 11 (w) = —48w3 Ny (w) using Eq. 74 and Result 4.6.2
and Az q(w,) = —48w3N;(w,) # 0, given that w, # 0 and N;(w,) # 0 .(Result 4.6.3)

We see that dQJC\lilz(w) =0 at w = w, in Eq. 74 (Result 1.a). We evaluate B3(w) = M, ()

dw3
at w = w, and see that all terms become zero except the term with " = 0 in Eq. 75. Hence

Bs(w,) = As1(w.) # 0 using Result 4.6.3 and hence & M1 ) £ 0 at w = w. (Result 1.b).

4.8.2. r=2and s=0,1,2,3,4,5

For r = 2, we see that Ms(w) = (w? — w?)®Ny(w) where Ny(w) # 0 at w = w,. We will compute
2r+1

dsi\f and show that % = Z (w? —w?)" Ay p(w), forr = 2and s = 0,1,...(2r +1). Hence

r’'=2r4+1-—s
5

we write My(w) = Z(wz — W) Ag,a(w) where Agsa(w) = Ny(w), for s = 0.
r/=5
We define K,, = 2(2r +2 — p) # 0 where p < s and s < 2r + 1. We compute A, ,(w) for " =
2r+1—s, as a recursive product and will show that A 2,15, (w,) = (—1)° H;Zl K, ,wiN,(w,) # 0
for s =0,1,..2r + 1, for a given r = 2 in Eq. 76 to Eq. 80. We compute the first derivative of My(w)
and combine the two terms as follows, using s = 1.

dMs(w dNy(w
B (w2 - P )52 - ) (20
dM,(w > ’ !
dZQE ) = ;(wf - (UQ)T ALT/’Q(CLJ), A174,2(w) = —1OCUN2<CLJ) = —IOWA052 IHK p,2W Ng( )
(76)
We see that K,, = 22r+2—p) = 10 for p = 1,7 = 2 and A;52(w) = %{5‘"). We see that

2r+1—s=4forr=2s=1and hence Ao 41_5,(w;) = A1 42(w,) = —10w,Na(w,) # 0 given that
w, # 0 and Ny(w,) # 0.(Result 4.6.4)

We take the next derivative of “2() in Eq. 76, using s = 2. The second term (w? — w?)" ! =
(w? — w?)3 for 7' = 4, in the summation in the first line in Eq. 77 and hence we combine the two
terms in the first line, by including " = 3 in the summation in the second line and write concisely

as follows.

EMy(w) & JdA o (w , ,
T = Y —ary et A, (o2 - 2

EMo(w) N~ 5 o 2
— = D (W= W) Agpa(w),  Azsa(w) = —8wAsa(w) = 80w’ Na(w H p,200” No(w
r’'=3
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(77)

We see that Ky =2(2r +2—p) =8for p=2,r =2 and Ay 4s(w) = ledﬂ 10wA; 52(w) and
Ay 50(w) = Ml% We see that 2r+1—s = 3 for r = 2, s = 2 and hence A; 9 41-s,(w) = Ag32(w) =
—8wA; 42(w) = 80w?No(w) using Eq. 76 and Result 4.6.4 and A 32(w,) = 80w?Ny(w,) # 0, given
that w, # 0 and No(w,) # 0 (Result 4.6.5)

We take the next derivative of % in Eq. 77 and combine the two terms as follows, using s = 3.

PMo(w) NS0 oy dAaa(@) o — 2y
W = Z(w — W ) T + Agyrlyg(W)T (wz — W ) (-20))

d3M2(W> & 2 2\ 7/ 3
e S (@~ W) As (W), Aspa(w) = —6wAssa(w) = —480w Ny(w H p2w’ Na(w
r'=2

(78)

We see that K39 = 2(2r+2 —p) =6 for p = 3,7 = 2 and As3s(w) = dAQ% 8wAg 42(w),
A342( ) CW# 10(,014252( )andA352( ) dl‘b% Weseethat?r—i—l S_2fOI'T—2 s=3
and hence Ago 41 s,(w) = Agna(w) = —6wAs3(w) = —480w® Na(w) using Eq. 77 and Result 4.6.5

and Ajgo(w,) = —480w? Ny(w,) # 0, given that w, # 0 and Na(w,) # 0 .(Result 4.6.6)

We take the next derivative of % in Eq. 78 and combine the two terms as follows, using s = 4.

d4M. > ydAs . ,
L) _ St -ty P e -y (20

d4M2(W) ° 2 2\ 7/ 4
—_— = Z(W — W ) A4,T/,2(w), A471,2(w) = —4(4)14372 2( ) = 480 * 4w N2 HKP oW NQ( )

p=1
(79)
We see that K40 = 2(2r +2 —p) = 4 for p = 4,r = 2. We see that 2r + 1 — s = 1 for

r=2,s=4and hence A9 11 s,(w) = Ag12(w) = —4wA3 22 (w) = 480 * 4w* Ny(w) using Result 4.6.6
and Ay o(w,) = 480 * 4wINy(w,) # 0, given that w, # 0 and Ny(w,) # 0 .(Result 4.6.7)

We take the next derivative of ¢ in Eq. 79 and combine the two terms as follows, using s = 5.
d5M > /dA r! /
TR R RPN R PR
d5 M. ° ,
d—(jguj) = Z(wz — w2)T A577./’2(u.)), A57072(w) = —20014471,2(0)) = —480 * 4 * 2w5N2 H p,2W N2
=0
(80)

We see that K50 =2(2r+2—p) =2forp=5,r=2. Weseethat 2r+1—s=0forr=2,s=5

and hence Ao y1 s,(W) = Asp2(w) = —2wAy12(w) = —480 x 4 * 2w°Ny(w) using Result 4.6.7 and
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Aspa(w,) = —480 x 4 % 2w3 Ny(w,) # 0, given that w, # 0 and Ny(w,) # 0 .(Result 4.6.8)

We see that d4i\lﬁ(w) =0 at w = w, in Eq. 79 (Result 2.a). We evaluate Bs(w) = d52f5(“’)
at w = w, and see that all terms become zero except the term with ' = 0 in Eq. 80. Hence

Bs(w,) = A5 02(w.) # 0 using Result 4.6.8 and hence & M2 ) £ 0 at w = w. (Result 2.b).

