
Università degli Studi di Trieste

AUTOMATA 2023

The 29th International Workshop on Cellular
Automata and Discrete Complex Systems

Exploratory Proceedings

Luca Manzoni
Luca Mariot

August 30 – September 1, 2023

Preface

This volume contains the exploratory papers and the extended abstracts ac-
cepted and presented at the 29th International Workshop on Cellular Automata
and Discrete Complex Systems, AUTOMATA 2023, which was held in Trieste,
Italy, on August 30 - September 1, 2023. The workshop was organized by the
Department of Mathematics and Geosciences of the University of Trieste, and it
hosted the annual meeting of the IFIP working group 1.5.

The current focus of AUTOMATA encompasses a wide range of aspects and
features pertaining to cellular automata and discrete complex systems. While
not exhaustive, the current topics include dynamics, topology, ergodicity, alge-
braic properties, algorithmic considerations, complexity analysis, emergence of
properties, formal languages, symbolic dynamics, tilings, models of parallelism
and distributed systems, timing schemes, synchronous and asynchronous models,
phenomenological descriptions, scientific modeling, and practical applications.

Overall, AUTOMATA 2023 received 11 submissions in the exploratory track.
Each paper was reviewed in single-blind mode by at least two program commit-
tee members. Following the review and discussion phases, the committee decided
to accept 2 submissions as extended abstract and 8 submissions as exploratory
papers, with 2 submissions later withdrawn by the authors. The remaining sub-
missions are included in these proceedings volume and were presented at the
workshop. We wish to thank all authors who submitted to the exploratory track
of AUTOMATA 2023.

We are thankful to the program committee of AUTOMATA 2023, for its
great help in reviewing and selecting the submitted papers. We further thank
the members of the local organizing committee of AUTOMATA 2023, namely
Giulia Bernardini, Giuliamaria Menara and Gloria Pietropolli. Finally, we are
also grateful for the support by the Department of Mathematics and Geosciences
and the University of Trieste.

August 2023 Luca Manzoni
Luca Mariot

Organization – AUTOMATA 2023

Steering Committee

Pedro Paulo Balbi Universidade Presbiteriana Mackenzie, Brazil
Nazim Fatès INRIA Nancy, France
Pierre Guillon Université d’Aix-Marseille, France
Dipanwita Roy IIT Kharagpur, India

Chowdhury
Hector Zenil University of Cambridge, UK

Program Committee

Jan Baetens Ghent University, Belgium
Pedro Paulo Balbi Universidade Presbiteriana Mackenzie, Brazil
Alonso Castillo-Ramirez University of Guadalajara, Mexico
Sukanta Das IIEST Shibpur, India
Alberto Dennunzio University of Milano-Bicocca, Italy
Andreas Deutsch TU Dresden, Germany
Nazim Fatès INRIA Nancy, France
Enrico Formenti Université Côte d’Azur, France
Maximilien Gadouleau Durham University, United Kingdom
Anah́ı Gajardo Universidad de Concepción, Chile
Pierre Guillon Université d’Aix-Marseille, France
Tomasz Gwizda l la University of Lodz, Poland
Rolf Hoffmann TU Darmstadt, Germany
Jarkko Kari University of Turku, Finland
Martin Kutrib University of Giessen, Germany
Andreas Malcher University of Giessen, Germany
Luca Manzoni University of Trieste, Italy (co-chair)
Luca Mariot University of Twente, the Netherlands (co-chair)
Kenichi Morita Hiroshima University, Japan
Kévin Perrot Université d’Aix-Marseille, France
Dipanwita Roy IIT Kharagpur, India

Chowdhury
Ville Salo University of Turku, Finland
Biplab K. Sikdar IIEST Shibpur, India
Georgios Ch. Sirakoulis Democritus University of Thrace, Greece
Siamak Taati American University of Beirut, Lebanon
Guillaume Theyssier Université d’Aix-Marseille, France
Ilkka Törmä University of Turku, Finland
Hiroshi Umeo Osaka Electro-Communication University, Japan

Organizing Committee

Giulia Bernardini University of Trieste, Italy
Luca Manzoni University of Trieste, Italy (co-chair)
Luca Mariot University of Twente, the Netherlands (co-chair)
Giuliamaria Menara University of Trieste, Italy
Gloria Pietropolli University of Trieste, Italy

List of Contributions

Extended Abstracts

1. Searching for number-conserving non-uniform binary cellular automata.
Barbara Wolnik and Maciej Dziemiańczuk

2. Exploring Solutions to the Odd-sized Grid Classification Problem in Cellular
Automata.
Anna Nenca and Barbara Wolnik

Exploratory Papers

1. Pathfinding Neural Cellular Automata with Local Self-Attention.
Felix Reimers, Sanyam Jain, Aarati Shrestha, and Stefano Nichele

2. Dill maps in the Weyl-like space associated to the Levenshtein distance.
Firas Ben Ramdhane and Pierre Guillon

3. Words fixing the kernel network and maximum independent sets in graphs.
Maximilien Gadouleau and David C. Kutner

4. On the complexity of freezing automata networks of bounded pathwidth.
Eric Goles, Pedro Montealegre, Mart́ın Rı́os-Wilson, and Guillaume Theyssier

5. On the Dynamics of Bounded-Degree Automata Networks.
Julio Aracena, Florian Bridoux, Pierre Guillon, Kévin Perrot, Adrien Richard,
and Guillaume Theyssier

6. Exhaustive Generation of Linear Orthogonal Cellular Automata.
Enrico Formenti and Luca Mariot

Searching for number-conserving non-uniform
binary cellular automata

Barbara Wolnik1 and Maciej Dziemiańczuk2

1 Institute of Mathematics, Faculty of Mathematics, Physics and Informatics,
University of Gdańsk, 80-308 Gdańsk, Poland

2 Institute of Informatics, Faculty of Mathematics, Physics and Informatics,
University of Gdańsk, 80-308 Gdańsk, Poland

Abstract. We consider one-dimensional cellular automata whose cells
can use different local rules to update their states. We study such cellular
automata on the infinite grid and on its subgrids in the context of number
conservation.

Keywords: Cellular automata · non-uniform cellular automata · num-
ber conservation.

We investigate non-uniform CAs (ν-CAs), i.e., one-dimensional CAs acting
on the infinite grid (or on some of its subgrids), for which cells can use different
local rules to update their states. The infinite grid is denoted by G∞

−∞, i.e.

G∞
−∞ = {. . . ,−2,−1, 0, 1, 2, . . .}.

Additionally, we consider the following subgrids of G∞
−∞:

Gn
−∞ = {. . . , n− 2, n− 1, n}, for n ∈ Z;

G∞
m = {m,m+ 1,m+ 2, . . .}, for m ∈ Z;

Gn
m = {m,m+ 1, . . . , n− 1, n}, for m,n ∈ Z satisfying m ≤ n.

If the type of the considered grid is irrelevant, we simply use the symbol G, as
this should not lead to confusion.

A configuration is any function from the grid G to the binary state set {0, 1}
and the set of all configurations is denoted by X. The value at a cell i ∈ G in
a configuration x ∈ X is denoted by xi. Most often, a configuration x ∈ X is
conveniently represented as a sequence (xi)i∈G

For a configuration x, we denote by µ(x) the sum of all states in x, i.e.,
µ(x) =

∑
i∈G xi. A configuration x is said to be finite if the number of cells i for

which xi = 1 is finite (i.e., if µ(x) < +∞).

Let S be a finite set of binary local rules. Each rule sequence [fi]i∈G , where
fi ∈ S for any i ∈ G, induces a ν-CA H : X → X defined by, for any x ∈ X
and i ∈ G:

H(x)i = fi(xi−1, xi, xi+1) , (1)

2 Barbara Wolnik1 and Maciej Dziemiańczuk2

with the convention that if j ̸∈ G we use null boundary conditions and in the
case of finite subgrids also periodic boundary conditions.

The main property of ν-CAs that is investigated in our research is number
conservation. In the binary case, it states that a given ν-CA preserves the number
of ones in any finite configuration throughout its evolution.

Definition 1. A ν-CA H on G is called number-conserving if µ(H(x)) = µ(x)
for each finite configuration x ∈ X.

Let us note that the above definition is one of two ones being considered for the
infinite grid, however, in the case of the ν-CAs considered by us, both of them
are equivalent (see Proposition 1 in [1]).

At the beginning of the research, we focused on to the so-called non-uniform
elementary CAs (ν-ECAs), in which each cell is allowed to have its own local
updating rule belonging to Wolfram’s set of 256 elementary local rules. In our
previous paper [2], we managed to describe in detail all number-conserving ν-
ECAs on finite grids both with periodic and null boundary conditions. The main
result of [2] states that each number-conserving ν-ECA on a finite grid of length
at least five cells (regardless of the boundary conditions: periodic or null) is either
a classical (uniform) number-conserving ECA or it is a conglomerate of compo-
nents, which can be of four different types only and each of them has a very
poor dynamics. Moreover, each component of the conglomerate “lives its own
life", as if there were impermeable barriers between adjacent components. The
characterization obtained allows, inter alia, to enumerate all number-conserving
ν-ECAs on finite grids and and those that are reversible. Surprisingly, the num-
bers obtained are closely related to the Fibonacci sequence.

Since the structure of the number-conserving ν-ECAs does not change with
the increase of the grid (no matter how long the considered grid is, all number-
conserving ν-ECAs on it are built with the same four mentioned types of com-
ponents), one might erroneously conclude that the same would be true of the
infinite grid. Of course, all examples of number-conserving ν-ECAs found for
finite grids can be, in some way, "converted" to the infinite grid. It turns out,
however, that the infinite grid admits many other types of number-conserving
ν-ECAs (see [3]). This means that when considering number conversation for
non-uniform cellular automata, the infinite grid cannot be treated as a limiting
case of finite grids, i.e., there are number-conserving non-uniform cellular au-
tomata on the infinite grid that have no analogous counterpart on finite grids.
Thus, unfortunately, computer experiments are useless to assist in finding these
other types.

Now we try to describe what all ν-CAs look like if we increase the radius to
3/2. Right from the start, we are faced with an incredibly great computational
complexity, even if we only consider finite grids. However, we were able to obtain
some promising results that give hope for solving this problem in the future.

Searching for number-conserving non-uniform binary cellular automata 3

References

[1] A. Dennunzio, E. Formenti, and J. Provillard, “Local rule distributions,
language complexity and non-uniform cellular automata,” Theoretical Com-
puter Science, vol. 504, pp. 38–51, Sep. 2013. doi: 10.1016/j.tcs.2012.
05.013.

[2] B. Wolnik, M. Dziemiańczuk, and B. De Baets, “Non-uniform number-
conserving elementary cellular automata,” Information Sciences, vol. 626,
pp. 851–866, 2023. doi: 10.1016/j.ins.2023.01.033.

[3] B. Wolnik, M. Dziemiańczuk, and B. De Baets, “Non-uniform number-
conserving elementary cellular automata on the infinite grid: A tale of the
unexpected,” submitted to Information Sciences, 2023.

Exploring Solutions to the Odd-sized Grid
Classification Problem in Cellular Automata.

Anna Nenca1[0000−0003−2746−1061] and Barbara Wolnik2,3[0000−0003−2935−5529]

1 Institute of Informatics, Faculty of Mathematics, Physics and Informatics,
University of Gdańsk, 80-308 Gdańsk, Poland

2 Institute of Mathematics, Faculty of Mathematics, Physics and Informatics,
University of Gdańsk, 80-308 Gdańsk, Poland

3 KERMIT, Department of Data Analysis and Mathematical Modelling, Faculty of
Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Gent, Belgium

Abstract. We consider one-dimensional grids Gn = {0, 1, . . . , n − 1},
(where n is a positive odd integer) with periodic boundary condition
and with the state set Q = {0, 1}. We are interested in finding a local
rule with the smallest possible radius that can correctly classify each
initial configuration according to its parity.

Keywords: Cellular automata · parity problem · finite grid.

The parity problem is a challenge in cellular automata (CA) where the goal
is to classify initial configurations into two classes based on their parity. If the
initial configuration contains an odd number of 1s, the CA should converge to
a fixed point of all 1s. Conversely, if the initial configuration contains an even
number of 1s, the CA should converge to a fixed point of all 0s. This problem is
considered more difficult than the density classification problem (DCP) because
a simple flip in any input bit can alter the output.

However, the solution to the parity problem exists. In a paper by Betel et
al. [1], they described a local rule called the BFO rule with a radius of 4 (neigh-
borhood size of 9) that solves the parity problem. The construction of the BFO
rule involved analyzing the properties of the De Bruijn graph of the rule, which
preserves parity and converges correctly to a homogeneous configuration for any
initial configuration.

The paper also demonstrated that no binary CA with a radius of at most two
(neighborhood size not greater than 5) can solve the parity problem for all odd-
sized grids. The question of whether a rule with a radius of 3 (neighborhood size
of 7) exists to solve the parity problem remains open. The authors attempted to
find such a rule using a sophisticated evolutionary algorithm.

We introduce new approach to the parity problem. A perfect solution needs
to keep the parity of any configuration, thus it has to be number-conserving
considered as a function in the field Z2. Most tools used in the field of number
conservation will be useful also in the area of the parity problem.

2 A Nenca, B. Wolnik

References

1. H. Betel, P. P. Oliveira, and P. Flocchini. Solving the parity problem in one-
dimensional cellular automata. Natural Computing: An International Journal,
12(3):323–337, 2013.

Pathfinding Neural Cellular Automata with
Local Self-Attention

Felix Reimers1,2, Sanyam Jain1, Aarati Shrestha1, and Stefano Nichele1,3

1 Østfold University College, Halden, Norway
2 Alfred-Wegener-Institut, Bremerhaven, Germany

3 Oslo Metropolitan University, Oslo, Norway
{stefano.nichele}@hiof.no

Abstract. Current artificial intelligence systems are rather rigid and
narrow, if compared to the adaptivity and the open-endedness of living
organisms. Neural Cellular Automata (NCA) are an extension of tradi-
tional CA, where the transition rule is replaced by a neural network oper-
ating on local neighborhoods. NCA provide a platform for investigating
more biologically plausible features of emergent intelligence. However,
an open question is how can collections of cells in an NCA be trained
to collectively explore an environment in search for energy sources and
find suitable paths to collect them. In this work, we utilize an NCA
equipped with a local self-attention mechanism trained with gradient
descent for pathfinding. Our results show that NCA can be trained to
achieve such task and collect energy sources, while being able to redis-
tribute the available energy to neighboring alive cells. Ongoing work is
exploring how those abilities may be incorporated in NCA to solve tasks
with increased adaptivity and general intelligence.

Keywords: Neural Cellular Automata · Local Attention · Neural Net-
work · Artificial Intelligence · Artificial Life.

1 Introduction

Cellular Automata (CA) have often been used to study how simple individual
agents may self-organise with local information and give rise to an emergent
collective behavior, in order to perform a global task. Recently, Neural Cellular
Automata (NCA) have been proposed as an extension to traditional CA, where
the transition rule is replaced by a neural network [1,2]. Such NCA models may
be used as bottom-up machine learning tools [4] or, most notably, as substrates
to explore how features of intelligence may emerge in artificial organisms [5,6].
One of the most essential tasks that even simple biological organisms, such as
slime mold [7] or caenorhabditis elegans [8], can perform in order to survive is
the exploration of their environment to reach energy sources.

In this work, we investigate if an agent, i.e., a collection of cells in a neural cel-
lular automaton controlled by a uniform neural network using local information,
can be trained to seek out energy sources and thus navigate around the grid to

survive for a prolonged period of time. In order to succeed, an agent would need
to be able to move and redistribute the available energy across neighboring cells,
as well as the ability of pathfinding to detect new energy sources. As typically
done in NCA models, we use multiple CA layers (channels) besides the standard
visible CA channel (which represents the alive cells and their respective states).
We include an energy channel, representing the amount of energy present in a
specific location (either in the environment or in a living cell) which is consumed
by cells to stay alive, and a chemical channel representing the concentration of
chemicals in a site. The chemical channel works similarly to pheromones, which
increase in the presence of a living organism or dissipate over time otherwise.
We test our trained NCA to reach different concentrations of energy in the en-
vironment, and investigate their emergent behavior and survival.

The long term aim of this exploratory work is to investigate how artificial
intelligence (AI) systems may become more open-ended [9], adaptive [10,11], and
general, by exploiting some of the features of cellular automata and dynamical
complex systems [12].

2 Background and Related Work

Classical CA are discrete computational models consisting of a grid of cells that
evolve over time based on a set of predefined rules. CAs are widely used to study
complex systems, where local interactions gives rise to an emergent behaviour at
the global level. Extensions to classical CA have recently been introduced, such
as Lenia (Continuous CA) [6] and Neural CA [1,2], that have proven to be a
valuable tool for studying biologically-relevant dynamical processes, as pattern
formation and morphogenesis.

In the work herein, we use the Neural CA proposed in [2] (with the addi-
tions outlined in the Section 3), where the authors introduce a differentiable
framework for CA, i.e., trainable with gradient descent. Neural networks are
used to control the state update of a 2D CA consisting of a visible layer and
several hidden layers. Such Neural CA allows the growth and development of
complex structures, demonstrating robustness to perturbations and regenera-
tion. The use of linear convolution operations, combined with local cell updates,
produces a highly complex multi-level update rule. Another Neural CA approach
is presented in [1], where neuroevolution is used to train the neural update rules.

The work in [3] applies Neural CA (NCA) for bottom-up classification, ex-
ploring whether CA can achieve global agreement on the composition of hand-
written digits by utilizing local message passing. This research addresses the
problem of how cell collectives determine their anatomical structure and classify
the large-scale morphology that they are part of. Another application domain
includes the development of a control system for a cart-pole agent [16] via self-
organisation. The work in [17] uses Heterogeneous CA update rules as testbed for
an Ising model and spiking neural networks to model biological neural networks.
In [4] a Neural CA using a Vision Transformer including self-attention is used
to perform reconstruction of images. Very recent work [15] uses Isotropic Neu-

ral CA [2], allowing symmetry breaking. Such work focuses on enabling an inner
sense of orientation in cellular systems, which parallels how real-world organisms
develop organs that have a sense of directionality. In [13] a NCA framework that
incorporates goal embeddings through iterative sampling is introduced, allowing
for effective guidance of cells towards desired behaviors. Their approach demon-
strates the ability to achieve diverse behaviors in a morphing image experiment,
although it lacks generative capabilities to learn latent distributions. Finally, the
work in [14] preliminarily explores how NCA agents may be able to reach energy
sources in a similar fashion to slime molds.

0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

chemistry

0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

energy

0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

alpha

S
el
f-
A
tt
en
ti
on

L
in
ea
r

L
in
ea
r

0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

chemistry

0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

energy

0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

alpha

ex
tra

ct

ne
igh

bo
r-

ho
od

of
a

ce
ll

Array is in-
put for the
neural net-
work

update al-

pha value of

cell

Fig. 1: An update step of the cellular automaton by the neural network. On
the left is the CA grid. From this the neighborhood of a single cell is extracted
(9×3 = 27). The resulting array propagates through the network and an update
is computed, which is added to the alpha channel of the grid seen on the right.
Before and after, the deterministic updates are performed on the chemistry and
energy channels.

3 Proposed Method

In this study, we use a two-dimensional cellular automaton with continuous
values (allowing for a differentiable update function). It has a discrete 40 by 40
grid with each cell having 3 channels. The channels are a chemistry channel, an
energy channel, and the alpha channel (representing the alive cells). The cell’s
state is either updated by the output of an uniform neural network (for the alpha

channel) or by fixed update rules (for the other channels). Our implementation
supports additional hidden CA channels (currently not used in this work).4

The neural network consists of three layers, similar to the architecture in [2].
It operates locally: the channels of a single cell, and its eight neighboring cells,
are the input to the neural network (9×3 = 27 in total). The network computes
an update for the alpha channel, which is then applied to the CA. Only the
cells which are “alive”, e.g. with an alpha channel over 0.1, and its neighbors
are updated. The alpha channels are clipped to values between 0 and 1. The
energy channel is initialized at the start of the training or testing. The values
of the energy are updated deterministically, depending on the alpha channel:
Energy, which is present in a cell with an alive alpha channel, is distributed
within the neighborhood proportionally to their relative alpha channels, e.g. a
cell with a high alpha value receives more energy from neighboring cells than
a cell with a low alpha value. New energy deposits may be introduced during
training. Otherwise, the cells will inevitably die after some iterations, as every
update in an iteration costs a certain amount of energy. This introduces a notion
of scarcity, similar to how it can be found in natural environments. Similarly,
the chemistry channel is updated: On every alive cell, the chemistry value is
increased, while on cells that are not alive the value is decreased until the initial
value of 0 is reached. Those deterministic updates happen after the update of
the alpha channel of the neural network.

The neural network is updating cells one at a time, but with the same topol-
ogy and the same synaptic weights. This means, that there is only one agent
operating on the grid, but for every update it can only use the locally available
information. This reduces computational complexity, but also simulates either a
single organism or a group of organisms which are similar in their genetic code
but can still act independently based on their surrounding.

An example of the CA neural network and update step is shown in Figure 1.

3.1 NCA Architecture with Local Attention

The first layer is a self-attention layer. The motivation for including a self-
attention layer is to enable learning which parts of the neighborhood are more
important and should have more focus. As input it takes nine cells, the currently
observed cell as well as its eight neighbors. All channels are used, which means,
that the input to the neural network is an array of size 3 by 9. The layer has 633
trainable parameters. An important aspect of this is that the attention is applied
only locally; cells which are not in the immediate neighborhood are disregarded.
The self-attention mechanism is the canonical self-attention [18], widely used in
Large Language Models.

Next comes two linear layers, the last layers output is used as an update
to the alpha channel of the current cell. To keep those linear layers local, 1-
D convolutional layers are used in the implementation (as done in the original

4 The repository with the code is openly available at the following link: https://
github.com/Deskt0r/LocalAttentionNCA

https://github.com/Deskt0r/LocalAttentionNCA
https://github.com/Deskt0r/LocalAttentionNCA

paper [2]). The first linear layer has 544 and the last linear layer has 33 trainable
parameters. All layers are fully connected.

This procedure loops through all alive cells and all cells neighboring an alive
cell (those can be “resurrected”). Each of those cells receives an update based
on its neighbors. The implementation of the attention mechanism is canonical,
the locality is achieved by padding the cellular grid and extracting patches of
the grid according to the aliveness of the cells.

3.2 Training Routine

The neural network is trained by gradient-based optimization with error back-
propagation, i.e., differentiable programming, as typically done in Deep Learn-
ing. To train the neural network, a pool based approach is used. Every sample
in the pool is a grid which is initialized by setting the channels of a central cell
such that it is alive and has a relatively large amount of energy. Furthermore,
a second cell, randomly chosen in the vicinity of the center towards on of the
four edges, is chosen for every batch as a target and also initialized with some
energy. In total there are 8 batches with 4 samples.

For the loss, a mask is calculated which gives every cell a value corresponding
to its distance to the target. It is important here to scale those values correctly,
in order to give the cells an incentive to not just spread in all directions but in
the desired one. The loss is the sum of the products of the alpha values with
the values of the distance mask. In this work, there is no penalty term for the
consumption of energy in the loss.

During the training phase, the network and the fixed rules update the cellular
grid for a random number of iterations between 8 and 16 during each training
step. Afterwards, the loss is calculated and backpropagated. This allows the
calculation of a gradient. After a number of training steps, the target is changed.
First only the location, but in a similar distance. Later on, the target is also
put in a greater distance from the center. Furthermore, to avoid catastrophic
forgetting, the sample of the batch with the highest loss may be reinitialized.
The training runs for a total of 100 steps. This means that the network has to
adapt to a changing environment over time, although that change is only partly
random.

