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Abstract. An automata network is a graph of entities, each holding
a state from a finite set and evolving according to a local update rule
which depends only on its neighbors in the network’s graph. It is freezing
if there is an order on the states such that the state evolution of any
node is non-decreasing in any orbit. They are commonly used to model
epidemic propagation, diffusion phenomena like bootstrap percolation or
cristal growth.

Previous works have established that, under the hypothesis that the net-
work graph is of bounded treewidth, many problems that can be captured
by trace specifications at individual nodes admit efficient algorithms.
In this paper we study the even more restricted case of a network of
bounded pathwidth and show two hardness results that somehow illus-
trate the complexity of freezing dynamics under such a strong graph
constraint. First, we show that the trace specification checking problem
is NL-complete. Second, we show that deciding first order properties of
the orbits augmented with a reachability predicate is NP-hard.

1 Introduction

Automata networks (AN) are finite dynamical systems that can be seen as the
finite and non-uniform counterpart of cellular automata on arbitrary graphs. An
automata network is freezing if there is an order on the states such that the state
evolution of any node is non-decreasing in any orbit. Several models that received
a lot of attention in the literature are actually freezing automata networks, for
instance: bootstrap percolation which has been studied on various graphs [1, 4,
3,11], epidemic [6] or forest fire [2] propagation models, cristal growth models
[17,10] and various models of self-assembly tilings [18].

The freezing condition has strong implications on the computational com-
plexity of these systems. For instance, following previous works on cellular au-
tomata [14, 8], it was established in [9] that a large set of problems specified by
traces at individual nodes are actually NC when considering freezing automata
networks of bounded treewidth. This result in particular captures the problem
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of nilpotency, a property which can be expressed in the language of orbits by:
all orbits converge to the same fixed point. The nilpotency problem is typical of
the computational complexity collapse when the freezing condition is combined
by a condition on the structure of the network.

This paper aims at better understanding this complexity collapse by giving
lower bounds for freezing automata networks on the simplest network structure:
graphs of bounded pathwidth (intuitively, that are structurally close to a line or
a cycle).

First, we consider regular trace properties (i.e. regular expressions specifying
allowed traces at each node) and show that the problem of existence of an orbit
following the constraints is NL-complete (Theorem 2). Note that this problem
is similar to some well-studied problems in 1D cellular automata like cylinder-
to-cylinder reachability which can also be expressed as a regular expression of
traces. It is striking to compare the finite context with the NL upper bound
above to the infinite context, where freezing cellular automata have actually an
undecidable cylinder-to-cylinder reachability problem [14].

Second, we study another family of problems : properties defined by first order
logic on configuration with equality, a predicate x — y meaning that y can be
reached from x in one step, and a predicate 2 —T y meaning that configuration y
can be reached from configuration = in some number of steps. This logic denoted
FO™also captures nilpotency by 3y, Vo : z —T y. Our second main result is that,
although nilpotency is co-NL (Corollary 1), the model checking of FOTis NP-
hard even for freezing automata networks defined on a line (Theorem 3).

Our results contribute to the following global picture where each cell of the
table is divided between the general case (lower left in black) and the freezing
case (upper right in blue).

Infinite 1D CA Finite bounded pathwidth AN
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(Corollary 1)
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(Theorem 2)
14, Theorem 5]
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[7, Corollary 3.2]

2 Definitions and notations

Given a graph G = (V, E) and a vertex v we will call N(v) the neighborhood of
v and 9, to the degree of v. In addition, we define the closed neighborhood of v



as the set N[v] = N(v) U {v} and we use the following notation A(G) = max Oy

for the maximum degree of G. We will use the letter n to denote the order of G,
i.e. n = |V|]. Also, if G is a graph and the set of vertices and edges is not specified
we use the notation V(G) and E(G) for the set of vertices and the set of edges
of G respectively. In addition, we will assume that if G = (V, E) is a graph then,
there exists an ordering of the vertices in V' from 1 to n. During the rest of the
text, every graph G will be assumed to be connected and undirected. We define
a class or a family of graphs as a set G = {G,,},,>1 such that G,, = (V,,, E,,) is
a graph and |V,,| = n.

Non-deterministic freezing automata networks. Let Q be a finite set that we
will call an alphabet. We define a non-deterministic automata network in the
alphabet Q as a tuple (G = (V, E),F = {F, : QV®) — P(Q)|v € V})) where
P(Q) is the power set of Q. To every non-deterministic automata network we can
associate a non-deterministic dynamics given by the global function F': Q™ —
P(Q™) defined by F(x) = {z € Q"|z, € F,(z),Vv}.

Definition 1. Given a a non-deterministic automata network (G, F) we define
an orbit of a configuration x € Q™ at time t as a sequence (xs)o<s<t Such that
xg = x and x5 € F(xzs—1). In addition, we call the set of all possible orbits at
time t for a configuration x as O(x,t). Finally, we also define the set of all
possible orbits at time t as O(A,t) = | O(z,t)
TzeEQ™

We say that a non-deterministic automata network (G,F) defined in the al-
phabet ) satisfies the freezing property or simply that it is freezing if there
exists a partial order < in @ such that for every ¢ € N and for every orbit
y = (z5)o<s<t € O(A,t) we have that 2! < 2%, for every 0 < s < t and for
every 0 <1 < n.