4.8.3. Induction Proof for each r €¢ W

For a general r € W, we see that M, (w) = (w? — w?)* !N, (w) where N,(w,) # 0. Using the
equations for » = 1 in Section [£.8.1] and r = 2 in Section , we build the equation used in
Induction hypothesis for s— for s =0,1,..(2r + 1), for each r € W, as follows. (Set r = 1,
s = 2 in Eq. 81 and we get Eq. 74 and Result 4.6.2. Set r = 2, s = 5 in Eq. 81 and we get Eq. 80

and Result 4.6.8.)

d* M, () 2r+1
o = 3 (@ A @), Asaritsn(®) = Ay ez o (@) (—20) (20 +2 - 5)
r'=2r+1—s

Asprpr-sr(wz) = (1) H Ky wiNp(w.) #0, Ky, =22r+2—-p)#0

p=1
(81)
It is noted that we only need the coefficient A, ,.(w) corresponding to r’ = 2r + 1 — s because
the terms for ' # 0 in the equation for % for s = 2r + 1 vanish at w = w,, as shown in Eq. 85.

e Induction Hypothesis: We assume that Eq. 81 holds for s = S, for S < 2r + 1.

d5 M, (w) s, ,
-7 < = Z (Wz - W2>T AS,T’,T (CU)7 AS,2T+1—SJ’ (w) = AS—1,2r+2—S,r(W)(_2w>(2T + 2— S)

dw?®
r'=2r4+1-5
Asors1—sr(w:) = H WS Np(w,) #0,  Kpp =2(2r+2—p) #0
(82)
e Induction Step: We take the first derivative of Eq. 82 given by - d & QZTS( w) — ds;”swjl The

second term (w? — w?)" ! = (w2 —w?)> 5 for v’ = 2r +1 — S, in the summation in the first line

in Eq. 83 and hence we combine the two terms in the first line, by including " = 2r — S in the
summation in the second line and write concisely as follows.

2r+1
ds+1MT(w) _ i (w2 w2 r! dAsﬂ“/ﬂ”(w)

s 2 Ay )y g (! (02 = W) (- 20)
r’'=2r4+1-S5
ds+1MT w ] /
dw—5+1<) = Z (w§ - WQ)T Asiimr(W),  Asiror—sr(w) = Asorpr-se(w)(—2w)(2r +1 - 5)
r'=2r—S

S+1
AS+1,27‘75,T‘(WZ) = _AS,2r+lfS,r(wz)(wz)2(27’ +1-— S) - <_1)S+1 H Kp,rwarlNr(wz) % 0

p=1
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(83)

We see that Kgy1, =2(2r +1—S5) #0 for S < 2r +1 and we use Agar+1-5,-(w,) in Eq. 82 to
get Agi19,—s,-(w,) in Eq. 83.

We see that Eq. 83 is exactly the same as the equation we get, if we set s =S + 1 in Eq. 81.
Thus we have proved Eq. 81 by principle of mathematical induction.

e We set s = 2r in Eq. 81 and get

2r+1

d2TMT w ’
TE) =) (W= W) Agr (W), A (W) = Agroi o (W) (—4w)
r'=1
AQTlT wz = 27’ H TW2TN wz) 7é 0
(84)
We see that all the terms in dQT;f;(w) in Eq. 84 become zero at w = w, and hence dz:i]\j;;(w) =0 at
w = w,. (Result r.a)
e We set s =2r + 1 in Eq. 81 and get
B (w 2r+4-1 y
) S (02— ) Ayt @), A () = Ao () (-2)
r’'=0
2r+1
A2T+1,0,r(wz) - (_1)2r+1 H Kp,rwzr+1Nr<wz) ?é 0
p=1
(85)

We see that all the terms in % in Eq. 85 become zero at w = w, except the term for ' = 0
dw?2r+

and As,410,(w.) # 0 and hence ddz—%fl # 0 at w = w,. (Result r.b)

Corollary: The Induction proof presented in this section and Result r.a and Result r.b are valid
2r+1

for each r € W. Hence we see that %22() =0atw=uw, and % # 0 at w = w,, for each

r € W, where M, (w) = (w? — w?)* TN, (w), where N,(w.) # 0, and (2r + 1) is the highest order of

the zero of M, (w) at w = w,.

Given that Gr(w,ts,tg) = M,(w) for some value of r € W and fixed choice of t, t5, we see that
—82TGSU(J°§;t2’t°) =0 at w = +w, and —82T+lai§fflt2’t°) # 0 at w = fw,, given that M(w) = Gr(w,ts,to)
is a real and even function of w, where (2r + 1) is the highest order of the zero of Gg(w,ts,to) at

w = w,(ta,tp). This induction proof continues to hold for each fixed choice of positive tg,t; € R.
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5. w:(t2,t0)to = 5 can be reached for specific %o, t,

It is noted that we do not use limy, , in this section. Instead we consider real ¢, > 0 which
increases to a larger and larger finite value without bounds. We use 0 < 0 < % below.

We write Pygq(te,to) in Eq. 30 derived assuming Statement 1, concisely as follows.

to

to
Paa(te, tg) = / Ey(7,t3)e % cos (ws (ta, to) (T — to))dr + %% / By, (7, t5) cos (ws (ta, to) (T — to))drT

—00 —00

Poaa(ta, to) + Poaa(tz, —to) =0

(86)

We note that Ey(7,ts) = Eo(T — to) — Eo(T + t3) and Ey, (7,t2) = Ey(—7,ts) = —Ey(1,t2) =
Eo(T +13) — Eo(T —t2) (using Result 3.1 in Section [3). We choose ¢, = 2ty and we choose ¢; such that
Ey(t) approximates zero for |t| > t;, given that Ey(t) has an asymptotic exponential fall-off rate of
o[e ] (|Appendix A.5). We choose ty >> t; and hence Eo(7 — to) = Eo(7 — 2to) approximates
zero in the interval (—oo,to]. Hence in the interval (—oo,ty], we see that Ey(7,ty) ~ —Eo(T + ty)
and E,, (1,ty) ~ Eo(T + t3), for sufficiently large to. We can write Eq. 86 as follows. We use
w; (ta, —to) = w.(t2,t9) (Section 2.4). We note that t, = 2¢, in the rest of this section and we
continue to use the notation w,(ts,tg) where ty = 2t.

to
Poaa(ta, o) ~ — / Eo(m + 2t0)e_2‘” cos (w,(ta, to)(T — to))dT
o X
—|—€20t0 / Eo(T + 2t0) COS (CL)Z (tQ, to)(T — to))dT
7t0—oo/
Poga(ta, —to) = Eo(1,t2)e %7 cos (w(t2, to) (T + to))dT
e Y
fe 20t / E,, (T, t9) cos (w,(t2, to) (T + to))dT

(87)

We see that the term P,q4(t2, —to) in Eq. 87 approaches a value very close to zero, as real t,
increases to a larger and larger finite value without bounds, due to the terms e~2°% and the integrals
f:sg, given 0 < 0 < % and ¢y > 0 and given that the integrands are absolutely integrable and finite
because the terms E,(7,ty)e 2" and Ej, (7,t2) = —Ey(7, t2) have exponential asymptotic fall-off rate
as || — oo(Section Hence we can ignore P,gq(ts, —to) for sufficiently large ¢, and write Eq. 86,
using Eq. 87 and ty = 2.