It could be noticed that depending on the random initialization of the weights
of the network, the cells are prone to “die” before being able to be trained,
especially when the network runs for a high amount of iterations before the
weight’s update. This is mitigated by re-initializing the grid in such cases. An
example of the training loss for the CA model is shown in Figure 2.

As can be seen in the plot, the loss decreases over time, but is rather volatile.
The two big spikes at iteration 15 and 20 can likely be explained by the introduc-
tion of targets further away, which poses a new challenge to the neural network
that is has to overcome, i.e., a kind of curriculum learning.

0 20 40 60 80 100

40000

35000

30000

25000

20000

15000

10000

5000
Loss history

Fig. 2: The loss during the training of the model. Time on the x axis and loss
value on the y axis.

4 Experiments

4.1 Experimental Setup

To test the performance of the network, first we executed cases where the target
energy pocket is close to the center (Fig. 3 top), as it is in the initial steps of the
training. Next, a target further away is picked (Fig. 3 bottom). To see how well
the learned behavior generalizes, we also used two energy distribution patterns
greatly differing from the ones during the training: In one case, the energy is
distributed in a spiral (Fig. 5), in the other one there are two curved lines of
energy that can be followed (Fig. 4). While we repeated the experiments several
times confirming that the target behaviors are learned, the results have to be
seen as qualitative rather then quantitative. Videos of the results can be seen at
the following link: https://github.com/Deskt0r/LocalAttentionNCA.

5 Results and Discussion

Our tests indicate that for the “survival” of the cells, i.e. the amount of iterations
in which the initialized or new cells have an alpha value above 0.1, the distance
between the cells and energy deposits and the size of the initial energy available
are of high importance, while the shape in which the energy is distributed seems
less important.

In Fig. 3 it can be seen that when the next energy depot from the center is
too far away, the cells are unavailable to reach it, even if there is enough energy
initially available. This shows, that the network has not really learned to search
for energy. When it is able to reach the deposit, the cells survive for the whole
100 iterations. In the latter case it dies out after 13 iterations. In Fig. 5 and Fig.
4, the cells are following the laid out pattern, even though they did not encounter
such during training. It can not be seen on the single frames in the figures, but

https://github.com/Deskt0r/LocalAttentionNCA

the cells show an oscillating behaviour in those experiments. Furthermore, when
the cells reach the last energy deposit, the energy seems to spread through the
alive cells. During the expansion on the other hand, the energy seems to spread
just thickly enough to keep the cells alive.

On a more general level, being able to learn properties typically available
in biological organisms such as environment exploration, pathfinding, energy
usage, etc., in cellular systems such as Neural CA, may allow the development
of more open-ended and general AI systems. Different tasks may be encoded in
such systems in the form of environmental signals and energy sources, and the
solution to the task would result from the self-organising process of the CA. This
exploratory work fits well with the emerging area of self-organising AI [12].

6 Conclusion

Our results show that it is possible to train a neural network, such that the cells
under its control can seek energy sources. Similar to a normal cellular automaton,
cells receive an update based on their neighborhood, but the neural network with
self-attention allows for significantly more complex behaviour.

Further work could include a more sophisticated training routine exposing
the network to a larger variety of situations. This could include energy deposits
randomly spawning on the grid. Furthermore, a channel for hidden information
could be used, which would allow cells to communicate with each other or store
information for later use. It would be interesting to see how complex behaviour
of the cells can emerge with regards to searching for energy, splitting and joining
up, as well as long term energy preservation.

Acknowledgments

We would like to thank the Helmholtz Information and Data Science Academy
(HIDA) and the Norwegian Artificial Intelligence Research Consortium (NORA)
for providing a stipend for Felix Reimers through a mobility collaboration agree-
ment between HIDA and NORA. We would like to thank Østfold Univerisity
College for additional financial support.

References

1. Nichele, S., Ose, M. B., Risi, S., and Tufte, G. (2017). CA-NEAT: evolved composi-
tional pattern producing networks for cellular automata morphogenesis and replica-
tion. IEEE Transactions on Cognitive and Developmental Systems, 10(3), 687-700.

2. Mordvintsev, A., Randazzo, E., Niklasson, E., and Levin, M. (2020). Growing neural
cellular automata. Distill, 5(2), e23.

3. Randazzo, E., Mordvintsev, A., Niklasson, E., Levin, M., & Greydanus, S. (2020).
Self-classifying mnist digits. Distill, 5(8), e00027-002.

4. Tesfaldet, M., Nowrouzezahrai, D., and Pal, C. (2022). Attention-based Neural Cel-
lular Automata. Advances in Neural Information Processing Systems, 35, 8174-8186.

5. Gregor, K., and Besse, F. (2021). Self-organizing intelligent matter: A blueprint for
an AI generating algorithm. arXiv preprint arXiv:2101.07627.

6. Hamon, G., Etcheverry, M., Chan, B. W. C., Moulin-Frier, C., and Oudeyer, P. Y.
(2022). Learning sensorimotor agency in cellular automata.

7. Beekman, M., and Latty, T. (2015). Brainless but multi-headed: decision making
by the acellular slime mould Physarum polycephalum. Journal of molecular biology,
427(23), 3734-3743.

8. Qin, J., and Wheeler, A. R. (2007). Maze exploration and learning in C. elegans.
Lab on a Chip, 7(2), 186-192.

9. Stanley, K. O. (2019). Why open-endedness matters. Artificial life, 25(3), 232-235.
10. Pontes-Filho, S., Walker, K., Najarro, E., Nichele, S., and Risi, S. (2022). A single

neural cellular automaton for body-brain co-evolution. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion (pp. 148-151).

11. Nadizar, G., Medvet, E., Nichele, S., and Pontes-Filho, S. (2022). Collective con-
trol of modular soft robots via embodied Spiking Neural Cellular Automata. arXiv
preprint arXiv:2204.02099.

12. Risi, S. (2021). The future of artificial intelligence is self-organizing and self-
assembling. Available at: sebastianrisi.com.

13. Sudhakaran, S., Najarro, E., and Risi, S. (2022). Goal-Guided Neural Cel-
lular Automata: Learning to Control Self-Organising Systems. arXiv preprint
arXiv:2205.06806.

14. Barbieux, A., and Canaan, R. (2023). EINCASM: Emergent Intelligence in Neural
Cellular Automaton Slime Molds. arXiv preprint arXiv:2305.13425.

15. Randazzo, E., Mordvintsev, A., and Fouts, C. (2023). Growing Steerable Neural
Cellular Automata. arXiv preprint arXiv:2302.10197.

16. Variengien, A., Pontes-Filho, S., Glover, T. E., and Nichele, S. (2021). Towards Self-
organized Control: Using Neural Cellular Automata to Robustly Control a Cart-pole
Agent. Innovations in Machine Intelligence (IMI), vol. 1, pp. 1-14.

17. Khajehabdollahi, S., Giannakakis, E., Buendia, V., Martius, G., and Levina, A.
(2023). Locally adaptive cellular automata for goal-oriented self-organization. arXiv
preprint arXiv:2306.07067.

18. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ...
and Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30.

A Appendix

Short distance, iteration 1

0 5 10 15 20 25 30 35
0
5

10
15
20
25
30
35

start&target
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

chemistry
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

energy
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

alpha

Short distance, iteration 50

0 5 10 15 20 25 30 35
0
5

10
15
20
25
30
35

start&target
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

chemistry
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

energy
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

alpha

Long distance, iteration 1

0 5 10 15 20 25 30 35
0
5

10
15
20
25
30
35

start&target
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

chemistry
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

energy
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

alpha

Long distance, iteration 10

0 5 10 15 20 25 30 35
0
5

10
15
20
25
30
35

start&target
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

chemistry
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

energy
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

alpha

Fig. 3: Short and long distance. From left to right: seed of the grid with energy at
the starting point and additional locations, chemistry channel, energy channel,
alpha channel. All energy depots are initialized with a value of 5. The single
additional energy deposit is located below the center. Short distance: 4 cells
away; large distance: 5 cells away.

Iteration 1

0 5 10 15 20 25 30 35
0
5

10
15
20
25
30
35

start&target
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

chemistry
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

energy
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

alpha

Iteration 25

0 5 10 15 20 25 30 35
0
5

10
15
20
25
30
35

start&target
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

chemistry
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

energy
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

alpha

Iteration 50

0 5 10 15 20 25 30 35
0
5

10
15
20
25
30
35

start&target
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

chemistry
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

energy
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

alpha

Iteration 75

0 5 10 15 20 25 30 35
0
5

10
15
20
25
30
35

start&target
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

chemistry
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

energy
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

alpha

Iteration 100

0 5 10 15 20 25 30 35
0
5

10
15
20
25
30
35

start&target
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

chemistry
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

energy
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

alpha

Fig. 4: Split. From left to right: seed of the grid with the energy depot at the
starting point and additional locations, chemistry channel, energy channel, alpha
channel. The energy is located in two paths from the center. All energy depots
are initialized with a value of 5.

Iteration 1

0 5 10 15 20 25 30 35
0
5

10
15
20
25
30
35

start&target
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

chemistry
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

energy
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

alpha

Iteration 25

0 5 10 15 20 25 30 35
0
5

10
15
20
25
30
35

start&target
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

chemistry
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

energy
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

alpha

Iteration 50

0 5 10 15 20 25 30 35
0
5

10
15
20
25
30
35

start&target
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

chemistry
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

energy
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

alpha

Iteration 75

0 5 10 15 20 25 30 35
0
5

10
15
20
25
30
35

start&target
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

chemistry
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

energy
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

alpha

Iteration 100

0 5 10 15 20 25 30 35
0
5

10
15
20
25
30
35

start&target
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

chemistry
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

energy
0 5 10 15 20 25 30 35

0
5

10
15
20
25
30
35

alpha

Fig. 5: Spiral. From left to right: seed of the grid with the energy depot at
the starting point and additional locations, chemistry channel, energy channel,
alpha channel. The energy is located in spiral starting from the center. All energy
depots are initialized with a value of 8.

Dill maps in the Weyl-like space associated to the
Levenshtein distance.

Firas BEN RAMDHANE1 and Pierre GUILLON2

1,2Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France,
1Sfax University, Faculty of Sciences of Sfax, Tunisia.

1firasbenramdhane@math.cnrs.fr.
2 pguillon@math.cnrs.fr.

Abstract. The Weyl pseudo-metric is a shift-invariant pseudo-metric
over the set of infinite sequences, that enjoys interesting properties and is
suitable for studying the dynamics of cellular automata. It corresponds to
the asymptotic behavior of the Hamming distance on longer and longer
subwords. In this paper we characterize well-defined dill maps (which
are a generalization of cellular automata and substitutions) in the Weyl
space and the sliding Feldman-Katok space where the Hamming distance
appearing in the Weyl pseudo-metrics is replaced by the Levenshtein
distance.

Keywords: The Weyl pseudo-metric · Feldman-Katok pseudo-metric ·
Cellular automata · Dill maps · Substitutions · Edit distances · Leven-
shtein distance · Symbolic dynamical systems · non-compact dynamical
systemms.

1 Basic definitions and notations

Word combinatorics. We fix once and for all an alphabet A of finitely many
letters. A finite word over A is a finite sequence of letters in A; it is convenient
to write a word as u = uJ0,|u|J to express u as the concatenation of the letters

u0, u1, . . . , u|u|−1, with |u| representing the length of u, i.e., the number of letters
appearing in u, and J0, |u|J = {0, ..., |u| − 1}. The unique word of length 0 is
the empty word denoted by λ. A configuration x = x0x1x2 . . . over A is the
concatenation of infinitely many letters from A. The set of all finite (resp. infinite)
words over A is denoted by A∗ (resp. AN), An is the set of words of length n ∈ N
and A+ = A∗ \ {λ}.

Topologies over AN. Most classically, the set AN is endowed with the product
topology of the discrete topology on each copy of A. The topology defined on AN

is metrizable, corresponding to the Cantor distance denoted by dC and defined
as follows:

dC(x, y) = 2−min{n∈N|xn ̸=yn},∀x ̸= y ∈ AN, and dC(x, x) = 0,∀x ∈ AN.

Topological dynamical systems were studied using other topologies on the
set of infinite words, such as the Besicovitch and Weyl spaces [BFK97] and
the Feldman-Katok space [RG22]. The Weyl space and a similar space that are
defined using pseudo-metrics depend on the two following distances are of interest
to us in this paper.

Definition 1. 1. The Hamming distance denoted by dH and defined over finite
words of the same length u, v by: dH(u, v) = | { i ∈ J0, |u|J |ui ̸= vi} |.

2. The Levenshtein distance dL is defined over u, v ∈ A∗ as follows:

dL(u, v) =
1

2
min

{
m+m′

∣∣∣∃j1 < · · · < jm, j′1 < · · · < j′m′ , Dj1 ◦ . . . ◦Djm(u) = Dj′1
◦ . . . ◦Dj′

m′
(v)

}
,

where Dj is deletion operation at position j ∈ J0, |u|J is defined over word
u ∈ A∗ as follows: Dj(u) = u0u1 . . . uj−1uj+1 . . . u|u|−1.

Definition 2. 1. The Weyl pseudo-metric, denoted by d̂H , is defined as follows:

d̂H(x, y) = lim sup
ℓ→∞

max
k∈N

dH(xJk,k+ℓJ, yJk,k+ℓJ)

ℓ
,∀x, y ∈ AN,

2. The sliding pseudo-metric associated to the Levenshtein distance, denoted by
d̂L, is defined as follows:

d̂L(x, y) = lim sup
ℓ→∞

max
k∈N

dL(xJk,k+ℓJ, yJk,k+ℓJ)

ℓ
,∀x, y ∈ AN.

It is easy to verify that these are pseudo-metrics i.e., symmetric, zero over
diagonal pairs, and satisfies the triangular inequality. On the other hand, these
are not distances since we can find two different configurations between which
the pseudometric is worth zero (for example, we can take two configurations
with finitely many of differences). Hence, it is relevant to quotient the space of
configurations by the equivalence of zero distance, in order to get a separated
topological space:

Definition 3. The relation x ∼d̂∗
y ⇐⇒ d̂∗(x, y) = 0, is an equivalence relation.

The quotient space AN/ ∼d̂∗
called the Weyl space for d̂∗ = d̂H and the sliding

Feldman-Katok space when d̂∗ = d̂L, denoted Xd̂∗
, where d̂∗ represent previous

pseudo-metrics. We denote by xd̂∗
the equivalence class of x ∈ AN in the quotient

space. Any map F of AN to itself such that d̂∗(x, y) = 0 =⇒ d̂∗(F (x), F (y)) = 0
for all x, y ∈ AN, induces a well-defined map Fd̂∗

: Xd̂∗
→ Xd̂∗

over the quotient

space. A map F : AN 7→ AN is d̂∗-constant if for all x, y ∈ AN, d̂∗(F (x), F (y)) = 0.

Dill maps. Dill maps were defined in [ST15], and generelize both substitutions
[FBF+02] and cellular automata [BR10]. Here we give an equivalent definition
to [ST15, Definition 2].

Definition 4.

1. A map F : AN 7→ AN is a dill map if there exist a diameter θ ∈ N \ {0}
and a local rule f : Aθ → A+ such that for all x, y ∈ AN: F (x) =
f(xJ0,θJ)f(xJ1,θ+1J)f(xJ2,θ+2J) · · · .

2. The lower norm |f | and the upper norm ∥f∥ of a dill map F with diameter
θ and local rule f are defined by: |f | = min

{
|f(u)|

∣∣u ∈ Aθ
}

and ∥f∥ =

max
{
|f(u)|

∣∣u ∈ Aθ
}
.

3. We extend the local rule into a self-map f∗ : A∗ → A∗ by: f∗(u) = f(uJ0,θJ)f(uJ1,1+θJ) . . . f(uJ|u|−θ,|u|J),
for u such that |u| ≥ θ and f∗(u) = λ if |u| < θ.

4. If ∥f∥ = |f |, then we say that F is uniform.

When it is clear from the context, we may identify a dill map with its local
rule.

Remark 5.

1. Uniform dill maps with |f | = ∥f∥ = 1 are called cellular automata.

2. The local rule of a dill maps with diameter θ = 1 is called substitution. In
this case, we denote τ for the local rule and τ̄ for the dill map.

3. The composition of a substitution τ and a cellular automaton local rule f
with diameter θ is a dill map local rule τ ◦ f with diameter θ.

Example 6. 1. The shift is the CA with diameter θ = 2 and local rule f defined
by f(u0u1) = u1 for all u0, u1 ∈ A.

2. Let A = {a, b}. The Xor is the CA with diameter θ = 2 and local rule f
defined by: f(aa) = f(bb) = a and f(ab) = f(ba) = b.

3. The Fibonacci substitution defined over A by: τ(a) = ab and τ(b) = a.

4. Let f be the local rule of the Xor CA and τ be the Fibonacci substitution.
Then τ ◦ f is a local rule of a dill map with diameter 2 and defined as follows:

τ ◦ f(aa) = τ ◦ f(bb) = ab and τ ◦ f(ba) = τ ◦ f(ab) = a.

In the Cantor space, an elegant characterization of cellular automata was given
by Curtis, Hedlund and Lyndon in [Hed69] as follows: A function F : AN → AN

is a cellular automaton if and only if it is continuous with respect to the Cantor
metric and shift-equivariant (i.e., F (σ(x)) = σ(F (x)), for all x ∈ AN). Similarly
to the case of cellular automata, we gave a characterization of dill maps à la
Hedlund. Recall that N can be naturally endowed with the discrete topology.

Theorem 7 ([RG22, Theorem 11]). A function F : AN → AN is a dill map if
and only if it is continuous over the Cantor space and there exists a continuous
map s : AN → N such that for all x ∈ AN: F (σ(x)) = σs(x)(F (x)).

Before proving our main results, let us mention that this paper is a contin-
uation of our previous work [RG22], and we suggest that the reader check it
out.

2 Lipschitz property of dill maps with respect to d̂H

It is known since [BFK97] that every cellular automaton induces a (well-defined)
Lipschitz function over the Weyl space. Some dill maps, on the contrary, are not
well-defined.

Example 8. The Fibonacci substitution is not well-defined over the Weyl space
Xd̂H

. For example, d̂H(a∞, ba∞) = 0 but d̂H(τ(a∞), τ(ba∞)) = d̂H((ab)∞, (ba)∞) =
1.

Let us denote, for a uniform dill map F with local rule f and diameter θ:

d+f = max
{
dH(f(u), f(v))

∣∣u, v ∈ Aθ
}

and d−f = min
{
dH(f(u), f(v))

∣∣u ̸= v ∈ Aθ
}
.

Lemma 9. Let F be a uniform dill map with diameter θ and local rule f . Then

for all ℓ, k ∈ N, for m =
⌈

k
|f |

⌉
, and for p =

⌊
ℓ+k
|f |

⌋
− (m+ 1):

dH(F (x)Jk,k+ℓJ, F (y)Jk,k+ℓJ) ≤ dH(xJm,m+p+θJ, yJm,m+p+θJ)θd
+
f +2 |f | ,∀x, y ∈ AN.

Proof. Let x, y ∈ AN and ℓ, k ∈ N. Since F is uniform, we can write:

F (x)Jk,k+ℓJ = vf∗(xJm,m+p+θJ)w, and F (y)Jk,k+ℓJ = v′f∗(yJm,m+p+θJ)w
′,

where |v| = |v′| ≤ |f | and |w| = |w′| ≤ |f |. By additivity, we can write then:

dH(F (x)Jk,k+ℓJ, F (y)Jk,k+ℓJ)− 2 |f | ≤
p∑

i=0

dH(f(xJm+i,m+i+θJ), f(yJm+i,m+i+θJ))

≤
p∑

i=0
xJm+i,m+i+θJ ̸=yJm+i,m+i+θJ

dH(f(xJm+i,m+i+θJ), f(yJm+i,m+i+θJ))

≤
p∑

i=0
∃j∈Jm+i,m+i+θJ,xj ̸=yj

d+f ≤
∑

j∈Jm,m+p+θJ
xj ̸=yj

∑
i∈Kj−m−θ,j−mK

d+f

≤
∑

j∈Jm,m+p+θJ
xj ̸=yj

θd+f = dH(xJm,m+p+θJ, yJm,m+p+θJ)θd
+
f .

Proposition 10. Let F be a uniform dill map with diameter θ and local rule f .
Then:

d̂H(F (x), F (y)) ≤
θd+f
|f |

· d̂H(x, y),∀x, y ∈ AN.

Proof. Let us prove that F is
θd+

f

|f | -Lipschitz with respect to d̂H . According to

Lemma 9, for large enough ℓ, for k ∈ N, m =
⌈

k
|f |

⌉
and p =

⌊
ℓ+k
|f |

⌋
− (m+ 1) we

obtain:

dH(F (x)Jk,k+ℓJ, F (y)Jk,k+ℓJ) ≤ dH(xJm,m+pJ, yJm,m+pJ)θd
+
f + θ2d+f + |f | .

Hence:

dH(F (x)Jk,k+ℓJ, F (y)Jk,k+ℓJ)

ℓ
≤

maxh∈N dH(xJh,h+pJ, yJh,h+pJ)θd
+
f + θ2d+f + 2 |f |

ℓ

≤
θd+f
|f |

·
maxh∈N dH(xJh,h+pJ, yJh,h+pJ)

p
+

θ2d+f + 2 |f |
ℓ

.

Since this was true for every k and since p → ∞ when ℓ → ∞, we obtain:

d̂H(F (x), F (y)) ≤
θd+f
|f |

d̂H(x, y).

Proposition 11. Let F be a dill map with diameter θ ∈ N \ {0} and local rule
f . If Fd̂H

is well-defined, then F is either constant or uniform.

Proof. Assume that F is non-uniform, i.e., there are two words u and v of equal
length such that |f∗(u)| ≠ |f∗(v)|. One can assume that their longest common
suffix has length θ − 1. Indeed, otherwise let a ∈ A, u′ = uJ|u|−θ+1,|u|Ja

θ−1

and v′ = vJ|u|−θ+1,|v|Ja
θ−1; one can note that f∗(uaθ−1) = f∗(u)f∗(u′) and

f∗(vaθ−1) = f∗(v)f∗(v′), so that either
∣∣f∗(uaθ−1)

∣∣ ̸= ∣∣f∗(vaθ−1)
∣∣, or |f∗(u′)| =∣∣f∗(uaθ−1)

∣∣−|f∗(u)| ≠
∣∣f∗(vaθ−1)

∣∣−|f∗(v)| = |f∗(v′)| . Note that both of these
pairs of words share a common suffix of length at least θ−1. Assume also without
loss of generality that k = |f∗(u)| − |f∗(v)| > 0.

– First assume that there exist w ∈ A∗ and i ∈ N such that f∗(w)i ̸=
f∗(w)i+k. By our previous assumption, we know that for z = w∞ and
w′ = uJ|u|−θ,|u|JzJ0,θJ = vJ|v|−θ,|v|JzJ0,θJ we have: F (uz) = f∗(u)f∗(w′)F (z).

According to the proof of [RG22, Theorem 20], we obtain: d̂H(F (uz), F (vz)) ≥
dH(F (uz), F (vz)) ≥ 1

|f∗(zJ0,|w|+θJ)|
. Since |u| = |v|, d̂H(uz, vz) = 0, so that

F is not well-defined with respect to d̂L.
– Otherwise, for all w ∈ A∗, i ∈ J0, |f∗(w)| − kJ, we have f∗(w)i = f∗(w)i+k.

Then for every x ∈ AN, F (x) is k-periodic and thus F (x) = (f∗(xJ0,k+θJ)J0,kJ)
∞.

