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Abstract

A real polynomial is called log-concave if its coefficients form a log-concave sequence. We
give a new elementary proof of the fact that a product of log-concave polynomials with
nonnegative coefficients and no internal zero coefficients is again log-concave. In addition,
we show that if the coefficients of the polynomial

∏
m∈M(x + m) form a monotone sequence

where M is a finite multiset of positive real numbers, so do the coefficients of
∏

r∈N(x + r)
for any submultiset N ⊂ M .

1. Introduction

A polynomial with real coefficients f(x) =
∑

i aixi is log-concave if we have a2
i −ai−1ai+1 ≥ 0

for all 0 < i < deg(f). Also, f(x) is said to have no internal zero coefficients if there do
not exist integers i < j < k such that ai $= 0, aj = 0, and ak $= 0. The following theorem
concerning the product of log-concave polynomials is well-known (e.g., refer to Theorem 1.2
of Chapter 8 in [1]).

Theorem 1. Let f(x) and g(x) be log-concave polynomials with nonnegative coefficients and
no internal zero coefficients. Then the product f(x)g(x) is also log-concave.

We will give a new elementary proof of this theorem in Section 2. Refer to [3] for an advanced
linear algebraic proof, and [2] for another elementary proof. We also refer the reader to [4]
for a proof via the LC-positivity of a constant triangle of nonnegative numbers.

Recall that a multiset is a set where repetitions of elements are allowed. If M is a
finite multiset of positive numbers, then it follows from Theorem 1 that the polynomial∏

m∈M(x + m) is log-concave. It is easy to see that every log-concave sequence a0, . . . , an is
unimodal, i.e., a0 ≤ · · · ≤ ak ≥ · · · ≥ an for some k. An interesting special case of a unimodal
sequence is a monotone sequence, i.e., a sequence that is weakly increasing or decreasing. We
show in Section 3 that if the coefficients of

∏
m∈M(x + m) form a monotone sequence, then



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A40 2

the coefficients of
∏

r∈N(x + r) for any submultiset N ⊂ M also form a monotone sequence.
At the end of the paper, we will briefly discuss how this interesting property can be used to
define a simplicial complex for any multiset of positive integers as the vertex set.

2. A New Proof of Theorem 1

In this section, every sequence is assumed to be an infinite sequence whose terms are indexed
by the set of integers. A sequence (ak) of real numbers is log-concave if a2

k ≥ ak−1ak+1 for
every integer k. The sequence (ak) has no internal zeros if there do not exist integers
i < j < k such that ai $= 0, aj = 0, and ak $= 0. The following lemma characterizes a
log-concave sequence of nonnegative real numbers with no internal zeros.

Lemma 2. A sequence of nonnegative real numbers (ak) with no internal zeros is log-concave
if and only if aiaj ≥ ai−1aj+1 for all integers i ≤ j.

Proof. The sufficiency is clear. We will prove the necessity by induction on j − i. Since (ak)
is nonnegative and has no internal zeros, it suffices to prove the inequality for integers i ≤ j
such that ai > 0 and aj > 0. Now, the case j − i = 0 is clear. Let j − i > 0. Since (ak) is
log-concave, we have a2

i a
2
j ≥ ai−1ai+1aj−1aj+1. For j − i = 1, we have ai+1aj−1 = ajai, and

the desired inequality follows. For j − i ≥ 2, we have ai+1aj−1 ≥ aiaj by induction, and the
desired inequality follows.

Given a sequence a = (ak) of real numbers, define Σna to be the sequence given by shifting
every term of a right by n terms, i.e., Σna = (a′

k) where a′
i = ai−n for all i. We will write Σa

for Σ1a. Given another sequence b = (bk) of real numbers, we define a∗b :=
∑

i aibi. For each
pair of integers (i, j) such that i ≤ j define aij = (aiaj −ai−1aj+1) and bij = (bibj −bi−1bj+1).

Lemma 3. Let a = (ak) and b = (bk) be sequences of real numbers. Suppose only finitely
many terms in a are nonzero. Then we have

(a ∗ b)2 − (a ∗ Σb)(Σa ∗ b) =
∑

i≤j

aijbij,

where the sum is over all pairs of integers (i, j) such that i ≤ j. In particular, if both a and
b are log-concave then (a ∗ b)2 ≥ (a ∗ Σb)(Σa ∗ b).

Proof. Given any sequences (xi) and (yj), we have

( ∑

i

xi

)( ∑

j

yj

)
=

∑

i≤j

(xiyj + xjyi−1) =
∑

i≤j

(xiyj + xj+1yi−1) +
∑

i

xiyi−1,

assuming that every sum in this equation exists. Applying this equation to the sums a∗b =∑
i aibi, (a ∗ Σb) =

∑
i aibi−1, and Σa ∗ b =

∑
j ajbj+1, which are well-defined because all



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A40 3

but finitely many terms of (ak) are zero, we get

(a ∗ b)2 =
∑

i≤j

(aiajbibj + ai−1aj+1bi−1bj+1) +
∑

i

(aiai−1bibi−1) and

(a ∗ Σb)(Σa ∗ b) =
∑

i≤j

(aiajbi−1bj+1 + ai−1aj+1bjbi) +
∑

i

(aiai−1bi−1bi).