Path decompositions and pathwidth. Let G = (V, E) be a connected graph.
A subgraph P of G is said to be a path if V(P) = {v1,...,vr} where every
v; is different and E(P) = {vjva,vov3...,05_10;}. Now we present a graph
parameter called pathwidth which, generally speaking, indicates how similar a
graph is to a path graph. More precisely, we have the following definition:

Definition 2. Given a graph G = (V, E) a path decomposition is pair D =
(P, A) such that P is a path graph and A is a family of subsets of nodes A =
{X; CV|teV(T)=A{1,...,s}}, called bags, such that:

— Every node in G is in some Xy, i.e: |J Xi=V,
teV(P)
— For every e = uv € E there exists t € V(P) such that u,v € Xy,
— For every u,v,w € V(P) if l <u<v<w<s then, X, N X, C X,.

We define the width of a path decompostion D as the amount width(D) =

n‘l/z%)lg) | X¢| — 1. Given a graph G = (V, E), we define its pathwidth as the param-
te

eter path(G) = n%n width(D). In other words, the pathwidth is the minimum

width of a path decomposition of GG. Note that, if G is a connected graph such
that |E(G)| > 2 then, G is a path if and only if path(G) = 1.



It is known that a path decomposition can be computed in DLOGSPACE
[13].

Specification checking problem. Now, we introduce a decision problem called
specification checking problem. Roughly, this problem ask for the existence of
an orbit in the automata network that verifies some trace constraints at each
node. The information of allowed traces at each node is called a specification: a
specification of length ¢ is a map & : V' — P(Q?) such that, for every v € V, the
sequences in & (v) are non-decreasing (and thus respect the freezing condition).
We say that & is satisfiable by A if there exists an orbit O € O(A,t) such that
0, € & (v) for every v € V. We observe that the number of freezing traces of
length ¢ is polynomial in ¢ so & can be represented in polynomial size in V' and
t.

Also, in the absence of explicit mention, all the considered graphs will have
bounded degree A by default, so a freezing automata network rule can be repre-
sented as the list of local update rules for each node which are maps of the form
Q4 — P(Q) whose representation as transition table is of size O(|Q\A+1) . The
specification checking problem (SPEC) introduced in [9] asks whether a given
freezing automata network satisfies a given specification. If & is a satisfiable
t-specification for some automata network A we write A = &.

In [9] it is shown that many well-known and well-studied decision problems re-
lated to the dynamics of automata networks are somehow related to SPEC. These
problems are: the prediction problem, the predecessor problem, the nilpotency
problem and the asynchronous reachability problem. Recall that nilpotency is
the property that there is a configuration x such that all orbits end up in x and
x is a fixed point. Most of these problems are sub-problems of SPEC. In the case
of Nilpotency, an efficient parallel Turing reduction can be constructed [9].

In this paper, we focus on a variant of the specification problem were ad-
missible traces are represented as regular expressions. More precisely, a regular
(Q, V)-specification is a map from V to regular expressions over alphabet Q.
We therefore consider the Regular Specification Checking Problem or simply
REGSPEC which is the same as SPEC except that the specification must be a
regular specification. It is interesting to observe that REGSPEC with fixed degree
and fixed treewidth and with alphabet as unique parameter is W[2]-hard [9].

3 NL-completeness of REGSPEC problem

In this section, we explore different results for the complexity of REGSPEC when
the pathwidth of the underlying interaction graph is bounded. We start this sec-
tion by showing that REGSPEC is in NL. This is a direct extension of the results
on bounded treewidth in [9] and the technique used in [14] for the prediction
problem in one dimensional freezing cellular automata. Then, we show that the
problem is actually NL-complete by showing a logspace reduction from (s,t)-
connectivity.

Theorem 1. The REGSPEC problem is in NL for bounded pathwidth freezing
AN.



The complement of the nilpotency problem can be reduced to instances of
REGSPEC in such a way that we keep the strong complexity upper-bounds from
the previous theorem.

Corollary 1. The nilpotency problem is in co-INL for bounded pathwidth freez-
ing AN.

Now we show show that REGSPEC is NL-complete and thus, it is most likely
that the previous algorithm is the best we can do, unless NL = DLOGSPACE.

Now we introduce the main result of the section.

Theorem 2. The Regular Specification Checking problem (REGSPEC) is NL-
complete when restricted to bounded degree and bounded pathwidth interaction
graphs.

The proof of this result is divided in what we call phases. The main idea of
the proof is to construct a non-deterministic automata network Ap = (Gp, Fp)
defined over a two dimensional grid of size k x d where d = n®™®) and k = O(1).
Of course, since k is constant, then Ap has bounded pathwidth. This automata
network will non-deterministically guess a sequences of blocks (a structure rep-
resenting edges in the interaction graph of A, see Figure 1 for more details).
We call this part the selection phase. Then, the next part of the proof consists
in showing that Ap = (Gp, Fp) is capable of deterministically verifying if an
initial condition corresponds to a sequence of valid edges, i.e. if it corresponds
to a sequence of blocks and they actually represent edges in Gp. We call this
phase a verification phase In order to perform this task, we use a construction
based on using signals that will collide at specific locations as a way to verify
the distance between two given cells. In addition, it would be essential to save
(as a constant layer) the information contained in the incidence matrix of D.
Generally speaking, once Ap has verified that the sequence of blocks is valid, it
will compare two subsequent blocks (which represent a pair of edges) in order
to verify if they are incident. If in any part of its dynamics Ap locally detects
some error (by the application of its local rule), it will spread an error state that
will led the system to an attractor corresponding to a uniform configuration in
which any cell will be in this particular error state. However, if the process runs
flawless, then the system will reach an attractor in which all the cells are in a
particular success state. We will code, by using a specification £p (given in the
input of REGSPEC), a specific requirement for the initial configuration (more
precisely, we will ask the initial configuration to have the incidence matrix of D,
markers and information about the nodes (s,t)) in order to allow Ap to have
enough information to start the selection and verification process. In addition,
we will code in this specification only the orbits that will reach this specific
success state. By doing this, we will show that Ap = £p if and only if there
is a path between s,t in D. Thus, the reduction will consist on constructing
(Ap,Ep) from (D, s,t) in DLOGSPACE.
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Fig. 1. An example of a block for some graph D.