Assuming that F is well-defined, we get dH(F (x), F (0k+θxJk+θ,∞J)) = 0.
According to Proposition [CFMM97, Proposition 3], we can deduce that
F (x) = F (0k+θxJk+θ,∞J). Then, for every x ∈ AN, F (x) = (f∗(0k+θ)J0,kJ)

∞.
Hence, F is constant.

We now reach necessary and sufficient conditions for dill maps to induce
well-defined maps over this space.

Theorem 12. Let F be a dill map with diameter θ and local rule f . Then the
following statements are equivalent:

1. Fd̂H
is well-defined.

2. F is
θd+

f

|f | -Lipschitz with respect to d̂H .
3. F is either constant or uniform.

Proof. 2 =⇒ 1 is clear from the definition of Lipschitz maps. Implication 3 =⇒ 2
follows from Proposition 10. Implication 1 =⇒ 3 follows from Proposition 11.

3 Lipschitz property of dill maps with respect to d̂L

In [RG22], we proved that all dill maps are well-defined in the Feldman-Katok
space. However, by changing the Feldman-Katok pseudo-metric for d̂L, one can
find that not all dill maps are well-defined. See for instance the following example:

Example 13. Let τ be a substitution defined over A = {0, 1}N by τ(0) = 0 and
τ(1) = 11. Let x = (0, 1)(n,n)n∈N\{0} and y = (0, 1)(n+1,n−1)n∈N\{0} . Note that for

all j ∈ N, since sj := j(j+1) =
∑j

i=1 2i, we obtain: dH(xJsj ,sj+1J, yJsj ,sj+1J) = 1.
Let ℓ ∈ N\{0} and k ∈ N. For p = min {j ∈ N| sj ≥ k}, m = max {j ∈ N| sj ≤ k + ℓ}
and by subadditivity:

dH(xJk,k+ℓJ, yJk,k+ℓJ) = dH(xJk,spJ, yJk,spJ) + dH(xJsp,smJ, yJsp,smJ) + dH(xJsm,k+ℓJ, yJsm,k+ℓJ)

≤ 1 + dH(xJsp,smJ, yJsp,smJ) + 1 ≤ (m− p) + 2.

Moreover, since ℓ+ k ≥ m2 +m and k ≤ p2 + p, we obtain m−p
ℓ ≤ 1

m+p+1 , and
thus:

dH(xJk,k+ℓJ, yJk,k+ℓJ)

ℓ
≤ m− p+ 2

ℓ
≤ 2

m+ p+ 1
+

2

ℓ
.

Since m tends to ∞ when ℓ tends to ∞: limℓ→∞
dH(xJk,k+ℓJ, yJk,k+ℓJ)

ℓ
= 0,∀k ∈

N.
Thus d̂L(x, y) = d̂H(x, y) = 0. On the other hand, it is clear that:

τ(x) = (0, 1)(n,2n)n∈N\{0} and τ(y) = (0, 1)(n+1,2(n−1))n∈N\{0} .

For ℓ ∈ N \ {0} and k =
∑ℓ

i=1(i+ 1) +
∑ℓ

i=1 2(i− 1), hence: τ(y)Jk,k+ℓJ = 0ℓ. In

contrast, since
(∑ℓ

i=1 i+
∑ℓ

i=1 2i
)
− ℓ = k, we obtain τ(x)Jk,k+ℓJ = 1ℓ. Thus:

dL(τ(x)Jk,k+ℓJ, τ(y)Jk,k+ℓJ) = dL(0
ℓ, 1ℓ) = ℓ.

Hence, maxh∈N dL(τ(x)Jh,h+ℓJ, τ(y)Jh,h+ℓJ) = ℓ. Therefore, d̂L(τ(x), τ(y)) = 1.

In conclusion, τ is not well-defined with respect ot d̂L.

Before giving a caracterization of well-defined dill-maps with respect to d̂L,
let us recall a result from [RG22] to be used in the proof of the main result of
this section.

Lemma 14 ([RG22]). Let F be a dill map with diameter θ and local rule f . Then
for all ℓ ∈ N and u, v ∈ Aℓ, we have: dL(f

∗(u), f∗(v)) ≤ ∥f∥ (2θ − 1)dL(u, v)−
||f∗(u)|−|f∗(v)||

2 .

Now let us characterize dill maps which induce a well-defined function over
Xd̂L

.

Definition 15. We say that a dill map with diameter θ and local rule f is
diamond-uniform if for every ℓ and u, v ∈ Aℓ such that uJ0,θJ = vJ0,θJ and
uJℓ−θ,ℓJ = vJℓ−θ,ℓJ, one has |f∗(u)| = |f∗(v)|.

It is clear that all uniform dill maps are diamond-uniform. Here is an example
of non-uniform dill map which is diamond-uniform.

Example 16. Let F be the dill map with diameter θ = 2 and local rule f defined
by:

f(aa) = ab, f(bb) = ba, f(ab) = a and f(ba) = bab.

It is clear that for any x ∈ AN, F (x) = (ab)∞ if x start by the letter a and
F (x) = (ba)∞ otherwise. And thus, F is neither constant nor uniform. However,
F is d̂L-constant, since for every x, y ∈ AN, d̂L(F (x), F (y)) = 0. So, Fd̂L

is
well-defined.

Theorem 17. If F is a dill map, then Fd̂L
is well-defined if and only if F is

d̂L-constant or diamond-uniform.

In order to prove this, here is the key point about diamond-uniformity.

Lemma 18. If F is a dill map with diameter θ and local rule f , then the following
statements are equivalent:

1. F is diamond-uniform.
2. |f∗(u)| − |f∗(v)| is uniformly bounded, for every u, v with equal length.

Proof.

1 ⇒ 2 Let u, v have equal length. Then

|f∗(u)| − |f∗(v)| =
∣∣f∗(aθ−1uaθ−1)

∣∣ − ∣∣f∗(aθ−1vaθ−1)
∣∣ − ∣∣f∗(aθ−1uJ0,θ−1J)

∣∣ +
+

∣∣f∗(aθ−1vJ0,θ−1J)
∣∣ − ∣∣∣f∗(uJ|u|−θ−1,|u|Ja

θ−1)
∣∣∣ + ∣∣∣f∗(vJ|u|−θ−1,|u|Ja

θ−1)
∣∣∣

≤ 2(θ − 1)(d+f − d−f).

2 ⇒ 1 Assume, by contrapositive, that there exist ℓ ∈ N and u, v ∈ Aℓ such that:

uJ0,θ−1J = vJ0,θ−1J, uJℓ−θ+1,ℓJ = vJℓ−θ+1,ℓJ and |f∗(u)| − |f∗(v)| ≠ 0.

Then
∣∣f∗(uk)

∣∣ − ∣∣f∗(vk)
∣∣ = (|f∗(u)| − |f∗(v)|)k, thanks to the common

prefixes and suffixes. Hence |f∗(u)| − |f∗(v)| is not bounded (and not upper-
bounded, up to swapping u and v).

Proposition 19. Any diamond-uniform dill map F with local rule f and diameter

θ is (2θ − 1)× ∥f∥
|f |

-Lipschitz with respect to d̂L.

Proof. Let x, y ∈ AN. For large enough ℓ and k ∈ N let us denote:

m = max
(
min

{
i ∈ N

∣∣ |f∗(xJ0,i+θJ)| ≥ k
}
,min

{
i ∈ N

∣∣ |f∗(yJ0,i+θJ)| ≥ k
})

, and

p = min
(
max

{
i ∈ N

∣∣ |f∗(xJ0,m+pJ)| ≤ k + ℓ
}
,min

{
i ∈ N

∣∣ |f∗(yJ0,m+pJ)| ≤ k + ℓ
})

.

Since F is a diamond-uniform dill map and thanks to 2, there exist C > 0 such
that:∣∣∣∣f∗(xJ0,mJ)

∣∣ − ∣∣f∗(yJ0,mJ)
∣∣∣∣ ≤ C and

∣∣∣∣f∗(xJ0,m+pJ)
∣∣ − ∣∣f∗(yJ0,m+pJ)

∣∣∣∣ ≤ C.

And thus we can write,

F (x)Jk,k+ℓJ = uvf∗(xJm,m+pJ)wz and F (y)Jk,k+ℓJ = u′v′f∗(yJm,m+pJ)w
′z′

where |u|, |u′|, |z|, |z′| < ∥f∥, and |v|, |v′|, |w|, |w′| < C. Hence, by subadditivity:

dL(F (x)Jk,k+ℓJ, F (y)Jk,k+ℓJ) ≤ dL(uv, u
′v′) + dL(f

∗(xJm,m+pJ), f
∗(yJm,m+pJ)) + dL(wz,w

′z′)

≤ 2(∥f∥+ C) + dL(f
∗(xJm,m+pJ), f

∗(yJm,m+pJ)).

According to Lemma 14 we obtain:

dL(F (x)Jk,k+ℓJ, F (y)Jk,k+ℓJ) ≤ 2(∥f∥+C)+(2θ−1) ∥f∥ dL(xJm,m+pJ, yJm,m+pJ).

Since ℓ ≥
∣∣f∗(xJm,m+pJ)

∣∣ ≥ (p− θ) |f | and by subadditivity:

dL(F (x)Jk,k+ℓJ, F (y)Jk,k+ℓJ)

ℓ
≤ ∥f∥ (2 + θ(2θ − 1)) + 2C

ℓ
+

(2θ − 1) ∥f∥ dL(xJm,m+p−θJ, yJm,m+p−θJ)

|f | (p− θ)

≤ ∥f∥ (2θ2 − θ + 2) + 2C

ℓ
+ (2θ − 1)

∥f∥
|f |

×max
h∈N

dL(xJh,h+p−θJ, yJh,h+p−θJ)

p− θ
.

Since this was true for every k ∈ N and since p → ∞ when ℓ → ∞:

d̂L(F (x), F (y)) ≤ (2θ − 1)
∥f∥
|f |

d̂L(x, y).

Proof of Theorem 17. According to Proposition 19, if F is diamond-uniform
then Fd̂L

is well-defined. Suppose now that F is neither d̂L-constant nor diamond-

uniform i.e., there exists x, y ∈ AN such that d̂L(F (x), F (y)) > 0, and there
exists m ∈ N, u, v ∈ Am such that uJ0,θ−1J = vJ0,θ−1J, uJm−θ+1,mJ = vJm−θ+1,mJ
and α := |f∗(u)| − |f∗(v)| > 0. Let us define the following configurations:

z := uxJ0,αJyJ0,αJuxJ0,2αJyJ0,2αJuxJ0,3αJyJ0,3αJ . . . , and

w := vxJ0,αJyJ0,αJvxJ0,2αJyJ0,2αJvxJ0,3αJyJ0,3αJ

Let (kℓ)ℓ∈N such that for all ℓ ∈ N: maxk∈N dL(F (x)Jk,k+ℓJ, F (y)Jk,k+ℓJ) =
dL(F (x)Jkℓ,kℓ+ℓJ, F (y)Jkℓ,kℓ+ℓJ). This pair of patterns appears in (z, w), in the

zone where nα ≥ kℓ+ℓ. Hence d̂L(z, w) = 0 but d̂L(F (z), F (w)) ≥ d̂L(F (x), F (y)) >
0.

4 Conclusion and perspectives

In this paper, we characterized well-defined dill maps over the Weyl space, indeed,
we find the same result as in the case of Besicovitch space in [RG22]. In addition,

we showed that not all dill maps are well-defined with respect to the sliding
Feldman-Katok space, in contrast the Feldman-Katok space, where all dill maps
are well-defined [RG22, Corollary 46]. Those spaces were constructed using two
pseudo-metrics depending on two different edit distances over finite words (the
Hamming distance and the Levenshtein distance). One natural question is which
properties on distance d make all dill maps are well-defined in the corresponding
pseudo-metric space?

References

BFK97. François Blanchard, Enrico Formenti, and Petr Kůrka. Cellular automata
in the Cantor, Besicovitch, and Weyl topological spaces. Complex Systems,
11:107–123, 1997.

BR10. Valérie Berthé and Michel Rigo, editors. Combinatorics, automata, and num-
ber theory., volume 135 of Encyclopedia of Mathematics and Its Applications.
Cambridge: Cambridge University Press, 2010.

CFMM97. Gianpiero Cattaneo, Enrico Formenti, Luciano Margara, and Jacques Ma-
zoyer. A shift-invariant metric on SZ inducing a non-trivial topology. In
International Symposium on Mathematical Foundations of Computer Science,
pages 179–188. Springer, 1997.

FBF+02. N. Pytheas Fogg, Valérie Berthé, Sébastien Ferenczi, Christian Mauduit,
and Anne Siegel, editors. Substitutions in dynamics, arithmetics and combi-
natorics, volume 1794 of Lecture Notes in Mathematics. Berlin: Springer,
2002.

Hed69. Gustav A Hedlund. Endomorphisms and automorphisms of the shift dy-
namical system. Mathematical systems theory, 3(4):320–375, 1969.

RG22. Firas Ben Ramdhane and Pierre Guillon. Cellular automata and substi-
tutions in topological spaces defined via edit distances. arXiv:2203.16226,
2022.

ST15. Ville Salo and Ilkka Törmä. Block maps between primitive uniform and Pisot
substitutions. Ergodic Theory and Dynamical Systems, 35(7):2292–2310,
2015.

Words fixing the kernel network and maximum
independent sets in graphs

Maximilien Gadouleau1[0000−0003−4701−738X] and David C.
Kutner1[0000−0003−2979−4513]

Durham University, UK
{m.r.gadouleau,david.c.kutner}@durham.ac.uk

Abstract. The simple greedy algorithm to find a maximal independent
set of a graph can be viewed as a sequential update of a Boolean network,
where the update function at each vertex is the conjunction of all the
negated variables in its neighbourhood. In general, the convergence of the
so-called kernel network is complex. A word (sequence of vertices) fixes
the kernel network if applying the updates sequentially according to that
word always leads to a fixed point whatever the initial configuration. We
prove that determining whether a word fixes the kernel network is coNP-
complete. We also consider the so-called permis, which are permutation
words that fix the kernel network. We exhibit large classes of graphs that
have a permis, but we also construct many graphs without a permis.

Keywords: Boolean networks · Graph theory · Maximal independent
set · Kernel.

1 Introduction

1.1 Background

A simple greedy algorithm to find a maximal independent set in a graph works
as follows. Starting with the empty set, visit each vertex in the graph, and add
it to the set whenever none of its neighbours are already in the set. This can be
interpreted in terms of Boolean networks as follows: starting with the all-zero
configuration x, update one vertex v at a time according to the update function∧

u∼v ¬xu. Once all vertices have been updated, we obtain the final configuration
y where the set of ones is a maximal independent set, regardless of the order in
which the vertices have been updated.

We refer to the Boolean network where the update function is the conjunction
of all the negated variables in the neighbourhood of a vertex as the kernel network
on the graph. We use this terminology, as kernels are the natural generalisation
of maximal independent sets to digraphs (they are the independent dominating
sets). This class of networks has been the subject of some study; we refer to two
works in particular.

In [2], the fixed points of different conjunctive networks on graphs are studied.
In particular, it is shown that the set of fixed points of the kernel network is the

set of (configurations whose coordinates equal to one are) maximal independent
sets of the graph. They further prove that for square-free graphs, the kernel
network is the conjunctive network that maximises the number of fixed points.

In a completely different setting, Yablo discovered the first non-self-referential
paradox in [10]. The construction for this paradox implicitly applies the fact that
the kernel network on a transitive tournament on N has no fixed point. The study
of acyclic digraphs that admit a paradox is continued further in [8], where the
kernel network is referred to as an F-system.

Boolean networks are used to model networks of interacting entities. As such,
it is natural to consider a scenario whereby the different entities update their
state at different times. This gives rise to the notion of sequential (or asyn-
chronous) updates. The problem of whether a Boolean network converges se-
quentially goes back to the seminal result by Robert on acyclic interaction graphs
[9]; further results include [6,5,7]. Recently, [1] introduced the concept of a fix-
ing word: a sequence of vertices such that updating vertices according to that
sequence will always lead to a fixed point, regardless of the initial configuration.
Large classes of Boolean networks have short fixing words [1,4].

1.2 Contributions and outline

Our main result is to show that determining whether a word fixes the kernel
network is an NP-hard problem. Our seminal remark is that if w is any permu-
tation of the vertices, then w maps any configuration to an independent set (we
say w prefixes the kernel network) and w maps any independent set to a kernel
(we say w suffixes the kernel network), and as such ww fixes the kernel network.
Once again, whether a word prefixes or suffixes the kernel network only depends
on the set of vertices visited by the word. Determining whether a word prefixes
the kernel network can be done in polynomial time, while it is coNP-complete
to determine whether it suffixes the kernel network. We then determine the sets
of vertices S for which there exists a word fixing the kernel network that only
visits S; deciding whether S is one such set is NP-hard. We use the intractability
of that last problem to prove our main result.

We then go back to our interpretation of the kernel network in terms of
the greedy algorithm for finding a maximal independent set. In that algorithm,
the initial configuration is fixed and the permutation of vertices is arbitrary.
We then consider fixing the permutation and varying the initial configuration
instead. Thus we introduce the notion of a permis, i.e. a permutation that fixes
the kernel network. We exhibit large classes of graphs which do have a permis,
and some examples and constructions of graphs which do not have a permis.

The rest of the paper is organised as follows. Some necessary background on
Boolean networks is reviewed in Section 2. In Section 3 we classify those words
which prefix or suffix the kernel network and show that determining whether a
word fixes the kernel network is coNP-complete. Lastly, we study graphs that
have a permis in Section 4.

Due to space limitations, some proofs are given in the appendix, and their
sketches are given in the main text instead. We presume that the reader is
familiar with some basic graph theory; otherwise, they are directed to [3].

2 Preliminaries

2.1 Boolean networks

A configuration on a graph G = (V,E) is x ∈ {0, 1}V = (xv : v ∈ V), where
xv ∈ {0, 1} is the state of the vertex v for all v. We denote 1(x) = {v ∈ V :
xv = 1} and 0(x) = {v ∈ V : xv = 0}. For any set of vertices S ⊆ V , we denote
xS = (xv : v ∈ S). We denote the all-zero (all-one, respectively) configuration
by 0 (by 1, respectively), regardless of its length.

A Boolean network is a mapping F : {0, 1}V → {0, 1}V . For any Boolean
network F and any v ∈ V , the update of the state of vertex v is represented by
the network Fv : {0, 1}V → {0, 1}V where Fv(x)v = F(x)v and Fv(x)u = xu for
all other vertices u. We extend this notation to words as follows: if w = w1 . . . wl

then

Fw = Fwl ◦ · · · ◦ Fw2 ◦ Fw1 .

Unless otherwise specified, we let x be the initial configuration, w = w1 . . . wl a
word, y = Fw(x) be the final configuration, and for all 0 ≤ a ≤ l, ya = Fw1...wa(x)
be an intermediate configuration, so that x = y0 and y = yl.

The set of fixed points of F is Fix(F) = {x ∈ {0, 1}V : F(x) = x}. The word
w fixes F if for all x, Fw(x) ∈ Fix(F).

2.2 The kernel network

Let G = (V,E) be a graph. The kernel network on G, denoted as K(G) is
defined by

K(x)v =
∧
u∼v

¬xu,

with K(x)v = 1 if N(v) = ∅.
An independent set I is a set such that ij /∈ E for all i, j ∈ I. The collection

of all configurations x of G such that 1(x) is an independent set of G is denoted
by I(G). A dominating set D is a set such that for every vertex v ∈ V , either
v ∈ D or there exists u ∈ D such that uv ∈ E. A kernel K is a dominating
independent set. Equivalently, a kernel is a maximal independent set of G,
i.e. an independent set K such that there is no independent set J ⊃ K. The
collection of all configurations x of G such that 1(x) is a kernel of G is denoted
by K(G). It is easily seen (for instance, in [2]) that Fix(K(G)) = K(G).

3 Words fixing the kernel network

We now focus on words fixing the kernel network. Whether a word fixes the
kernel network does not only depend on the set of vertices it visits. For example,
if G is the path on the three vertices a, b, c with edges ab, bc, then w = abc does
not fix K(G) (if x = 111, then y = 001), while it is easily checked that w = acb
does fix K(G). In general, characterising the fixing words for K(G) remains an
open problem. However, we manage to prove that deciding whether a word fixes
the kernel network is computationally hard.

We define Fixing Word to be the decision problem asking, for an instance
(G,w), whether w fixes K(G).

Theorem 1. Fixing Word is coNP-complete.

The rest of this section is devoted to the proof of Theorem 1.
The set of vertices visited by a word w is denoted by [w] = {v ∈ V : ∃a, v =

wa}. A permutation of V (or of G) is a word w = w1 . . . wn such that [w] = V
and wa ̸= wb for all a ̸= b. If w is a permutation of G, then ww fixes K(G): for
any initial configuration x, Kw(x) ∈ I(G); then for any y ∈ I(G), Kw(y) ∈ K(G).

Accordingly, we say that wp prefixes K(G) if Kwp

(x) ∈ I(G) for all x ∈
{0, 1}n, and that ws suffixes K(G) if Kws

(y) ∈ K(G) for all y ∈ I(G). In that
case, for any word ω, wpω also prefixes K(G) and ωws also suffixes K(G). Clearly,
if w = wpws, where wp prefixes K(G) and ws suffixes K(G), then w fixes K(G).
We can be more general, as shown below.

Proposition 1. If w = w1 . . . wl where w1 . . . wa prefixes K(G), wb . . . wl suf-
fixes K(G), and [wb . . . wa] is an independent set of G for some 0 ≤ a, b ≤ l, then
w fixes K(G).

Proof. First, suppose a < b, so that w = w1 . . . wa . . . wb . . . wl. As mentioned
above, wp = w1 . . . wb−1 prefixes K(G) and ws = wb . . . wl suffixes K(G), hence
w = wpws fixes K(G).

Second, suppose a ≥ b, so that w = w1 . . . wb . . . wa . . . wl. It is easily seen
that if u ̸∼ v, Kvv = Kv and Kuv = Kvu. As such,

Kw = Kw1...wbwb...wawa...wl = Kw1...wb...wawb...wa...wl ,

and again if we let wp = w1 . . . wa and ws = wb . . . wl, we have Kw = Kwpws

,
hence w fixes K(G). ⊓⊔

We now characterise the words that prefix (or suffix) the kernel network.
Interestingly, those properties depend only on [w].

Proposition 2. Let G be a graph. Then w prefixes K(G) if and only if [w] is a
vertex cover of G.

Proof. Suppose [w] is a vertex cover of G and that y = Kw(x) /∈ I(G), i.e.
yuv = 11 for some edge uv of G. Without loss, let the last update in {u, v} be

v, i.e. there exists a such that wa = v and wb /∈ {u, v} for all b > a. Let z =
Kw1...wa−1(x), then zu = yu = 1 hence yv = 0, which is the desired contradiction.

Conversely, if [w] is not a vertex cover, then there is an edge uv ∈ E such
that [w] ∩ {u, v} = ∅. Therefore, for any x with xuv = 11, we have yuv = 11 as
well. ⊓⊔

Corollary 1. Given a graph G and a word w, determining whether w prefixes
K(G) is in P.

A subset S of vertices of a graph is a colony if there exists an independent
set I such that S ⊆ N(I). Alternatively, a colony is a set S such that V \ S
contains a maximal independent set. A subset W of vertices is a dominion if
there exists v ∈ V \W such that W ∩N(v) is a colony of G−v. A non-dominion
is a set of vertices that is not a dominion.

Proposition 3. Let G be a graph. Then the word w suffixes K(G) if and only
if [w] is a non-dominion of G.