Qlte) = Poga(tarto) + Poalts, —to) ~ / o7 + 2to)e27 cos (w. (t, to) (7 — to))dr

to
+€20t0 / Eo(T + 2t0) COSs (U)Z<t2, to)(T — to))dT ~ 0

—0o0

(88)



We substitute 7 + 2tg =t, 7 =t — 2ty and dr = dt in Eq. 88 and write as follows.

3to

Q(to) ~ —etoto / Eo(t)e 7" cos (w(ta, to)(t — 3tg))dt

—00

3to
20t / Ey(t) cos (w.(t2, to)(t — 3to))dt = 0

(89)

We multiply Eq. 89 by e™37% and ignore the last integral for sufficiently large t,, given that
e2otoe=30t — =0t and \ffioo Eo(t) cos (w,(ta, to) (t — 3to))dt] < f?’to |Eo(t)|dt < [ |Eo(t)|dt is finite.
(link and [Appendix A.1l))

3to
S(to) = Q(tg)e 7" ~ —e' / Eo(t)e 7" cos (w.(ta, to) (t — 3t))dt = —e"™ R(ty) ~ 0
3to - 3to
R(ty) = cos (w.(ta2, t0)3to) / Eo(t)e 27" cos (w, (ta, to)t)dt + sin (w.(ta, to)3to) / Eo(t)e " sin (w, (ta, to)t)dt

(90)

In Section it is shown that 0 < w,(t2,%y) < oo, for all |ty] < oo, for each non-zero value of
ty. For tg > 0, we see that w,(t2,t0)tg > 0. In Section {4} it is shown that w,(t2, %) is a continuous
function of variable ¢y and t5, for all 0 < ¢y < co and 0 < t5 < co. Hence w,(ts, o)ty is a positive
continuous function.

We require w, (o, %)ty = 5 in Section (3| for a specific ty = to. and ty = t5. = 2to.. To show
that w.(t2,%9)to = 5 can be reached, we assume the opposite case that w.(ts,to)to < 5 for all
0 <ty < oo and ty = 2t; (Statement C) and show that this leads to a contradiction.

Let w;(t2,t0)to = KF(ta,ty), where 0 < K < F and 0 < F(ty,1)) < 1 is a positive continuous

function for 0 <ty < oo and ty = 2y, such that w,(t2, %)ty < 5. Hence w.(t2,ty) = %ﬂ?to)

We choose t3 such that Eq(t)e™2°" is vanishingly small and approximates zero for |t| > 3 Result
5.a), given that Ey(t)e 2" has an asymptotic exponential fall-off rate of o[e=0I*] (
.We choose ty >> t3 and note that t3 is independent of ¢y,. As ¢, increase without bounds, in
the interval |t| < t3, we see that the term cos (w,(t2,%)t) ~ 1 and sin (w,(ta,t9)t) = w.(te,to)t ~ 0
(Result 5.b), given that w,(t2, to)t = KF(tQ’tO)t < KF(?’tO)t‘“’ << 1, because tg >> t3 and F(tq,ty) < 1.
Hence we write Eq. 90 as follows, using Result 5.2 and Result 5. b

3to t3
R(to) =~ cos (wz(tg,to)Bto)/ Eo(t)e 7" cos (w,(ta, to)t)dt = cos (3KF(t2,t0))/ Ey(t)e 27t dt
(91)
For sufficiently large to, the integral R(to) ~ cos (3K F(ts,t0)) ffig FEo(t)e2°tdt remains finite, be-
cause cos (w;(t2, 0)3to) oscillates in the interval [—1,1] and [* Eo(t)e**"dt > 0 (|Appendix A.1)
and does not approach zero exponentially, as real ¢y increases to a larger and larger finite value
without bounds. This is explained in detail in Section [5.1]

_t3
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The term €™ in S(ty) = —e“™R(ty) in Eq. 90 increases to a larger and larger finite value ex-
ponentially as t, increases, and hence the term S(tg) approaches a larger and larger finite value
exponentially, given that R(t;) does not approach zero exponentially and hence S(ty) and Q(t¢) in
Eq. 89 and P,y4(t2, to) + Poaa(t2, —to) in Eq. 86 cannot equal zero, to satisfy Statement 1, in this case.

Hence Statement C is false and hence w,(ts,to)ty = 5 can be reached for specific values of ¢,

and ty = 2ty as finite ¢y increases without bounds, given that w,(ts, o)ty is a continuous function
of variable tg and t,, for all 0 < t; < oo and 0 < t5 < 0.

5.1. Aty = ffii Eo(t)e™27 cos (w,(t2, to)t)dt does mot have exponential fall off rate

We compute the minimum value of the integral A( to = [0 0 Bo(t)e=27t cos (w, (ta, to)t)dt in
Eq. 90 , for sufficiently large t3 and tg >> t3 and 0 < 0 < 5. We note that t2 = 2ty and note that ¢3
is independent of ¢, below. We split A(ty) as follows.

Alto) = Blts, to) + Cl(ts, to) + D(ts, to)

—t3 t3
B(ts, ty) = / Ey(t)e 27" cos (w,(ty, to)t)dt, Cl(ts,ty) = / Ey(t)e 27" cos (w. (ty, to)t)dt

00 —t3

3to
Dits, to) = / Eo(£)e=27 cos (. (fa, to)t)dt
t3
(92)
We see that Ey(t)e=27" > 0 for |t| < oo and FEy(t)e " is an absolutely integrable function (
pendix A.1) and hence Cy(t3) = f Eo(t)e ?'dt > 0 (Result 5.1.1).

Given that w,(ts,ty) = %jto) where 0 < K < 7 and 0 < F(t3,%p) < 1 in previous subsection
and ty >> t3, we see that w,(ts,to)t = KF(fg’tO)t < KF(?O’tO)“ << 1 in the interval |t| < t3 and
hence cos (wz<t2,t0)t) ~ 1 and cos (w;(t2,%)t) > 3 in the interval [¢| < ¢3. Hence we can write

Clts, to) = f Eo( b cos (w,(ta, to)t)dt > CO(t?’) > 0, using Result 5.1.1. (Result 5.1.2).

We see that \B(tg,to | = | [ Eo(t)e 27" cos (ws(ta, to)t)dt| < [~ |Eg(t)e~27!|dt ~ 0 (link) and
|D(t3,t0)| = |ft3t0 Ye~ 27t cos (w,(ta, to)t)dt| < jf;to |Eo(t)e 27 dt ~ 0, for sufficiently large 3 and
to >> t3, given that EO( )e~27t has an asymptotic exponential fall-off rate of o[e=%%I*l] (
A.5) and Ey(t)e 2" > 0 for |¢t| < oo (|Appendix A.1)).

