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Abstract

A real polynomial is called log-concave if its coefficients form a log-concave sequence. We
give a new elementary proof of the fact that a product of log-concave polynomials with
nonnegative coefficients and no internal zero coefficients is again log-concave. In addition,
we show that if the coefficients of the polynomial [, .,,(z +m) form a monotone sequence
where M is a finite multiset of positive real numbers, so do the coefficients of [, .y (z 4 )
for any submultiset N C M.

1. Introduction

A polynomial with real coefficients f(z) = Y, a;a" is log-concave if we have a? —a;_1a;41 > 0
for all 0 < i < deg(f). Also, f(x) is said to have no internal zero coefficients if there do
not exist integers ¢ < j < k such that a; # 0, a; = 0, and a; # 0. The following theorem
concerning the product of log-concave polynomials is well-known (e.g., refer to Theorem 1.2
of Chapter 8 in [1]).

Theorem 1. Let f(x) and g(x) be log-concave polynomials with nonnegative coefficients and
no internal zero coefficients. Then the product f(x)g(x) is also log-concave.

We will give a new elementary proof of this theorem in Section 2. Refer to [3] for an advanced
linear algebraic proof, and [2] for another elementary proof. We also refer the reader to [4]
for a proof via the LC-positivity of a constant triangle of nonnegative numbers.

Recall that a multiset is a set where repetitions of elements are allowed. If M is a
finite multiset of positive numbers, then it follows from Theorem 1 that the polynomial
[L,.c0(z +m) is log-concave. It is easy to see that every log-concave sequence ay, . .., ay, is
unimodal, i.e., ag < -+ < a > --- > a, for some k. An interesting special case of a unimodal
sequence is a monotone sequence, i.e., a sequence that is weakly increasing or decreasing. We
show in Section 3 that if the coefficients of [],,.,,(z +m) form a monotone sequence, then
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the coefficients of [], . (z +r) for any submultiset N C M also form a monotone sequence.
At the end of the paper, we will briefly discuss how this interesting property can be used to
define a simplicial complex for any multiset of positive integers as the vertex set.

2. A New Proof of Theorem 1

In this section, every sequence is assumed to be an infinite sequence whose terms are indexed
by the set of integers. A sequence (ay) of real numbers is log-concave if a2 > ay_jax4, for
every integer k. The sequence (ay) has no internal zeros if there do not exist integers
i < j < k such that a; # 0, a; = 0, and a, # 0. The following lemma characterizes a
log-concave sequence of nonnegative real numbers with no internal zeros.

Lemma 2. A sequence of nonnegative real numbers (ax) with no internal zeros is log-concave
if and only if a;a; > a;_1a;41 for all integers ¢ < j.

Proof. The sufficiency is clear. We will prove the necessity by induction on j —i. Since (ay)
is nonnegative and has no internal zeros, it suffices to prove the inequality for integers i < j
such that a; > 0 and a; > 0. Now, the case j —¢ = 0 is clear. Let j —¢ > 0. Since (ay) is
log-concave, we have a?a? > A;—10;410j—10j41. For j —i =1, we have a;11a;-1 = aja;, and
the desired inequality follows. For j —¢ > 2, we have a;41a,_1 > a;a; by induction, and the
desired inequality follows. O

Given a sequence a = (ay,) of real numbers, define >"a to be the sequence given by shifting
every term of a right by n terms, i.e., ¥"a = (a}) where a} = a;_,, for all i. We will write Xa
for X'a. Given another sequence b = (by,) of real numbers, we define axb := >, a;b;. For each
pair of integers (Z,j) such that ¢ S j define aj; = (CLi(lj — ai_lajﬂ) and bij = (bzbj — bi—lbj—l-l)-

Lemma 3. Let a = (a) and b = (by) be sequences of real numbers. Suppose only finitely
many terms in a are nonzero. Then we have

(a*b)> — (axXb)(Saxb) = a;b;,

1<j
where the sum is over all pairs of integers (i,7) such that i < j. In particular, if both a and

b are log-concave then (a*b)?* > (a* Xb)(Xaxb).