Proof. Suppose [w] is a dominion of G, i.e. there exists an independent set I and
a vertex v /∈ [w] such that W = [w] ∩N(v) is in the neighbourhood of I. Let x
such that xI = 1 and xV \I = 0, and let y = Kw(x). Then for any u ∈ W , u has
a neighbour in I, hence yu = 0; thus yN [v] = 0 and w does not suffix K.

Conversely, suppose there exists x and v such that y = Kw(x) with yN [v] = 0.
Then xN [v] = 0. Let W = [w]∩N(v) and I = 1(y)∩N(W); we note that I is an
independent set. For each u ∈ W , we have yu = 0 hence there exists i ∈ I such
that u ∈ N(i). Therefore, W ⊆ N(I) and W is a colony of G− v. ⊓⊔

The Colony (respectively, Dominion, Non-Dominion) problem asks, given
a graph G and set T , if T a colony (resp. a dominion, a non-dominion) of G.

Theorem 2. Given G and w, determining whether w suffixes K(G) is coNP-
complete.

Proof (Sketch). The proof is by successive reductions: Set Cover to Colony
to Dominion. The full proof is given in Appendix A.

We now characterise the sets of vertices S visited by fixing words of the kernel
network. Interestingly, those are the same sets S such that ww is a fixing word
for any permutation w of S.

Proposition 4. Let S be a subset of vertices of G. The following are equivalent.

1. There exists a word w with [w] = S that fixes K(G).
2. For all wp, ws such that [wp] = [ws] = S, the word wpws fixes K(G).
3. S is a vertex cover and a non-dominion.

Proof. Clearly, 2 =⇒ 1. We now prove 1 =⇒ 3. Since w prefixes K(G), S = [w]
is a vertex cover by Proposition 2; similarly, since w suffixes K(G), S = [w] is a
non-dominion by Proposition 3. Finally, we prove 3 =⇒ 2. Since S is a vertex
cover, then by Proposition 2 wp prefixes K(G); similarly, by Proposition 3 ws

suffixes K(G). Therefore, wpws fixes K(G). ⊓⊔

Let Fixing Set be the decision problem, where the instance is (G,S) and
the question is: does there exist a word w with [w] = S that fixes K(G), or
equivalently is S a vertex cover and a non-dominion?

Theorem 3. Fixing Set is coNP-complete.

Proof. The proof is by reduction from Non-Dominion (which is coNP-complete)
to Fixing Set. The full proof is given in Appendix B.

We now finalise the proof of Theorem 1.

Proof (of Theorem 1). Fixing Word is in coNP; the certificate being a config-
uration x such that Kw(x) /∈ K(G). The proof of hardness is by reduction from
Fixing Set, which is coNP-complete, as shown in Theorem 3. Let (G,S) be
an instance of Fixing Set, then consider the instance (G,w = ωω) of Fixing
Word, where ω is a permutation of S. Then Proposition 4 shows that w fixes
K(G) if and only if S is a vertex cover and a non-dominion.

The complexity of determining the length of a shortest fixing word for the
kernel network remains open.

Question 1. What is the complexity of the following optimisation problem: given
G, what is the length of a shortest fixing word for K(G)?

4 Graphs with a permis

Let G = (V,E) be a graph. The greedy algorithm to find a maximal independent
set of G fixes the initial configuration x to 0, and varies the permutation w, while
always obtaining a maximal independent set y ∈ K(G). We now turn the tables,
and instead consider fixing the permutation to some w and varying the initial
configuration x; we want to find a permutation that guarantees that we always
obtain a maximal independent set y ∈ K(G). As such, we call a permutation of
G that fixes K(G) a permis for G.

We now investigate which graphs have a permis. We first exhibit large classes
of graphs that do have a permis in Theorem 4. For that purpose, we need to
review some graph theory first.

A graph is a comparability graph if there exists a partial order ⊑ on V
such that uv ∈ E if and only if u ⊏ v. The following are comparability graphs:
complete graphs, bipartite graphs, permutation graphs, and interval graphs.

A vertex is simplicial if its neighbourhood is a clique, i.e. if N [s] ⊆ N [v] for
all v ∈ N [s].

We now introduce an operation on graphs, that we call graph composi-
tion. Let H be an n-vertex graph, G1, . . . , Gn other graphs, then the compo-
sition H(G1, . . . , Gn) is obtained by replacing each vertex v of H by the graph
Gv, and whenever uv ∈ E(H), adding all edges between Gu and Gv. This con-
struction includes for instance the disjoint union of two graphs: G1 ∪ G2 =
K̄2(G1, G2); the full union with all edges between G1 and G2: K2(G1, G2); adding
an open twin (a new vertex v′ with N(v′) = N(v) for some vertex v of H):
H(K1, . . . ,K1, K̄2,K1, . . . ,K1); similarly, adding a closed twin (N [v′] = N [v]).

Theorem 4. Let G be a graph. If G satisfies any of the following properties,
then G has a permis:

1. G has at most seven vertices, and is not the heptagon C7;
2. G is a comparability graph;
3. the set of simplicial vertices of G is a dominating set;
4. G = H(G1, . . . , Gn), where each of H,G1, . . . , Gn has a permis.

Proof (Sketch). The proof of 1 is by computer search. For 2, the permis goes
through the vertices “from lowest to highest” according to ⊑. For 3, G has a
maximal independent set M of simplicial vertices, and the permis visits M last.
For 4, we can reduce ourselves to the case where only one vertex b is blown up
into a graph Gb. Then the permis for G is obtained by taking the permis for H
and replacing the update of b by a permis for Gb. Everything works as though
the other vertices see

∨
v∈Gb

xv. The full proof is given in Appendix C.

We now exhibit classes of graphs without a permis. As mentioned in Theorem
4, the smallest graph without a permis is the heptagon.

Proposition 5. For all 2k+1 ≥ 7, the odd hole C2k+1 does not have a permis.

Proof. Let w be a permutation, and orient the edges such that a → b if and only
if a = wi, b = wj with j > i. We shall prove that there cannot be two consecutive
arcs in the same direction; this shows that the direction of arcs must alternate,
which is impossible because there is an odd number of arcs in the cycle. We do
this by a case analysis on the arcs preceding those two consecutive arcs.

We consider six vertices f, e, d, c, b, a, where the last two arcs c → b → a are
in the same direction. The first case is where d → c. In that case, if (xa, xb, xc) =
(1, 1, 1), then (yb, yc, yd) = (0, 0, 0) as shown below (top left) along with the other
three cases.

x 1 1 1
d c b a

y 0 0 0

x 1 1 1 1
e d c b a

y 0 0 0

x 1 0 1 1
f e d c b a

y 0 1 0 0 0

x 0 0 1 1
f e d c b a

y 1 0 0 0

⊓⊔

Say a set of vertices S is tethered if there is an edge st between any s ∈ S
and any t ∈ T = N(S) \ S.

Proposition 6. Let G be a graph. If G has a tethered set of vertices S such that
G[S] has no permis, then G has no permis.

Proof (Sketch). Let x be a configuration such that xS ̸= 0 and xT = 0. Then
updating T will have no effect, and we have yaT = 0 throughout (for every
0 ≤ a ≤ l). Therefore, the updates in S are the same as the updates in G[S]:
Kw(x;G)S = Kŵ(xS ;G), where ŵ represents the updates of S only. Since ŵ does
not fix G[S], w does not fix G. The full proof is Appendix D.

Propositions 5 and 6 yield perhaps the second simplest class of graphs without
a permis. The wheel graph is Wn+1 = K2(Cn,K1).

Corollary 2. For all 2k+2 ≥ 8, the wheel graph W2k+2 does not have a permis.

An interesting consequence of Proposition 6 is that having a permis is not
a graph property that can be tested by focusing on an induced subgraph, even
if the latter has all but seven vertices. Indeed, for any graph H, the graph
G = K2(C7, H) does not have permis, since the heptagon is tethered in G.
Conversely, for any graph H without a permis, adding a pending vertex v′ to
each vertex v of H yields a graph G where the set of simplicial vertices is a
dominating set (all the vertices v′ form a maximal independent set of simplicial
vertices). Therefore, some graphs with an induced heptagon do have a permis.

In general, the characterisation of graphs with a permis remains open.

Question 2. What is the complexity of the following decision problem: given G,
does G have a permis?

References

1. Julio Aracena, Maximilien Gadouleau, Adrien Richard, and Lilian Salinas. Fix-
ing monotone boolean networks asynchronously. Information and Computation,
274(104540), October 2020.

2. Julio Aracena, Adrien Richard, and Lilian Salinas. Number of fixed points and dis-
joint cycles in monotone boolean networks. accepted in SIAM journal on Discrete
mathematics, 2017.

3. J.A. Bondy and U.S.R. Murty. Graph Theory, volume 244 of Graduate Texts in
Mathematics. Springer, 2008.

4. Maximilien Gadouleau and Adrien Richard. On fixable families of boolean net-
works. In Proc. Workshop on Asynchronous Cellular Automata, pages 396–405,
September 2018.

5. E. Goles and M. Noual. Disjunctive networks and update schedules. Advances in
Applied Mathematics, 48(5):646–662, 2012.

6. Eric Goles. Dynamics of positive automata networks. Theoretical Computer Sci-
ence, 41:19–32, 1985.

7. Mathilde Noual and Sylvain Sené. Synchronism versus asynchronism in monotonic
boolean automata networks. Natural Computing, Jan 2017.

8. Landon Rabern, Brian Rabern, and Matthew Macauley. Dangerous reference
graphs and semantic paradoxes. Journal of Philosophical Logic, 42(5):727–765,
2013.

9. F. Robert. Iterations sur des ensembles finis et automates cellulaires contractants.
Linear Algebra and its Applications, 29:393–412, 1980.

10. Steven Yablo. Paradox without self-reference. Analysis, 53(4):251–252, 1993.

A Proof of Theorem 2

Proof. We prove that the Dominion problem is NP-complete. It is in NP: the
certificate is the pair (v, I) where W ∩N(v) ⊆ N(I).

We show NP-hardness by first reducing Set Cover to Colony and then
reducing Colony to Dominion.

Theorem 5. Colony is NP-complete.

Proof. The proof is by reduction from Set Cover, which is NP-complete. In
Set Cover, the input is a finite set of elements X = {x1, . . . , xn}, a collection
C = {C1, C2, . . . , Cm} of subsets of X, and an integer k. The question is whether
there exists a subset S ⊆ C of cardinality at most k such that ∪Ci∈SCi = X.

We first construct the graph G on n + mk vertices. G consists of: vertices
Qj = {q1j , . . . , qkj }, for each j ∈ [m]; vertices vi for each i ∈ [n]; edges from
each vertex in Qj to vi, whenever xi ∈ Cj ; edges connecting {ql1, ql2, . . . , qlm} in
a clique, for each l ∈ [k]. Let the target set T = {v1, . . . , vn}. This concludes our
construction; an illustrative example is shown in Fig. 1.

We now show that if (X,C, k) is a yes-instance of Set Cover, then (G,T)
is a yes-instance of Colony. Let S ⊆ C be a set cover of X of cardinality at
most k. We obtain the set I as follows:

I = {qaj : Cj is the ath element of S}.

Note that every node in I exists in G since S has cardinality at most k (the last
subset to appear in S is its kth element exactly). Further, I is an independent
set, since by construction every node qaj is adjacent to some other node qbl if and
only if a = b. Lastly, every node vi ∈ S is incident to some node in I; for any
i, ∃j : vi ∈ Cj . Then necessarily ∃a : qaj ∈ I, and by construction (vi, q

a
j) is an

edge in G.
Conversely, if (G,T) is a yes-instance of Colony then (X,C, k) is a yes-

instance of Set Cover. Let I be an independent set in G which colonizes
T . By construction of G, I has cardinality at most k. Suppose otherwise, for
contradiction - then by the pigeon-hole principle there is some clique Cj such
that |Cj ∩ I| ≥ 2, contradicting that I is an independent set. We obtain the set
S of cardinality |I| as follows:

S = {Cj : ∃a such that qaj ∈ I}.

We now show S is a set cover of X. For each i ∈ [n], vi must be adjacent to
some node in I; denote this node qaj - now by construction xi is in the set Cj ,
and Cj ∈ S.

⊓⊔

Theorem 6. Dominion is NP-complete.

Colony reduction

v4v3v2v1

q14

q13

q12

q11

q24

q23

q22

q21

Fig. 1. Illustration of the reduction from Set Cover to Colony (the set T is the
nodes in the dashed box). Here the Set Cover instance has C1 = ∅, C2 = {x1}, C3 =
{x2, x3}, C4 = {x4}, with k = 2. Observe that both the Set Cover instance and the
Colony instance are no-instances.

Proof. The proof is by reduction from Colony, which is NP-complete, as proved
in Theorem 5. Let (G,S) be an instance of Colony, and construct the instance
(Ĝ, Ŝ) as follows.

Let G = (V,E) and denote T = V \S. Then consider a copy T ′ = {t′ : t ∈ T}
of T and an additional vertex v̂ /∈ V ∪T ′. Let Ĝ = (V̂ , Ê) with V̂ = V ∪T ′∪{v̂}
and Ê = E ∪ {tt′ : t ∈ T} ∪ {sv̂ : s ∈ S}, and Ŝ = S ∪ T ′. This construction is
illustrated in Fig. 2.

We only need to prove that S is a colony of G if and only if Ŝ is a colony
of Ĝ. Firstly, if S is a colony of G, then there exists an independent set I of G
such that S ⊆ N(I;G). Then Ŝ ∩N(v̂; Ĝ) = S is contained in N(I; Ĝ− v̂), thus
Ŝ is a dominion of Ĝ.

Conversely, if Ŝ is a dominion of Ĝ, then there exists u ∈ V̂ \ Ŝ such that
Ŝ∩N(u; Ĝ) is a colony of Ĝ−u. Then either u = v̂ or u ∈ T . Suppose u = t ∈ T ,
then t′ ∈ Ŝ is an isolated vertex of G − t, hence Ŝ ∩ N(t; Ĝ) is not a colony of
Ĝ− t. Therefore, u = v̂ and there exists an independent set Î of Ĝ− v̂ such that
Ŝ ∩ N(v̂; Ĝ) = S is contained in N(Î; Ĝ). Since S ⊆ V and N(S; Ĝ − v̂) ⊆ V ,
we obtain S ⊆ N(Î ∩ V ; Ĝ − v̂) ∩ V = N(Î ∩ V ;G), where I = Î ∩ V is an
independent set of G. Thus, S is a colony of G. ⊓⊔

⊓⊔

Dominion reduction

c

T

S

T ′

d

e


 Ĝ

G

v̂

c′

d′

e′

a

b

Fig. 2. Example reduction from a no-instance of Colony (G,S) to the corresponding
no-instance of Dominion (Ĝ, Ŝ), with Ŝ := S ∪ T ′.

B Proof of Theorem 3

Proof. Membership of coNP is known: the no-certificate is a permutation of S
which does not fix the kernel network (by Proposition 4). The hardness proof
is by reduction from Non-Dominion, which is coNP-complete, as proved in
Theorem 6. Let (G,S) be an instance of Non-Dominion, and construct the
instance (Ĝ, Ŝ) as follows.

Let G = (V,E) and T = V \ S. For any t ∈ T , let Gt = (Vt ∪ {t̂}, Et)
be the graph defined as follows: Vt = {ut : u ∈ V \ t} is a copy of all the
vertices apart from t, which is replaced by a new vertex t̂ /∈ Vt, and Et = {atbt :
ab ∈ E, a, b ̸= t} ∪ {stt̂ : st ∈ E, s ∈ S} is obtained by removing the edges
between t and the rest of T . Then G is the disjoint union of all those graphs,
i.e. G =

⋃
t∈T Gt, while Ŝ =

⋃
t∈T Vt. For the sake of simplicity, we shall use the

notation At = {ut : u ∈ A} for all A ⊆ V \ {t}.
By construction, Ĝ− Ŝ is the empty graph on {t̂ : t ∈ T}, hence Ŝ is a vertex

cover of Ĝ. All we need to show is that Ŝ is a non-dominion of Ĝ if and only if S is
a non-dominion of G. We have that Ŝ is a dominion of Ĝ if and only if there exists
t̂ and an independent set Î of Ĝ− t̂ such that W = Ŝ ∩N(t̂; Ĝ) = (S ∩N(t;G))t
is contained in N(Î; Ĝ). We have Î ∩ Vt = It for some independent set I of G.
Since W ⊆ Vt and N(W ; Ĝ− t̂) ⊆ Vt, we have W ⊆ N(Î∩Vt; Ĝ)∩Vt = N(I;G)t,
which is equivalent to S being a dominion of G.

Fixing Set reduction



 Ĝ

G

c

T

S

d

e

a

b

ĉ

dc

ec

ac

bc

cd

d̂

ed

ad

bd

ce

de

ê

ae

be

 Gc  Gd  Ge

Fig. 3. Example reduction from a no-instance of Non-Dominion (G,S) to the corre-
sponding no-instance of Fixing Set (Ĝ, Ŝ), with Ŝ = Vc ∪ Vd ∪ Ve.

C Proof of Theorem 4

Lemma 1. Let G be a graph such that its set S of simplicial vertices is a dom-
inating set. Then S contains a maximal independent set.

Proof. Suppose for the sake of contradiction that S does not contain a maximal
independent set, i.e. that no dominating set contained in S is independent. Let
T ⊆ S be a minimal dominating set, and let t, t′ be adjacent vertices of T so
that N [t] = N [t′]. Thus T \ {t′} is still a dominating set, which is the desired
contradiction. ⊓⊔

Proof (of Theorem 4).

1. Proof by computer search. Code available at https://github.com/dave-ck/
MISMax with some further explanation.

2. Let G be a comparability graph, and order its vertices so that vi ⊑ vj =⇒
i ≤ j. Then let w = w1 . . . wn with wi = vi for all i ∈ [n]. For the sake of
contradiction, suppose that yN [wi] = 0 for some i ∈ [n]. Since K(yi−1)wi =

ywi = 0, we have yi−1
N [wi]

̸= 0. Therefore, let j = max{k ∈ [n] : wk ∼
wi, y

i−1
wj

= 1}; since yi−1
wk

= ywk
= 0 for all k ≤ i− 1, we have j ≥ i+ 1. But

K(yj−1)wj
= ywj

= 0, thus there exists l = max{k ∈ [n] : wk ∼ wj , y
j−1
wj

=

1}. Again, l ≥ j + 1, and hence yi−1
wl

= 1. However, wl ∼ wj and wj ∼ wi

imply that wl ∼ wi, thus l ∈ {k ∈ [n] : wk ∼ wi, y
i−1
wj

= 1} and l ≤ j, which
is the desired contradiction.

https://github.com/dave-ck/MISMax
https://github.com/dave-ck/MISMax

3. By Lemma 1, let M be a maximal independent set of simplicial vertices,
and let w be a permutation of G such that the vertices of M appear last:
w1, . . . , wn−|M | /∈ M and wn−|M |+1, . . . , wn ∈ M . Suppose for the sake of
contradiction that yN [v] = 0 for some vertex v. Then there exists m ∈ M
such that N [m] ⊆ N [v], thus yN [m] = 0. Suppose m = wa+1, then yaN(wa+1)

=

yN(m) = 0, hence ym = K(ya)wa+1 = 1, which is the desired contradiction.
4. It is easily shown that a graph composition can be obtained by repeatedly

blowing up one vertex b into the graph Gb at a time. As such, we only
need to prove the case where G = H(K1, . . . ,K1, Gb,K1, . . . ,K1), where the
vertices are sorted according to a permis ŵ = ŵ1 . . . ŵb . . . ŵn of H. For any
configuration x of G, let x̂ be the configuration of H such that x̂u = xu for
all u ̸= ŵb and x̂ŵb

=
∨

v∈Gb
xv. Let wb be a permis of Gb and consider

the permutation w of G given by w = ŵ1 . . . ŵb−1w
bŵb+1 . . . ŵn. We then

prove that y ∈ K(G) by considering the three main steps of w. We denote
the vertex set of Gb as Vb.
– Step 1: before the update of Gb. It is easy to show that for any 1 ≤ a < b,

we have Kw1...wa(x;G)G−Vb
= Kŵ1...ŵa(x̂;H)H−ŵb

.
– Step 2: update of Gb. Note that Vb is a tethered set of G, so let T =

N(Vb;G)\Vb. Let α = yb−1 be the initial configuration and β = yb−1+|Vb|

be the final configuration of the update of Gb. If αT ̸= 0, then the whole
of Gb will be updated to 0: βVb

= 0. Otherwise, it is as if Gb is isolated
from the rest of the graph and βVb

= Kwb

(αVb
;Gb). In either case, we

have β̂ = K(ŵb)(α̂;H).
– Step 3: after the update of Gb. Again, we have for all b < a ≤ n,

Kwb+1...wa(β;G)G−Vb
= Kŵb+1...ŵa(β̂;H)H−ŵb

.
In conclusion, we have yG−Vb

= Kŵ(x̂;H)H−ŵb
, and if Kŵ(x̂)ŵb

= 0 then
yVb

= 0 else yVb
= Kwb

(xS ;Gb). In either case, we obtain that y ∈ K(G).
⊓⊔

D Proof of Proposition 6

Proof. Let w be a permutation of G and ŵ be the subsequence of w satis-
fying [ŵ] = S. Let x̂ be a configuration of G[S] which is not fixed by ŵ:
Kŵ(x̂;G[S]) /∈ K(G[S]). We first note that x̂ ̸= 0 and that for all 0 ≤ a ≤ |ŵ|,
Kŵ1...ŵa(x̂;G[S]) ̸= 0.

Let T = N(S) \ S and U = V \ (S ∪ T) and x = (xS = x̂, xT = 0, xU). We
prove by induction on 0 ≤ b ≤ |w| that

yb := Kw1...wb(x;G) =
(
ybS = Kŵ1...ŵb′ (x̂;G[S]), ybT = 0, ybU

)
,

where b′ is defined by [ŵ1 . . . ŵb′] = S ∩ [w1 . . . wb]. The base case b = 0 is clear.
Suppose it holds for b− 1.

– Case 1: wb ∈ S. Then b′ = (b − 1)′ + 1 and wb = ŵb′ . Since yb−1
T = 0, we

have

ybwb
= K(yb−1;G)wb

= K(yb−1
S ;G[S])wb

= K(Kŵ1...ŵb′−1(x̂;G[S]);G[S])ŵb′ = Kŵ1...ŵb′ (x̂;G[S])wb
,

and hence ybS = Kŵ1...ŵb′ (x̂;G[S]).
– Case 2: wb ∈ T . Then b′ = (b−1)′. Since yb−1

S ̸= 0, we have K(yb−1;G)wb
= 0

and hence ybT = 0.
– Case 3: wb ∈ U . This case is trivial.

For b = |w| we obtain y = Kw(x;G) = (Kŵ(x̂;G[S]), 0, yU), for which yS /∈
K(G[S]), and hence y /∈ K(G). ⊓⊔

On the complexity of freezing automata
networks of bounded pathwidth⋆

Eric Goles1, Pedro Montealegre1, Mart́ın Ŕıos-Wilson1, and G. Theyssier2

1 Facultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibáñez, Santiago
2 I2M (Aix-Marseille University, CNRS)

Abstract. An automata network is a graph of entities, each holding
a state from a finite set and evolving according to a local update rule
which depends only on its neighbors in the network’s graph. It is freezing
if there is an order on the states such that the state evolution of any
node is non-decreasing in any orbit. They are commonly used to model
epidemic propagation, diffusion phenomena like bootstrap percolation or
cristal growth.
Previous works have established that, under the hypothesis that the net-
work graph is of bounded treewidth, many problems that can be captured
by trace specifications at individual nodes admit efficient algorithms.
In this paper we study the even more restricted case of a network of
bounded pathwidth and show two hardness results that somehow illus-
trate the complexity of freezing dynamics under such a strong graph
constraint. First, we show that the trace specification checking problem
is NL-complete. Second, we show that deciding first order properties of
the orbits augmented with a reachability predicate is NP-hard.

