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Abstract—We consider the problem of reliable communication
over a discrete memoryless channel (DMC) with the help of a
relay, termed the information bottleneck (IB) channel. There is
no direct link between the source and the destination, and the
information flows in two hops. The first hop is a noisy channel
from the source to the relay. The second hop is a noiseless but
limited-capacity backhaul link from the relay to the decoder. We
further assume that the relay is oblivious to the transmission
codebook. We examine two mismatch scenarios. In the first
setting, we assume the decoder is restricted to use some fixed
decoding rule, which is mismatched to the actual channel. In
the second setting, we assume that the relay is restricted to use
some fixed compression metric, which is again mismatched to the
statistics of the relay input. We establish bounds on the random-
coding capacity of both settings, some of which are shown to be
ensemble tight.

I. INTRODUCTION

In this paper, we consider the point-to-point oblivious relay
channel [1], in which a relay observes the transmitted signal
over a noisy channel and transmits digital information to the
decoder via a limited-capacity link. Our primary focus in
this paper is achievable rate results under various mismatch
conditions, specifically using random codes. We consider both
mismatched decoding at the receiver as well as mismatched
compression of the relay. The motivation for this analysis is
that network architectures with oblivious processing at the
relays serve as the fundamental building blocks of modern
communication systems. A recent and comprehensive sum-
mary on oblivious communication networks can be found in
[2]. The motivation for analyzing the mismatched case is that
in many practical settings, .e.g., in the up-link of cellular
communication with oblivious relays, the relay or the decoder
only possess partial information regarding the statistical model
of the channel or is restricted to operating with some specific
decoding metric (and typically use it in a more elaborate
channel decoding algorithm, such as belief-propagation [3]).

The capacity of the oblivious relay channel is tightly con-
nected to the information bottleneck (IB) problem [4], which
has been the subject of a recent extensive study, mainly due
to its relation to current advances in machine learning, see
e.g., [5], [6], and statistical learning [7]. In the classical rate-
distortion theory of lossy source coding, a fidelity measure
must be chosen that quantifies the quality of compression
[8]. The IB method determines this distortion measure via an
additional dependent random variable that captures the mean-
ingful information in the data to be compressed, which can
be thought of as contextual labeling of the data. Specifically,
the compression quality under the IB approach is assessed via
the mutual information between the compressed representation
and the additional variable. As it turns out, the resulting IB
matches precisely the capacity of the oblivious relay channel

under consideration. In effect, it is also the single-letter rate-
distortion formula for remote-source coding setting [9], [10]
when the distortion measure is the log-loss [11]. It was shown
in [12] that minimizing the log-loss minimizes an upper
bound to any choice of loss functions for binary classification
problems. It can also be shown that log-loss actually bounds
general distortion measures (as stated by Linder, but to the
best of our knowledge, it has not been published).

As is well known, the problem of mismatched decoding
is notoriously challenging and is not fully resolved, even for
standard point-to-point channels [13]. Nonetheless, analysis of
random codes under mismatched encoding or decoding leads
to tractable achievable bounds, and so we adopt this analysis
for the oblivious relay channel (or the IB problem) studied
in this paper. Coding over a DMC with mismatched decoder
under the random coding regime was introduced independently
in [14] and [15], where a lower bound (termed the LM rate)
on the capacity was derived. In [16] it was shown that the LM
bound is not tight. A more analytically tractable lower bound,
termed generalized mutual information (GMI), was proposed
in [17], and the random coding ensemble tightness for the LM
scheme was established in [18]. In our setting, the analysis of
random codes is further motivated by the desire to model codes
that are not adapted to a specific communication setting, by
the obliviousness nature of the relay, and by security aspects
typically involved in relay communication systems.

The outline of the rest of the paper and our contributions
are as follows. In Sec. II, we consider the IB problem with a
mismatched decoder at the receiver and derive random coding
(achievable) rates, both in the form of an LM bound, as
well as a GMI bound. We then propose an algorithm for the
computation of the achievable rate and exemplify its operation
on a quaternary channel. We then extend the GMI rate to
continuous alphabet channels and demonstrate this result for
a Gaussian fading channel. Afterward, in Sec. III, we consider
the setting of a relay with a mismatched compression rule. In
Sec. IV, we conclude the paper.

