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Abstract

We define a positive integer n to be k-imperfect if kρ(n) = kn for some integer k ≥ 2. Here,
ρ is a multiplicative arithmetic function defined by ρ(pa) = pa − pa−1 + pa−2 − · · · + (−1)a for
a prime power pa. We address three questions regarding k-imperfect numbers; in particular we
find several necessary conditions for the existence of odd 3-imperfect numbers.

1. Introduction

The arithmetic function σ is called the sum-of-divisors function because σ(n) gives the sum
of the positive divisors of a natural number n. Since σ is multiplicative, it may be defined by
σ(1) = 1 and

σ(pa) = pa + pa−1 + pa−2 + · · · + 1

for a prime p and integer a ≥ 1.

Analogously, we define a multiplicative arithmetic function ρ by ρ(1) = 1 and

(1) ρ(pa) = pa − pa−1 + pa−2 − · · · + (−1)a

for a prime p and integer a ≥ 1.

It follows that ρ(n) ≤ n with equality only for n = 1. We say that n is imperfect if 2ρ(n) = n,
and we shall say n is k-imperfect if kρ(n) = n for a natural number k. In Table 1 is given all
k-imperfect numbers up to 109.
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Martin [1] introduced the function ρ at the 1999 Western Number Theory Conference, and
raised three questions (see Guy [7], p.72):

(1) Are there any k-imperfect numbers with k ≥ 4?
(2) Are there infinitely many k-imperfect numbers?
(3) Are there any odd 3-imperfect numbers?

In this paper we address these questions, paying most attention to the third.

2. Preliminaries

For the remainder of this paper, p, q, and r, with or without subscripts, shall represent odd
primes. We shall represent positive integers by h, k, m, n, a, b, α, and β. We shall let γ

represent a nonnegative integer. If p ! a we let ep(a) denote the exponent to which a belongs,
modulo p. We write pa‖n if pa | n and pa+1 ! n. We write vp(n) = a if pa‖n.

We consider the function H, defined for natural numbers n, by

H(n) =
n

ρ(n)
.

Therefore n is k-imperfect if H(n) = k. Note that H is multiplicative. Note that

1
H(pa)

= 1 − 1
p

+
1
p2

− · · · + (−1)a

pa
.

Therefore

(2)
p2

p2 − p + 1
≤ H(p2a) <

p + 1
p

.

If a < b then

(3) H(p2a) < H(p2b) .

If p < q then (q + 1)/q < p2/(p2 − p + 1), and so for any a, b, we have

(4) H(qb) < H(pa) .

From (1) we have

(5) ρ(p2a) =
p2a+1 + 1

p + 1
.
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We denote the nth cyclotomic polynomial, evaluated at x, by Φn(x). From (5), and from the
identity

xn − 1 =
∏

d|n

Φd(x) ,

we have

(6) ρ(p2a) =
∏

d|2a+1
d>1

Φ2d(p) .

From Theorems 94 and 95 in Nagell [16], we have the following

Lemma 1. Let h = eq(p). Then q | Φm(p) if and only if m = hqγ . If γ > 0 then q‖Φhqγ (p).

Letting h = eq(p), it follows from (6) and Lemma 1 that

(7) vq(ρ(p2a) =






vq(Φh(p)) + vq(2a + 1), if h > 2, h | 2(2a + 1), h ! 2a + 1,
vq(2a + 1), if h = 2,
0, otherwise.

Another direct consequence of Lemma 1 is

Lemma 2. If q | Φa(p), r | Φb(p), a %= b, q ≡ 1 (mod a), and r ≡ 1 (mod b), then q %= r.

Bang [2] (and subsequently several other authors) proved

Lemma 3. If m ≥ 3 then Φm(p) has a prime divisor q such that q ≡ 1 (mod m).