As we increase t3 to t; and ty to t;, >> t5, we see that C(t5,t;) > C(t3,t9) > 0, using Result 5.1.1
and Result 5.1.2, given that Fy(t)e " > 0 for |t| < oo (Result 5.1.3).

As we increase t3 to t; and to to t{, >> t4, we see that |B(t5, )| < |B(ts,to)| and |D(t4,1)] <
|D(t3,t9)| approach zero (Result 5.1.4), given that Fy(t)e 2" has an asymptotic exponential fall-
off rate of o[e™"°] (|Appendix A.5) and Ey(t)e=27 > 0 for |t| < oo (|Appendix A.1)).

Hence we see that A(to) f3t° Eo( b cos (w,(ta, to)t)dt > % — |B(ts, to)| — |D(ts, to)| =~
% > (0 using Result 5.1.2, Result 5.1.3 and Result 5.1.4.
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For example, we choose t3 = 10 such that Ey(t)e 2! is vanishingly small and approximates
zero for [t| > t3. Given that Ey(t) > 0 for |[t| < oo (|Appendix A.7) and the term e 27" has

a minimum value of el for 0 < o < 1, we see that the integral Co(ts) ftS Eo(t)e 2tdt >
2 f t)e Mdt > Cyy = 0.42 where Cy is computed by considering the first 5 terms n = 1 2,3,4,5

in Byt ) = 3% [4n?ntet — 6mn2e®)e ™ ez, Hence Co(ts) > 0.42. (Matlab simulation)

Hence we see that A(ty) = f?’to Eo(t)e™20t cos (w,(ty, to)t)dt > L) | B(ts, t0)|—|D(ts, to)| ~ 0.21.
As ty increases without bounds, we see that A(ty) does not have exponentlal fall off rate.

6. Strictly decreasing Ey(t) for t > 0

We show that Ey(t) is strictly decreasing for ¢ > 0, by showing that dEO( D <0for0<t< oo

We set y = me? in Ey(—t) in the second line in Eq. A.5 and then take the ﬁrst derivative of Ey(y) as

follows. We see that d—y = 27e?t = 2y and dE(il([t) = Eohdy _ dEO(y) 2y and hence we will show that

dy dt
dEdO(y) <0f0r7r<y<oo
y

n=odd
1 0 2 (n+1)2 1 1 5 1
EO(y) = (77) 4 Z e 1 yy4 e " yy e T Yyi 4+ e*("Jr ) yyz
n=odd
dEy(y) L n2, 1 1 n? .11

= 1 aYya(— — — n Y, g (2

(n+1) 1 1 (n + 1)2 2 1
— A Yy A ( — — (n+1) 1 . 1 2
e y(4y 1 )+e y(y (n+1)?)

(93)

n2
We take the common term e~ T3 out and use (n+ 1) = n? + 2n + 1 and rearrange the terms
in Eq. 93 as follows.

dEy(y) _ (W)—i Z e—%yy%[(i _ n_2) _ e—%y(i _ 712)

dy = 4y 4 4y
2
S R I G 2y —nty L 1)2
et - B e (5~ (n+ 17)

(94)

We compute the maximum value of dEdL(y) in Eq. 94, by computing the maximum value of positive

terms and minimum value of absolute value of negative terms. We ignore the negative terms inside
_3n2 Gni) _32 .
the brackets —e™ "4 Y- —e~ Yi and —(n +1)%e™ 4 vem ®"FIY because we want the maximum

4y
value of 422w ip the interval 7 < Yy < Q.
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(95)

We see that y = me? is in the range y = [7,00) for 0 < t < oo, and in the range y = [r,y,) for
0<t<t,=0.1, where y, = me*« = 3.8371.

e [t is shown in Section |6.0.1| that %y(y) < 0 for y, <y < oo for y, = 3.8371.

dEo (

o It is shown in Section [6.0.2|that £ Eo(y) < 0 for 7 <y < y, and hence <0form <y <y,

dEo(—t) _ dEo(—t) d
d p - (c)ly Zt/

dEO(y) —L2y, we see that dEO( D <0 for t > 0. Hence Ey(t) = Eo(—t) is strictly decreasing for ¢ > 0.

e Hence dEO(y <0 for m <y < oo. Given y = me? and ‘fi—y = 2me? = 2y an
dy t

6.0.1. dEU(y) <0 for y, <y < oo fory,= 38371

We see that the maximum value of the first term inside brackets (4—1y — %2) in Eq. 95 occurs at
n=1and y =y, = 3.8371 given by D; = ﬁ = i = Wézm . zl,L = —0.1848.

.n2
We consider the second term inside brackets in Eq. 95 given by I(y,n) = nZe "1V, It is a

strictly decreasing function in the region y, < y < oo, with maximum value at y = y,, for each
n.

n2
We set y = y, = 3.8371 and compute % — e TV 2n + n?(—%%)] which has an inflection

point at 2n + nz(—ﬁ’"ﬁ%) = 0. Given that I(y,,n) > 0 for all finite n and goes to zero as n — oo due
n2

to the term e’gTy“, this inflection point is a maximum point. We cancel common term n and get

2 4+ n?(—%=) = 0 which has roots at n* = i given by n = £0.5895. Hence we choose n = 0.5895

as a positive solution and I(y,,n) is strictly decreasing for n > 0.5895 and the nearest positive

integer is n = 1, where I(y,,n) has a maximum value for all positive integer n. (Result E.5.1)

Hence the maximum value of I(y,n) in the interval y, <y < oo, is at y = y, and n = 1 given
by 1(ya, 1) = e~ 1% = 0.0563 = Ds.

We consider the third term inside brackets in Eq. 95 given by J(y,n) = ("Z D? -Cny hich s
strictly decreasing function in the interval y, < y < oo, with maximum value at y = y,, for each n.

We set y = y, = 3.8371 and compute % = e_(znfnya[Q("jl) + ("T)Q(—@y“))] which has an

n 4
("H) + (n+41)2 (— (ZZ“)) = 0. Given that J(y,,n) > 0 for all finite n and goes to zero
(2n+1)

inflection point at

as n — oo due to the term e~ Y this inflection point is a maXimum point. We cancel common
term 2("—+1 and get 1 — (n+1)% = O which has roots at n + 1 = = = 1.0424 given by n = 0.0424.
Hence J (ya, n) is strictly decreasing for n > 0.0424 and the nearest positive integer is n = 1 where
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J(Ya,n) has a maximum value for all positive integer n.(Result E.5.2)

Hence the maximum value of J(y,n) in the interval y, < y < oo, is at y = y, and n = 1 given
by J(Ya,1) = e~ 1% = 0.0563 = Dj.

—(2n+1)y 1 1

2
The fourth term in Eq. 95 given by e~ ve has a maximum at n = 1 and y = y, given

by e~ Va3 L - =3.6706%10"° <1077 = Dy.