4 Hardness of FO' model checking

FO(=,—) denotes the first order logic over configurations using equality and a
predicate * — y meaning that y can be reached from x in one step. It is well-
known that this logic can be efficiently dealt with using finite automata theory
when configurations are one-dimensional. For instance the model-checking of this
logic is decidable on one-dimensional CAs [5,16]. In this subsection, we study
first-order properties of the dynamics enriched with a new predicate z —1 y
expressing that configuration y can be reached from configuration x in some
unknown number of steps. We denote this logic FO* = FO(=,—, —7"). Adding
the predicate —1 allows to express properties like nilpotency:

o, Vz, (2 =T 2) = z =12,

which is equivalent in the deterministic case to 3z, Vy,y —1 2. The model check-
ing of FO™ is therefore undecidable for general 1D CA [12] and PSPACE-
complete for AN of bounded pathwidth [7]. However, nilpotency is a decidable
property for 1D freezing CA [14] and co-NL for bounded pathwidth freezing
AN (Corollary 1). It is therefore interesting to figure out what is the complexity
of the model checking of FO* for freezing AN of bounded pathwidth.

The goal of this section is to show that despite considering only “one-dimensional”
networks and having the freezing constraint, we can encode bi-dimensional domino
problems in FOT and thus get a NP-hard lower bound. The precise NP-hard
problem we consider in this subsection to reduce from is the following.

Lemma 1 (HV-domino CSP). Let Q be a large enough alphabet. The follow-
ing problem is NP-complete:

— dnput: for each 1 < i,j < n, two lists of constraints: H; j; C Q* and V; ; C Q2.
— question: does there exist a configuration a € QL {Lnd sych that for
all 1 <i,j < n the local constraints are satisfied, i.e.

(aij,aiv1) € Hij (ifi <n) and (a;j,a;j+1) € Viy (if j <n).



We can now show a lower bound on the model checking of a single formula
of FOT. Let P,(z) denote the formula of FO™ expressing that configuration x
has at least k preimages, formally:

Py(x) =3v1 #£ 20 # -+ # 1y /\ T; — T.

1<i<k
We will consider the following formula ¢:

o=dr:x—>=x
A (Vy,Vyl,Vz, (=Pi(y) A=Po(y Ay = y' Ayt =T 2Az s oAz £a) = —P(2)).

It expresses that there exists a fixed point x such that considering any orbit
starting from a configuration y without preimage, which is the unique preimage
of its successor 3!, and leading to x, then the configuration z occurring in the
orbit just before reaching x has only 1 preimage.

The main result of this section is that the FO* model checking problem is
already hard for formula ¢. The proof uses the HV-domino CSP of Lemma 1.
For each HV-domino CSP problem, we build a deterministic automata one-
dimensional network that essentially checks that a configuration (a; ;) satisfies
the HV-domino constraints. By one-dimensional we mean a graph which is a line
with self-loops on each node. In this automata network, configurations (a; ;) are
layed out as one-dimensional configurations so that a; ; and a;41,; are neighbors
in the graph, and therefore H-constraints can be checked locally. However, a; ;
and a; ;41 are far away in the graph, so V-constraints require the dynamics of
the automata network to be checked. The key idea is to use formula ¢ above to
characterize the part of the dynamics of the automata network that checks all V-
constraints for a given candidate configuration (a; ;): intuitively, quantifying over
orbits starting from a configuration y without preimage and being the unique
preimage of its successor ensures that the orbit contains some well-initialized
computation, and predicate =P, on the configuration before reaching the fixed
point codes the fact that the output of the computation is correct. The fixed
point configuration z in formula ¢ represents a candidate configuration (a; ;)
(cleaned from any trace of computation) and, by construction of the automata
network, the second part of the formula expresses that for any well-initialized
test of a V-constraint the output of the test is a success. Formula ¢ uses predicate
=P, to characterize some specific configurations: the key corresponding trick in
the construction below is to make Cartesian products of some alphabet with
{0,1} and ensure that the action of the automata network almost always reset
to 1 the value of such a {0,1}-component in at least one node. This ensures
that the configuration obtained after one step has at least two preimages. The
situations where it is not the case are exceptional and well-controlled: this helps
to identify possible candidates for configurations y, y' and z in formula ¢.