3. The First Two Questions

Consider the sequence of primes pk (p1 = 2, p2 = 3, . . . ) and denote the sequence of partial
products by Pn =

∏n
k=1 pk. Then

H(Pn) =
n∏

k=1

H(pk) =
n∏

k=1

pk

pk − 1
.

It is well known that the right-hand product diverges to infinity (see, for example, Theorem
429 in Hardy and Wright [10]), and so we have

lim
n

supH(n) = +∞ .
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Table 1 k-imperfect numbers up to 109.

H(n) n H(n) n

1 1 2 75852 22 · 32 · 72 · 43
2 2 2 3 685440 27 · 32 · 5 · 7 · 17
3 6 2 · 3 3 758520 23 · 32 · 5 · 72 · 43
2 12 22 · 3 3 831600 24 · 33 · 52 · 7 · 11
2 40 23 · 5 3 2600640 26 · 33 · 5 · 7 · 43
3 120 23 · 3 · 5 3 5533920 25 · 34 · 5 · 7 · 61
3 126 2 · 32 · 7 3 6917400 23 · 34 · 52 · 7 · 61
2 252 22 · 32 · 7 3 9102240 25 · 33 · 5 · 72 · 43
2 880 24 · 5 · 11 3 10281600 27 · 33 · 52 · 7 · 17
3 2520 23 · 32 · 5 · 7 3 11377800 23 · 33 · 52 · 72 · 11 · 43
3 2640 24 · 3 · 5 · 11 3 16687440 24 · 32 · 5 · 72 · 11 · 43
2 10880 27 · 5 · 17 3 152182800 24 · 34 · 52 · 7 · 11 · 61
3 30240 25 · 33 · 5 · 7 3 206317440 27 · 32 · 5 · 72 · 17 · 43
3 32640 27 · 3 · 5 · 17 3 250311600 24 · 33 · 52 · 72 · 11 · 43
3 37800 23 · 33 · 52 · 7 3 475917120 26 · 34 · 5 · 7 · 43 · 61
3 37926 2 · 32 · 72 · 43 2 715816960 215 · 5 · 17 · 257
3 55440 24 · 32 · 5 · 7 · 11 3 866829600 25 · 35 · 52 · 73 · 13

In spite of this, however, no k-imperfect numbers for k ≥ 4 are known. This compares to the
problem of perfect and multiply perfect numbers. We say n is perfect if σ(n) = 2n and we say
n is multiply perfect of index k (or k-perfect) if σ(n) = kn for some integer k ≥ 3. Multiply
perfect numbers of all indices up to 11 have been found.

Martin [1] observed the following: Suppose n = p2k−1m, ρ(p2k) = q, and (m, pq) = 1. Note
that q − 1 = p · ρ(p2k−1). Then

H(npq) = H(p2kqm) =
p2k

q
· q

q − 1
· H(m) = H(p2k−1)H(m) = H(n) .

In particular if n is k-imperfect then so is npq.

Because of Martin’s result, Table 1 can be expanded considerably. Many chains of 3-imperfect
numbers can be generated, such as

27 · 33 · 52 · 7 · 17 −→ 27 · 34 · 52 · 7 · 17 · 61 −→ 27 · 34 · 52 · 72 · 17 · 43 · 61 .

Thirteen new 3-imperfect numbers were found in this way, along with one imperfect number.
Martin found 29 · 33 · 53 · 11 · 13 · 31 (not in Table 1) to be 3-imperfect. Using ρ(210) = 683,
ρ(34) = 61, ρ(54) = 521, and ρ(132) = 157, Martin generated 15 more 3-imperfect numbers.
Nonetheless, the question of the infinitude of k-imperfect numbers remains open. This compares
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to perfect and k-perfect numbers: the question of infinitude remains open here as well, although
it has been conjectured that only finitely many k-perfect numbers exist (for index k ≥ 3). It
has also been conjectured that infinitely many Mersenne primes exist, which, if true, would
imply the infinitude of perfect numbers.