Hence the maximum value of the terms in square bracket in Eq. 95 for y, <y < oo and for n =1,
is given by Dy + Dy + D3+ Dy = —0.1848 + 0.0563 + 0.0563 + 10~ ~ —0.0722 < 0. This summation
is negative for n > 1, given Result E.5.1 and Result E.5.2 and D, + D3 + D, is a smaller positive
value and D; is more negative than the case for n = 1. Hence dEc;; < 0 for y, <y < oo, given

summation of negative terms for each odd n and given that e_nTyy% > 0 for all finite n and y.

6.0.2. i <0 for n <y <y, and hence dEO(y <0 form<y<uy,
We compute the second derivative dT from Eq. 93 as follows.

We set y = me? in Eq. 93 as follows.

Eoly) = (m) i L T B e ST
n=odd
dE;y(y) = (m) iﬂ;d 6_72yy4 (% - %2) — e_"nyzln(% — n2)
—e WT)nyi(% ~(n —Z 1)2) N e(n+1)2yyi<% —(n+1)?)
(96)
We compute the second derivative d2fy°2(y) as follows.
d2§j;2( ) _ (71-)_% nzio:;dde_ 42?/y}1(_4_;2 (% _ %2)2) e—nnyi(_%yz (% —n2)?)
—e (nt1)? yi<_4iy2 (% _ (n21)2>2) +€—(n+1)2yyi< 4Ly2 (i —(n+1)2?)
(97)

We simplify it as follows.
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d*Ey(y) _— w2, 1, 1 1 n? nt
= 1 Yy (——— - — —
dy? () nXO;de yi( 42 * 1692 8y + 16>
n2
_—n?y, % _L 1

Yt o2 T )
(0?1 1 1 n+ 1) n+1)*
e yyi<__2_|_ . _( ) +( ) )

4y 16y 8y 16

2

SCTEV VR SIS S Gt 1)
+e y( 4y2+16y2 2% + (n+1)%)

(98)

We compute the maximum value of % with y = me? in the range y = [7,,) for 0 < t <

t, = 0.1, where y, = 3.8371, by computing the maximum value of positive terms and minimum value
of absolute value of negative terms. Let the maximum value of ¥ be ¥mae = Yo = me*e and minimum

value of y be Y = 7 in the interval y = [7, y,).

The first term in curved brackets in Eq. 98 at n = 1 is given by —#—i—ﬁ—@%—ﬁ = 16y +E
and the maximum value of the whole first term in the interval ¥y = [Ymin, Ymaz) IS glven by

1, 1 _1 1
n = 1,3,5,7,9. The maximum value of %Og(y) in Eq. 98 at n = 1,3,5,7,9 in the interval
Y = [Ymin, Ymaz) 18 given by —0.0097 which is negative. (Result E.5.5) Matlab simulation)

) and similarly we compute the other 3 terms at

We note that — 12 + 161y = 163y2 and ignore the negative terms in Eq. 98 because we are

computing the maximum value of Z29% for n > 11 given by [ y)]g.

dQEO(y) 1 > w2 1nt 2, 1, 3 n?
< i T Yyr— Yy —

min? 1, 3 n+ 1) n 1
e yyi(16y2 ( 8y : )+ ey (4 1!

(99)

d? Eo( )]

We compute the maximum value of [=7%%]; in Eq. 99 for n > 11 by setting first term as

e~ rumin(y, N and n+1 < Ln, n® < 1060~1n = 10[1 + 0.1n% + 2%pn* + ] and
n* < 200e%1™* = 200[1 + 0.1n> + 89pt + ... as follows.

d*Eo(y) 1 — 012 1 Y 012 1
—]s < L Yraz T ¥min200e” " — " Ymin 10"
: dy? ey n; ’ T (16yﬁm i 2ymm)
e wman +10e%1 (1'1)2) + e (T umin 2000 (1.1)*
16y7%7,m 8ymm

(100)
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We use n + 1 > n for the exponent term and simplify above equation as follows

d*Ey(y) 1 = 21, 019200 20y 3 2 _oqy 10
[—]2 < (W)_nynam e_n (Zym“l_o' )_ + e_n Ymin + e—n (ymm—o. )

a1 3 e op (L1210
n= 1 Ymin n (4ymzn 01)
e ]-6y72mn e

+ e Wmin =000 (1.1)*

Symzn
(101)
We use the complementary error function given by erfc(z) = \% [ e~ du link) and the fact
that e < / e Rt = —/ e du = VT erf¢(11vV/K) using the substitution
n=§1:3,... 11 VK Juvg WK

tvVK = u and dtvVK = du and write Eq. 101 as follows.

d*Ey(y) 1 1200
[——=]2 < (7)) 1Ymaa| = erfc ymm erfc(ll,/ymm)
dy 16 2« / 4ym’bn 16ymzn 2 V ymm
+ 10 fe(114/( 0.1 f 11\/
er c Yrmin — erfc —Ymmin
Qymzn 2\/ Ymin — 16ymzn 2 / _ymzn
1.1 10 /
( 8) * er fe(1 ymm
ymzn / ymln
+200(1.1) 1

(ymm 1)erfc(11 (Ymin — 0.1))]

(102)
We compute Eq. 102 numerically and get [%]2 < 8.65 % 10737, The maximum value of
[ Eo(y)

07 Jo in Eq. 101 at n = 11,13, .. in the interval ¥ = [Ymin, Ymaz) i given by 8.65 * 10737 which is
positive. (Result E.5.6) Matlab simulation)

Using Result E.5.5 and E.5.6, we get the maximum value of 2o (y)

Tf/ in Eq. 98 at n = 1,3,5, ..
in the interval ¥ = [Ymin, Ymaz) 18 given by —0.0097 + 8.65 * 10737 ~ —0.0097 which is negative.
(Result E.5.7)

Hence we have shown that dE—O()

<0, for m <y <y, and hence dEO(y) <0 form <y <y, given
that dEO ) —0aty=n.

It is shown in Section |6.0.1] that dEO

) <0 for Yo <y < oo for all finite n.

Hence o)

a0y <Of0r7r<y<oo Weseethaty—ﬂe%and%:%re —2yanddE ) =
dE(C’l;_t) & — dEO( 2y and hence dEo( ) <0 for t > 0. Hence Ey(t) = Eo(—t) is strictly decreasing for
t>0.
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7. Hurwitz Zeta Function and related functions

We can show that the new method is not applicable to Hurwitz zeta function and related zeta
functions and does not contradict the existence of their non-trivial zeros away from the critical

line given by Re[s] = ;. The new method requires the symmetry relation E(s) = E(1 — s)

and hence E(3 + iw) = F(3 — iw) when evaluated at the critical line s = 1 + iw. This results

in Ey,(w) = Eo(—w) and Ey(t) = Ey(—t) (Section [1.6] Section and |[Appendix A.8) where
00 2 -

Ey(t) = Z(—l)”_l(e_”Te H e 2t)e_% and this condition is satisfied for Riemann’s Zeta func-
n=1

tion.

