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Abstract. Current artificial intelligence systems are rather rigid and
narrow, if compared to the adaptivity and the open-endedness of living
organisms. Neural Cellular Automata (NCA) are an extension of tradi-
tional CA, where the transition rule is replaced by a neural network oper-
ating on local neighborhoods. NCA provide a platform for investigating
more biologically plausible features of emergent intelligence. However,
an open question is how can collections of cells in an NCA be trained
to collectively explore an environment in search for energy sources and
find suitable paths to collect them. In this work, we utilize an NCA
equipped with a local self-attention mechanism trained with gradient
descent for pathfinding. Our results show that NCA can be trained to
achieve such task and collect energy sources, while being able to redis-
tribute the available energy to neighboring alive cells. Ongoing work is
exploring how those abilities may be incorporated in NCA to solve tasks
with increased adaptivity and general intelligence.

Keywords: Neural Cellular Automata · Local Attention · Neural Net-
work · Artificial Intelligence · Artificial Life.

1 Introduction

Cellular Automata (CA) have often been used to study how simple individual
agents may self-organise with local information and give rise to an emergent
collective behavior, in order to perform a global task. Recently, Neural Cellular
Automata (NCA) have been proposed as an extension to traditional CA, where
the transition rule is replaced by a neural network [1,2]. Such NCA models may
be used as bottom-up machine learning tools [4] or, most notably, as substrates
to explore how features of intelligence may emerge in artificial organisms [5,6].
One of the most essential tasks that even simple biological organisms, such as
slime mold [7] or caenorhabditis elegans [8], can perform in order to survive is
the exploration of their environment to reach energy sources.

In this work, we investigate if an agent, i.e., a collection of cells in a neural cel-
lular automaton controlled by a uniform neural network using local information,
can be trained to seek out energy sources and thus navigate around the grid to



survive for a prolonged period of time. In order to succeed, an agent would need
to be able to move and redistribute the available energy across neighboring cells,
as well as the ability of pathfinding to detect new energy sources. As typically
done in NCA models, we use multiple CA layers (channels) besides the standard
visible CA channel (which represents the alive cells and their respective states).
We include an energy channel, representing the amount of energy present in a
specific location (either in the environment or in a living cell) which is consumed
by cells to stay alive, and a chemical channel representing the concentration of
chemicals in a site. The chemical channel works similarly to pheromones, which
increase in the presence of a living organism or dissipate over time otherwise.
We test our trained NCA to reach different concentrations of energy in the en-
vironment, and investigate their emergent behavior and survival.

The long term aim of this exploratory work is to investigate how artificial
intelligence (AI) systems may become more open-ended [9], adaptive [10,11], and
general, by exploiting some of the features of cellular automata and dynamical
complex systems [12].

2 Background and Related Work

Classical CA are discrete computational models consisting of a grid of cells that
evolve over time based on a set of predefined rules. CAs are widely used to study
complex systems, where local interactions gives rise to an emergent behaviour at
the global level. Extensions to classical CA have recently been introduced, such
as Lenia (Continuous CA) [6] and Neural CA [1,2], that have proven to be a
valuable tool for studying biologically-relevant dynamical processes, as pattern
formation and morphogenesis.

In the work herein, we use the Neural CA proposed in [2] (with the addi-
tions outlined in the Section 3), where the authors introduce a differentiable
framework for CA, i.e., trainable with gradient descent. Neural networks are
used to control the state update of a 2D CA consisting of a visible layer and
several hidden layers. Such Neural CA allows the growth and development of
complex structures, demonstrating robustness to perturbations and regenera-
tion. The use of linear convolution operations, combined with local cell updates,
produces a highly complex multi-level update rule. Another Neural CA approach
is presented in [1], where neuroevolution is used to train the neural update rules.

The work in [3] applies Neural CA (NCA) for bottom-up classification, ex-
ploring whether CA can achieve global agreement on the composition of hand-
written digits by utilizing local message passing. This research addresses the
problem of how cell collectives determine their anatomical structure and classify
the large-scale morphology that they are part of. Another application domain
includes the development of a control system for a cart-pole agent [16] via self-
organisation. The work in [17] uses Heterogeneous CA update rules as testbed for
an Ising model and spiking neural networks to model biological neural networks.
In [4] a Neural CA using a Vision Transformer including self-attention is used
to perform reconstruction of images. Very recent work [15] uses Isotropic Neu-



ral CA [2], allowing symmetry breaking. Such work focuses on enabling an inner
sense of orientation in cellular systems, which parallels how real-world organisms
develop organs that have a sense of directionality. In [13] a NCA framework that
incorporates goal embeddings through iterative sampling is introduced, allowing
for effective guidance of cells towards desired behaviors. Their approach demon-
strates the ability to achieve diverse behaviors in a morphing image experiment,
although it lacks generative capabilities to learn latent distributions. Finally, the
work in [14] preliminarily explores how NCA agents may be able to reach energy
sources in a similar fashion to slime molds.
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Fig. 1: An update step of the cellular automaton by the neural network. On
the left is the CA grid. From this the neighborhood of a single cell is extracted
(9×3 = 27). The resulting array propagates through the network and an update
is computed, which is added to the alpha channel of the grid seen on the right.
Before and after, the deterministic updates are performed on the chemistry and
energy channels.