Related Work: A comprehensive summary on
information-theoretic foundations of mismatched decoding
and encoding is provided in [13]. Beyond channel coding,
mismatch has also been studied in the context of source
coding [19], [20]. A successive refinement setting constrained
to Gaussian codebooks with minimal Euclidean distance
encoding has been proposed in [21]. An extension to general
alphabets has been recently presented in [22]. The global
channel knowledge at the destination setting has been studied
in the context of quantized distributed reception in [23],
where a simple, complex binary sign quantization has been
assumed. A distributive decoding communication network
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with BPSK transmission over the AWGN channel has been
considered in [24]. Uniform quantization for OFDMA-based
CRAN has been considered in [25]. Outage probability in the
problem of distributed reception with hard decision exchanges
has been considered in [26].

II. INFORMATION BOTTLENECK CHANNEL WITH
MISMATCHED DECODER

A. Discrete Memoryless Channels
In this section, we consider the 3-node point-to-point com-

munication system with a relay depicted in Figure 1, in which
the sender wishes to communicate a message M to the receiver
with the help of the relay. We term this setting the discrete
memoryless information bottleneck channel (DM-IBC) with
mismatched decoder ⟨X ,PY|X,Y,Z, V (z|x)⟩. It consists of
three finite sets X , Y , Z , a collection of conditional pmfs
PY|X on Y (one for each input symbol x), and a decoding
metric V (z|x) on Z .

A (2nR, 2nB , n) code for the DM-IBC with mismatched
decoder consists of:

• a message set M = [1 : 2nR],
• a representation set W = [1 : 2nB ],
• an encoder that assigns a codeword xn(m) to each

message m ∈ M,
• a relay source encoder that assigns an index w ∈ W

to each received sequence yn ∈ Yn, with the respective
reconstructed sequence zn(w), and

• a decoder that assigns an estimate m̂ or an error message
e to each received representation index w ∈ W according
to some fixed mismatched metric

m̂(zn) = argmax
m∈M

V (zn|xn(m))

= argmax
m∈M

n∏
i=1

V (zi|xi(m)). (1)

It is assumed that the message M is uniformly distributed over
the message set M.

Definition 2.1: Consider a codebook of 2nR n-dimensional
sequences, {xn(m)}2nR

m=1, where each sequence is generated
at random with a memoryless pmf PX and independently
of all other vectors. Also consider a compression codebook
of 2nB n-dimensional sequences, {zn(w)}2nB

w=1, where each
sequence is generated at random with a memoryless pmf PZ

and independently of all other vectors. A pair of such channel-
compression codebooks is termed a random codebook. Let
P

(n)
e = P{M̂ ̸= M} denote the error probability averaged

over the random codebooks. A rate R is said to be achievable
for the DM-IBC at compression rate B, with mismatched de-
coding metric V , if limn→∞ P

(n)
e = 0 under the mismatched

decoding rule. The random coding capacity CV (B) of the

Channel
Encoder

PY|X
Relay

Encoder
Mismatched

DecoderM
Xn(M) Yn Zn(W)

M̂

Fig. 1: Oblivious Communication System with Mismatched
Decoder

DM-IBC with mismatched decoder is the supremum of all
achievable rates of random codebooks.

Our main result of this section is stated in the following
theorem, and it describes the respective LM rate [14], [15] for
the oblivious relay setting.

Theorem 1: The random coding capacity of the DM-IBC
with mismatched decoder is

CV (B) = max
PX

max
PZ|Y

JV (X;Z)

subject to I(Y;Z) ≤ B,
(2)

where

JV (X;Z) = min
QZ|X∈PX×Z

I(PX,QZ|X)

subject to
∑
x∈X

Q(x, z) = PZ(z),∑
(x,z)∈X×Z

Q(x, z) log V (z|x) ≥ −D,

(3)
with Q(x, z) = QZ|X(z|x) · PX(x) and

D ≜ −
∑
x∈X

∑
z∈Z

PXZ(x, z) log V (z|x). (4)

Theorem 1 provides the exact random coding capacity under
mismatched decoding. In specific, both an upper bound and
ensemble tightness are proved.