It is not known that Hurwitz Zeta Function given by ((s,a) = > m satisfies a symmetry
0

relation similar to E(s) = E(1 — s), for a # 1 and hence the condition Ey(t) = Ey(—t) is not known
to be satisfied [6]. Hence the new method is not applicable to Hurwitz zeta function and does not
contradict the existence of their non-trivial zeros away from the critical line.

Dirichlet L-functions satisfy a symmetry relation &(s,x) = e(x)é(1 — s, x) [7] which does not
translate to Ey(t) = Eo(—t) required by the new method and hence this proof is not applicable to
them. This proof does not need or use Euler product.

o0

We know that ((s) = > -L diverges for Re[s] < 1. Hence we derive a convergent function E(s)
m=1
: - n—1/ —mnle—2t —mn2e=2t\ 1 : :
and then derive Fy(t) = Z(—l) (e7™¢ " —e Je~2. In the case of Hurwitz zeta function
n=1

and other zeta functions with non-trivial zeros away from the critical line, it is not known if
derivation of a convergent function E(s) results in Ey(t) as a Fourier transformable, real, even and
analytic function. Hence the new method presented in this paper is not applicable to Hurwitz zeta
function and related zeta functions.

The proof of Riemann Hypothesis presented in this paper is only for the specific case of Rie-
mann’s Zeta function and only for the critical strip 0 < |o| < 3. This proof requires both E,(t)
and E,,(w) to be Fourier transformable where E,(t) = Ey(t)e~?" is a real analytic function and uses
the fact that Fy(t) is an even function of variable ¢ and FEy(t) > 0 for |t| < co (|Appendix A.7)) and
Ey(t) is strictly decreasing function for ¢ > 0 (Section [f]). These conditions may not be satisfied
for many other functions including those which have non-trivial zeros away from the critical line and
hence the new method may not be applicable to such functions.
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Appendix A. Properties of Fourier Transforms

Appendiz A.1.  E,(t),h(t) are absolutely integrable functions and their Fourier Trans-
forms are finite.

The inverse Fourier Transform of the function E, (w) is given by E,(t) = Eo(t)e " = 5= [°0
> n? 2t —2t ¢
In Eq. 15, we see that Ey(t) = Z(—l)”’l(e’7TT€ ¥ o™ e3> 0 and finite for all —oo < t <
n=1

oo( [Appendix A.7). Hence E,(t) = Ey(t)e " > 0 and finite for all —oco < t < co.

It is shown in |[Appendix A.5|that Ey(t) has an asymptotic exponential fall-off rate of at least
O[e~1°] and hence E,(t) has an asymptotic exponentlal fall-off rate of at least O[e~(-5=)It] >
Ole™], for 0 < |o| < L. Hence E,(t) = Ey(t)e™! goes to zero, at t — oo and we showed that
E

2
»(t) > 0 and finite for all —co < ¢t < oo in the last paragraph.(Result 21) Hence E,,(w) =

[ Ep(t)e ™ dt, evaluated at w = 0 cannot be zero. Hence E,,(w) does not have a zero at
w = 0 and hence wy # 0.

Given that E,,(w) is a holomorphic function in the region 0 < Re[s] < 1, it is finite for real w and
also for w = 0. Hence E,,(0) = [7_E,(t)dt is finite. Using Result 21, we can write [*_|E,(t)|dt is
finite and E,(¢) is an absolutely 1ntegrable function and its Fourier transform E,.(w) goes to zero
as w — £o00, as per Riemann Lebesgue Lemma (link).

Using the arguments in above paragraph, we replace o in E,(t) by 0 and 20 respectively and see
that Eo(t) and Eo(t)e 27" are absolutely integrable functions and the integrals [*_|Eo(t)|dt < oo

and [ | Eo(t)e >7!|dt < oo.

Given that E,(t) = Ey(t)e " is an absolutely integrable function, its shifted versions are abso-
lutely integrable and we see that E (t, t2) = e "2 E,(t—ty) —e"2 E, (t+ts) = (Eo(t—t2)— Eo(t+t2))e "
in Eq. 16 is an absolutely integrable function, for a finite shift of ¢5. ( We substitute ¢ — t5 = 7 and
dt = dr and get [*°_|E,(t —to)|dt = [*°_|E,(7)|dT and hence E,(t — t,) is an absolutely integrable
function, given that E »(1) is absolutely integrable. Same argument holds for E,(t + t3).)

We can see that h( ) = e”tu(— )—l—e*"tu(t) is an absolutely integrable function because h(t) > 0
for real t and [ _|h(t)|dt = [72_h(t)dt = [[°2 h(t)e ™ 'dt]u—0 = 2= + ﬁ]wZO = 2 is finite for
0 <o < % and 1ts Fourler transform H (w) goes to zero as w — +o00, as per Riemann Lebesgue

Lemma (link).

o2
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Appendiz A.2. Convolution integral convergence

Let us consider h(t) = e”'u(—t) + e~ 7*u(t) whose first derivative given by %gt) = oe’lu(—t) —
oe 'u(t) and Ay [%]t:OJr [d%)]t o— = —20 and hence %gt) is discontinuous at t = 0, for
0 < o0 < 3. The second derivative of h(t) given by ho(t) has a Dirac delta function Ayd(t) where
Ap = —20 and its Fourier transform Hs(w) has a constant term Ay, corresponding to the Dirac delta
function.

This means h(t) is obtained by integrating ho(t) twice and its Fourier transform H (w) has a term
(Z:—O)Q (link) and has a fall off rate of & as |w| — oo and [~ H(w)dw converges.(Result B.2)

Let us consider the function g(t,ta,t0) = f(¢t,ta,to)e " u(—t) + f(t,t2,to)e” u(t) in Eq. 16 and

its first derivative given by w = [—oe 7 f(t, ta, to) + e‘”tW]u(—t) + [oe? f(t, ta, to) +
et dlbdto) oy (1) We get [Ll20)], = —5 f(0, 1y, to)+[LE210)),  and [9l2)], o = 5 f(0, 15, o)+

[dlato)], o (Result B.2.1).

We note that f(t,ts,t0) is a continuous function in Eq. 16 and get [W]t:(ﬂ = [W]t:m

and get [M] t=0+ — [W]t:m = 20f(0,t3,19) using Result B.2.1. Hence % is discon-

tinuous at t =0, for 0 < 0 < %, if £(0,ta,t9) # 0.