Theorem 3. Checking whether a given deterministic freezing automata network
(G, F) verifies ¢ is NP-hard, even when restricted to bounded alphabet, and de-
gree 3 and pathwidth 1.
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A  Proof of Theorem 1

Proof. Let t € N a time, A = (G, F) a non-deterministic automata network and
& a t-specification. First note that if G has bounded pathwidth, one can compute
a path decomposition P = (X1,...,X,) in DLOGSPACE where p < pw(G)
[13]. Now note that we can adapt the previous NC algorithm to an NL algorithm
in this particular context. First, observe that the dynamic programming lemma
in [9] is also valid in this case, but now, because the decomposition is a path,
there is only one bag for each level. Then, observe that testing whether a trace
in compact representation (as explained earlier and presented in [9]) belongs to
some regular language can be done in DLOGSPACE. Then, the algorithm will
reproduce the same procedure than the algorithm in [9] , but, instead of paral-
lelizing the information for the nodes in a bag storing it in different processors, it
will handle this information non-deterministically. More precisely, an algorithm
can guess a trace for each bag X; from [ =1 to [ = p while ensuring that each
node (that can appear in various bags) has the same trace in all guesses: this
can be done because, by definition of a path decomposition, a node appears in
an interval of [1,p]. This is the major difference with [9] that has to deal with
tree decompositions. Thus, REGSPEC problem is in NL. a

B Proof of Corollary 1

Proof. For a freezing AN F over alphabet ), the property of not being nilpotent
is equivalent to the existence of a pair of orbits that ends up in two fixed points
that differ at some node. For any pair of states ¢ and ¢’ and some node v,
denote by NONIL(g, ¢’,v) the problem of existence of two orbits in F' that end
respectively in states ¢ and ¢’ at node v. NONIL(q, ¢’, v) is actually a REGSPEC
problem for the AN F' x F over alphabet @ x @ given by the following regular
expression for trace at node v: (Q x Q)*(q,q’)". Then, non-nilpotency can be
expressed as the disjunction

\/ 'V NONIL(g,¢',v).

veV g#q’

From this, we deduce a NL algorithm for non-nilpotency: choose non-deterministically
one of the polynomially many instances of NONIL above and solve it in NL as
an instance of the REGSPEC problem (Theorem 1). We deduce that nilpotency
is co-NL. a

C Proof of Theorem 2

In order to show the main result, we need some technical definitions. Let I" be
a finite set and a € I'. We call a string y € I'* an a-marker in i € [|y|] of length
l € Nif yljipg =a- .

Given a directed graph (G, E) represented by its (oriented) incidence matrix
Mg, we define for each e = (u,v) € F a block representing e as a 2 X 2mn matrix
B(e) such that:
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Fig. 2. Example of the verification dynamics for a periodic pattern. In this case, the
pattern is given by the second row of a block representing the edge (1, 2) in some graph.

1. B(e) has 2m+ 1 special symbols located at specific positions. More precisely
B(€)i (n+1)(j—1)+1 € {#s, #m, #} fori =1,2,3 and j =1,...,2m.

2. Tts first row B(e). € {0,1}2 241 i5 a 1-marker in (2n + 2)(e — 1) 4 2 of
length n and a 1—marker in (3n + 3)(e — 1) 4 2 of length n; and

3. B(e)a. € {0,1}@+2)m+1 i5 a periodic sequence of period 2n containing the
row of M corresponding to e and a copy of this row in reverse order. More
precisely, B(e)z, [2n+2)(i—1)+1,2n+2)i] = M..c and B(€)2 [(2n42)i,(2n+2)(i+1)] =
o(M. ) where o is the permutation such that o({1,...,k}) = {k,..., 1} for
some fixed k € N.

For an example of a block for a some graph D see Figure 4.

First, observe that SPEC is in NL as a consequence of the Theorem 1. Now
for the NL-hardness, let us take the problem STCON consisting in given a di-
graph D = (N, A) and two nodes s,t € V deciding whether there exists a path
connecting s and ¢. Let (D = (N, A),s,t) be an instance of STCON. Observe
that any path between s and ¢ can be seen as a sequence of edges eq,..., ey
such that e; = (s,v), €; = (v/,v) = e;41 = (v',w') for some u',v',w’ € N,
i€{2,...0—1} and e, = (w,t) for some v,w € N. Besides, since each edge
can be represented by a block then, an (s,t)-path P can be represented as a
sequences of blocks B(ey),. .., B(es). Now, the main idea of the proof is to con-
struct a non-deterministic automata network Ap = (Gp, Fp) defined over a
two dimensional grid of size k x d where d = n®® and k = O(1). Of course,
since k is constant, then Ap has bounded pathwidth. This automata network,
will non-deterministically guess a sequences of blocks representing edges in A
(selection phase). Needless to say that, the first part of the proof will be showing
that Ap = (Gp, Fp) is capable of deterministically verify if a n initial condi-
tion corresponds to a sequence of valid edges, i.e. if it corresponds to a sequence
of blocks and they actually represent edges in A (verification phase). In order
to perform these task, we use a construction based on using signals that will
collide at specific locations as a way to verify the distance between two given
cells. In addition, it would be essential to save (as a constant layer) the infor-
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Fig. 3. Example of the verification dynamics for a marker. (Upper panel) A successful
verification of a marker. If exactly one zone has only cells in state 1 an acceptance state
will be reached. (Middle panel) An error in the verification raised by a zone in which
cells in state 0 and 1 were identified. In this case, an error state is propagated. (Lower
panel) An error in the verification raised by the signal only reading cells in state 0. In
this case, an error state is propagated.
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Fig. 4. An example of a block for some graph D.