Proof: The proof of the direct part appears in [27, App.
B] and the proof of ensemble tightness appears in [27, App.
C].

The resulting capacity expression of Theorem 1 is proved
for the discrete case and is not easily extended to continuous
channels. Therefore, in what follows, we provide an achievable
random-coding rate based on the generalized mutual informa-
tion (GMI) coding scheme [17]. As we shall see, this rate
can be extended to continuous channels. Note that the main
difference between the LM rate from Theorem 1 and the GMI
rate provided in the following theorem is the relaxation of the
marginals equality constraint, i.e., QX = PX.

Theorem 2: The random coding capacity of the DM-IBC
with mismatched decoder is lower bounded as

CV (B) ≥ max
PX,PZ|Y

IGMI(PXZ)

subject to I(Y;Z) ≤ B,
(5)

where

IGMI(PXZ) = min
P̃XZ

D
(
P̃XZ∥PX × PZ

)
s.t.

∑
x∈X

P̃XZ(x, z) = PZ(z)

EP̃XZ
[V (Z|X)] ≥ EPXZ

[V (Z|X)] .

(6)

In addition, the inner minimization problem has the following
dual form,

IGMI(PXZ) = max
λ≥0

∑
(x,z)∈X×Z

PXZ(x, z) log
V (z|x)λ∑

x′ PX(x′)V (z|x′)λ
.

(7)
Proof: The proof appears in [27, App. D].
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B. A Computationally Efficient Algorithm
In this section, we propose an efficient algorithm to compute

CV (B) by solving the optimization problem of Theorem 1.
To this end, it should be noted that the inner minimization
problem of computing JV (X;Z) in (3) is a convex optimization
problem in QZ|X since the mutual information is a convex
function of the channel and the constraints on QZ|X are
linear. Therefore, JV (X;Z) can be efficiently computed using
standard convex optimization solvers.

By contrast, the outer maximization problem in (2) over
PZ|Y is not concave, and solving it requires global optimization
methods, e.g., a grid search. Specifically, we propose to
initially compute this maximum over a coarse grid of the
probability simplex. Then, we perform a refined search of
the maximum in a finer grid, only at a local neighborhood
of the solution of the coarse maximization. Repeating this
refinement procedure in an iterative manner then leads to
an improved solution at each step, and a stopping criterion
may be a negligible increase in the achievable rate in the
last iteration. We nonetheless emphasize that any choice of
PZ|Y leads to an achievable lower bound on the rate. Thus,
the crucial optimization step for the validity of the solution
is the convex minimization step in (3). In addition, one may
also optimize the input distribution PX, again, using search
methods. In many practical applications, however, the input
distribution is arbitrarily chosen, e.g., as a uniform distribution,
which is typically justified by the symmetry of the problem.

The proposed algorithm involves an alternating maximiza-
tion step, proposed in [4] for the original IB problem, in
order to find the optimal test-channel in the case that the
decoder is matched. As well known, this algorithm is based
on the Blahut-Arimoto [28], [29] algorithm and is termed here
information bottleneck alternating minimization (IBAM). A
formal description can be found, e.g., in [4, Thm. 5]. Our
main algorithm is detailed in Algorithm 1.

C. Example: A Quaternary Channel
In this section, we demonstrate the result of Theorem 1 and

the operation of Algorithm 1 in a simple setting. Concretely,
suppose that the channel from X to Y is defined by the
following conditional pmf,

PY|X(y|x) = P {Y = y|X = x} =


1− ϵ, y = x
ϵ
2 , y = x± 1

0, otherwise,
(8)

where all addition and subtraction operations are computed
modulo 4. The metric V is mismatched, and specifically, is
matched to a different channel. This different channel has the
same correct symbol transition probability of 1−ϵ, yet the error
can go to the other three alternative symbols with probability
ϵ
3 , i.e.,

QY|X(y|x) = P {Y = y|X = x} =

{
1− ϵ, y = x
ϵ
3 , y ̸= x.