We can see that the first derivatives of ¢(t,t2,%), h(t) are discontinuous at t = 0 and hence
G(w, ta, to), H(w) have fall-off rate of 5 as |w| — oo, using Result B.2. Hence the convolution
integral below converges to a finite value for real w, for the case f(0,ts, ) # 0.

x /00 G(W' ta, to)H(w — w')dw' = ZL[G(w,b7 to) * H(w)] (A.1)

F to,tg) =
(%270) o -

If £(0,t5,t9) = 0, and if the N*" derivative ofg(t to,to) is discontinuous at t = 0 where N > 1,
we see that G(w, tg,to) has fall-off rate of —xr7 as |w| — oo [Appendix A.3). G(w,ts,1o) has a
minimum fall-off rate of % as |w| — oo for this case. Hence the convolution integral in Eq.
converges to a finite value for real w.

Appendiz A.3. Fall off rate of Fourier Transform of functions

Let us consider a real Fourier transformable function P(t) = Py (t)u(t) + P_(t)u(—t) whose
(N — 1) derivative is discontinuous at t = 0. The (N) derivative of P(t) given by Py(t)

has a Dirac delta function Agd(t) where Ag = [de;]lV}iﬁ(t) — de_t]lfi‘l(t)]t:o and its Fourier transform

Py, (w) has a constant term A, corresponding to the Dirac delta function.

This means P(t) is obtained by integrating Py (t), N times and its Fourier transform P, (w) has a
term 2 ) (link) and has a fall off rate of —y as |w| — oo.

We have shown that if the (N — 1) derivative of the function P(t) is discontinuous at ¢ = 0
then its Fourier transform P, (w) has a fall-off rate of _ as |w| — oo .
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Appendiz A.4. Exponential Fall off rate of analytic functions.

|w]|m

We know that the order of Riemann’s Xi function (5 +iw) = Z(w) is given by O(wAe’Tl) where

A is a constant [3] (Titchmarsh pp256-257 and Titchmarsh pp28-31).

We consider z(t) = Ey(t)e " and its Fourier transform is given by X (w) = [7_ Ey(t)e e dt =
[Z Eo(t)em@m29)tqt = B, (w —220) = E(3 +i(w—1i20)) = E(§—|—2a—|—zw) E[)w( —120). Given

that E(s ) = & )(1_5?;—51))(25_1) in Eq. 5, Ey,(w) and X (w) = Ey,(w — 120) have exponential fall-off
|wl|m

rate O(w?e™ 4 ) as |w| — oo and they are absolutely integrable (|{Appendix A.6)) and Fourier trans-
formable, given that they are derived from FE(s).

Given that E(s) is a holomorphic function in the region 0 < Re[s] < 1, we see that X (w) is an
analytic function which is infinitely differentiable which produces no discontinuities for real w and
0<o< % Hence its inverse Fourier transform z(t) has fall-off rate faster than limy . t%, as
[t| — oo (|Appendix A.3) and hence x(t) = Fy(t)e *" should have exponential fall-off rate of
e Bl as |t| — oo, where B > 0 is real.

Appendiz A.5. Exponential Fall off rate of x(t) = Eo(t)e !

Given that Ey(t) = Eo(—t) (|Appendix A.8), we write Ey(t) in Eq. 15 as follows.

> n2 t > n2 n
Eo(t) _ Z(_l)n—l(e—ﬂTe% - 6—7rn262t)€5 _ Z(_l)n—le—ﬂfe%(l —e 7r3—e2t)e%
n=1 n=1
(A.2)
. . w _ N~ (207 2 .
We use Taylor series expansion around ¢t = 0 for e** = Z i given that e is an analytic
Ir
r=0
function for real ¢.
Eo(t) = Z(—l)n_le_w%(lwt)e_”%((2!22+<%t3)s'"')(1 — e_W¥82t)e%
n=1

(A.3)

We take the term e 3fez = e 10708 out of the summation, corresponding to n = 1 and write
Eq. A.3 as follows.

w\w

> 02 (03 n? ot
Bo(t) = e~ 3ted 3 (1) e e 50PNt n (B G () _ gt (A.4)
n=1
For t > 0, we see that the term corresponding to n = 1 in Eq. has an asymptotic fall-off rate
of at least O[e 0™ > Ole _t] The terms corresponding to n > 1 have fall-off rates higher than

Ole™], due to the term e~z (=1,
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Hence we see that Ey(t) has an asymptotic fall-off rate of at least Ole™"], for ¢ > 0. Given that
Eo(t) = Eo(—t)( |[Appendix A.8)), we see that Ey(t) has an exponential asymptotic fall-off rate of
at least Ole~"].

Similarly, F,(t) = Ey(t)e " has an asymptotic exponential fall-off rate of at least Ofe~(1=)I*l] >
Ole=%M], for 0 < |o] < L.

Similarly, 2(t) = Ey(t)e~2°* has an asymptotic exponential fall-off rate of at least O[e~(127)] >
Ole™9], for 0 < |o| < 1 and § > 0.

Appendiz A.6. Absolutely integrable functions

We see that a real function y(¢) which is finite for all ¢ and has an asymptotic falloff rate of at
least O3] is an absolutely integrable function, given that [ _|y(t)|dt = f:i: ly(t)|dt + f_TT ly(t)|dt +
fTOO ly(t)|dt is finite, for non-zero and finite 7', because when we integrate the integrand |y(t)| with
order O[] , we get the result O[1], which is finite at the limit ¢ = +7 and the result O[7] is zero at
the limit ¢ — 4o00. If y(¢) has an exponential asymptotic falloff rate, when we integrate the integrand
ly(¢)| with order O[e=*"] for real A > 0, we get the result O[+e 4] which is finite at the limit
t = T and the result is zero at the limit ¢ — +o0 and hence y(t) is an absolutely integrable function.

Appendiz A.7.  Ey(t) >0 for —oo <t < o0

n2
It is shown in this section that Ey(t) > 0 for —oo < t < co. We take the term e ™% ez out of
the brackets in Eq. A.5 for Ey(—t) and use (n+1)? = n? +2n+ 1 and rearrange the terms in the last
line below.

[e.o]

_ _n? 2 2.2t t
EO(—t) — § :(_1>n 1(6 et _ pmmnle )62
n=1
oo ) 2
E()(—t) _ Z (e—w%e% _ e—ﬂnze% o e—wi("z) et + 6—7r(n+1)262t)e%
n=odd
o 2 2 ( ) 2

_gnse2t t _g3nZ 2t _a2ntl) 2t _p3nt 2t 2t

E0<_t):§ 67r46€2(1_67r46_67r4e_'_€7r46€7r(2n—|—1)e)
n=odd

(A.5)

We compute the minimum value of Fy(—t) in Eq. A.5 for 0 < ¢ < 0o, by computing the minimum

value of positive terms and maximum value of absolute value of negative terms. We ignore the last

SV T 2t ..
term e™ 1 ¢ e " +De™ 5 () hecause we want the minimum value of Eg(—t).