mation contained in the incidence matrix of D. Generally speaking, once Ap
has verified that the sequence of blocks is valid, it will compare two subsequent
blocks B; and B;4+1 in order to verify that if B; = (u,v) then B;11 = (v,w) for
some u,v,w € N. If in any part of its dynamics Ap detects some error, it will
spread an error state that will lead the system to an attractor corresponding to
a uniform configuration in which any cell will be in this particular error state.
However, if the process runs flawless, then the system will reach an attractor
in which all the cells are in a particular success state. We will code, by using
a specification £p (given in the input of SPEC), a specific requirement for the
initial configuration (more precisely, we will ask the initial configuration to have
the incidence matrix of D, markers and information about the nodes (s,t)) in
order to allow Ap to have enough information to start the selection and verifi-
cation process. In addition, we will code in this specification only the orbits that
will reach this specific success state. By doing this, we will show that Ap = &Ep
if and only if there is a path between s,t in D. Thus, the reduction will consist
on constructing (Ap,Ep) from (D, s,t) in DLOGSPACE.

Now, we give details on the construction of Ap and Ep:

L QD = QP U Qcore U Qsignal where Qcore =
{Success, Accept, Error, 1,0, #s, #m,#}, @p = {Pi,...,Py} are the
states which indicate the different phases that are specified in the paragraph
bellow and Qgignal are the states used in order to propagate signals (for
example, the ones that we have used them on the previous lemmas).

2. Since we need to code an arbitrary path, d will be of size at most m x b
where b = (2n + 2)m + 1 is the size of a block. Observe that size can be
fixed since we can always assume that thexre is a loop in the terminal node
t so we can consider that all the paths are coded by m blocks with possible
padding of blocks B((t,t)). Thus, d = n®W.

3. k will be the number of rows of the grid. We will essentially use one row for
the incidence matrix (incidence row), two rows for the blocks (selection row)
and a constant number of rows that we will call working rows in which the
signals will move and collide (working and verification rows).



4. Ep will code only initial conditions in which one row of the grid (incidence
row) will have O(m) copies of the incidence matrix in the same format than
the second row in blocks i.e. there are markers at specific positions and we
code the different columns in the zones defined by the markers (Figure 5).

5. &p will code orbits in which the selection row of size d will have marked in
the first block a symbol indicating "head” in the position associated to node
s (see Figure 4).

6. £p will code orbits in which the selection row of size d will have marked in
the last block a symbol indicating ”tail” in the position associated to node
t (see Figure 4).

7. Ep will code orbits which will reach a uniform success state.

Now we will describe the dynamics of the automata network Ap.

Initialization In t = 0, since by construction of the specification £p, we can
consider only orbits in which the incidence row, all the special symbols and the
position of the source and terminal node (as an h and t symbol fixed in its
correspondent positions) are well coded and fixed in the initial condition.

Selection phase First, the local rules will non-deterministically guess the states
of the rest of the cells in the selection row. This process is performed cell by cell,
by sending a traveling signal in one of the working rows. This signal starts on a
starting symbol #g and finishes in a terminal symbol #s. After doing that, the
signal comes back from the terminal symbol to the starting symbol and writes
a change of phase state in all the cells on the working row.

Verification phase After that, verification phase starts. The process has two
main subphases:

A local phase: First, each block is internally verified. More precisely, the
local rules will verify that B(e) has the correct formatting on its two rows and
that it correspond to an actual edge in D, i.e. e € A:

1. Verification of the first row. For each part of size 2n defined by two different
special symbols (i.e. the space bounded by pairs (#s, #), (#, #s) or (#, #))),
three different signals will start from one symbol to the one in its left (see
Figure 3). The first signal will change of state if and only if it reads a cell in
state 0. If it remains in initial state it will be interpreted as success otherwise,
if it has changed, then it will be interpreted as error. The second one will do
the same thing but for cells in state 0. Finally, the third signal will start from
a cell marked with #¢ and will go through the row until another #; symbol
is reached. This signal will verify that there is exactly one block which has
marked success for the first signal and error for the second one. Otherwise,
it will change to an error state that will be spread to all the cells (see Figure
3 for examples).

2. Verification of the second row. In order to verify that the coding of the second
row is correct, we need to check that each row has exactly two symbols: h



and ¢t and that the configuration is symmetric related to the cells marked
with symbols #,,. In order to do that, from each symbol h and ¢ a signal is
sent through two working rows (one signal to the right and one to the left,
see Figure 2 for details.) Then, the local rules in the cells holding the state
#.» will change to the success if exactly two signals arrive at the same time.
More precisely, this last procedure is implemented by sending a two state
signal, one marking the starting part of the signal and one marking the rest.
If the latter condition does not hold, the cells marked by #,, will spread an
error state (see Figure 2). Observe that this procedure works since: i) if two
cells are holding the same state and they are at the same distance of the cell
marked by #,, then, the two equal signals will arrive at the same time to
the cell holding the sate #,,; and ii) since the coding considers a constant
amount of special symbols (more precisely h and t) then, the local rule is
freezing.