3 Proposed Method

In this study, we use a two-dimensional cellular automaton with continuous
values (allowing for a differentiable update function). It has a discrete 40 by 40
grid with each cell having 3 channels. The channels are a chemistry channel, an
energy channel, and the alpha channel (representing the alive cells). The cell’s
state is either updated by the output of an uniform neural network (for the alpha



channel) or by fixed update rules (for the other channels). Our implementation
supports additional hidden CA channels (currently not used in this work).4

The neural network consists of three layers, similar to the architecture in [2].
It operates locally: the channels of a single cell, and its eight neighboring cells,
are the input to the neural network (9×3 = 27 in total). The network computes
an update for the alpha channel, which is then applied to the CA. Only the
cells which are “alive”, e.g. with an alpha channel over 0.1, and its neighbors
are updated. The alpha channels are clipped to values between 0 and 1. The
energy channel is initialized at the start of the training or testing. The values
of the energy are updated deterministically, depending on the alpha channel:
Energy, which is present in a cell with an alive alpha channel, is distributed
within the neighborhood proportionally to their relative alpha channels, e.g. a
cell with a high alpha value receives more energy from neighboring cells than
a cell with a low alpha value. New energy deposits may be introduced during
training. Otherwise, the cells will inevitably die after some iterations, as every
update in an iteration costs a certain amount of energy. This introduces a notion
of scarcity, similar to how it can be found in natural environments. Similarly,
the chemistry channel is updated: On every alive cell, the chemistry value is
increased, while on cells that are not alive the value is decreased until the initial
value of 0 is reached. Those deterministic updates happen after the update of
the alpha channel of the neural network.

The neural network is updating cells one at a time, but with the same topol-
ogy and the same synaptic weights. This means, that there is only one agent
operating on the grid, but for every update it can only use the locally available
information. This reduces computational complexity, but also simulates either a
single organism or a group of organisms which are similar in their genetic code
but can still act independently based on their surrounding.

An example of the CA neural network and update step is shown in Figure 1.

3.1 NCA Architecture with Local Attention

The first layer is a self-attention layer. The motivation for including a self-
attention layer is to enable learning which parts of the neighborhood are more
important and should have more focus. As input it takes nine cells, the currently
observed cell as well as its eight neighbors. All channels are used, which means,
that the input to the neural network is an array of size 3 by 9. The layer has 633
trainable parameters. An important aspect of this is that the attention is applied
only locally; cells which are not in the immediate neighborhood are disregarded.
The self-attention mechanism is the canonical self-attention [18], widely used in
Large Language Models.

Next comes two linear layers, the last layers output is used as an update
to the alpha channel of the current cell. To keep those linear layers local, 1-
D convolutional layers are used in the implementation (as done in the original

4 The repository with the code is openly available at the following link: https://
github.com/Deskt0r/LocalAttentionNCA

https://github.com/Deskt0r/LocalAttentionNCA
https://github.com/Deskt0r/LocalAttentionNCA


paper [2]). The first linear layer has 544 and the last linear layer has 33 trainable
parameters. All layers are fully connected.

This procedure loops through all alive cells and all cells neighboring an alive
cell (those can be “resurrected”). Each of those cells receives an update based
on its neighbors. The implementation of the attention mechanism is canonical,
the locality is achieved by padding the cellular grid and extracting patches of
the grid according to the aliveness of the cells.

3.2 Training Routine

The neural network is trained by gradient-based optimization with error back-
propagation, i.e., differentiable programming, as typically done in Deep Learn-
ing. To train the neural network, a pool based approach is used. Every sample
in the pool is a grid which is initialized by setting the channels of a central cell
such that it is alive and has a relatively large amount of energy. Furthermore,
a second cell, randomly chosen in the vicinity of the center towards on of the
four edges, is chosen for every batch as a target and also initialized with some
energy. In total there are 8 batches with 4 samples.

For the loss, a mask is calculated which gives every cell a value corresponding
to its distance to the target. It is important here to scale those values correctly,
in order to give the cells an incentive to not just spread in all directions but in
the desired one. The loss is the sum of the products of the alpha values with
the values of the distance mask. In this work, there is no penalty term for the
consumption of energy in the loss.