From these equations, it follows easily that

(a ∗ b)2 − (a ∗ Σb)(Σa ∗ b) =
∑

i≤j

(aiaj − ai−1aj+1), (bibj − bi−1bj+1)

as desired. The second statement of the lemma follows from this and Lemma 2.

Proof of Theorem 1. Let f(x) =
∑

i aixi and g(x) =
∑

j bixi be as in Theorem 1. If we
define ai = 0 and bj = 0 when i /∈ [0, deg(f)] and when j /∈ [0, deg(g)], respectively, then the
infinite sequences a = (ai) and b = (bj) are log-concave. Let the sequence d = (di) be the
“mirror image” of b about b0, i.e., d−i = bi for all i. Note that d is still log-concave, hence
so is Σid for all i. Let f(x)g(x) =

∑
i cixi. Then Theorem 1 follows from Lemma 3 together

with the facts ci = a ∗ Σid, ci−1 = Σa ∗ Σid, and ci+1 = a ∗ Σi+1d. !

3. Monotone Polynomials

Recall that a multiset of cardinality n is a set M = {m1, m2, . . . , mn}, where repetitions of
elements are allowed. For each 0 ≤ k ≤ n, let sk(M) denote the coefficient of xn−k in the
polynomial f(x) =

∏
1≤i≤n(x + mi). (For M = ∅ we define s0(M) = 1.) Define sk(M) = 0

for k /∈ [0, n]. Now, the following identity is easy to check: for any m ∈ M and k,

sk(M) = msk−1(M \ m) + sk(M \ m) .

Note that when M is a finite multiset of positive real numbers, the sequence (sk(M))
is log-concave by Theorem 1. Moreover, (sk(M)) is unimodal because every log-concave
sequence is unimodal.

Theorem 4. Let M be a finite multiset of cardinality n consisting of positive real numbers.
Suppose we have s0(M) ≤ · · · ≤ sk(M) ≥ · · · ≥ sn(M) for some k. Then for any m ∈ M ,
we also have
(a) s0(M \ m) ≤ s1(M \ m) ≤ · · · ≤ sk−1(M \ m), and
(b) sk(M \ m) ≥ sk+1(M \ m) ≥ · · · ≥ sn−1(M \ m).

Proof. Fix m ∈ M . For notational simplicity, we will denote si = si(M) and uj = sj(M \m).
To prove (a), we will show that if we have st ≤ st+1 for any t ≥ 1, then we also have ut−1 ≤ ut.
Suppose otherwise. Then, we must have st+1/st ≥ 1 and ut/ut−1 < 1 for some t. Now, let
g(x) = (utx + ut+1)/(ut−1x + ut). Since every uj is positive, it follows that g(x) and its
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first derivative g′(x) are well-defined for x > 0. Also, we have u2
t − ut−1ut+1 ≥ 0 because

the sequence (uj) is log-concave. Using this fact, one can show that g′(x) ≥ 0, i.e., g(x)
is weakly increasing for x > 0. It follows that g(x) ≤ (ut/ut−1) < 1 for all x > 0. In
particular, we must have g(m) = (utm + ut+1)/(ut−1m + ut) = st+1(M)/st(M) < 1, which is
a contradiction. This proves (a).

For part (b), we will show that if st ≥ st+1 for any t, then we also have ut ≥ ut+1.
Again, suppose otherwise. Then we must have st/st+1 ≥ 1 and ut/ut+1 < 1 for some
t. Now, let h(x) = (ut−1x + ut)/(utx + ut+1). Using the log-concavity of (uj) as in the
proof of (a), one can show that h(x) is weakly decreasing for x ≥ 0. From this, we have
st/st+1 = h(m) ≤ h(0) = ut/ut+1 < 1, which is a contradiction. This proves (b).

If the sequence (sk(M) : 0 ≤ k ≤ n) is monotone increasing, i.e., s0(M) ≤ s1(M) ≤ · · · ≤
sn(M), then part (a) of Theorem 4 implies that we also have s0(N) ≤ s1(N) ≤ · · · ≤ s|N |(N)
for any submultiset N ⊂ M . By part (b), similar result holds when (sk(M) : 0 ≤ k ≤ n) is
monotone decreasing. Hence we have

Corollary 5. Let M be a finite multiset of positive real numbers. Suppose the coefficients of
the polynomial

∏
m∈M(x+m) are either monotone increasing or monotone decreasing. Then,

for any submultiset N ⊂ M , the coefficients of
∏

r∈N(x + r) are either monotone increasing
or monotone decreasing also, respectively. !

Finally, we briefly discuss a topological implication of this corollary. Let V be a (finite)
multiset of positive integers. Let ∆ be the collection of all finite submultisets M ⊂ V such
that the sequence (sk(M) : 0 ≤ k ≤ |M |) is monotone increasing. (This sequence cannot be
monotone decreasing when |M | > 1.) Then by the remarks before Corollary 5, ∆ satisfies
the following property: if M ∈ ∆ and N ⊂ M , then N ∈ ∆. Clearly, we have {v} ∈ ∆
for all v ∈ V , and we have φ ∈ ∆. Hence, ∆ is a simplicial complex with the vertex set V .
(Refer to any text in algebraic topology for the definition of a simplicial complex.)
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