Verification of the edge that is coded in the block. At this point, if no error
state has been produced by the dynamics, it means that the coding of each
block is coherent, but we are not sure that it actually represents an edge
e € A. In fact, we have coded in the first selection row some number ¢
referencing a column of the adjacency matrix of D but, we need to check
whether the second selection row contains the same information than the i-
column of the adjacency matrix. This last part is performed in the following
way: a signal will be transmitted over a working row in order to identify
the information in the two selecction rows of the block. Since each block
has a marker in its first row, the signal can hold a state while it is in the
same position than the cells in state one in the marker. Thus, this state will
indicate the local rule to perform a comparison between the second row of
the block and the correspondent part of the incidence row. For more details
see Figure 5. While verifications are being run, the local rule will write an
acceptance state or an error state in some working row. Finally, a third signal
will verify that all the cells in the latter working row are in the acceptance
state and will spread the error state if not. Finally, if no error state has
been spread, the local rule updates the state of the cells in the working row
holding the change of phase state.
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Fig. 5. Example of adjacency verification. In the first row, the incidence matrix of D
is coded. In this case a signal verifies that the edge (1,2) is in the graph D (see Figure

4)



A pair-wise coherent phase: similarly to the verification of the second row
in the selection row on the previous phase, this phase starts by sending multiple
signals that are sent from the cells in the selection row with states given by the
symbols marking the tails and the heads of the coded edge in the second row
of the selection row on each block. These signals are sent through two different
working tapes. Each of these signals will carry a special state indicating if its
origin was a head or a tail. The local rule in the cells with a special symbol (#5)
will verify whether a head signal has collided with a tail signal (see Figure 6). If
exactly one of this collision take place, the local rule will write an accept state
in one of the working rows. Finally, in other working row, a signal starting from
the starting symbol will verify that at the position of the beginning (ending) of
a block an accept state is written in the previous working row. The local rule
will update the cells in that working row to an error state that will spread if at
least one the verifications is not correct. Otherwise, it will update the cells to
the success state.
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Fig. 6. Example of a verification dynamics which compares blocks and checks if the
corresponding edges are both incident to the same node. If exactly one tail signal collide
with a head it means that the previous property is verified and an error state is spread
otherwise.

Now, we turn into show that the reduction hold. First, observe that the con-
struction of (Ap,Ep) can be done in DLOGSPACE since local rules does not
depend on the structure of D and thus, we only need to store partial informa-
tion related to the structure of the incidence matrix of D in order to define the
specification. Then, we have that if there is a path between s and ¢t on D, by
construction, there must be at least one orbit of Ap which satisfies £p. Con-
versely, if Ap = Ep then, there exist at least one initial condition which codes a
sequence of edges in D which leads the system to a uniform success fixed point.
By construction, this attractor is only reachable (starting from the set of valid
initial conditions) after all the previous phases are successfully performed by the
dynamics. Then, we deduce that STCON <DLOGSPACE GpEC and thus, SPEC
is NL-hard. The theorem holds.



D Proof of Lemma 1

Proof. There exists a Turing machine working in polynomial time (and space)
that on input (¥, v) where ¥ is a SAT formula and v a candidate valuation checks
whether v satisfies ¥. Then for any given SAT formula ¥, one can produce in
LOGSPACE a set of HV-domino constraints that accepts only bi-dimensional
configurations (a; ;) which represent a valid space-time diagram of the above
machine which are correctly initialized and with ¥ enforced as the first com-
ponent of the input. The encoding of space-time diagram of Turing machine
inside domino constraints is well-known and usually presented through a fixed
set of so-called Wang tiles (see for example [15]), which are just a uniform set of
horizontal constraints H C Q2 and vertical constraints V C QQ. Note that since
the HV-domino constraints considered here are non-uniform, we can hard-code
the initial state of the machine in the lower-left corner of the configuration, the
encoding of ¥ in the initial row, and the accepting state of the machine in the
top row. The reduction from SAT to the HV-domino CSP follows. a

E Proof of Theorem 3

Proof. We proceed by reduction from the HV-domino CSP: given n and con-
straints (H; ;) and (V;;), we build a deterministic automata network (G, F)
with N = n? which verifies ¢ if and only if the CSP has a solution. G is the
graph with nodes V = {1,..., N} and edges (,4) for all i« € V and (i,i + 1) for
all i < N and (i,i— 1) for all ¢ > 0. Gy has pathwidth 1 and degree 3. The
automata network JF has four components plus a global error state and uses
alphabet Q' = Q x {0,1} x Qp x Q; U {L} (where @ is the alphabet of the HV-
domino CSP). The freezing order on @ x {0,1} X Qp X Q¢ is simply the product
of orders on each component, and this order is extended to Q' by taking L as a
maximal element. The overall behavior is as follows (see Figure 7 and Figure 8).

— 1 is an invariable spreading error state: as soon as some node is in state L,
its neighbors change to L in one step.

— The Q-component contains a candidate configuration (a; ;) written as a one-
dimensional word aj,1 - @1,,G2,1 Q2,5 " Gn,1 " Gn,n. The block of nodes
(j — Dn+1to (5 — 1)n+ n will be referred to as block j and it contains line
j of the matrix (a; ;) in its ()-component. This component never changes,
except when an error state L invades the network, or when some H-constraint
H; ; is violated at some node in which case a L state is generated. The
freezing order on this component can be chosen arbitrarily.