During the training phase, the network and the fixed rules update the cellular
grid for a random number of iterations between 8 and 16 during each training
step. Afterwards, the loss is calculated and backpropagated. This allows the
calculation of a gradient. After a number of training steps, the target is changed.
First only the location, but in a similar distance. Later on, the target is also
put in a greater distance from the center. Furthermore, to avoid catastrophic
forgetting, the sample of the batch with the highest loss may be reinitialized.
The training runs for a total of 100 steps. This means that the network has to
adapt to a changing environment over time, although that change is only partly
random.

It could be noticed that depending on the random initialization of the weights
of the network, the cells are prone to “die” before being able to be trained,
especially when the network runs for a high amount of iterations before the
weight’s update. This is mitigated by re-initializing the grid in such cases. An
example of the training loss for the CA model is shown in Figure 2.

As can be seen in the plot, the loss decreases over time, but is rather volatile.
The two big spikes at iteration 15 and 20 can likely be explained by the introduc-
tion of targets further away, which poses a new challenge to the neural network
that is has to overcome, i.e., a kind of curriculum learning.
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Fig. 2: The loss during the training of the model. Time on the x axis and loss
value on the y axis.

4 Experiments

4.1 Experimental Setup

To test the performance of the network, first we executed cases where the target
energy pocket is close to the center (Fig. 3 top), as it is in the initial steps of the
training. Next, a target further away is picked (Fig. 3 bottom). To see how well
the learned behavior generalizes, we also used two energy distribution patterns
greatly differing from the ones during the training: In one case, the energy is
distributed in a spiral (Fig. 5), in the other one there are two curved lines of
energy that can be followed (Fig. 4). While we repeated the experiments several
times confirming that the target behaviors are learned, the results have to be
seen as qualitative rather then quantitative. Videos of the results can be seen at
the following link: https://github.com/Deskt0r/LocalAttentionNCA.

5 Results and Discussion

Our tests indicate that for the “survival” of the cells, i.e. the amount of iterations
in which the initialized or new cells have an alpha value above 0.1, the distance
between the cells and energy deposits and the size of the initial energy available
are of high importance, while the shape in which the energy is distributed seems
less important.

In Fig. 3 it can be seen that when the next energy depot from the center is
too far away, the cells are unavailable to reach it, even if there is enough energy
initially available. This shows, that the network has not really learned to search
for energy. When it is able to reach the deposit, the cells survive for the whole
100 iterations. In the latter case it dies out after 13 iterations. In Fig. 5 and Fig.
4, the cells are following the laid out pattern, even though they did not encounter
such during training. It can not be seen on the single frames in the figures, but

https://github.com/Deskt0r/LocalAttentionNCA


the cells show an oscillating behaviour in those experiments. Furthermore, when
the cells reach the last energy deposit, the energy seems to spread through the
alive cells. During the expansion on the other hand, the energy seems to spread
just thickly enough to keep the cells alive.

On a more general level, being able to learn properties typically available
in biological organisms such as environment exploration, pathfinding, energy
usage, etc., in cellular systems such as Neural CA, may allow the development
of more open-ended and general AI systems. Different tasks may be encoded in
such systems in the form of environmental signals and energy sources, and the
solution to the task would result from the self-organising process of the CA. This
exploratory work fits well with the emerging area of self-organising AI [12].

6 Conclusion

Our results show that it is possible to train a neural network, such that the cells
under its control can seek energy sources. Similar to a normal cellular automaton,
cells receive an update based on their neighborhood, but the neural network with
self-attention allows for significantly more complex behaviour.

Further work could include a more sophisticated training routine exposing
the network to a larger variety of situations. This could include energy deposits
randomly spawning on the grid. Furthermore, a channel for hidden information
could be used, which would allow cells to communicate with each other or store
information for later use. It would be interesting to see how complex behaviour
of the cells can emerge with regards to searching for energy, splitting and joining
up, as well as long term energy preservation.
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Fig. 3: Short and long distance. From left to right: seed of the grid with energy at
the starting point and additional locations, chemistry channel, energy channel,
alpha channel. All energy depots are initialized with a value of 5. The single
additional energy deposit is located below the center. Short distance: 4 cells
away; large distance: 5 cells away.
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Iteration 75
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Iteration 100
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Fig. 4: Split. From left to right: seed of the grid with the energy depot at the
starting point and additional locations, chemistry channel, energy channel, alpha
channel. The energy is located in two paths from the center. All energy depots
are initialized with a value of 5.
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Fig. 5: Spiral. From left to right: seed of the grid with the energy depot at
the starting point and additional locations, chemistry channel, energy channel,
alpha channel. The energy is located in spiral starting from the center. All energy
depots are initialized with a value of 8.
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