(9)

Due to symmetry, we assume that the optimal PX is uniform
and PZ|Y is symmetric. In such case, PZ|Y(z|y) is a modulo-
additive channel. We compare the rates obtained by a matched

Algorithm 1: MMIB algorithm
Input: PXY, V (z|x), B,RES
Popt
Z|Y = IBAM(PXY, C, args)

PZ|Y = {PZ|Y : I(Y;Z) = B}
Pcoarse
Z|Y = PZ|Y ∩ RES · Z|Z|

for PZ|Y ∈ Pcoarse
Z|Y do

Compute D according to (4) with P = PZ|Y · PXY

JV (X;Z) = minQ I(PX,QZ|X)
subject to:
EPQ

[log V (Z|X)] ≥ −D

Find P∗
Z|Y ∈ Pcoarse

Z|Y that maximizes JV (X;Z).
while ∆R ≥ ϵ do

RES = RES ∗ FINE
Pfine
Z|Y = PZ|Y ∩ FINE · Z|Z| ∩ B(P∗

Z|Y, 1/RES)
for PZ|Y ∈ Pfine

Z|Y do
Compute D according to (4) with
P = PZ|Y · PXY

JV (X;Z) = minQ I(PX,QZ|X)
subject to:
EPQ

[log V (Z|X)] ≥ −D

Find P∗
Z|Y ∈ Pfine

Z|Y that maximizes JV (X;Z).

Output: P∗
Z|Y, R

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

ϵ

R

w/o mismatch
with mismatch

Fig. 2: Mismatched performance of the Quaternary example.

vs. a mismatched decoder in Figure 2, as a function of ϵ. As
might be expected, the difference between the rates vanishes
as ϵ → 0 since the mismatch between the channels becomes
milder as ϵ → 0.

D. Continuous-Alphabet Memoryless Channels

In this section, we modify the bound of the previous section
to continuous alphabet Gaussian channels. As mentioned, the
discrete alphabet assumption is crucial to the derivation of the
LM rate in Theorem 1. Indeed, in the standard point-to-point
communication setting, without mismatch, coding theorems
for continuous alphabets are obtained by taking the limit of
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fine quantization of the continuous inputs and outputs of the
channel. Unfortunately, this technique is not applicable in the
mismatched case, since quantization of the output changes
the decoder which should be fixed by assumption, and it
becomes very challenging to track and evaluate the impact
on the final result. For this purpose, we have also derived
the corresponding GMI rate in Theorem 2, as a lower bound,
which, as we shall see, is amenable to modification from
discrete alphabet channels to continuous alphabet channels.

From a technical notation perspective, we first replace all
pmfs to the form of probability densities. Furthermore, the
decoding metric V (z|x) will also be defined on R × R. In
addition, we add a constraint on the input of the channel,
otherwise, as happens in most continuous channels, the ca-
pacity may be unbounded. Thus, every transmitted sequence
xn must satisfy 1

n

∑n
i=1 c(xi) ≤ Γ, for some cost function

c(x) and threshold Γ. Usually, we take c(x) = x2 and Γ,
both represent a power constraint and the maximum permitted
power per-symbol.

Theorem 3: For any continuous oblivious relay channel
with mismatched decoding metric V , input cost function c(·)
and input cost threshold Γ, the random coding error probability
vanishes for rate R that satisfies:

R ≤ max
fXZ,fZ|Y

IGMI(fXZ)

s.t. I(Y;Z) ≤ B, E [c(X)] ≤ Γ.
(10)

where

IGMI(PXZ) = max
λ≥0

∫
dxdzfXZ(x, z) log

V (z|x)λ∫
PX(x′)V (z|x′)λdx′ .

(11)
Proof: The dual expression from (7) can also be derived

directly (rather than deriving the dual optimization problem
as shown in [27, App. D]) using a similar analysis to that of
Gallager [30] for maximum-likelihood decoding. The former
involves replacing summations with integrals and using a stan-
dard expurgation argument to construct a sub-codebook with
feasible codewords from the randomly generated codebook.