1 Introduction

Automata networks (AN) are finite dynamical systems that can be seen as the
finite and non-uniform counterpart of cellular automata on arbitrary graphs. An
automata network is freezing if there is an order on the states such that the state
evolution of any node is non-decreasing in any orbit. Several models that received
a lot of attention in the literature are actually freezing automata networks, for
instance: bootstrap percolation which has been studied on various graphs [1, 4,
3, 11], epidemic [6] or forest fire [2] propagation models, cristal growth models
[17, 10] and various models of self-assembly tilings [18].

The freezing condition has strong implications on the computational com-
plexity of these systems. For instance, following previous works on cellular au-
tomata [14, 8], it was established in [9] that a large set of problems specified by
traces at individual nodes are actually NC when considering freezing automata
networks of bounded treewidth. This result in particular captures the problem

⋆ Research partially supported by projects STIUC-AMSUD 22-STIC-02 (all authors),
Fondecyt-ANID 1200006 (EG), FONDECYT-ANID 1230599 (PM), ANID FONDE-
CYT Postdoctorado 3220205 (MRW)

of nilpotency, a property which can be expressed in the language of orbits by:
all orbits converge to the same fixed point. The nilpotency problem is typical of
the computational complexity collapse when the freezing condition is combined
by a condition on the structure of the network.

This paper aims at better understanding this complexity collapse by giving
lower bounds for freezing automata networks on the simplest network structure:
graphs of bounded pathwidth (intuitively, that are structurally close to a line or
a cycle).

First, we consider regular trace properties (i.e. regular expressions specifying
allowed traces at each node) and show that the problem of existence of an orbit
following the constraints is NL-complete (Theorem 2). Note that this problem
is similar to some well-studied problems in 1D cellular automata like cylinder-
to-cylinder reachability which can also be expressed as a regular expression of
traces. It is striking to compare the finite context with the NL upper bound
above to the infinite context, where freezing cellular automata have actually an
undecidable cylinder-to-cylinder reachability problem [14].

Second, we study another family of problems : properties defined by first order
logic on configuration with equality, a predicate x→ y meaning that y can be
reached from x in one step, and a predicate x→+ y meaning that configuration y
can be reached from configuration x in some number of steps. This logic denoted
FO+also captures nilpotency by ∃!y,∀x : x→+ y. Our second main result is that,
although nilpotency is co-NL (Corollary 1), the model checking of FO+is NP-
hard even for freezing automata networks defined on a line (Theorem 3).

Our results contribute to the following global picture where each cell of the
table is divided between the general case (lower left in black) and the freezing
case (upper right in blue).

Infinite 1D CA Finite bounded pathwidth AN

Nilpotency
Undecidable [12]

Decidable
[14, Theorem 2]

PSPACE-complete
[7, Corollary 3.2]

co-NL
(Corollary 1)

Regular trace
properties

Undecidable

Undecidable
[14, Theorem 5]

PSPACE-complete
[7, Theorem 3.3]

NL-complete
(Theorem 2)

FO+

Undecidable [12]
Open

PSPACE-complete
[7, Corollary 3.2]

NP-hard
(Theorem 3)

2 Definitions and notations

Given a graph G = (V,E) and a vertex v we will call N(v) the neighborhood of
v and δv to the degree of v. In addition, we define the closed neighborhood of v

as the set N [v] = N(v) ∪ {v} and we use the following notation ∆(G) = max
v∈V

δv

for the maximum degree of G. We will use the letter n to denote the order of G,
i.e. n = |V |. Also, if G is a graph and the set of vertices and edges is not specified
we use the notation V (G) and E(G) for the set of vertices and the set of edges
of G respectively. In addition, we will assume that if G = (V,E) is a graph then,
there exists an ordering of the vertices in V from 1 to n. During the rest of the
text, every graph G will be assumed to be connected and undirected. We define
a class or a family of graphs as a set G = {Gn}n≥1 such that Gn = (Vn, En) is
a graph and |Vn| = n.

Non-deterministic freezing automata networks. Let Q be a finite set that we
will call an alphabet. We define a non-deterministic automata network in the
alphabet Q as a tuple (G = (V,E),F = {Fv : QN(v) → P(Q)|v ∈ V })) where
P(Q) is the power set of Q. To every non-deterministic automata network we can
associate a non-deterministic dynamics given by the global function F : Qn →
P(Qn) defined by F (x) = {x ∈ Qn|xv ∈ Fv(x),∀v}.

Definition 1. Given a a non-deterministic automata network (G,F) we define
an orbit of a configuration x ∈ Qn at time t as a sequence (xs)0≤s≤t such that
x0 = x and xs ∈ F (xs−1). In addition, we call the set of all possible orbits at
time t for a configuration x as O(x, t). Finally, we also define the set of all
possible orbits at time t as O(A, t) =

⋃
x∈Qn

O(x, t)

We say that a non-deterministic automata network (G,F) defined in the al-
phabet Q satisfies the freezing property or simply that it is freezing if there
exists a partial order ≤ in Q such that for every t ∈ N and for every orbit
y = (xs)0≤s≤t ∈ O(A, t) we have that xi

s ≤ xi
s+1 for every 0 ≤ s ≤ t and for

every 0 ≤ i ≤ n.
Path decompositions and pathwidth. Let G = (V,E) be a connected graph.

A subgraph P of G is said to be a path if V (P) = {v1, . . . , vk} where every
vi is different and E(P) = {v1v2, v2v3 . . . , vk−1vk}. Now we present a graph
parameter called pathwidth which, generally speaking, indicates how similar a
graph is to a path graph. More precisely, we have the following definition:

Definition 2. Given a graph G = (V,E) a path decomposition is pair D =
(P,Λ) such that P is a path graph and Λ is a family of subsets of nodes Λ =
{Xt ⊆ V | t ∈ V (T) = {1, . . . , s}}, called bags, such that:

– Every node in G is in some Xt, i.e:
⋃

t∈V (P)

Xt = V,

– For every e = uv ∈ E there exists t ∈ V (P) such that u, v ∈ Xt,
– For every u, v, w ∈ V (P) if 1 ≤ u < v < w ≤ s then, Xu ∩Xv ⊆ Xw.

We define the width of a path decompostion D as the amount width(D) =
max

t∈V (P)
|Xt|−1. Given a graph G = (V,E), we define its pathwidth as the param-

eter path(G) = min
D

width(D). In other words, the pathwidth is the minimum

width of a path decomposition of G. Note that, if G is a connected graph such
that |E(G)| ≥ 2 then, G is a path if and only if path(G) = 1.

It is known that a path decomposition can be computed in DLOGSPACE
[13].

Specification checking problem. Now, we introduce a decision problem called
specification checking problem. Roughly, this problem ask for the existence of
an orbit in the automata network that verifies some trace constraints at each
node. The information of allowed traces at each node is called a specification: a
specification of length t is a map Et : V → P(Qt) such that, for every v ∈ V , the
sequences in Et(v) are non-decreasing (and thus respect the freezing condition).
We say that Et is satisfiable by A if there exists an orbit O ∈ O(A, t) such that
Ov ∈ Et(v) for every v ∈ V. We observe that the number of freezing traces of
length t is polynomial in t so Et can be represented in polynomial size in V and
t.

Also, in the absence of explicit mention, all the considered graphs will have
bounded degree ∆ by default, so a freezing automata network rule can be repre-
sented as the list of local update rules for each node which are maps of the form
Q∆ → P(Q) whose representation as transition table is of size O

(
|Q|∆+1

)
. The

specification checking problem (SPEC) introduced in [9] asks whether a given
freezing automata network satisfies a given specification. If Et is a satisfiable
t-specification for some automata network A we write A |= Et.

In [9] it is shown that many well-known and well-studied decision problems re-
lated to the dynamics of automata networks are somehow related to SPEC. These
problems are: the prediction problem, the predecessor problem, the nilpotency
problem and the asynchronous reachability problem. Recall that nilpotency is
the property that there is a configuration x such that all orbits end up in x and
x is a fixed point. Most of these problems are sub-problems of SPEC. In the case
of Nilpotency, an efficient parallel Turing reduction can be constructed [9].

In this paper, we focus on a variant of the specification problem were ad-
missible traces are represented as regular expressions. More precisely, a regular
(Q,V)-specification is a map from V to regular expressions over alphabet Q.
We therefore consider the Regular Specification Checking Problem or simply
REGSPEC which is the same as SPEC except that the specification must be a
regular specification. It is interesting to observe that REGSPEC with fixed degree
and fixed treewidth and with alphabet as unique parameter is W [2]-hard [9].

3 NL-completeness of REGSPEC problem

In this section, we explore different results for the complexity of REGSPEC when
the pathwidth of the underlying interaction graph is bounded. We start this sec-
tion by showing that REGSPEC is in NL. This is a direct extension of the results
on bounded treewidth in [9] and the technique used in [14] for the prediction
problem in one dimensional freezing cellular automata. Then, we show that the
problem is actually NL-complete by showing a logspace reduction from (s, t)-
connectivity.

Theorem 1. The REGSPEC problem is in NL for bounded pathwidth freezing
AN.

The complement of the nilpotency problem can be reduced to instances of
REGSPEC in such a way that we keep the strong complexity upper-bounds from
the previous theorem.

Corollary 1. The nilpotency problem is in co-NL for bounded pathwidth freez-
ing AN.

Now we show show that REGSPEC is NL-complete and thus, it is most likely
that the previous algorithm is the best we can do, unless NL = DLOGSPACE.

Now we introduce the main result of the section.

Theorem 2. The Regular Specification Checking problem (REGSPEC) is NL-
complete when restricted to bounded degree and bounded pathwidth interaction
graphs.

The proof of this result is divided in what we call phases. The main idea of
the proof is to construct a non-deterministic automata network AD = (GD,FD)
defined over a two dimensional grid of size k× d where d = nO(1) and k = O(1).
Of course, since k is constant, then AD has bounded pathwidth. This automata
network will non-deterministically guess a sequences of blocks (a structure rep-
resenting edges in the interaction graph of A, see Figure 1 for more details).
We call this part the selection phase. Then, the next part of the proof consists
in showing that AD = (GD,FD) is capable of deterministically verifying if an
initial condition corresponds to a sequence of valid edges, i.e. if it corresponds
to a sequence of blocks and they actually represent edges in GD. We call this
phase a verification phase In order to perform this task, we use a construction
based on using signals that will collide at specific locations as a way to verify
the distance between two given cells. In addition, it would be essential to save
(as a constant layer) the information contained in the incidence matrix of D.
Generally speaking, once AD has verified that the sequence of blocks is valid, it
will compare two subsequent blocks (which represent a pair of edges) in order
to verify if they are incident. If in any part of its dynamics AD locally detects
some error (by the application of its local rule), it will spread an error state that
will led the system to an attractor corresponding to a uniform configuration in
which any cell will be in this particular error state. However, if the process runs
flawless, then the system will reach an attractor in which all the cells are in a
particular success state. We will code, by using a specification ED (given in the
input of REGSPEC), a specific requirement for the initial configuration (more
precisely, we will ask the initial configuration to have the incidence matrix of D,
markers and information about the nodes (s, t)) in order to allow AD to have
enough information to start the selection and verification process. In addition,
we will code in this specification only the orbits that will reach this specific
success state. By doing this, we will show that AD |= ED if and only if there
is a path between s, t in D. Thus, the reduction will consist on constructing
(AD, ED) from (D, s, t) in DLOGSPACE.

#s 1 1 1 1 #m 1 1 1 1 # 0 0 0 0 #m0 0 0 0 # 0 0 0 0 #m 0 0 0 0 #s

#s h t 0 0 #m 0 0 t h # h t 0 0 #m 0 0 t h # h t 0 0 #m 0 0 t h #s

1 2 3 4

e1 e2 e3

B(e1)

D

Fig. 1. An example of a block for some graph D.

4 Hardness of FO+ model checking

FO(=,→) denotes the first order logic over configurations using equality and a
predicate x→ y meaning that y can be reached from x in one step. It is well-
known that this logic can be efficiently dealt with using finite automata theory
when configurations are one-dimensional. For instance the model-checking of this
logic is decidable on one-dimensional CAs [5, 16]. In this subsection, we study
first-order properties of the dynamics enriched with a new predicate x →+ y
expressing that configuration y can be reached from configuration x in some
unknown number of steps. We denote this logic FO+ = FO(=,→,→+). Adding
the predicate →+ allows to express properties like nilpotency:

∃x, ∀z, (z →+ z) =⇒ z = x,

which is equivalent in the deterministic case to ∃x, ∀y, y →+ x. The model check-
ing of FO+ is therefore undecidable for general 1D CA [12] and PSPACE-
complete for AN of bounded pathwidth [7]. However, nilpotency is a decidable
property for 1D freezing CA [14] and co-NL for bounded pathwidth freezing
AN (Corollary 1). It is therefore interesting to figure out what is the complexity
of the model checking of FO+ for freezing AN of bounded pathwidth.

The goal of this section is to show that despite considering only “one-dimensional”
networks and having the freezing constraint, we can encode bi-dimensional domino
problems in FO+ and thus get a NP-hard lower bound. The precise NP-hard
problem we consider in this subsection to reduce from is the following.

Lemma 1 (HV-domino CSP). Let Q be a large enough alphabet. The follow-
ing problem is NP-complete:

– input: for each 1 ≤ i, j ≤ n, two lists of constraints: Hi,j ⊆ Q2 and Vi,j ⊆ Q2.
– question: does there exist a configuration a ∈ Q{1,...,n}×{1,...,n} such that for

all 1 ≤ i, j ≤ n the local constraints are satisfied, i.e.

(ai,j , ai+1,j) ∈ Hi,j (if i < n) and (ai,j , ai,j+1) ∈ Vi,j (if j < n).

We can now show a lower bound on the model checking of a single formula
of FO+. Let Px(x) denote the formula of FO+ expressing that configuration x
has at least k preimages, formally:

Pk(x) ≡ ∃x1 ̸= x2 ̸= · · · ̸= xk,
∧

1≤i≤k

xi → x.

We will consider the following formula ϕ:

ϕ ≡ ∃x : x→ x

∧
(
∀y,∀y1,∀z, (¬P1(y) ∧ ¬P2(y

1) ∧ y → y1 ∧ y1 →+ z ∧ z → x ∧ z ̸= x)⇒ ¬P2(z)
)
.

It expresses that there exists a fixed point x such that considering any orbit
starting from a configuration y without preimage, which is the unique preimage
of its successor y1, and leading to x, then the configuration z occurring in the
orbit just before reaching x has only 1 preimage.

The main result of this section is that the FO+ model checking problem is
already hard for formula ϕ. The proof uses the HV-domino CSP of Lemma 1.
For each HV-domino CSP problem, we build a deterministic automata one-
dimensional network that essentially checks that a configuration (ai,j) satisfies
the HV-domino constraints. By one-dimensional we mean a graph which is a line
with self-loops on each node. In this automata network, configurations (ai,j) are
layed out as one-dimensional configurations so that ai,j and ai+1,j are neighbors
in the graph, and therefore H-constraints can be checked locally. However, ai,j
and ai,j+1 are far away in the graph, so V-constraints require the dynamics of
the automata network to be checked. The key idea is to use formula ϕ above to
characterize the part of the dynamics of the automata network that checks all V-
constraints for a given candidate configuration (ai,j): intuitively, quantifying over
orbits starting from a configuration y without preimage and being the unique
preimage of its successor ensures that the orbit contains some well-initialized
computation, and predicate ¬P2 on the configuration before reaching the fixed
point codes the fact that the output of the computation is correct. The fixed
point configuration x in formula ϕ represents a candidate configuration (ai,j)
(cleaned from any trace of computation) and, by construction of the automata
network, the second part of the formula expresses that for any well-initialized
test of a V-constraint the output of the test is a success. Formula ϕ uses predicate
¬P2 to characterize some specific configurations: the key corresponding trick in
the construction below is to make Cartesian products of some alphabet with
{0, 1} and ensure that the action of the automata network almost always reset
to 1 the value of such a {0, 1}-component in at least one node. This ensures
that the configuration obtained after one step has at least two preimages. The
situations where it is not the case are exceptional and well-controlled: this helps
to identify possible candidates for configurations y, y1 and z in formula ϕ.

Theorem 3. Checking whether a given deterministic freezing automata network
(G,F) verifies ϕ is NP-hard, even when restricted to bounded alphabet, and de-
gree 3 and pathwidth 1.

References

1. Hamed Amini and Nikolaos Fountoulakis. Bootstrap percolation in power-law
random graphs. Journal of Statistical Physics, 155(1):72–92, feb 2014.

2. Per Bak, Kan Chen, and Chao Tang. A forest-fire model and some thoughts on
turbulence. Physics Letters A, 147(5):297 – 300, 1990.

3. József Balogh and Béla Bollobás. Bootstrap percolation on the hypercube. Prob-
ability Theory and Related Fields, 134(4):624–648, jul 2005.

4. József Balogh, Béla Bollobás, Hugo Duminil-Copin, and Robert Morris. The sharp
threshold for bootstrap percolation in all dimensions. Transactions of the American
Mathematical Society, 364(5):2667–2701, may 2012.

5. Olivier Finkel. On decidability properties of one-dimensional cellular automata. J.
Cellular Automata, 6(2-3):181–193, 2011.

6. M.A. Fuentes and M.N. Kuperman. Cellular automata and epidemiological models
with spatial dependence. Physica A: Statistical Mechanics and its Applications,
267(3–4):471 – 486, 1999.

7. Guilhem Gamard, Pierre Guillon, Kevin Perrot, and Guillaume Theyssier. Rice-
like theorems for automata networks. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

8. E. Goles, N. Ollinger, and G. Theyssier. Introducing freezing cellular automata.
In Exploratory Papers of Cellular Automata and Discrete Complex Systems (AU-
TOMATA 2015), pages 65–73, 2015.

9. Eric Goles, Pedro Montealegre, Mart́ın Ŕıos Wilson, and Guillaume Theyssier. On
the impact of treewidth in the computational complexity of freezing dynamics. In
Liesbeth De Mol, Andreas Weiermann, Florin Manea, and David Fernández-Duque,
editors, Connecting with Computability, pages 260–272, Cham, 2021. Springer In-
ternational Publishing.

10. Janko Gravner and David Griffeath. Cellular automaton growth on z2: Theorems,
examples, and problems. Advances in Applied Mathematics, 21(2):241 – 304, 1998.

11. Alexander E. Holroyd. Sharp metastability threshold for two-dimensional boot-
strap percolation. Probability Theory and Related Fields, 125(2):195–224, 2003.

12. J. Kari. The Nilpotency Problem of One-dimensional Cellular Automata. SIAM
Journal on Computing, 21:571–586, 1992.

13. Shiva Kintali and Sinziana Munteanu. Computing bounded path decompositions
in logspace. In Electron. Colloquium Comput. Complex., volume 19, page 126.
Citeseer, 2012.

14. Nicolas Ollinger and Guillaume Theyssier. Freezing, Bounded-Change and Conver-
gent Cellular Automata. Discrete Mathematics & Theoretical Computer Science,
vol. 24, no. 1, January 2022.

15. Raphael M. Robinson. Undecidability and nonperiodicity for tilings of the plane.
Invent. Math., 12:177–209, 1971.

16. Klaus Sutner. Model checking one-dimensional cellular automata. J. Cellular
Automata, 4(3):213–224, 2009.

17. S. M. Ulam. On some mathematical problems connected with patterns of growth
of figures. In A. W. Bukrs, editor, Essays on Cellular Automata, pages 219–231.
U. of Illinois Press, 1970.

18. Andrew Winslow. A brief tour of theoretical tile self-assembly. In Cellular Au-
tomata and Discrete Complex Systems - 22nd IFIP WG 1.5 International Work-
shop, AUTOMATA 2016, Zurich, Switzerland, June 15-17, 2016, Proceedings,
pages 26–31, 2016.

A Proof of Theorem 1

Proof. Let t ∈ N a time, A = (G,F) a non-deterministic automata network and
Et a t-specification. First note that if G has bounded pathwidth, one can compute
a path decomposition P = (X1, . . . , Xp) in DLOGSPACE where p ≤ pw(G)
[13]. Now note that we can adapt the previousNC algorithm to anNL algorithm
in this particular context. First, observe that the dynamic programming lemma
in [9] is also valid in this case, but now, because the decomposition is a path,
there is only one bag for each level. Then, observe that testing whether a trace
in compact representation (as explained earlier and presented in [9]) belongs to
some regular language can be done in DLOGSPACE. Then, the algorithm will
reproduce the same procedure than the algorithm in [9] , but, instead of paral-
lelizing the information for the nodes in a bag storing it in different processors, it
will handle this information non-deterministically. More precisely, an algorithm
can guess a trace for each bag Xl from l = 1 to l = p while ensuring that each
node (that can appear in various bags) has the same trace in all guesses: this
can be done because, by definition of a path decomposition, a node appears in
an interval of [1, p]. This is the major difference with [9] that has to deal with
tree decompositions. Thus, REGSPEC problem is in NL. ⊓⊔

B Proof of Corollary 1

Proof. For a freezing AN F over alphabet Q, the property of not being nilpotent
is equivalent to the existence of a pair of orbits that ends up in two fixed points
that differ at some node. For any pair of states q and q′ and some node v,
denote by NONIL(q, q′, v) the problem of existence of two orbits in F that end
respectively in states q and q′ at node v. NONIL(q, q′, v) is actually a REGSPEC
problem for the AN F × F over alphabet Q×Q given by the following regular
expression for trace at node v: (Q×Q)∗(q, q′)+. Then, non-nilpotency can be
expressed as the disjunction∨

v∈V

∨
q ̸=q′

NONIL(q, q′, v).

From this, we deduce aNL algorithm for non-nilpotency: choose non-deterministically
one of the polynomially many instances of NONIL above and solve it in NL as
an instance of the REGSPEC problem (Theorem 1). We deduce that nilpotency
is co-NL. ⊓⊔

C Proof of Theorem 2

In order to show the main result, we need some technical definitions. Let Γ be
a finite set and α ∈ Γ . We call a string y ∈ Γ ∗ an α-marker in i ∈ [|y|] of length
l ∈ N if y|[i,i+l] = α · · ·α.

Given a directed graph (G,E) represented by its (oriented) incidence matrix
MG, we define for each e = (u, v) ∈ E a block representing e as a 2×2mn matrix
B(e) such that:

#s 1 1 1 1 #m 1 1 1 1# 0 0 0 0 #m0 0 0 0 # 0 0 0 0 #m0 0 0 0 #s

#s h t 0 0 #m 0 0 t h# h t 0 0 #m 0 0 t h # h t 0 0 #m 0 0 t h #s

Fig. 2. Example of the verification dynamics for a periodic pattern. In this case, the
pattern is given by the second row of a block representing the edge (1, 2) in some graph.

1. B(e) has 2m+1 special symbols located at specific positions. More precisely
B(e)i,(n+1)(j−1)+1 ∈ {#s,#m,#} for i = 1, 2, 3 and j = 1, . . . , 2m.

2. Its first row B(e)1· ∈ {0, 1}(2n+2)m+1 is a 1-marker in (2n+ 2)(e− 1) + 2 of
length n and a 1−marker in (3n+ 3)(e− 1) + 2 of length n; and

3. B(e)2· ∈ {0, 1}(2n+2)m+1 is a periodic sequence of period 2n containing the
row of M corresponding to e and a copy of this row in reverse order. More
precisely, B(e)2,[(2n+2)(i−1)+1,(2n+2)i] = M·,e and B(e)2,[(2n+2)i,(2n+2)(i+1)] =
σ(M·,e) where σ is the permutation such that σ({1, . . . , k}) = {k, . . . , 1} for
some fixed k ∈ N.