4. The Shape of an Odd 3-Imperfect Number

It is obvious that an imperfect number be even, but there is no apparent reason why a
3-imperfect number should be even. Despite this, all known 3-imperfect numbers are even.
Analogously, all known perfect and k-perfect numbers are even.

For the remainder of this paper, let N denote an odd 3-imperfect number. Then N = 3ρ(N),
and so H(N) = 3.

For an odd prime p, it is clear from (1) that ρ(pa) is odd if and only if a is even. Therefore
N is a square, and we may assume

(8) N = p2β1
1 p2β2

2 · · · p2βk

k .

Furthermore, recalling (6), we have

(9) N = 3
k∏

i=1

∏

d|2βi+1
d>1

Φ2d(pi) .

Many results concerning the values βi in (8) can be obtained. In this section, we present five
such results.

Theorem 1. If N = p2β1
1 p2β2

2 · · · p2βk

k is an odd 3-imperfect number then we cannot have βi = 1
for all i, 1 ≤ i ≤ k.

Proof. Suppose βi = 1 for all i, 1 ≤ i ≤ k. Since 32‖N , we have 3‖ρ(N). Thus 3‖ρ(q2) for
some prime q dividing N , and 3 ! ρ(p2) for all other primes p dividing N . By (7) we must have
q ≡ 2 (mod 3), and p ≡ 1 (mod 3) for all other primes p dividing N . But then q | ρ(N), and
so q | ρ(p2) for some other prime p dividing N (we can’t have q | ρ(32) = 7). But by Lemma 1,
it is impossible to have q | Φ6(p) = ρ(p2). !

Theorem 2. If N = p2β1
1 p2β2

2 · · · p2βk

k is an odd 3-imperfect number then βi ≡ 1 (mod 3) for
at least one i, 1 ≤ i ≤ k. !
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Proof. Suppose βi %≡ 1 (mod 3) for all i, 1 ≤ i ≤ k. Then 32 | N so that 3 | ρ(N). Hence
3 | ρ(p2β) for some prime p where p2β‖N . But 3 ! 2β + 1, and thus 3 ! ρ(p2β) by (7). !

Theorem 3. If N = p2β1
1 p2β2

2 · · · p2βk

k is an odd 3-imperfect number then we cannot have βi = 4
for all i, 1 ≤ i ≤ k.

Proof. Suppose βi = 4 for all i, 1 ≤ i ≤ k. Since 38‖N we have 37‖ρ(N). Suppose 3 | ρ(p8)
for some prime p dividing N . Then by (7), p ≡ 2 (mod 3) and 32‖ρ(p8). This implies v3(ρ(N))
is even. !

Theorem 4. If N = p2β1
1 p2β2

2 · · · p2βk

k is an odd 3-imperfect number then we cannot have β1 =
2α for 2 ≤ α ≤ 10 and βi = 1 for all i, 2 ≤ i ≤ k.

Proof. Suppose β1 = α where 2 ≤ α ≤ 10, and βi = 1 for 2 ≤ i ≤ k. If 32α‖N , then
32α−1‖ρ(N). By (7), there are exactly 2α − 1 primes (say p2, p3, . . . , p2α) such that pi ≡ 2
(mod 3). By Lemma 1, for 2 ≤ i ≤ 2α, it is impossible for pi to divide Φ6(q) = ρ(q2) for any
prime q; therefore

∏2α
i=2 p2

i | ρ(32α). Inspection of the factorizations of ρ(32α) for 2 ≤ α ≤ 10
shows that this is impossible (as the factorizations of ρ(32α) are all squarefree).

Otherwise 32‖N , and therefore 3‖ρ(N). We first show it is impossible to have 3 | ρ(p2α
1 ).