E. Example: Fading Channel
We next exemplify our result on a fading channel, a funda-

mental wireless communication channel model. As common,
we assume that the channel is complex-valued, and the additive
noise is circularly symmetric complex Gaussian (CSCG).
Specifically, we consider a memoryless time-varying fast-
fading model of the form Yi = HiXi + Ni, where Xi ∈ C
is the input, Ni ∈ C is additive noise, and Hi ∈ C is a fading
coefficient. We assume that {Ni}ni=1 are i.i.d. distributed
according to CN (0, σ2), and that Hi is an i.i.d. sequence with
density function SH.

1) Perfect Channel Knowledge: If each random realization
Hi = hi is perfectly known at the decoder, then due to
Gaussianity of the noise and the optimality of Gaussian
compression assuming Gaussian input distribution, the optimal
decoding rule would be the following weighted version of the
nearest-neighbor rule:

m̂ = argmin
j=1,...,M

n∑
i=1

|zi − hix
(j)
i |2. (12)

Similarly, under a power constraint E
[
|X|2

]
≤ Γ (i.e. c(x) =

|x|2) and a Gaussian input distribution assumption, the optimal
rate is achieved using a Gaussian test channel from Y to Z,
and is given by

RCG
IB (Γ, σ2, SH) = E

[
log

|H|2Γ + σ2 + q

σ2 + q

]
. (13)

Evidently, in a fast-fading channel, it is unrealistic to assume
that the decoding is matched, since this requires perfect
knowledge of Hi at any time point.

2) Imperfect Channel Knowledge: As said, assuming Gaus-
sian signaling, the pair (X,Y) is jointly Gaussian. In the
standard IB setting without mismatch, the optimal test-channel
from Y to Z is also Gaussian in such case. Therefore, we also
adopt this test channel for the mismatched setting, and assume
that the channel from Y to Z is Gaussian, i.e., there exists a
W ∼ CN (0, q) such that Z = Y+W = HX+N+W. The value
of q is determined as the solution of the mutual information
constraint equation, i.e.,

B ≥ I(Y;Z) = EH

[
log

|H|2Γ + σ2 + q

q

]
. (14)

Let q∗ be the solution to the above equation. We use it to find
the GMI rate of Theorem 2 using the dual form.

We adopt a simple uncertainty model in which

Hi = Ĥi +∆i, E
[
∆|Ĥi

]
= 0, (15)

where Ĥi is a possibly-random estimate of H known at the
decoder, and ∆ represents an unknown conditionally zero-
mean error term. We make the simplifying assumption that
the pairs {(Ĥi,∆i)}ni=1 are i.i.d. with respect to i = 1, . . . , n,
and independent of the channel input and noise.

In the case that the joint density function of (Ĥi,∆i) is
unknown (or even when it is known but difficult to design a
corresponding optimal coding scheme), it is natural to apply
weighted nearest-neighbor coding

m̂ = argmin
j=1,...,M

n∑
i=1

|zi − ĥix
(j)
i |2. (16)

This is a mismatched decoding rule, in the sense that is would
be optimal under a model of the form Y = ĤX+N. The cor-
responding decoding metric is given by V (x, z) = e−|z−ĥx|2 .

Theorem 4: Consider the complex-valued channel fading
setup with a known estimate |Ĥ| at the output and a condi-
tionally zero-mean error term ∆. Under i.i.d. random coding
with X ∼ CN (0,Γ), along with weighted nearest-neighbor
decoding, the GMI rate is given by

C(B) = max
q

E

log
1 +

|Ĥ|2Γ

E
[
|∆|2

∣∣Ĥ]Γ + σ2 + q


s.t. EH

[
log

|H|2Γ + σ2 + q

q

]
≤ B.

(17)
Proof: The proof is omitted here due to lack of space.

We illustrate Theorem 4 using a numerical example. We
choose Γ = σ = 1 and Ĥ and ∆ to be independent Rayleigh
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Fig. 3: Mismatched performance of the fading example.

random variables with σ2
Ĥ
= ρ2 and σ2

∆ = 1− ρ2. The results
are shown in Figure 3.