For an example of a block for a some graph D see Figure 4.
First, observe that SPEC is in NL as a consequence of the Theorem 1. Now

for the NL-hardness, let us take the problem STCON consisting in given a di-
graph D = (N,A) and two nodes s, t ∈ V deciding whether there exists a path
connecting s and t. Let (D = (N,A), s, t) be an instance of STCON. Observe
that any path between s and t can be seen as a sequence of edges e1, . . . , eℓ
such that e1 = (s, v), ei = (u′, v′) =⇒ ei+1 = (v′, w′) for some u′, v′, w′ ∈ N ,
i ∈ {2, . . . ℓ − 1} and eℓ = (w, t) for some v, w ∈ N . Besides, since each edge
can be represented by a block then, an (s, t)-path P can be represented as a
sequences of blocks B(e1), . . . , B(eℓ). Now, the main idea of the proof is to con-
struct a non-deterministic automata network AD = (GD,FD) defined over a
two dimensional grid of size k × d where d = nO(1) and k = O(1). Of course,
since k is constant, then AD has bounded pathwidth. This automata network,
will non-deterministically guess a sequences of blocks representing edges in A
(selection phase). Needless to say that, the first part of the proof will be showing
that AD = (GD,FD) is capable of deterministically verify if a n initial condi-
tion corresponds to a sequence of valid edges, i.e. if it corresponds to a sequence
of blocks and they actually represent edges in A (verification phase). In order
to perform these task, we use a construction based on using signals that will
collide at specific locations as a way to verify the distance between two given
cells. In addition, it would be essential to save (as a constant layer) the infor-

A

#s 1 1 1 1 #m 1 1 1 1 # 0 0 0 0 #m0 0 0 0 # 0 0 0 0 #m0 0 0 0 #s

OK

B

#s 1 1 1 1 #m 1 0 0 1 # 0 0 0 0 #m0 0 0 0 # 0 0 0 0 #m0 0 0 0 #s

×

C

#s 0 0 0 0 #m 0 0 0 0 # 0 0 0 0 #m0 0 0 0 # 0 0 0 0 #m0 0 0 0 #s

×

Fig. 3. Example of the verification dynamics for a marker. (Upper panel) A successful
verification of a marker. If exactly one zone has only cells in state 1 an acceptance state
will be reached. (Middle panel) An error in the verification raised by a zone in which
cells in state 0 and 1 were identified. In this case, an error state is propagated. (Lower
panel) An error in the verification raised by the signal only reading cells in state 0. In
this case, an error state is propagated.

#s 1 1 1 1 #m 1 1 1 1 # 0 0 0 0 #m0 0 0 0 # 0 0 0 0 #m 0 0 0 0 #s

#s h t 0 0 #m 0 0 t h # h t 0 0 #m 0 0 t h # h t 0 0 #m 0 0 t h #s

1 2 3 4

e1 e2 e3

B(e1)

D

Fig. 4. An example of a block for some graph D.

mation contained in the incidence matrix of D. Generally speaking, once AD

has verified that the sequence of blocks is valid, it will compare two subsequent
blocks Bi and Bi+1 in order to verify that if Bi = (u, v) then Bi+1 = (v, w) for
some u, v, w ∈ N . If in any part of its dynamics AD detects some error, it will
spread an error state that will lead the system to an attractor corresponding to
a uniform configuration in which any cell will be in this particular error state.
However, if the process runs flawless, then the system will reach an attractor
in which all the cells are in a particular success state. We will code, by using
a specification ED (given in the input of SPEC), a specific requirement for the
initial configuration (more precisely, we will ask the initial configuration to have
the incidence matrix of D, markers and information about the nodes (s, t)) in
order to allow AD to have enough information to start the selection and verifi-
cation process. In addition, we will code in this specification only the orbits that
will reach this specific success state. By doing this, we will show that AD |= ED
if and only if there is a path between s, t in D. Thus, the reduction will consist
on constructing (AD, ED) from (D, s, t) in DLOGSPACE.

Now, we give details on the construction of AD and ED:

1. QD = QP ∪ Qcore ∪ Qsignal where Qcore =
{Success,Accept,Error, 1, 0,#s,#m,#}, QP = {P1, . . . , P4} are the
states which indicate the different phases that are specified in the paragraph
bellow and Qsignal are the states used in order to propagate signals (for
example, the ones that we have used them on the previous lemmas).

2. Since we need to code an arbitrary path, d will be of size at most m × b
where b = (2n + 2)m + 1 is the size of a block. Observe that size can be
fixed since we can always assume that thexre is a loop in the terminal node
t so we can consider that all the paths are coded by m blocks with possible
padding of blocks B((t, t)). Thus, d = nO(1).

3. k will be the number of rows of the grid. We will essentially use one row for
the incidence matrix (incidence row), two rows for the blocks (selection row)
and a constant number of rows that we will call working rows in which the
signals will move and collide (working and verification rows).

4. ED will code only initial conditions in which one row of the grid (incidence
row) will have O(m) copies of the incidence matrix in the same format than
the second row in blocks i.e. there are markers at specific positions and we
code the different columns in the zones defined by the markers (Figure 5).

5. ED will code orbits in which the selection row of size d will have marked in
the first block a symbol indicating ”head” in the position associated to node
s (see Figure 4).

6. ED will code orbits in which the selection row of size d will have marked in
the last block a symbol indicating ”tail” in the position associated to node
t (see Figure 4).

7. ED will code orbits which will reach a uniform success state.

Now we will describe the dynamics of the automata network AD.

Initialization In t = 0, since by construction of the specification ED, we can
consider only orbits in which the incidence row, all the special symbols and the
position of the source and terminal node (as an h and t symbol fixed in its
correspondent positions) are well coded and fixed in the initial condition.

Selection phase First, the local rules will non-deterministically guess the states
of the rest of the cells in the selection row. This process is performed cell by cell,
by sending a traveling signal in one of the working rows. This signal starts on a
starting symbol #s and finishes in a terminal symbol #s. After doing that, the
signal comes back from the terminal symbol to the starting symbol and writes
a change of phase state in all the cells on the working row.

Verification phase After that, verification phase starts. The process has two
main subphases:

A local phase: First, each block is internally verified. More precisely, the
local rules will verify that B(e) has the correct formatting on its two rows and
that it correspond to an actual edge in D, i.e. e ∈ A:

1. Verification of the first row. For each part of size 2n defined by two different
special symbols (i.e. the space bounded by pairs (#s,#), (#,#s) or (#,#))),
three different signals will start from one symbol to the one in its left (see
Figure 3). The first signal will change of state if and only if it reads a cell in
state 0. If it remains in initial state it will be interpreted as success otherwise,
if it has changed, then it will be interpreted as error. The second one will do
the same thing but for cells in state 0. Finally, the third signal will start from
a cell marked with #s and will go through the row until another #s symbol
is reached. This signal will verify that there is exactly one block which has
marked success for the first signal and error for the second one. Otherwise,
it will change to an error state that will be spread to all the cells (see Figure
3 for examples).

2. Verification of the second row. In order to verify that the coding of the second
row is correct, we need to check that each row has exactly two symbols: h

and t and that the configuration is symmetric related to the cells marked
with symbols #m. In order to do that, from each symbol h and t a signal is
sent through two working rows (one signal to the right and one to the left,
see Figure 2 for details.) Then, the local rules in the cells holding the state
#m will change to the success if exactly two signals arrive at the same time.
More precisely, this last procedure is implemented by sending a two state
signal, one marking the starting part of the signal and one marking the rest.
If the latter condition does not hold, the cells marked by #m will spread an
error state (see Figure 2). Observe that this procedure works since: i) if two
cells are holding the same state and they are at the same distance of the cell
marked by #m then, the two equal signals will arrive at the same time to
the cell holding the sate #m; and ii) since the coding considers a constant
amount of special symbols (more precisely h and t) then, the local rule is
freezing.

3. Verification of the edge that is coded in the block. At this point, if no error
state has been produced by the dynamics, it means that the coding of each
block is coherent, but we are not sure that it actually represents an edge
e ∈ A. In fact, we have coded in the first selection row some number i
referencing a column of the adjacency matrix of D but, we need to check
whether the second selection row contains the same information than the i-
column of the adjacency matrix. This last part is performed in the following
way: a signal will be transmitted over a working row in order to identify
the information in the two selecction rows of the block. Since each block
has a marker in its first row, the signal can hold a state while it is in the
same position than the cells in state one in the marker. Thus, this state will
indicate the local rule to perform a comparison between the second row of
the block and the correspondent part of the incidence row. For more details
see Figure 5. While verifications are being run, the local rule will write an
acceptance state or an error state in some working row. Finally, a third signal
will verify that all the cells in the latter working row are in the acceptance
state and will spread the error state if not. Finally, if no error state has
been spread, the local rule updates the state of the cells in the working row
holding the change of phase state.

#s h t 0 0 #m 0 0 t h # 0 h t 0 #m 0 t h 0 # 0 0 h t #m t h 0 0 #
#s 1 1 1 1 #m1 1 1 1 # 0 0 0 0 #m0 0 0 0 # 0 0 0 0 #m 0 0 0 0 #s

#s h t 0 0 #m 0 0 t h # h t 0 0 #m 0 0 t h # h t 0 0 #m 0 0 t h #s

Fig. 5. Example of adjacency verification. In the first row, the incidence matrix of D
is coded. In this case a signal verifies that the edge (1, 2) is in the graph D (see Figure
4)

A pair-wise coherent phase: similarly to the verification of the second row
in the selection row on the previous phase, this phase starts by sending multiple
signals that are sent from the cells in the selection row with states given by the
symbols marking the tails and the heads of the coded edge in the second row
of the selection row on each block. These signals are sent through two different
working tapes. Each of these signals will carry a special state indicating if its
origin was a head or a tail. The local rule in the cells with a special symbol (#s)
will verify whether a head signal has collided with a tail signal (see Figure 6). If
exactly one of this collision take place, the local rule will write an accept state
in one of the working rows. Finally, in other working row, a signal starting from
the starting symbol will verify that at the position of the beginning (ending) of
a block an accept state is written in the previous working row. The local rule
will update the cells in that working row to an error state that will spread if at
least one the verifications is not correct. Otherwise, it will update the cells to
the success state.

#s 1 1 1 1 #m 1 1 1 1 # 0 0 0 0 #m0 0 0 0 # 0 0 0 0 #m0 0 0 0 #s

#s h t 0 0 #m 0 0 t h # h t 0 0 #m 0 0 t h # h t 0 0 #m 0 0 t h #s

0 0 0 0 #m

0 h t 0 #m

B(e1) B(e2)

Fig. 6. Example of a verification dynamics which compares blocks and checks if the
corresponding edges are both incident to the same node. If exactly one tail signal collide
with a head it means that the previous property is verified and an error state is spread
otherwise.

Now, we turn into show that the reduction hold. First, observe that the con-
struction of (AD, ED) can be done in DLOGSPACE since local rules does not
depend on the structure of D and thus, we only need to store partial informa-
tion related to the structure of the incidence matrix of D in order to define the
specification. Then, we have that if there is a path between s and t on D, by
construction, there must be at least one orbit of AD which satisfies ED. Con-
versely, if AD |= ED then, there exist at least one initial condition which codes a
sequence of edges in D which leads the system to a uniform success fixed point.
By construction, this attractor is only reachable (starting from the set of valid
initial conditions) after all the previous phases are successfully performed by the
dynamics. Then, we deduce that STCON ≤DLOGSPACE

m SPEC and thus, SPEC
is NL-hard. The theorem holds.

D Proof of Lemma 1

Proof. There exists a Turing machine working in polynomial time (and space)
that on input (Ψ, v) where Ψ is a SAT formula and v a candidate valuation checks
whether v satisfies Ψ . Then for any given SAT formula Ψ , one can produce in
LOGSPACE a set of HV-domino constraints that accepts only bi-dimensional
configurations (ai,j) which represent a valid space-time diagram of the above
machine which are correctly initialized and with Ψ enforced as the first com-
ponent of the input. The encoding of space-time diagram of Turing machine
inside domino constraints is well-known and usually presented through a fixed
set of so-called Wang tiles (see for example [15]), which are just a uniform set of
horizontal constraints H ⊆ Q2 and vertical constraints V ⊆ Q2. Note that since
the HV-domino constraints considered here are non-uniform, we can hard-code
the initial state of the machine in the lower-left corner of the configuration, the
encoding of Ψ in the initial row, and the accepting state of the machine in the
top row. The reduction from SAT to the HV-domino CSP follows. ⊓⊔

E Proof of Theorem 3

Proof. We proceed by reduction from the HV-domino CSP: given n and con-
straints (Hi,j) and (Vi,j), we build a deterministic automata network (GN ,F)
with N = n2 which verifies ϕ if and only if the CSP has a solution. GN is the
graph with nodes V = {1, . . . , N} and edges (i, i) for all i ∈ V and (i, i+ 1) for
all i < N and (i, i− 1) for all i > 0. GN has pathwidth 1 and degree 3. The
automata network F has four components plus a global error state and uses
alphabet Q′ = Q× {0, 1} ×Qh ×Qt ∪ {⊥} (where Q is the alphabet of the HV-
domino CSP). The freezing order on Q×{0, 1}×Qh×Qt is simply the product
of orders on each component, and this order is extended to Q′ by taking ⊥ as a
maximal element. The overall behavior is as follows (see Figure 7 and Figure 8).

– ⊥ is an invariable spreading error state: as soon as some node is in state ⊥,
its neighbors change to ⊥ in one step.

– The Q-component contains a candidate configuration (ai,j) written as a one-
dimensional word a1,1 · · · a1,na2,1 · · · a2,n · · · an,1 · · · an,n. The block of nodes
(j − 1)n+ 1 to (j − 1)n+ n will be referred to as block j and it contains line
j of the matrix (ai,j) in its Q-component. This component never changes,
except when an error state⊥ invades the network, or when some H-constraint
Hi,j is violated at some node in which case a ⊥ state is generated. The
freezing order on this component can be chosen arbitrarily.

– The {0, 1}-component is called dummy component which never changes, has
no influence on other components, and is just here to ensure that any con-
figuration leading to ⊥N has enough preimages (see Claim E below).

– The Qh component handles a global control head whose main behavior is
a back-and-forth movement from node 1 to node N and back to node 1.
More precisely, the head do so on a set Σ of well-formed configurations and

ti
m
e

→

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

←1

R1

C

A

→

B

B

B

B

B

B

B

B

B

B

B

B

B

B

←1

C

C

C

A

A

→

B

B

B

B

B

B

B

B

B

B

B

B

←1

C

C

C

C

A

A

A

→

B

B

B

B

B

B

B

B

B

B

←1

C

C

C

C

C

A

A

A

A

→1

B

B

B

B

B

B

B

B

←1

C

C

C

C

C

C

A

A

A

A

A

→1

B

B

B

B

B

B

←1

C

C

C

C

C

C

C

A

A

A

A

A

A

→1

B

B

B

B

←1

C

C

C

C

C

C

C

C

A

A

A

A

A

A

A

→1

B

B

←1

C

C

C

C

C

C

C

C

C

A

A

A

A

A

A

A

A

→1

←1

C

C

C

C

C

C

C

C

C

C

Qh component

ti
m
e

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

γ

γ

γ

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

γ

γ

γ

γ

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

γ

γ

γ

γ

γ

L

L

L

L

L

←L

→L

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

αL

αL

αL

αL

←L

β

β

→L

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

αL

αL

αL

αL

αL

αL

αL

αL

→L

→L

→L

→L

γ

γ

γ

γ

γ

γ

γ

γ

αR

αR

αR

αR

αR

αR

αR

αR

←R

←R

←R

γ

γ

γ

γ

γ

γ

γ

γ

γ

αR

αR

αR

αR

αR

αR

αR

←R

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

R

R

R

R

R

R

R

R

R

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

Qt component

Fig. 7. Example of valid orbit with n = 3 starting from a configuration testing the
V-constraint V2,2 and resulting in a positive output. The trajectory of the Qh head is
reproduced on the Qt-component to clarify the interactions. The vertical thick lines
represent separations between consecutive blocks.

left mark right mark

left/right heads of the Qt-component

head of Qh-component

test success iff heads meet on block boundary

block boundaries

Fig. 8. Euclidean non-discretized representation of the verification process ensuring
that the marks in two consecutive blocks have the same offset within the block and
thus mark two positions which are vertical neighbors in the matrix (ai,j), i.e. of the
form ai,j and ai+1,j .

any ill-formed configuration is detected locally and generates an error state
⊥. We set Qh = {0, 1} × {0, 1} × {A,B,C,→,→0,→1,←1,←0, R0, R1}
with freezing order 0 < 1 on the two {0, 1} components and
A <→<→0<→1< B <←1<←0< R0 < R1 < C on the remaining com-
ponent. Σ is defined by forbidding a set of pairs of states to occur two
adjacent symbols cici+1 from the third component. Moreover, we add the
constraint that node 1 cannot be in state A, and that the first {0, 1}
component at this node must be 1. Precisely, configurations authorized in
Σ are the following (without considering the {0, 1} components):
1. → AN−1 or →0 AN−1 or →1 AN−1,
2. Bi → AN−i−1 or Bi →0 AN−i−1 or Bi →1 AN−i−1,
3. BN−1 →0 or BN−1 →1,
4. BN−1 ←0 or BN−1 ←1,
5. Bi ←0 CN−i−1 or Bi ←1 CN−i−1,
6. ←1 CN−1 or ←0 CN−1,
7. R1C

N−1 or R0C
N−1,

8. CN .
The head is the unique arrow occurring in each configuration and its dy-
namics is as follows. It moves to the right in a background of As and letting
symbols B behind (configuration types 1, 2 and 3). At each move to the
right, the first {0, 1} component of the node left by the head is reset to 1.
When doing so it can turn at some point to state→1 or→0 depending on the
layer of states Qt as detailed below: these states represent a head holding a
YES/NO bit of information about the output of the test process happening
on component Qt. This bit must appear before reaching node N and once
appeared, this bit of information never changes in the future. When reaching
node N the head starts to move to the left, progressing in a background of
Bs and letting symbols C behind (configuration types 4 and 5). At each move
to the left, the second {0, 1} component of the node left by the head is reset
to 1. The fact that some {0, 1} component is reset to 1 at each head move
ensures that the corresponding configurations have more than one preimage
(which is a key aspect when considering formula ϕ). Finally, the head reaches
node 1 and must hold the output bit of the test process (configuration type
6), maintain it one step (configuration type 7), and finally erase it (type 8).
Also, when reaching a configuration of type 6 at node 1, the bit of the second
{0, 1} component is reset to 1 when the head at node 1 is←1 and unchanged
when it is ←0. This bit is reset to 1 in any case for configurations of type 7.
As a result, a configuration of type 7 has exactly one preimage if and only
if it is R1C

N−1.
– The Qt component is the test component, its role is to mark two positions in

the configuration and interact with the head component in order to check a
single V-constraint on the candidate configuration hold in the Q-component.
More precisely, the test component ensures that the two marked positions
are at distance n (i.e. they correspond to two vertical neighbors in the grid
(ai,j)) and gathers locally at some node the information on the corresponding
pair of states ai,jai,j+1 and the constraint Vi,j so that the head can check

whether ai,jai,j+1 ∈ Vi,j . See Figure 8 for an Euclidean intuition of how the
distance equality test works. This behavior is implemented using alphabet
Qt = Q×Q× {L,R, αL, αR, β, γ,←L,←R,→R} with freezing order: L <
R < αL < αR <←L< β <→L<←R< γ. The third sub-component of Qt

is used to mark two positions in the configuration as well as check that the
distance between the two marked positions is exactly n so that they indeed
correspond to a pair of positions (i, j) and (i, j + 1) in in the matrix (ai,j).
Its behavior is based on a set of valid configurations Σ+ defined by local
rules and synchronized with the Qh component. States ←L,←R,→R are
called “left/right arrows” of the Qt-component and are generated at specific
positions when the global Qh-head passes by (see Figure 8). The two Q-sub-
components of Qt are forced to hold states ai,j and ai,j+1 respectively on
valid configurations, and allow to check the V-constraint (ai,j , ai,j+1) ∈ Vi,j .
The conditions defining Σ+ are local (i.e. they can be defined as a list
of admissible pair of states between neighboring nodes) and a ⊥ state is
triggered whenever and wherever an invalid local pattern is detected. The
conditions are the following:
• First, in the absence of a left-moving head in the Qh component, the
two Q-sub-component must be uniform: each one is of the form qN for
some q ∈ Q. When there is a left-moving head in the Qh component,
each Q-sub-component is of the form: qiqN−i

0 where q0 is the maximal
state of Q and i is the position of the Qh head.
• Then, there are five types of admissible configurations on the third sub-
component of Qt:
1. L∗α+

Lα
+
RR

∗ and αL and αR segments are forbidden to cross a block
boundary (i.e. node (n, j) has an αL if and only if (1, j + 1) has an
αR),

2. L∗ ←L β∗α∗
Lα

∗
RR

∗,
3. L∗γ∗ →L β∗α∗

Lα
∗
RR

∗ or L∗γ∗ →L β∗α∗
Lα

∗
R ←R γ∗R∗,

4. L∗γ∗ →L←R γ∗R∗,
5. any configuration of the form cγ∗ where c is the prefix of a configu-

ration of type 3 or 4.
• Type 4 configurations are only authorized when→L and←R states meet
at a bloc boundary, i.e. are at positions of the form (n, j) and (1, j + 1)
(respectively).
• Moreover, only L, αL, αR and R are authorized in a node whose Qh

component is in state A, therefore a type 1 configuration on the Qh

component admits only a type 1 configuration on the Qt component.
• Finally, in configurations of type 1, let (i, j) (i.e. n(j − 1) + i) be the
leftmost node in state αL and let m be the rightmost node in state αR.
Denote by a and b the states of the first and second Q-sub-component
respectively. Then it must hold that a is the state of the Q-component
(the global one of the alphabet Q′) of node (i, j) and b is the state of the
Q-component of node m.

The dynamics of this Qt-component is as follows and respects the type order
of configuration described above:

• Type 1 configurations don’t change until the head of the Qh-component
arrives at node (i, j) where it generates a ←L state.

• Then, ←L propagates in the L background, letting β states behind and
until position (1, j) is reached (i.e. the first position to the left which
is at the beginning of a bloc). Then, the arrow bounces by turning into
→L and starts to progress to the right letting γ states behind.

• Meanwhile, when the Qh head reaches position m (the rightmost node in
state α), it launches a←R state in the Qt layer which starts to propagate
to the left letting γ sates behind.

• Also, when the Qh head bounces on node N and starts to propagate
to the left, it writes q0 on each Q-sub-component and γ on the third
sub-component of Qt, thus erasing progressively any information about
the marked positions and the V-constraint being tested.

• The dynamics ends into the fixed point equal to qN0 on each Q-sub-
component and γN on the third sub-component.

Finally the Qt-component influences the Qh-component as follows: when the
head of the Qh-component of type → reaches node (i, j) it becomes →1 if
(a, b) ∈ Vi,j (where a and b are the states of the Q-sub-components) and→0

else.

Let us now prove that this construction has the desired property. Let’s call
valid orbit any orbit without occurrence of ⊥.