For, by (7) we have p1 ≡ 2 (mod 3). But then p1 | ρ(p2
i ) for some i, and this is impossible by

Lemma 1 since ρ(p2
i ) = Φ6(pi). Therefore (say) p2 = 3 and 3 | ρ(p2

3); by (7) we have p3 ≡ 2
(mod 3) and pi ≡ 1 (mod 3) for 4 ≤ i ≤ k. Furthermore, p2

3 | ρ(p2α
1 ) (since it is impossible by

Lemma 1 to have p3 | Φ6(q) = ρ(q2) for any prime q).

Now ρ(32) = 7 and hence 7 | N . Inspection shows that it is impossible to have p2
3 | ρ(72α)

for 2 ≤ α ≤ 10 (as the factorizations of ρ(72α) are all squarefree), so we must have 72‖N .
As ρ(72) = 43, we must have 43 | N . Similarly (inspection) we cannot have 432α‖N and so
432‖N . Then ρ(432) = 13 · 139, and so 13 · 139 | N . Again, by inspection we must have
132 · 1392‖N . Then ρ(132 · 1392) = 157 · 19183, and by inspection we have ρ(1572 · 191832) | N .
But 73 | ρ(32 · 1572 · 191832), giving 73 | N , contradicting 72‖N . !

Theorem 5. If N = p2β1
1 p2β2

2 · · · p2βk

k is an odd 3-imperfect number then we cannot have β1 =
β2 = 2 and βi = 1 for all i, 3 ≤ i ≤ k.

Proof. First, suppose that 34‖N . Then (as we cannot have 3 | Φ5(q) = ρ(q4) for any prime q

by Lemma 1) then there exist exactly three primes (say p3, p4, p5) such that pi ≡ 2 (mod 3)
(and thus 3‖ρ(p2

i )); furthermore (letting p1 = 3) we have p2
3p

2
4p

2
5 | ρ(p4

2) as it is impossible by
Lemma 1 to have pi | Φ3(q) = ρ(q2) for any prime q, 3 ≤ i ≤ 5 (and, ρ(34) = 61). Now the
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factorizations of ρ(q4) for q = 61, 7, 523, 43, 907, 13, and 157 are all squarefree, so p2 cannot be
any of these primes. As ρ(34) = 61, we see that 61 | N and hence 612‖N . Then ρ(612) = 7 ·523
so that 72 · 5232‖N , ρ(72 · 5232) = 7 · 432 · 907 so that 432‖N , ρ(432) = 13 · 139 so that 132‖N ,
ρ(132) = 157 so that 1572‖N , and ρ(1572) = 7 ·3499. But 73 | ρ(612 ·5232 ·1572) implies 73 | N ,
while we have 72‖N . Therefore we cannot have 34‖N .

The case when 32‖N is handled similarly. Letting p3 = 3, there is exactly one prime (say
p4) such that p4 ≡ 2 (mod 3), so that 3‖ρ(p2

4). Then p4 | ρ(p4
1p

4
2), and ρ(p4

1p
4
2) has no other

prime divisors which are congruent to 2 modulo 3 except for at most two, but this is only if
p1 | ρ(p4

2) or p2 | ρ(p4
1). With this in mind, it is not difficult to show that neither p1 nor p2

can be one of 7, 43, 13, 139, 157, or 19183. We then proceed as above: ρ(32) = 7, ρ(72) = 43,
ρ(432) = 13 · 139, ρ(132 · 1392) = 157 · 19183, so we have 73 | ρ(32 · 1572 · 191832), implying
73 | N , and yet 72‖N . This contradiction completes the proof. !

Similar results have been obtained for the shape of odd perfect numbers. It is well known
that an odd perfect number n must have the form n = qαp2β1

1 p2β2
2 · · · p2βk

k , where q ≡ α ≡ 1
(mod 4). Steuerwald [18] showed that we cannot have βi = 1 for 1 ≤ i ≤ k. McDaniel [15]
showed that we cannot have βi ≡ 1 (mod 3) for 1 ≤ i ≤ k. Cohen and Williams [6] showed
that we cannot have β1 = 5 or 6 with βi = 1 for 2 ≤ i ≤ k. Brauer [3] showed that we cannot
have β1 = 2 and βi = 1 for 2 ≤ i ≤ k. Kanold [13] showed that we cannot have β1 = 3, β2 = 2,
and βi = 1 for 3 ≤ i ≤ k. Iannucci and Sorli [11] showed that if βi ≡ 1 (mod 3) or 2 (mod 5)
for all i then 3 ! n.