— The {0, 1}-component is called dummy component which never changes, has
no influence on other components, and is just here to ensure that any con-
figuration leading to 1" has enough preimages (see Claim E below).

— The @, component handles a global control head whose main behavior is
a back-and-forth movement from node 1 to node N and back to node 1.
More precisely, the head do so on a set X' of well-formed configurations and
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Fig. 7. Example of valid orbit with n = 3 starting from a configuration testing the
V-constraint V2 2 and resulting in a positive output. The trajectory of the @5 head is
reproduced on the Q:-component to clarify the interactions. The vertical thick lines
represent separations between consecutive blocks.
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Fig. 8. Euclidean non-discretized representation of the verification process ensuring
that the marks in two consecutive blocks have the same offset within the block and
thus mark two positions which are vertical neighbors in the matrix (as ), 4.e. of the
form Q4,5 and QAit1,5-



any ill-formed configuration is detected locally and generates an error state
1. We set Qh = {0, 1} X {0, 1} X {A, B7 C’, —, 0, 71,51, %0, Ro,Rl}
with freezing order 0<1 on the two {0,1} components and
A <<= 0<—=>1< B <+1<+9< Ry < Ry < C on the remaining com-
ponent. Y is defined by forbidding a set of pairs of states to occur two
adjacent symbols c;c;y1 from the third component. Moreover, we add the
constraint that node 1 cannot be in state A, and that the first {0,1}
component at this node must be 1. Precisely, configurations authorized in
X are the following (without considering the {0,1} components):

1. - AN Lor =9 ANt or —; AN-L
Bi — AN=i=1 or B® —y AN==1 or B* 5, AN—#—1
BN-1 —>g Or BN-1 —1,
BN-1 <o or BN-1 1,
Bi ¢y CN=i=1 or Bi ¢, ON=i—1,
1 CN-1or <0 CN_I,
RlcNil or RocNil,
. CN.
The head is the unique arrow occurring in each configuration and its dy-
namics is as follows. It moves to the right in a background of As and letting
symbols B behind (configuration types 1, 2 and 3). At each move to the
right, the first {0,1} component of the node left by the head is reset to 1.
When doing so it can turn at some point to state —; or —¢ depending on the
layer of states Q; as detailed below: these states represent a head holding a
YES/NO bit of information about the output of the test process happening
on component ;. This bit must appear before reaching node N and once
appeared, this bit of information never changes in the future. When reaching
node N the head starts to move to the left, progressing in a background of
Bs and letting symbols C behind (configuration types 4 and 5). At each move
to the left, the second {0, 1} component of the node left by the head is reset
to 1. The fact that some {0,1} component is reset to 1 at each head move
ensures that the corresponding configurations have more than one preimage
(which is a key aspect when considering formula ¢). Finally, the head reaches
node 1 and must hold the output bit of the test process (configuration type
6), maintain it one step (configuration type 7), and finally erase it (type 8).
Also, when reaching a configuration of type 6 at node 1, the bit of the second
{0, 1} component is reset to 1 when the head at node 1 is - and unchanged
when it is <—¢. This bit is reset to 1 in any case for configurations of type 7.
As a result, a configuration of type 7 has exactly one preimage if and only
if it is RyCN L.
The Q; component is the test component, its role is to mark two positions in
the configuration and interact with the head component in order to check a
single V-constraint on the candidate configuration hold in the @)-component.
More precisely, the test component ensures that the two marked positions
are at distance n (i.e. they correspond to two vertical neighbors in the grid
(a;,;)) and gathers locally at some node the information on the corresponding
pair of states a; ;ja; ;11 and the constraint V; ; so that the head can check
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whether a; ja; j41 € Vi ;. See Figure 8 for an Euclidean intuition of how the
distance equality test works. This behavior is implemented using alphabet
Q:=QxQx{L,R,ar,agr,B,v, L, r,—r} with freezing order: L <
R < ap < ap <1< B <—=<4pr< 7. The third sub-component of Q;
is used to mark two positions in the configuration as well as check that the
distance between the two marked positions is exactly n so that they indeed
correspond to a pair of positions (,j) and (i,7 + 1) in in the matrix (a; ;).
Its behavior is based on a set of valid configurations X+ defined by local
rules and synchronized with the @ component. States <p,<pr,—pg are
called “left/right arrows” of the Q;-component and are generated at specific
positions when the global Qy-head passes by (see Figure 8). The two Q-sub-
components of @), are forced to hold states a; ; and a; ;41 respectively on
valid configurations, and allow to check the V-constraint (a; j,a; j+1) € Vi ;.
The conditions defining Xt are local (i.e. they can be defined as a list
of admissible pair of states between neighboring nodes) and a L state is
triggered whenever and wherever an invalid local pattern is detected. The
conditions are the following:

e First, in the absence of a left-moving head in the @), component, the
two Q-sub-component must be uniform: each one is of the form ¢V for
some q¢ € ). When there is a left-moving head in the @)}, component,
each Q-sub-component is of the form: qiqév ~% where ¢q is the maximal
state of @ and 7 is the position of the @} head.

e Then, there are five types of admissible configurations on the third sub-
component of Q;:

1. L*aZaER* and ay, and ar segments are forbidden to cross a block
boundary (i.e. node (n,j) has an «y, if and only if (1,5 + 1) has an
aR)v
L* < frajapR*,