Claim (ϕ checks V-constraints on valid orbits). Consider any valid orbit starting
from a configuration y without preimages, with y → y1 and ¬P2(y

1), and reach-
ing a fixed point x. Then y is of type 1 on components Qh and Qt. Moreover,
a correctly encoded test of V-constraint Vi,j is encoded in component Qt and
the configuration z such that y →+ z and z → x verifies ¬P2(z) if and only if
ai,jai,j+1 ∈ Vi,j .

Proof. Since there is no occurrence of ⊥, the whole orbit belongs to Σ+. A con-
figuration of type 8 or 9 in the Qh component always has a preimage so y is not
of this type. A configuration of type 2,3,4,5,6 or 7 has a moving head that reset
some {0, 1} component to 1, so it cannot be the unique preimage of its successor,
contradicting the hypothesis on y1. Therefore y is of type 1 on components Qh

and Qt. Then, by construction, the marked positions in the Qt component are at
distance n and there is a well-formed V-constraint test happening (otherwise a ⊥
would be generated later in the orbit). The dynamics of the automata networks
then ensures that the Qh heads holds the bit of information corresponding to
the validity of the encoded V-constraint: it is 1 if and only if ai,jai,j+1 ∈ Vi,j .
The dynamics ends in a fixed point x which has a configuration of type 8 on
the Qh-component. Already when reaching a configuration of type 6 or 7 or 8
on the Qh-component, all the Qt-component has been reset to a default value.
Therefore it holds that the bit of information in the head is 1 if and only if the
type 7 configuration reached z = R1C

N−1 has a unique preimage. ⊓⊔

From the construction and Claim E it should be clear that if the HV-domino
CSP has a solution (ai,j), then one can encode it into a fixed point configuration

x that satisfies the orbit property expressed in ϕ for all admissible choices of
initial configuration y (because all admissible V-constraint tests are satisfied by
the CSP solution). In this case the automata network verifies ϕ.

Conversely, if the automata network verifies ϕ and if the fixed point x can
be chosen to be a configuration without ⊥, then this configuration encodes a
solution to the HV-domino CSP by Claim E and because any valid V-constraint
test can be encoded in an appropriate initial configuration y. It remains to
discard the possibility that ϕ is valid because x is chosen to be the invalid fixed-
point ⊥N , this is the purpose of the following claim.

Claim (ϕ discards invalid orbits). Consider three configurations y, z, x such that
y →+ z → x and x→ x and x ̸= z. If ¬P2(z) then x cannot be the configuration
⊥N .

Proof. First z must have an occurrence of ⊥ because it is impossible that the
preimage z′ of z be everywhere correct and in one step becomes a configuration
z everywhere incorrect but without occurrence of ⊥: indeed, by construction,
the changes not involving ⊥ state that can occur in a configuration in one step
are only in the neighborhood of arrow states of both Qh and Qt components,
and they have a bounded number of occurrences by definition of Σ+. Moreover,
there must be an occurrence of ⊥ in z at position i such that z′(i) ̸= ⊥. Indeed,
otherwise it would imply z = ⊥N which is impossible under the hypothesis.
Therefore by just changing the dummy component at i in z′ we produce another
preimage of z, so P2(z) holds which is a contradiction. ⊓⊔

We have thus shown that the HV-domino CSP has a solution if and only if the
automata network verifies ϕ. The theorem follows since the construction can be
computed efficiently (actually in LOGSPACE). ⊓⊔

On the Dynamics of
Bounded-Degree Automata Networks

Julio Aracena4, Florian Bridoux3, Pierre Guillon1, Kévin Perrot2, Adrien
Richard3, and Guillaume Theyssier1

1 Aix-Marseille Université, CNRS, I2M UMR7373, Marseille, France
2 Aix-Marseille Université, Univ. Toulon, CNRS, LIS UMR7020, Marseille, France

3 Univ. Côte d’Azur, CNRS, I3S UMR 7271, Sophia Antipolis, France
4 Departamento de Matemáticas, Universidad de Concepción, Chile

Abstract. Automata networks can be seen as bare finite dynamical
systems, but their growing theory has shown the importance of the un-
derlying communication graph of such networks. This paper tackles the
question of what dynamics can be realized up to isomorphism if we sup-
pose that the communication graph has bounded degree. We prove sev-
eral negative results about parameters like the number of fixed points
or the rank. We also give bounds on the complexity of the problem of
recognizing such dynamics. However, we leave open the embarrassingly
simple question of whether a dynamics consisting of a single cycle can
be realized with bounded degree.

1 Introduction

One possible definition for a boolean automata network is simply a self-map
F : {0, 1}n → {0, 1}n. This definition forgets about the computational aspect of
the model, which consists in, seen from a dual point of view, a set of n automata
linked by some arcs, and each holding a bit that they can update depending on
that of their incoming neighbors.

As a model of computation generalizing finite cellular automata, this commu-
nication graph is quite relevant, and it is natural to constrain it, and in particular
try to restrict the possible degrees: a small degree indeed represents simple local
computations. Note indeed that a complete communication graph can yield any
dynamics F : {0, 1}n → {0, 1}n. The minimal communication graph, often called
interaction graph, plays an important role in automata network theory (see[?]
for a survey). It was already established that some dynamics requires high degree
and even a dense communication graph [?].

In this paper, we address the question of how restrictions on the communi-
cation graph, and in particular bounding its degrees, can impose restrictions on
the possible dynamics. For instance, in Figure 1, one can see three (families of)
graphs representing possible dynamics. Which are the ones that can be realized
by communication graphs with small degree?

In Section 3, we establish bounds on different parameters of the dynamics
depending on the degree of communication graphs. This in particular allows to

(a)
a
cy-
cle
of
length
2n.

(b)
a
cy-
cle
of
length
2n−
1
and
an
iso-
lated
ver-
tex.

(c)
a
cy-
cle
of
length
2n−
C
and
a
size-
C
for-
est
plugged
to
it.

Fig. 1. Three examples of dynamics on 24 configurations.

show that the family of dynamics from Figure 1(c) cannot be realized with a
bounded-degree communication graph. In Section 4, we give some constructions
using feedback shift registers that in particular allows to realize dynamics of
the type from Figure 1(b) with communication graphs of degree 2. Finally, in
Section 5, we give upper and lower bounds for the computational complexity of
recognizing dynamics that can be realized with a bounded-degree communication
graph.

However, we leave open the question about the minimum degree necessary
to realize dynamics from Figure 1(a). Prior to this work, J. Aracena has com-
municated to us the conjecture that such dynamics requires unbounded degree.
This also appears in [?] with various intermediate results.

2 Definitions and notations

Consider a finite alphabet Q with q = |Q| symbols. Without loss of generality,
Q = {0, . . . , q−1}. Consider also a set V = {1, . . . , n} of n nodes. A configuration
x = (xi)i∈V ∈ QV is a function V → Q. For every U ⊆ V , we denote xU : U → Q
the restriction of x to U , i.e., xi = (xU)i for every i ∈ U . Given a pattern u ∈ QU ,
we define the cylinder [u] = {x ∈ QV : xU = u}.

An automata network (AN) is a map F : QV → QV . It can be represented
as a dynamics graph, like those from Figure 1, by linking each configuration x
to its image F (x). This graph is denoted by D(F). A configuration x such that
F (x) = x is called a fixed point, and the number of fixed points of F is denoted
fp(F). The rank of F is its number of images and is denoted by rk(F). The set
of ANs with alphabet of size q and with n nodes is denoted F(n, q).

A communication graph for F is a graph over vertex set V such that for every
i ∈ V , and every x, x′ ∈ QV which agree over the in-neighborhood N−(i) ⊂ V
of i, F (x)N−(i) = F (x′)N−(i). In other words, the value F (x)i is updated thanks
to a local function fi : Q

V → Q which depends only on the values xN−(i). For
U ⊆ V , we may also denote fU (x) = F (x)U . The interaction graph of F , denoted
G(F), is the minimal communication graph of F . Its degree is the maximum in-
degree of a vertex in G(F). We denote by F(n, q, d) the set ANs from F(n, q)
which can be defined with a communication graph of degree at most d.

3 Non-local dynamics

Here we prove that some dynamics are intrinsically non-local in the sense that
they cannot be realized by bounded-degree networks, even up to isomorphism.

Our first result shows that if G(F) has bounded degree and F is not the
identity, then the number of fixed points of F cannot be close to qn.

Proposition 1. Let F ∈ F(n, q, d) with fp(F) < qn. Then fp(F) ≤ qn − qn−d.

Proof. Since F is not the identity map, there exists x ∈ QV such that fi(x) ̸= xi

for some i ∈ V . There are two cases. If i ̸∈ N−(i), then for every pattern
u ∈ QV \{i}, there is a unique configuration y ∈ [u] such that fi(y) = yi = fi(u);
then, fp(F) ≤ qn−1 ≤ qn − qn−d. If i ∈ N−(i), then let u = xN−(i); for every
configuration y ∈ [u], fi(y) = fi(x) ̸= xi = yi and y is not a fixed point.
Therefore, fp(F) ≤ qn − qn−d. ⊓⊔

Remark 1. The bound from the previous lemma is tight: indeed let F (x) = x
if x1,...,d ̸= 0d and πx1x2,...,n otherwise, where π is a permutation of Q without
fixed point. Then F is an AN of degree n− 1 with qn − q fixed points.

Proposition 1 can be generalised to the powers of F . First, note that if F ∈
F(q, n, d) then F k ∈ F(q, n, dk) for every k ≥ 1 (because from G(F) of degree
≤ d we obtain a communication graph for F k by putting an edge for each path
of length k). By combining this remark and Proposition 1, we obtain that, if
fp(F k) < qn then fp(F k) ≤ qn − qn−dk

.
As an application, we can easily find bijections without fixed points that

force large communication degrees. Suppose for instance that the dynamics of
F ∈ F(2, n) consists of 2n−1 − 2 limit cycles of length 2 and one limit cycle of
length 4. Then F 2 has exactly 2n − 4 fixed points. Denoting by d the degree of
G(F), we obtain that 2n − 4 = fp(F 2) ≤ 2n − 2n−d2

and thus d ≥
√
n− 2.

Remark 2. There are about e
√
2n nonisomorphic bijective AN, but only (qq

d

)n

AN with degree ≤ d. So few bijective AN have a realization with bounded degree.

Our second result shows that if G(F) has bounded degree and F is not a
bijection, then the rank of F cannot be close to qn.

Theorem 1. Let F ∈ F(n, q, d) with rk(F) < qn. Then rk(F) ≤ qn − n
d+1 .

In particular, the family of dynamics depicted in Figure 1(c) is impossible
to realize with bounded-degree ANs. However, Theorem 1 fails among bijective
ANs of fixed degree, such as the dynamics depicted in Figure 1(c), as we will see
in Section 4.

The key part of the proof of Theorem 1 consists in proving that AN dynamics
cannot be close to bijective without being bijective (Lemma 2). We need some
definitions. We say that F ∈ F(n, q) is k-balanced (k ≤ n) if for any U ⊆ V with
|U | = k and for any pattern u ∈ QU , it holds

∣∣F−1([u])
∣∣ = qn−k. Note that if

F is bijective then it is k-balanced for all 1 ≤ k ≤ n. Moreover, if F is (k + 1)-
balanced, then it is k-balanced.

Given any property P ⊆ F(n, q) of ANs, we say that a given F ∈ F(n, q)
is k-almost P (k ≤ qn) if there exists F ′ ∈ P such that F and F ′ differ on at
most k configurations, i.e.

∣∣{x ∈ QV : F ′(x) ̸= F (x)}
∣∣ ≤ k. Observe that if the

base property P is invariant under isomorphism, then being k-almost P is also
invariant under isomorphism. For instance, being k-almost bijective is invariant
under isomorphism.

Lemma 1. F ∈ F(n, q) is k-almost bijective if and only if rk(F) ≥ qn − k.

Proof. ⇒: Suppose F ∈ F(n, q) is k-almost bijective. Then there exists F ′ ∈ F(n, q)
bijective and X ⊆ QV with |X| = qn − k and F ′(X) = F (X). Since F ′ is bi-
jective |F ′(X)| = |X| = qn − k and since F ′(X) = F (X) ⊆ F (QV) we have
rk(F) ≥ qn − k.

⇐: Suppose that F has rank qn − k. Let Y = {y1, y2, . . . , yqn−k} ⊆ F (QV).
Let X = {x1, x2, . . . , xqn−k} with F (xi) = yi for all 1 ≤ i ≤ qn − k. Let
Y = {y1, . . . , yk} = QV \ Y and X = {x1, . . . , xk} = QV \X. Let F ′ ∈ F(n, q)
such that F ′(xi) = yi for all 1 ≤ i ≤ qn − k and F ′(xi) = yi for all 1 ≤ i ≤ k. F ′

is bijective and differs from F is k configurations. So F is k-almost bijective. ⊓⊔

Lemma 2. Let 1 ≤ k < n. If F ∈ F(n, q) is k-balanced and k-almost bijective,
then it is bijective.

Proof. Suppose by contradiction that F is not bijective. If F is k-almost bijec-
tive, then there is some bijective F ′ ∈ F(n, q) which differs from F over a set of
exactly 1 ≤ ℓ ≤ k configurations, denoted X = {x1, . . . , xℓ}. Because F ′ is bijec-
tive, the configurations F ′(x1), . . . , F

′(xℓ) are all distinct; moreover we cannot
have F (X) = F ′(X) because F (QV) ̸= F ′(QV) since one is bijective and not the
other. So there are two cases:

Case 1: Assume that there exists ≤ j ≤ ℓ such that F (xj) ̸∈ F ′(X). In this
case, the set F ′(X) ∪ {F (xj)} contains ℓ + 1 distinct configurations. Let us in-
ductively build a subset U ⊆ V with |U | = ℓ such that the restrictions of these
configurations to U are all distinct, i.e.,∣∣{xU ∈ QU : x ∈ F ′(X)} ∪ {F (xj)}

∣∣= ℓ+ 1.

When adding a configuration x in the set, either it is different over U to all
previously included ones, then one does not need to change U ; otherwise it is

equal to at most one d over U , then simply add an automaton that distinguishes
x from d. Then this contradicts the fact that F is ℓ-balanced because the pattern
F (xj)U ∈ QU has at least one pre-image more under F than it has under F ′,
which must be ℓ-balanced because bijective. Indeed, the pattern F (xj)U has no
pre-image by F ′ in X and F is similar to F ′ on QV \X but xj ∈ X is a pre-image
of F (xj)U by F .

Case 2: Otherwise, there are xi ̸= xj such that F (xi) = F (xj). Then, follow-
ing the same idea as in the previous case, we can find U ⊆ V of size ℓ such that
the restrictions to U of configurations F ′(X) are all distinct. For such an U ,
the pattern F (xj)U ∈ QU has at least one pre-image more under F than it has
under F ′, which contradicts the fact that both F and F ′ are ℓ-balanced. ⊓⊔

Lemma 3. Consider F ∈ F(n, q, d) and U ⊆ V with k = |U | ≤ ⌊n/d⌋. Then for
any pattern u ∈ QU , the number of pre-images under F of the corresponding
cylinder is a multiple of qn−kd.

Proof. Since the degree of G(F) is upper-bounded by d, fU only depends of
Y =

⋃
i∈U N−(i) and |Y | ≤ kd. In other words, for every x ∈ QU such that

fU (x) = u, we have fU ([xU]) = u. Hence, |F−1([u])| = |{v ∈ QY | fU (v) =
u}|qn−|Y |. Since |Y | ≤ k · d, this is a multiple of qn−kd. ⊓⊔

Combining Lemma 2 and Lemma 3 we obtain the following.

Lemma 4. Let F ∈ F(n, q, d) and 1 ≤ k ≤ ⌊n/d⌋. If F is k-almost bijective but
not bijective then k ≥ qn−dk.

Proof. By Lemma 2 F cannot be k-balanced, so there is a cylinder u ∈ QU

with |U | = k such that α = |F−1([u])| > qn−k. However, Lemma 3 gives that
α = mqn−kd for some m > 0. We deduce that α ≥ qn−k + qn−kd, so at least
qn−kd changes in F are necessary to recover k-balance (hence bijectivity). Since
F is assumed k-almost bijective, we deduce k ≥ qn−dk. ⊓⊔

Proof (of Theorem 1). Let k such that rk(F) = qn − k (k ≥ 1). If k > ⌊n/d⌋ we
are done. Otherwise, by Lemma 4 we have k ≥ qn−dk hence, logq(k) ≥ n − dk
and (d+ 1)k ≥ logq(k) + dk ≥ n (because k ≥ logq(k)). ⊓⊔

Here is another application of Lemma 3.

Proposition 2. Let F ∈ F(n, q, d) such that F is not constant. Then the num-
ber of preimages of any configuration is upper-bounded by qn − qn−d.

Proof. Let y ∈ QV . Let us prove that |F−1(y)| ≤ qn − qn−d. Since F is not
constant, there exists z ∈ F (QV) such that zi ̸= yi for some i ∈ V . Since
F−1([zi]) ̸= ∅, by Lemma 3, F−1([zi]) ≥ qn−d. Furthermore, since F−1([zi]) ∩
F−1(y) = ∅, |F−1(y)| ≤ qn − qn−d. ⊓⊔

It is tight because we can have F (x) = 0n if x1,...,d ̸= 0d and 10n−1 otherwise.

4 Realization results via feedback shift registers

In this section, we are interested in realizing examples of AN with almost degree
1, i.e., whose all but one nodes have degree at most 1.

One important tool for this is the following. Let g : {0, 1}n → {0, 1}, and
Fg : {0, 1}n → {0, 1}n be the corresponding feedback shift register (FSR), that
is, Fg(x) = Fg(x1, . . . , xn) = (x2, . . . , xn−1, g(x)). G(Fg) is thus obtained from
the path n → n− 1 → · · · → 1 by adding an arc from i to 1 whenever g depends
on input i: it has almost degree 1.

The de Bruijn graph of order n (over alphabet {0, 1}) has set of vertices
V = {0, 1}n and set of arcs E = {(au, ub) : a, b ∈ {0, 1}, u ∈ {0, 1}n−1}.

Proposition 3. For any n and any 1 ≤ k ≤ 2n, the de Bruijn graph of order n
admits a cycle of length k.

Proof. The de Bruijn graph admits a Eulerian cycle because it is connected
and all vertices have equal in- and out-degree. Since the Bruijn graph of order
n+1 is the line digraph of the Bruijn graph of order n, we deduce that the de
Bruijn graph admits a Hamiltonian cycle. Cycles of each length 0 < k < 2n are
a consequence of [?, Theorem 4]. ⊓⊔

Proposition 4. For any n and any 0 ≤ k ≤ 2n, there exists F : {0, 1}n → {0, 1}n
with almost degree 1 and whose maximum limit cycle has length k.

Proof. Consider some cycle C ⊆ {0, 1}n given by Proposition 3, and the feedback
shift register Fg, where

g(x) =

{
b if x = au and au → ub ∈ C

0 otherwise.

Fg has almost degree 1, and has the cycle C in its dynamics. To conclude the
proof, it is sufficient to observe that the dynamics on the complement of C
consists in adding 0 at node n and shifting node i + 1 to node i for i < n.
Therefore, the only possible cycle created by this part of the dynamics is possibly
the fixed point 0 · · · 0. ⊓⊔

Now let us try to decrease the degree of the special vertex. Suppose that
g is additive, i.e., consider {0, 1} as the ring Z/2Z, and g(x) =

∑n
i=1 aixi, for

some coefficients a1, . . . , an ∈ {0, 1}. In the corresponding interaction graph,
N−(1) = {i | ai ̸= 0}. The characteristic polynomial of g is P = 1+

∑
i∈N−(1) X

i.
If P has degree n, then it is called primitive if it is irreducible and does not divide
Xk − 1 for any 1 ≤ k < 2n − 1. We say that P is a trinomial if it contains 3
terms, that is, if P = Xn +Xk + 1 for some 1 ≤ k < n.

Theorem 2 ([?]). Fg has a limit cycle of length 2n − 1 and a fixed point if and
only if P is primitive of degree n.

Let us say that n is a Mersenne exponent if 2n−1 is a (Mersenne) prime number.

Proposition 5. For any Mersenne exponent n ≤ 3021377, there is some order-
n AN of degree 2 and almost degree 1 whose dynamics is the union of a limit
cycle of length 2n − 1 and a fixed point.

This corresponds to Example 1 and Figure 1(b).

Proof. If n is a Mersenne exponent and P has degree n, then P is primitive if
and only if it is irreducible. For every Mersenne exponent n ≤ 3021377, there
exists at least one primitive trinomial P of degree n [?]. ⊓⊔

Example 1. Let n = 5, q = 2, and define the AN F : {0, 1}5 → {0, 1}5 with
fi(x) = xi−1 for i ∈ {2, 3, 4, 5}, and f1(x) = x3 ⊕ x5 where ⊕ is the binary
xor. Its dynamics has one fixed point and one cycle of length 2n − 1, while its
interaction graph has degree 2 (see Figure 2), hence F ∈ F(5, 2, 2).

0000010000 01000 00100 10010 01001 10100 11010 01101

0011010011110011110011110111110111100111

00011 10001 11000 01100 10110 11011 11101 01110

10111010111010101010001010001000001

1

2
3

4
5

Fig. 2. Dynamics (left) and interaction graph (right) of the AN from Example 1.

5 Complexity of recognizing bounded-degree dynamics

Fix d and q, and consider the following decision problem called BDD (bounded-
degree dynamics): given F ∈ F(n, q) represented by Boolean circuits, is there
some F ′ ∈ F(n, q, d) such that D(F) and D(F ′) are isomorphic?

Theorem 3. The problem BDD is in PSPACE for every d, q, and co-NP-hard
for any q ≥ 2 and d ≥ 1.

Proof. For the upper bound, a naive algorithm solving BDD consists in guessing
F ′ ∈ F(n, q, d) (whose size is polynomial in F thanks to the bounded-degree
condition) and checking that D(F) and D(F ′) are isomorphic. Given that planar
graph isomorphism is computable with a LOGSPACE Turing machine M [?] and
that D(F) and D(F ′) are at most exponentially larger than the input (Boolean
circuit for F), we can test isomorphism of D(F) and D(F ′) in PSPACE by
simulating each reading step of the read-only input tape of M by an evaluation
of circuit in polynomial time (testing F (x) = y is the same as testing the presence
of the corresponding arc in D(F)). This gives an algorithm in NP with an oracle
in PSPACE, i.e., an algorithm in the complexity class PSPACE.

For the co-NP-hardness we reduce from UNSAT. Given a propositional for-
mula ϕ on p variables v1, . . . , vp, we construct F ∈ F(n, q) on |V | = p + d

automata, with P = {v1, . . . , vp}, D = {t1, . . . , td} and V = P ∪ D. Let
Q = {0, . . . , q − 1}, and for x ∈ QV , consider the valuation θ(xP) sending each
0 to false and other symbols to true. Set the local functions to be the identity
fi(x) = xi for every i ∈ V \ {td}, and:

ftd(x) =

{
xtd + 1 mod q if xD = ad and ϕ(θ(xP)),

xtd otherwise.

If ϕ is unsatisfiable, then td depends only on D and F has degree d, hence it is
a positive instance of BDD. Otherwise, F is not the identity, and it has:
– (qd − 1)qp = qn − qn−d fixed points with xD ̸= ad,
– at least one additional fixed point with xD = ad and θ(xP) satisfying ϕ.

Proposition 1 then implies that it is a negative instance of BDD. ⊓⊔

If we drop the isomorphism condition from the above problem, we get another
one called BDIG (bounded-degree interaction graph): given F ∈ F(n, q) repre-
sented by Boolean circuits, is there some F ′ ∈ F(n, q, d) such that D(F) = D(F ′)?
or, equivalently, is the degree of the interaction graph of F bounded by d?

Theorem 4. The problem BDIG is co-NP-complete.