5. The Number of Distinct Prime Divisors of an Odd 3-Imperfect Number

With N given as in (8), we say that ω(N) = k. It is immediate from (2) and (4) that ω(N) ≥ 16
since

4
3
· 6
5
· 8
7
· 12
11

· 14
13

· 18
17

· 20
19

· 24
23

· 30
29

· 32
31

· 38
37

· 42
41

· 44
43

· 48
47

· 54
53

< 3 .

In this section we increase this lower bound of 16:

Theorem 6. An odd 3-imperfect number contains at least 18 distinct prime divisors.

Proof. Suppose ω(N) = 16. Write

N = p2β1
1 p2β2

2 · · · p2β16
16 , p1 < p2 < · · · < p16 .

It is obvious that p1 = 3 (as N = 3ρ(N)). From (2) and (4) it follows that p2 = 5, p3 = 7, . . . ,
p10 = 31, since

4
3
· 6
5
· 8
7
· 12
11

· 14
13

· 18
17

· 20
19

· 24
23

· 30
29

· 38
37

· 42
41

· 44
43

· 48
47

· 54
53

· 60
59

· 62
61

< 3 .
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Similarly p11 is either 37 or 41 because

4
3
· 6
5
· 8
7
· 12
11

· 14
13

· 18
17

· 20
19

· 24
23

· 30
29

· 32
31

· 44
43

· 48
47

· 54
53

· 60
59

· 62
61

· 68
67

< 3 .

The same type of argument then yields 41 ≤ p12 ≤ 43, 43 ≤ p13 ≤ 53, 47 ≤ p14 ≤ 61,
53 ≤ p15 ≤ 83, and 59 ≤ p16 ≤ 257. In particular, no prime divisor of N exceeds 257.

Since 17 | N , we have by (9) that 17 | Φ2d(pi) for some i, where d | 2βi + 1. By Lemma 1,
we have d = 17γ , where γ > 0 (as d > 1), and pi ≡ −1 (mod 17). Since 2 · 17γ | 2βi + 1, we
have by (6) that Φ34(pi) | N . There are only two primes not exceeding 257 which are congruent
to −1 modulo 17, namely 67 and 101. But Φ34(67) and Φ34(101) each contain a prime divisor
which exceeds 257. This contradiction shows that ω(N) ≥ 17.

Now suppose that ω(N) = 17. Write

N = p2β1
1 p2β2

2 · · · p2β17
17 , p1 < p2 < · · · < p17 .

Applying (2) and (4) as above, we may deduce that p1 = 3, p2 = 5, . . . , p7 = 19, and that
p16 ≤ 521. Hence at most one prime divisor of N may exceed 521.

Again, we have 17 | N , so as above we have 17 | ρ(p2βi
i ) for some i, where pi ≡ −1 (mod 17),

and we also have Φ34(pi) | N . There are exactly five primes q ≤ 521 for which q ≡ −1
(mod 17): 67, 101, 271, 373, and 509. In each case, Φ34(q) contains at least two prime divisors
which exceed 521. Therefore we must have p17 ≡ −1 (mod 17) and (since N is a square)
172 | ρ(p2β17

17 ); by (7) this implies 172 | 2β17 + 1. Thus by (6) we have Φ578(p17) | N , and hence
by Lemma 3 we have a prime q | N such that q ≡ 1 (mod 578). Since q %= p17, we have two
prime divisors of N exceeding 521. This contradiction completes the proof of the theorem. !