Proof. Given any sequences (z;) and (y;), we have
(Z %) (Z yj) = Z(xzya + Y1) = Z(l‘z‘yj + Tjt1yi-1) + Z ZLilYi-1
i J i<y i<j i

assuming that every sum in this equation exists. Applying this equation to the sums axb =
>_iaibi, (axXb) = 37 aibi1, and Za*xb = 3 a;b;1, which are well-defined because all
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but finitely many terms of (ay) are zero, we get

(a * b)2 = Z(a,;ajbibj + ai_laj+1bi_1bj+1) + Z(aiai_lbibi_l) and

i<j %

(a * Zb)(Ea * b) = Z(aiajbi_lbjﬂ + ai_lajﬂbjbi) + Z(aiai_lbi_lbi).

i<j i

From these equations, it follows easily that

(a * b)2 — (a * Eb)(Za * b) = Z(aiaj — CLl',lCLjJrl), (blbj - biflijrl)

i<j

as desired. The second statement of the lemma follows from this and Lemma 2. O

Proof of Theorem 1. Let f(x) = >, a;x" and g(x) = }_ bz’ be as in Theorem 1. If we
define a; = 0 and b; = 0 when ¢ ¢ [0, deg(f)] and when j ¢ [0, deg(g)], respectively, then the
infinite sequences a = (a;) and b = (b;) are log-concave. Let the sequence d = (d;) be the
“mirror image” of b about by, i.e., d_; = b; for all . Note that d is still log-concave, hence
so is X'd for all i. Let f(z)g(z) =Y, c;x". Then Theorem 1 follows from Lemma 3 together
with the facts ¢; = a* X'd, ¢;_; = Ya * X'd, and ¢;;; = a * XiTid. O

3. Monotone Polynomials

Recall that a multiset of cardinality n is a set M = {my, mao, ..., m,}, where repetitions of
elements are allowed. For each 0 < k < n, let s;(M) denote the coefficient of 2" in the
polynomial f(z) = [[,<;<,(z +m;). (For M = () we define so(M) = 1.) Define sx(M) =0
for k ¢ [0,n]. Now, the following identity is easy to check: for any m € M and k,

sp(M) = msg_1 (M \ m) + sp(M\ m).

Note that when M is a finite multiset of positive real numbers, the sequence (sx(M))
is log-concave by Theorem 1. Moreover, (si(M)) is unimodal because every log-concave
sequence is unimodal.

Theorem 4. Let M be a finite multiset of cardinality n consisting of positive real numbers.
Suppose we have so(M) < -+ < s, (M) > -+ > s,(M) for some k. Then for any m € M,
we also have

(a) so(M\m) <sg(M\m)<---<sp1(M\m), and

(b) se(M\m) > 51 (M\m) = - > 5,1(M \m).

Proof. Fix m € M. For notational simplicity, we will denote s; = s;(M) and u; = s;(M \m).
To prove (a), we will show that if we have s; < 5,44 for any ¢ > 1, then we also have u;—; < uy.
Suppose otherwise. Then, we must have s;,1/s; > 1 and w;/u;—1 < 1 for some t. Now, let
g9(z) = (wx + wy1)/(u—1x + w). Since every wu; is positive, it follows that g(x) and its
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first derivative ¢'(z) are well-defined for x > 0. Also, we have u? — u;_ju;41 > 0 because
the sequence (u;) is log-concave. Using this fact, one can show that ¢'(z) > 0, i.e., g(z)
is weakly increasing for = > 0. It follows that g(z) < (us/us—1) < 1 for all z > 0. In
particular, we must have g(m) = (ugm + 1)/ (we—1m + up) = Se41(M) /(M) < 1, which is
a contradiction. This proves (a).

For part (b), we will show that if s; > s;41 for any ¢, then we also have u; > 1.
Again, suppose otherwise. Then we must have s;/s;11 > 1 and ug/uiyq < 1 for some
t. Now, let h(z) = (u—12 + w)/(wx + uy1). Using the log-concavity of (u;) as in the
proof of (a), one can show that h(x) is weakly decreasing for > 0. From this, we have
St/ St41 = h(m) < h(0) = us/ury1 < 1, which is a contradiction. This proves (b). O

If the sequence (si(M) : 0 < k < n) is monotone increasing, i.e., so(M)
$p(M), then part (a) of Theorem 4 implies that we also have so(N) < s1(N) < -+ <
for any submultiset N C M. By part (b), similar result holds when (sx(M) : 0 <k
monotone decreasing. Hence we have

A
&
=
“ A
A

Corollary 5. Let M be a finite multiset of positive real numbers. Suppose the coefficients of
the polynomial [ ], ., (x+m) are either monotone increasing or monotone decreasing. Then,
for any submultiset N C M, the coefficients of [ [,y (2 + 1) are either monotone increasing
or monotone decreasing also, respectively. O

Finally, we briefly discuss a topological implication of this corollary. Let V' be a (finite)
multiset of positive integers. Let A be the collection of all finite submultisets M C V such
that the sequence (sg(M) : 0 < k < |M|) is monotone increasing. (This sequence cannot be
monotone decreasing when |M| > 1.) Then by the remarks before Corollary 5, A satisfies
the following property: if M € A and N C M, then N € A. Clearly, we have {v} € A
for all v € V, and we have ¢ € A. Hence, A is a simplicial complex with the vertex set V.
(Refer to any text in algebraic topology for the definition of a simplicial complex.)
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