Proof. The lower bound is given by the same reduction as in the proof of The-
orem 3. For the upper bound, a simple co-NP algorithm consists in guessing an
automaton i ∈ V , d+1 configurations x1, . . . , xd+1, and d+1 distinct automata
i1, . . . , id+1, then checking for each j ∈ {1, . . . , d+ 1} that fi(x

j) ̸= fi(x
j + eij).

For each j, it checks whether xj witnesses the effective dependency of i on au-
tomaton ij . It is possible to guess d+1 such witnesses if and only if the interaction
graph of F has degree at least d+ 1. ⊓⊔

6 Acknowledgments

This work was supported by ECOS-ANID project C19E02 between France and
Chile, and ANR-18-CE40-0002 FANs. The authors thank Anahí Gajardo, Diego
Maldonado, and Christopher Thraves, who participated in elaborating some
ideas for the presented results. Figure 1 is built with TikZ library OODGraph.

http://fgt.i3s.unice.fr/

Exhaustive Generation of Linear Orthogonal
Cellular Automata⋆

Enrico Formenti1[0000−0002−1007−7912] and Luca Mariot2[0000−0003−3089−6517]

1 Laboratoire d’Informatique, Signaux et Systèmes de Sophia-Antipolis (I3S),
Université Côte d’Azur, 2000, route des Lucioles - Les Algorithmes, bât. Euclide B,

06900 Sophia Antipolis, France
enrico.formenti@unice.it

2 Semantics, Cybersecurity and Services Group, University of Twente,
Drienerlolaan 5, 7522NB, Enschede, The Netherlands

l.mariot@utwente.nl

Abstract. We consider the problem of exhaustively visiting all pairs of
linear cellular automata which give rise to orthogonal Latin squares, i.e.,
linear Orthogonal Cellular Automata (OCA). The problem is equivalent
to enumerating all pairs of coprime polynomials over a finite field having
the same degree and a nonzero constant term. While previous research
as showed how to count all such pairs for a given degree and order of the
finite field, no practical enumeration algorithms have been proposed so
far. Here, we start closing this gap by addressing the case of polynomials
defined over the field F2, which corresponds to binary CA. In particular,
we exploit Benjamin and Bennett’s bijection between coprime and non-
coprime pairs of polynomials, which enables us to organize our study
along three subproblems, namely the enumeration and count of: (1)
sequences of constant terms, (2) sequences of degrees, and (3) sequences
of intermediate terms. In the course of this investigation, we unveil
interesting connections with algebraic language theory and combinatorics,
by devising an enumeration algorithm and an alternative derivation of
the counting formula for this problem.

Keywords: cellular automata, Latin squares, polynomials, finite fields,
Euclid’s algorithm, regular languages, compositions

1 Introduction

Orthogonal Cellular Automata (OCA) are pairs of CA whose global rules form
orthogonal Latin squares, introduced by Mariot et al. at AUTOMATA 2016 [15].
As such, OCA have several practical applications in cryptography and coding
theory, including the design of threshold secret sharing schemes [16, 18], pri-
mary constructions for partial spread bent functions [8, 9], correlation immune
functions [19] and pseudorandom number generators with guaranteed diffusion

⋆ This paper is a shortened version of [6], which is currently under submission at
Cryptography and Communications.

properties [13, 14]. There is an algebraic characterization of OCA when the under-
lying local rules are linear, which relates the orthogonality of the resulting Latin
squares to the coprimality of the polynomials induced by the rules [17]. Thus,
the question of enumerating all pairs of linear OCA boils down to enumerating
a specific kind of coprime polynomials over a finite field—namely, those pairs
where both polynomials have the same degree and a nonzero constant term.

In general, coprime polynomials over finite fields have been studied in depth
in the literature, also due to their numerous cryptographic and coding-theoretic
applications [22, 3, 5]. Most of the related works in this area concern counting
results with no restrictions on the constant terms nor the degree of the involved
polynomials [4, 20, 1]. Benjamin and Bennett [1] described a simple bijection
between coprime and non-coprime pairs for polynomials over the field F2. Such
a bijection is proved by using Euclid’s algorithm and its reversed application,
dubbed dilcuE’s algorithm. On the other hand, there are fewer works explicitly
considering the exhaustive enumeration of coprime polynomial pairs [7].

In this paper, we show how to exhaustively generate all linear binary OCA
by enumerating all coprime polynomial pairs over the finite field F2, where both
polynomials have the same degree and a nonzero contant term. To this end,
we take inspiration from Benjamin and Bennett’s bijection and show that the
sequences of quotients visited by dilcuE’s algorithm for these coprime pairs are
characterized by three independent components: the constant terms, the degrees
and intermediate terms. From these results, we present the pseudocode of a
combinatorial algorithm that generates all pairs of coprime polynomials of degree
n and nonzero constant term. Further, we also provide an alternative derivation
of the recurrence proved in [17] to count all such pairs for q = 2, which can be
considered as an indirect proof of correctness of our enumeration algorithm.

2 Background Definitions

Cellular Automata (CA) are usually regarded as a parallel computational model
or a particular kind of discrete dynamical systems. Here, on the other hand, we
interpret CA as algebraic systems, specifically as a type of vectorial mappings
composed of uniform local coordinate functions. Since we are interested only in
binary CA, we can define them in terms of vectorial Boolean functions:

Definition 1. A Cellular Automaton (CA) of length m ∈ N, diameter d ≤ m,
and local rule f : Fd

2F2 is a function F : Fm
2 → Fm−d+1

2 defined for all x ∈ Fm
2 as:

F (x0, . . . , xm−1) = (f(x0, . . . , xd−1), f(x1, . . . , xd), . . . , f(xm−d, . . . , xm−1)) .
(1)

Hence, each output coordinate i ∈ {0, · · · ,m− d} of a CA F is is defined as
the application of the local rule f to the neighborhood composed by the i-th
input cell and the d− 1 cells to its right.

Next, we give the formal definition of orthogonal Latin squares:

Definition 2. Let [N] = {1, · · · , N − 1} for all N ∈ N. A Latin square of
order N is a N × N matrix L with entries over [N] such that each row and
each column of L is a permutation of [N]. Two Latin squares L1, L2 of order N
are called orthogonal if the function H : [N] × [N] → [N] × [N] defined for all
(i, j) ∈ [N]× [N] as H(i, j) = (L1(i, j), L2(i, j)) is bijective.

Intuitively, two Latin squares are orthogonal if and only if their superposition
yields all pairs in the Cartesian product [N]× [N] exactly once.

Suppose now that m = 2(d − 1) and F : F2(d−1)
2 → Fd−1

2 is a CA equipped
with a bipermutive local rule, i.e. f : Fd

2 → F2 is of the form f(x0, · · · , xd−1) =
x0⊕g(x1, · · · , xd−2)⊕xd−1. In this case, Mariot et al. [15] showed that F defines
a Latin square LF of order N = 2d−1. The idea is to encode blocks of d − 1
bits in their decimal form. Then, the left and right (d− 1)-bit blocks composing
the input vector of F are used to index respectively the row and the column
coordinates of LF , while the output (d− 1)-bit block of F represents the entry
to be placed at those coordinates.

Let us further assume that the local rule is linear. This means that f : Fd
2 → F2

is defined as f(x0, · · · , xd−1) = x0⊕a1x1⊕· · ·⊕ad−2xd−2⊕xd−1, where ai ∈ F2

for all i ∈ {1, · · · , d − 2}. In other words, f is an F2-linear combination of the
neighborhood cells, with the property that the leftmost and righmost cells are
always XORed, while g : Fd−2

2 → F2 is any Boolean function over the d − 2
central cells. In this case, a polynomial of degree n = d− 1 in the ring F2[X] can
be naturally associated to the local rule:

f 7→ Pf (X) = 1 + a2X + · · ·+ an−1X
n−1 +Xn . (2)

Hence, we use the coefficients of the linear local rule to index the increasing
powers of the indeterminate X in the polynomial Pf . The polynomial is thus
monic of degree n and with a nonzero constant term.

In [15], the authors showed that two CA respectively defined by linear biper-
mutive local rules f, g : Fd

2 → F2 give rise to a pair of orthogonal Latin squares if
and only if their associated polynomials are relatively prime, i.e. if and only if
gcd(Pf , Pg) = 1. Therefore, the problem of counting and enumerating all pairs
of linear Orthogonal Cellular Automata (OCA) of diameter d is equivalent to
counting and enumerating all pairs of coprime polynomials of degree n = d− 1
with a nonzero constant term. The counting question has already been settled
in [17] for any finite field order q, where q is a power of a prime.

3 Problem Statement

In this paper, we focus on the enumeration problem for the binary case q = 2.
To this end, we define the set Sn for all n ∈ N as:

Sn = {f ∈ F2[x] : x
n + an−1x

n−1 + . . .+ a1x+ a0 : a0 = 1} , (3)

that is, Sn is the set of binary polynomials of degree n with nonzero constant
term. Further, let An and Bn be respectively defined for n ∈ N as:

An = {(f, g) ∈ S2
n : gcd(f, g) = 1} , Bn = {(f, g) ∈ S2

n : gcd(f, g) ̸= 1} . (4)

Thus, An and Bn are the sets of pairs of polynomials of degree n and nonzero
constant terms that are respectively coprime and non-coprime. Clearly, it holds
An ∪Bn = S2

n and An ∩Bn = ∅. We now formally state the problem addressed
in this paper. Given n ∈ N, we aim to:
(i) Enumeration: Find an algorithm to exhaustively generate all elements of An.
(ii) Counting : Derive a formula for an = |An|.
This problem has already been solved in [1]) for the case of generic polynomials
of degree n (i.e. with unconstrained constant terms). The idea is to define a
bijection between the sets of coprime and non-coprime pairs as follows:
1. Apply Euclid’s algorithm to a non-coprime pair (f, g).
2. Change the last remainder from 0 to 1, and invert Euclid’s algorithm (i.e.

apply dilcuE’s algorithm) using the same sequence of quotients computed for
(f, g) in reverse order.

3. By construction, the pair (f ′, g′) at the end of dilcuE’s algorithm is coprime.
The crucial remark in the above procedure is that the family of all sequences of
quotients defines a bijection between coprime and non-coprime pairs. The last
remainder, either 1 or 0, defines whether the pair is respectively coprime or not.

Notice that if one employs this procedure starting from a non-coprime pair
(f, g) ∈ Bn, in general the resulting coprime pair (f ′, g′) will not belong to An,
i.e. either f ′ or g′ could have a null constant term. Nonetheless, since f ′ and g′

are coprime, it cannot be the case the both of them have a null constant term,
otherwise they would have a factor x in common. Therefore, we need to see how
changing the last remainder in Euclid’s algorithm affects the constant terms of
the intermediate remainders, and thus the constant terms of f ′ and g′.

Let us start with the following remarks:

Remark 1. Let (f, g) be two polynomials of degree n. Then:
(i) The first quotient obtained from Euclid’s algorithm is always q1 = 1. Indeed,

since f and g both have degree n, the long division stops immediately after
dividing xn by xn.

(ii) Suppose that gcd(f, g) = 1. Then, when the last pair of remainders is
(rk(x), 1), if we apply Euclid’s algorithm for one further step we will always
obtain the pair (1, 0) with quotient rk(x). In fact we can write the division
of rk(x) and 1 as rk(x) = rk(x) · 1 + 0.

Suppose that q1, q2, · · · , qk is a sequence of quotients that yield a coprime pair
(f, g) ∈ An when applied in reverse order from (1, 0) through dilcuE’s algorithm.
We denote these quotients as:

q1 →

degrees︷︸︸︷
xd1 +

intermediate terms︷ ︸︸ ︷
q1,d1−1x

d1−1 + · · ·+ q1,1x+

constant terms︷︸︸︷
s1

q2 → xd2 + q2,d2−1x
d2−1 + · · ·+ q2,1x+ s2

... →
... +

... + · · ·+
... +

...

qk → xdk + qk,dk−1x
dk−1 + · · ·+ qk,1x+ sk

with d1, · · · , dk ∈ N being the degrees of the quotients, qi,j ∈ F2 the coefficients
of the intermediate terms, and si ∈ F2 the constant terms.

Notice that a sequence of quotients is defined by independently choosing
each of these three elements. Since our goal is to obtain a pair (f, g) ∈ An, the
following two constraints hold:
– The sum of the degrees di equals n. This ensures that both polynomials have

degree n, since the first quotient is equal to 1 by Remark 1(i).
– The sequence of constant terms is such that the constant terms of the two

last remainders are respectively 1 and 0 (due to Remark 1(ii)), while the first
two remainders (i.e., the reconstructed pair) must have constant term 1.
The intermediate terms, on the contrary, do not have any constraints and can

be chosen freely. Thus, given the degree n and the length k of the quotients’ se-
quence, enumerating the sequences of intermediate terms amount to enumerating
all binary strings of length n− k, which are in total In,k = 2n−k.

4 Constant Terms Sequences as a Regular Language

The generic step i of Euclid’s algorithm applied to (f, g) ∈ Sn corresponds to
the Euclidean division:

ri(x) = qi+1(x)ri+1(x) + ri+2(x) , (5)

where ri(x) and ri+1(x) are respectively the dividend and the divisor polynomial,
qi+1(x) is the quotient, and ri+2(x) is the remainder of the division between
ri(x) and ri+1(x). For i = 1, one has r1(x) = f(x) and r2(x) = g(x). Then, the
process is repeated by shifting the divisor to become the dividend, whereas the
remainder becomes the divisor.

We interpret the presence or the absence of the constant terms in ri, ri+1 as
the state of a discrete dynamical system, described by a pair (ci, ci+1) where
ci, ci+1 ∈ F2 respectively denote the constant terms of ri and ri+1. Remark that
if (f, g) ∈ Sn then (ci, ci+1) ∈ (F2

2)
∗ = {(1, 1), (1, 0), (0, 1)}, since by Equation (5)

(ci, ci+1) = (0, 0) for any i implies that f and g both have a null constant term.
The transition function δ : (F2

2)
∗ × F2 → (F2

2)
∗ maps a pair (ci, ci+1) and a

constant term si+1 of the (i+ 1)-th quotient to the next pair (ci+1, ci+2) using
Equation (5). Figure 1 depicts the truth table and the transition graph of δ.

We now consider this dynamical system as a Finite State Automaton (FSA).
The reason is that we can characterize the “correct” sequences of constant terms
si (i.e., those that give a pair (f ′, g′) ∈ An at the end of dilcuE’s algorithm) as
the words of the language recognized by the FSA. Hence, we need to define the
initial and accepting states of the automaton. Given (f, g) ∈ S2

n, the sequence
q1, q2, · · · of quotients computed through Euclid’s algorithm induces a path on
the FSA graph. This path starts from the state (1, 1), and it is labelled by the
constant terms s1, s2, ... of the quotients.

Notice that the FSA is permutative: by taking two distinct states and reading
the same constant term si+1, the two output states are distinct as well. This can
be easily checked from the truth table of δ. A simple induction argument shows

(ci, ci+1) si+1 δ((ci, ci+1), si+1)

(1, 1) 0 (1, 1)
(1, 1) 1 (1, 0)
(1, 0) 0 (0, 1)
(1, 0) 1 (0, 1)
(0, 1) 0 (1, 0)
(0, 1) 1 (1, 1)

11

1001

1

0

0/1

0

1

Fig. 1: Transition table and graph realizing δ.

that this property holds also for sequences of constant terms. Hence, if one starts
from two different initial states and apply the same sequence of constant terms,
the final states are also different. The inverse automaton, which corresponds
to dilcuE’s algorithm, is thus obtained by simply inverting the arrows in the
transition graph of the original FSA. The initial state of this inverse automaton
will be (1, 0), on account of Remark 1. For the accepting state, we should select
intuitively (1, 1), since we want a pair of An at the end of dilcuE’s algorithm.
Notice however that the first quotient in Euclid’s algorithm (therefore, the last
one in dilcuE’s) is always 1, due to Remark 1(i). Hence, we can shorten the
sequence of quotients by one element, and append 1 to it. Consequently, since
the only way to reach (1, 1) in the inverse FSA by reading a 1 is from (1, 0), we
can define (1, 0) also as the only accepting state.

The classic state elimination method [10] gives us the following regular
expression for the language recognized by the inverse FSA:

Lr = (0(0 + 1) + (10∗1(0 + 1)))∗ . (6)

We have thus obtained the following result:

Lemma 1. The sequences of constant terms for the quotients visited by dilcuE’s
algorithm when generating a coprime pair (f, g) ∈ An form a regular language
Lr, whose regular expression is defined by Equation (6).

Hence, enumerating the sequences s1, · · · , sk is equivalent to generating all
words of length k in Lr. Several algorithms are available for this task, see e.g. [12].
To count the number of words, we apply the Chomsky-Schützenberger enumeration
theorem [2], which uniquely identifies a regular language L with a rational Formal
Power Series (FPS) FL =

∑∞
k=0 ℓkX

k. This leads us to the following:

Lemma 2. The generating function G(X) for the FPS associated to Lr and the
recurrence for the number ℓk of words of length k ∈ N in Lr are given by:

G(X) =
1−X

1−X − 2X2
, ℓk =

2k + 2 · (−1)k

3
. (7)

Proof. Omitted due to limited space (see [6]).

5 Quotients’ Degrees Sequences and Compositions

The only constraint enforced on the sequences of quotients’ degrees d1, · · · , dk is
that they must sum to the final degree n. The order of the summands is relevant:
permuting the degrees gives rise to a different sequence of quotients. Hence, we
want to enumerate and count the number of ways in which n is obtained as an
ordered sum of k natural numbers. These are also known as k-compositions of
n ∈ N in combinatorics [21], and a simple way to represent them by means of
n− 1 boxes interleaved by n occurrences of 1:

1

n−1︷ ︸︸ ︷
□1□ . . .□1□ 1 ,

where each box can be either a comma (,) or a plus (+). A comma separates
two different parts in a composition, while a plus adds two adjacent 1s together.
Notice that we cannot take the composition where all boxes are set to +, since a
sequence composed of just one quotient cannot occur in dilcuE’s algorithm.

Once the length k of the sequence of quotients is fixed, generating the corre-
sponding degrees is equivalent to the enumeration of all binary strings of length
n− 1 with k − 1 ones in them, which can be accomplished, for instance, by one
of the several algorithms described by Knuth [11]. Further, the number of all
compositions of n of length k is given by the binomial coefficient

(
n−1
k−1

)
. Therefore,

we obtained the following result:

Lemma 3. The number of sequences of degrees d1, · · · , dk of the final degree
n ∈ N for the quotients visited by dilcuE’s algorithm is:

Dn,k =

(
n− 1

k − 1

)
. (8)

Putting together the results presented above, the following pseudocode ex-
haustively enumerates all pairs of coprime polynomials in An for a given input
degree n and quotients’ sequence length 2 ≤ k ≤ n:
– For each composition comp of n of length k do:

(1) Generate the degrees’ sequence deg corresponding to comp
(2) For each intermediate terms sequence seq do:

(2a) Adjoin seq to deg to get a quotients’s sequence quot
(2b) For each constant term sequence const of length k do:

· Adjoin const to quot
· Apply DilcuE’s algorithm from (1, 0) by using the sequence quot

Finally, the Lemma below provides a different derivation for the number
an = |An| of coprime polynomials of degree n and with a nonzero constant term.

Lemma 4. The number of pairs of coprime polynomials of degree n with nonzero
constant term is equal to:

an =

n∑
k=2

2n−k ·
(
n− 1

k − 1

)
· 2

k + 2 · (−1)k

3
= 2 · 4

n−1 − 1

3
. (9)

Proof. Omitted due to limited space (see [6]).

References

1. Benjamin, A.T., Bennett, C.D.: The probability of relatively prime polynomials.
Mathematics Magazine 80(3), 196–202 (2007)

2. Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages.
In: Studies in Logic and the Foundations of Mathematics, vol. 26, pp. 118–161.
Elsevier (1959)

3. Coppersmith, D.: Fast evaluation of logarithms in fields of characteristic two. IEEE
Trans. Inf. Theory 30(4), 587–593 (1984)

4. Corteel, S., Savage, C.D., Wilf, H.S., Zeilberger, D.: A pentagonal number sieve. J.
Comb. Theory, Ser. A 82(2), 186–192 (1998)

5. Fitzpatrick, P.: On the key equation. IEEE Trans. Inf. Theory 41(5), 1290–1302
(1995)

6. Formenti, E., Mariot, L.: An enumeration algorithm for binary coprime polynomials
with nonzero constant term. CoRR abs/2207.00406 (2022)

7. Fragneto, P., Rimoldi, A., Sala, M.: An approach to create coprime polynomial
pairs (2005)

8. Gadouleau, M., Mariot, L., Picek, S.: Bent functions from cellular automata. IACR
Cryptol. ePrint Arch. p. 1272 (2020)

9. Gadouleau, M., Mariot, L., Picek, S.: Bent functions in the partial spread class
generated by linear recurring sequences. Des. Codes Cryptogr. 91(1), 63–82 (2023)

10. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation, 3rd Edition. Pearson international edition, Addison-
Wesley (2007)

11. Knuth, D.: The art of computer programming, vol. 4, pre-fascicle 3a (2011)
12. Mäkinen, E.: On lexicographic enumeration of regular and context-free languages.

Acta Cybern. 13(1), 55–61 (1997)
13. Mariot, L.: Hip to be (latin) square: Maximal period sequences from orthogonal cel-

lular automata. In: Ninth International Symposium on Computing and Networking,
CANDAR 2021, Matsue, Japan, November 23-26, 2021. pp. 29–37. IEEE (2021)

14. Mariot, L.: Enumeration of maximal cycles generated by orthogonal cellular au-
tomata. Natural Computing pp. 1–15 (2022)

15. Mariot, L., Formenti, E., Leporati, A.: Constructing orthogonal latin squares from
linear cellular automata. CoRR abs/1610.00139 (2016)

16. Mariot, L., Formenti, E., Leporati, A.: Enumerating orthogonal latin squares
generated by bipermutive cellular automata. In: Dennunzio, A., Formenti, E.,
Manzoni, L., Porreca, A.E. (eds.) Cellular Automata and Discrete Complex Systems
- 23rd IFIP WG 1.5 International Workshop, AUTOMATA 2017, Milan, Italy, June
7-9, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10248, pp. 151–164.
Springer (2017)

17. Mariot, L., Gadouleau, M., Formenti, E., Leporati, A.: Mutually orthogonal latin
squares based on cellular automata. Des. Codes Cryptogr. 88(2), 391–411 (2020)

18. Mariot, L., Leporati, A.: Inversion of mutually orthogonal cellular automata. In:
Mauri, G., Yacoubi, S.E., Dennunzio, A., Nishinari, K., Manzoni, L. (eds.) Cellular
Automata - 13th International Conference on Cellular Automata for Research and
Industry, ACRI 2018, Como, Italy, September 17-21, 2018, Proceedings. Lecture
Notes in Computer Science, vol. 11115, pp. 364–376. Springer (2018)

19. Mariot, L., Manzoni, L.: On the linear components space of s-boxes generated by or-
thogonal cellular automata. In: Bastien Chopard, e.a. (ed.) ACRI 2022, Proceedings.
Lecture Notes in Computer Science, vol. 13402, pp. 52–62. Springer (2022)

20. Reifegerste, A.: On an involution concerning pairs of polynomials over f2. J. Comb.
Theory, Ser. A 90(1), 216–220 (2000)

21. Riordan, J.: Introduction to combinatorial analysis. Courier Corporation (2012)
22. Shparlinski, I.: Finite Fields: Theory and Computation: The meeting point of number

theory, computer science, coding theory and cryptography, vol. 477. Springer Science
& Business Media (2013)