Analogously, Hagis [8] and Chein [4] independently showed that if n is an odd perfect number
then ω(n) ≥ 8. Reidlinger [17], Kishore [14], and Hagis [9] independently showed that an odd
3-perfect number must have at least 12 distinct prime factors.

6. The Largest Prime Divisor of an Odd 3-Imperfect Number

In this section we prove that the largest prime divisor of an odd 3-imperfect number must
exceed 109 by constructing an algorithm which is then carried out with a computer:

Theorem 7. The largest prime divisor of an odd 3-imperfect number exceeds 109.

Proof. First we describe the algorithm by which the proof is carried out. For a natural number
M , let P(M) denote the statement, “The largest prime divisor of N exceeds M .” We assume,
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for the sake of contradiction, that p ≤ M for all prime divisors p of N . Then (say) 32β‖N and
so by (9), Φ2r(3) | N for all prime divisors r of 2β + 1 (all such r being odd). By Lemma 3,
we must have r < M/2 for all such r (otherwise Φ2r(3) is divisible by a prime exceeding M).
Therefore it suffices to show that the assumption Φ2r(3) | N leads to a contradiction for all odd
primes r < M/2. Let Lm(p) denote the largest prime divisor of Φm(p). If L2r(3) > M then the
contradiction is immediate. Otherwise (say) q = L2r(3) and q < M , and so we must disprove
q | N before we can finish disproving Φ2r(3) | N .

In disproving Φ2r(3) | N , we take the odd primes r < M/2 in ascending order, beginning
with r = 3. Thus we begin by assuming Φ6(3) | N . Since L6(3) = 7, we must then disprove
7 | N before proceeding to r = 5. To disprove 7 | N , we must show that Φ2r(7) | N leads to
a contradiction for all odd primes r < M/2, the primes r to be considered in ascending order
beginning with r = 3. Since L6(7) = 43, we must then disprove 43 | N , and so on.

In this way we generate a tree. At the root of the tree is the supposition 3 | N . Every edge
from the root corresponds to an odd prime r < M/2 for which L2r(3) < M ; thus the vertex at
the end of such an edge corresponds to the supposition q | N , where q = L2r(3). Then, from
this vertex, each edge corresponds to an odd prime r < M/2 for which L2r(q) < M , and the
vertex at the other end of such an edge corresponds to the supposition p | N , where p = L2r(q),
and so forth.

A given supposition p | N is false if, for all r < M/2, either L2r(p) > M or q | Φ2r(p) for an
odd prime q which has already been disproved as a divisor of N .

We illustrate this for the proof of P(103):

0: 3 3−→ 7
1: 7 3−→ 43
2: 43 3−→ 139
3: 139 ! N

2: 43 ! N

1: 7 5−→ 191
2: 191 ! N

1: 7 7−→ 911
2: 911 ! N

1: 7 ! N

0: 3 5−→ 61
1: 61 ! N

0: 3 7−→ 547
1: 547 ! N

0: 3 11−→ 661
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1: 661 ! N

0: 3 ! N

The numbers along the left margin indicate the number of edges between the root of the tree
and the particular vertex at the beginning of that line. Each of the 9 indicated primes were
disproved as divisors of N by computation. It is a simple matter, say, to test whether or not
Φ97(3) has any prime divisors q > 103. By Lemma 1, q ≡ 1 (mod 194), so it suffices merely
to test all such primes q < 103 to see if 397 ≡ 1 (mod q). Thus we obtain the product, say R,
of all primes less than 103 which divide Φ97(3). If lnR < 96 ln 3, then Φ97(3) must contain a
prime divisor greater than 103.

We then generated the proof of P(109), which produced 139 lines of output (as compared to
the 17 lines above taken above for P(103)), and 70 primes in all had to be disproved as divisors
of N . The computations were carried out using the UBASIC software package. We present the
first 12 lines and the last 12 lines of the output for the proof of P(109):

0: 3 3−→ 7
1: 7 3−→ 43
2: 43 3−→ 139
3: 139 3−→ 19183
4: 19183 3−→ 2766679
5: 2766679 ! N

4: 19183 ! N

3: 139 5−→ 1201
4: 1201 3−→ 1441201
5: 1441201 3−→ 14623159
6: 14623159 3−→ 5800159
7: 5800159 ! N
...