L*y* = B*ajaRpR* or L*y* = B*ajafy <r v RY,

L*y* - p«r Yy R,

any configuration of the form ¢y* where c is the prefix of a configu-
ration of type 3 or 4.

e Type 4 configurations are only authorized when — |, and < g states meet
at a bloc boundary, i.e. are at positions of the form (n,j) and (1,5 + 1)
(respectively).

e Moreover, only L, ay, ar and R are authorized in a node whose @,
component is in state A, therefore a type 1 configuration on the Qj
component admits only a type 1 configuration on the Q); component.

e Finally, in configurations of type 1, let (4,5) (i-e. n(j — 1) +4) be the
leftmost node in state ay, and let m be the rightmost node in state ag.
Denote by a and b the states of the first and second Q-sub-component
respectively. Then it must hold that a is the state of the QQ-component
(the global one of the alphabet Q') of node (4, j) and b is the state of the
Q-component of node m.

The dynamics of this Q¢-component is as follows and respects the type order
of configuration described above:

CU N



e Type 1 configurations don’t change until the head of the Qp-component
arrives at node (4, ) where it generates a <, state.

e Then, <, propagates in the L background, letting 3 states behind and
until position (1,7) is reached (i.e. the first position to the left which
is at the beginning of a bloc). Then, the arrow bounces by turning into
— 1 and starts to progress to the right letting + states behind.

e Meanwhile, when the @} head reaches position m (the rightmost node in
state o), it launches a < g state in the @ layer which starts to propagate
to the left letting v sates behind.

e Also, when the @), head bounces on node N and starts to propagate
to the left, it writes gp on each @-sub-component and 7 on the third
sub-component of @, thus erasing progressively any information about
the marked positions and the V-constraint being tested.

e The dynamics ends into the fixed point equal to ¢ on each Q-sub-
component and vV on the third sub-component.

Finally the Q¢-component influences the QQ,-component as follows: when the
head of the Qp-component of type — reaches node (¢,5) it becomes —; if
(a,b) € V; j (where a and b are the states of the -sub-components) and —
else.

Let us now prove that this construction has the desired property. Let’s call
valid orbit any orbit without occurrence of L.

Claim (¢ checks V-constraints on valid orbits). Consider any valid orbit starting
from a configuration y without preimages, with y — y' and =P5(y'), and reach-
ing a fixed point . Then y is of type 1 on components @), and @Q);. Moreover,
a correctly encoded test of V-constraint V; ; is encoded in component ¢; and
the configuration z such that y —* 2z and z — x verifies —P»(z) if and only if
@i,jij+1 € Vij.

Proof. Since there is no occurrence of L, the whole orbit belongs to X*. A con-
figuration of type 8 or 9 in the ()5, component always has a preimage so y is not
of this type. A configuration of type 2,3,4,5,6 or 7 has a moving head that reset
some {0, 1} component to 1, so it cannot be the unique preimage of its successor,
contradicting the hypothesis on y'. Therefore y is of type 1 on components Q
and @Q;. Then, by construction, the marked positions in the Q; component are at
distance n and there is a well-formed V-constraint test happening (otherwise a L
would be generated later in the orbit). The dynamics of the automata networks
then ensures that the @p heads holds the bit of information corresponding to
the validity of the encoded V-constraint: it is 1 if and only if a; ja; j4+1 € Vi ;.
The dynamics ends in a fixed point  which has a configuration of type 8 on
the Qp-component. Already when reaching a configuration of type 6 or 7 or 8
on the Qp-component, all the Q;-component has been reset to a default value.
Therefore it holds that the bit of information in the head is 1 if and only if the
type 7 configuration reached z = RyCN~! has a unique preimage. ad

From the construction and Claim E it should be clear that if the HV-domino
CSP has a solution (a; ;), then one can encode it into a fixed point configuration



x that satisfies the orbit property expressed in ¢ for all admissible choices of
initial configuration y (because all admissible V-constraint tests are satisfied by
the CSP solution). In this case the automata network verifies ¢.

Conversely, if the automata network verifies ¢ and if the fixed point x can
be chosen to be a configuration without L, then this configuration encodes a
solution to the HV-domino CSP by Claim E and because any valid V-constraint
test can be encoded in an appropriate initial configuration y. It remains to
discard the possibility that ¢ is valid because z is chosen to be the invalid fixed-
point LY, this is the purpose of the following claim.

Claim (¢ discards invalid orbits). Consider three configurations y, z, x such that
y—=T 2= xand z — z and z # 2. If = P(2) then x cannot be the configuration
1N,

Proof. First z must have an occurrence of 1 because it is impossible that the
preimage 2’ of z be everywhere correct and in one step becomes a configuration
z everywhere incorrect but without occurrence of 1: indeed, by construction,
the changes not involving 1 state that can occur in a configuration in one step
are only in the neighborhood of arrow states of both @), and (); components,
and they have a bounded number of occurrences by definition of X 7. Moreover,
there must be an occurrence of L in z at position ¢ such that z'(i) # L. Indeed,
otherwise it would imply z = L which is impossible under the hypothesis.
Therefore by just changing the dummy component at ¢ in 2’ we produce another
preimage of z, so Py(z) holds which is a contradiction. O

We have thus shown that the HV-domino CSP has a solution if and only if the
automata network verifies ¢. The theorem follows since the construction can be
computed efficiently (actually in LOGSPACE). O