The minimum value of the first term inside brackets in Eq. A.5 is A; = 1. The maximum value

Tl2 .
of the absolute value of the second term inside brackets e~ "4 ¢ occurs at n = 1 and ¢ = 0, given by
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(@n+1) 2t

—Tr

Ay = e~™4. The maximum value of the absolute value of the third term e occurs at n =1
and t = 0, given by Az = e~™1. Hence the minimum value of the terms inside the brackets is given
by Ay — Ay — A3 =1— 2™ = 0.8104 > 0 for all n and hence Eo(—t) > 0 for 0 <t < o0.

Appendiz A.8. Ey(t) is real and even

We see that E(3 + iw) = Ep,(w) = Eo.(—w) (Result 13) because E(s) = E(1 — s) in Eq. 5 and
hence E(3 + iw) = E(3 — iw) when evaluated at s = 1 + iw.

We take the Inverse Fourier transform of Ey,(w) and use Ey,(w) = Eg,(—w) from Result 13 and
then substitute w = —w’ in the integrand, as follows.

1 ee - 1 e )
Ey(t) = —/ Eo,(w)e™dw = %/ Eoo,(—w)e™dw

2m J_o
100

= Bu(W)e ™ tdw = Ey(—t)

T o oo
(A.6)

We see that Ey(t) in Eq. 15 is real and Ey(t) in Eq. A.6 is even and hence we have derived the
result that Ey(t) is a real and even function of variable ¢.

Appendiz A.9. Exponential fall-off rate of Dirichlet Eta function

e.¢]
2,—2t

The integrand in Eq. 13| given by Z(—l)”_le_”” ezt goes to zero with exponential

n=1

fall-off rate, as t — —oo because the term e~™"¢ " has a faster fall-off rate than the term e3¢,

oo
2,—2t

The integrand in Eq. |13| given by Z(—l)”_le_m M emzet goes to zero with exponential
| | n=1
fall-off rate, as t — +o00 because the term lim;_,,, ™™

2

¥ =1-1+1-1..=1(Eq1.2.7 in page 2)

o0
- 1
for each n and hence lim;_, Z(—l)”’le”m% e 5 and the term lim, ,o e 2¢ 7t = 0for0 < o < %

n=1

The above results also hold for each n = 1,2, ...
Appendiz A.10. Functional equation for Dirichlet Eta function
We use the functional equation for Riemann’s zeta function given by ((s) = ((1 — s)I'(1 —

s)sin (Z)7#=D2% and use ((s) = 1o 2(33_5

ands:%—l—a—l—iwandl—s:%—a—iw.

¢(s) = C(1— $)I(1 — s)sin (%T)w(s—%s

1 — s)sin (%)W(S_I)QS

as) =)y
1—21=s  1-—2
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(A7)

We use well known properties of Gamma function I'(s)['(1—s) = Sin’(TSW) = 5= (ﬂT)rCOS €3 in Eq. A.7
2 2
as follows. (link)
1—
77(8) _ 77( S) m sin (ﬂ)w(s—1)2s (AS)

1—2t-s 1 —2% 2sin (%) cos (5 )[(s) 2
We cancel the common term sin (5°) in Eq. for 0 < Rels| < 1 and rearrange the terms as

follows.

ST (1 —2%)

1= 5) = n(s)T(s)cos () g

In the modified functional equation in Eq. , we see that, if Dirichlet Eta function n(s) has a
zero in the region 0 < Re[s] < 1 at s = s¢, then 7(s) also has a zero at s =1 — 59, due to the term

n(1 — s), given that for Re[s|] > 0, the gamma function is analytic in the complex plane |(link).

(A.9)

Appendix B. Properties of Fourier Transforms Part 1

In this section, some well-known properties of Fourier transforms are re-derived.

Appendiz B.1. Fourier transform of Real g(t)

In this section, we show that the Fourier transform of a real function g¢(¢), given by G(w) =
Gr(w) + iG(w) has the properties given by Gr(—w) = Gg(w) and G;(—w) = —Gr(w). We use the
fact that g(t) is real and cos (wt) is an even function of w and sin (wt) is an odd function of w below.

Gw) = /00 g(t)e “tdt = Gr(w) +iGr(w)

[e.o]

Gr(w) = /00 g(t) cos (wt)dt = Gr(—w)

o0

Gr(w) = — /OO g(t) sin (wt)dt = —G(—w)

—00

(B.1)

Appendiz B.2. FEven part of g(t) corresponds to real part of Fourier transform G(w)

In this section, we take the even part of real function g(t), given by geven(t) = 3[g(t) + g(—1)]
and show that its Fourier transform is given by the real part of G(w).

G(w) = /OO g(t)e ™t dt = Gr(w) +iG(w)

o0

[ saettie = [ o0+ gt-tle e = S0 4 L [ g
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(B.2)

We substitute ¢ = —t in the second integral in Eq. B.2. We use the fact that Gr(—w) = Ggr(w)
and Gj(—w) = —G(w) for a real function ¢(¢). (|Appendix B.I))

/Oo acn(t)e it = T4 2 /Oo g(tyetar = G | )

2 2 2 2

o0 o0

_ %[GR(W) b iG (W) + Grl—w) + iGr(—w)] = %[GR@;) G (W) + Grl(w) — iGi(w)] = Ga(w)

(B.3)

Appendiz B.3. Odd part of g(t) corresponds to imaginary part of Fourier transform
G(w)

In this section, we take the odd part of real function g(t), given by goga(t) = 3[g(t) — g(—t)] and
show that its Fourier transform is given by the imaginary part of G(w).

G(w) = /_OO g(t)e ™“tdt = Gr(w) +iG(w)

[e.9]

| gt = [ 1o - g-njeran = G2 - 2 [ genear

(B.4)

We substitute ¢ = —t in the second integral in Eq. B.4. We use the fact that Gr(—w) = Gr(w)
and Gj(—w) = —G(w) for a real function ¢(t). (|Appendix B.I))

/_OO Goda(t)e ™dt = @ _ %/_OO g(t)etdt = G(Zw) _ G(;w)

[ee] [e.e]

_ %[GR(W) G (W) — Gr(—w) — iGy(—w)] = %[GR(W) Gy (W) — Ca(w) + iGr(w)] = iGr(w)

(B.5)

Appendiz B.j. Fourier transform of a real and even function ¢(t)

In this section, we show that the Fourier transform of a real and even function g(t), given by
G(w) is also real and even. We use the fact that [7_g(t) sinwtdt = 0 because g(t) is even and the
integrand is an odd function of variable ¢.

Gw) = /Oo g(t)e “tdt = /Oo g(t) coswtdt — z’/oo g(t) sinwtdt

oo oo —0o0

G(w) = /OO g(t) coswtdt

o0

o8



(B.6)

We see that G(w) = [ g(t) coswtdt is real function of w, given that g(t) and the integrand are
real functions. We see that G(w) is an even function of w because coswt is a even function of w.
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