...
...

...
...

...

3: 116243551 3−→ 75833059
4: 75833059 ! N

3: 116243551 ! N

2: 1041421 ! N

1: 1021 ! N

0: 3 19−→ 101917
1: 101917 ! N

0: 3 29−→ 5385997
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1: 5385997 ! N

0: 3 37−→ 56737873
1: 56737873 ! N

0: 3 ! N

As the desired contradiction has been obtained, the proof is complete. !

An analogous result on odd perfect numbers was given by Jenkins [12], who showed that the
largest prime divisor must exceed 107. Cohen and Hagis [5] showed that if n is an odd k-perfect
number (k ≥ 3) then its largest prime divisor is at least 100129.

7. A General Result

In this section we give an upper bound on v3(N) which depends only on ω(N):

Theorem 8. If N is an odd 3-imperfect number then

v3(N) ≤ 1 +
(

ω(N) − 1
2

)2

.

Proof. We may write

(10) N = 32α
µ∏

i=1

p2ai
i

ν∏

j=1

q
2bj

j ,

where pi ≡ 1 (mod 3) for all i and qj ≡ 2 (mod 3) for all j. Neither of the products
∏µ

i=1 p2ai
i

nor
∏ν

j=1 q
2bj

j are empty: in other words µ > 0 and ν > 0. For, 3 | ρ(N), and by (7)
v3(ρ(N)) = v3(

∏ν
j=1 q

2bj

j ), and so ν > 0.

Since 3 | ρ(q2bj

j ) for some q
2bj

j ‖N , we have by (7) 3 | 2bj + 1. Thus by (6) Φ2·3γ (qj) | ρ(N)
for some γ > 0. By Lemma 3 Φ2·3γ (qj) | ρ(N) is divisible by a prime which is congruent to 1
modulo 3, and so µ > 0.

As in the preceding paragraph, we apply (7) and obtain

v3(ρ(N)) =
ν∑

j=1

v3(2bj + 1).

Let
γ = max

1≤j≤ν
v3(2bj + 1).
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Then by (6), for some j we have

(11) Φ2·3(qj)Φ2·32(qj) · · ·Φ2·3γ (qj) | ρ(N),

and by Lemmas 2 and 3 the product above in (11) contains at least γ distinct primes all
congruent to 1 modulo 3. Therefore µ ≥ γ.

Suppose ω(N) = k. Then as in (10) we have k = 1 + µ + ν. Since µ ≥ γ we have

(12) ν ≤ k − 1 − γ.

Now

2α − 1 = v3(ρ(N)) =
ν∑

j=1

v3(2bj + 1) ≤ νγ.

Combining this with (12) yields

(13) 2α ≤ 1 + γ(k − 1 − γ).

The right-hand side of (13) is maximized when γ = (k − 1)/2 and so we have

2α ≤ 1 +
(

k − 1
2

)2

,

and this completes the proof. !

8. Concluding Remarks

Martin obviously considered ρ as a variation of σ; he actually used the symbol σ̃ by which to
refer to ρ (this is also mentioned in Guy [7], p.72). However, it may be more precise to think
of ρ as a generalization of Euler’s totient function φ, since

ρ(n) =
∑

1≤k≤n
(k,n)∈S

1,

where S denotes the set of square integers.

It is clear that the problems posed by Martin are every bit as intractable as those analogously
pertaining to the σ function. The methods used here are parallel to those that have been applied
to the odd perfect number and odd k-perfect number problems. As an added note, the author
slightly modified the algorithm which produced P(109) in section 6 and applied it to show that
if n is an odd triperfect number, no prime divisor of which exceeds 109, then 3 ! n.
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