III. INFORMATION BOTTLENECK CHANNEL WITH
MISMATCHED RELAY

In this section, we consider a different relay model with
a mismatch. Specifically, let us consider the 3-node point-to-
point communication system with a mismatched relay depicted
in Figure 4. In this model, the sender wishes to communicate
a message M to the receiver with the help of the relay. We
consider the discrete memoryless information bottleneck chan-
nel (DM-IBC) with mismatched relay ⟨X,PY|X,Y,Z, d0(y, z)⟩
that consists of three finite sets X , Y , Z , a collection of
conditional pmfs PY|X on Y (one for each x), and an encoding
metric d0(y, z) on Y × Z .

A (2nR, 2nB , n) code for the DM-IBC with mismatched
relay defined in a similar manner to Section II with the
following exceptions:

• a mismatched relay encoder that assigns an index ŵ ∈ W
to each received sequence yn ∈ Yn according to ŵ =
argminw∈W dn0 (y

n, zn(w)) where

dn0 (y
n, zn) =

1

n

n∑
i=1

d0(yi, zi), (18)

• a decoder that assigns an estimate m̂ or an error message
e to each received representation index w ∈ W .

We assume that the decoder knows the channel and mis-
matched relay’s codebook. Furthermore, it is assumed that the
message M is uniformly distributed over the message set M.

Encoder
Xn = f (n)(M)

Channel
PY|X

Mismatched
Relay DecoderM

Xn(M) Yn Zn(W)
M̂

Fig. 4: Oblivious Communication System with Mismatched
Relay

Remark 1: The mismatched compression problem is some-
what simpler in case the mismatch at the relay is the result
of a wrong test-channel for compression, that is, the relay
is constrained to joint typicality encoding with QZ|Y. This
is equivalent to a choice of nonoptimal test-channel in the
standard IB problem. In such case, the resulting capacity is
given by

C(B,QZ|Y) =

{
maxPX

I(X;Z), I(PY,QZ|Y) ≤ B

0, otherwise
(19)

where QZ|X(z|x) =
∑

y∈Y QZ|Y(z|y)PY|X(y|x). Note the
difference between this setting and the mismatched relay
compression setting. In the standard IB problem, a test-channel
PZ|Y is optimized, and a random compression codebook is
generated according to PZ. Given this codebook, the com-
pressed index is chosen based on joint typicality encoding with
the given PYZ. By contrast, in the mismatched relay setting,
the compressed codeword is chosen according to the given
fixed (mismatched) metric, which is not necessarily matched
to PYZ.

Our main result for this setting is stated in the following
theorem.

Theorem 5: The capacity of the mismatched relay channel
is lower bounded as:

C(B) ≥ max
PX,PZ

min
QYZ∈Q

I(X;Z) (20)

where Q = argminQYZ∈D
∑

y∈Y
∑

z∈Z QYZ(y, z)d0(y, z)
and

D =
{

QYZ : QY=PY,QZ=PZ,
QXZ(x,z)=

∑
y∈Y PX|Y(x|y)QYZ(y,z),I(Y;Z)≤B

}
. (21)

Proof: The proof appears in [27, App. E].

IV. SUMMARY AND OUTLOOK

We considered the problem of reliable communication in
a point-to-point oblivious-relay communication system with
a mismatch. In particular, we considered mismatch at the
relay or at the decoder. We have established ensemble tight
achievable rates and their dual representations. We further
specialized those results to particular instances: the quaternary
channel and the fading channel. We proposed an alternating
algorithm to find those rates.

For future work, it would be interesting to consider converse
bounds to this problem, e.g., using the methods described in
[13] and [31]. Alternatively, it would be interesting to find
relations between the mismatch capacity of the channel PY|X
to that of the entire channel PZ|X. Another possibility is to
generalize the results to a state-dependent channel [32], [33],
where the relay knows the state sequence (which may also be
assumed to be i.i.d.), and add a description of the state as part
of its message, in an effort to provide the receiver with channel
state information, thus aiding its decoding performance.
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