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Abstract

This study proposes a novel hybrid iterative scheme for approximating fixed points of
contraction mappings called Picard-P iterative scheme, which is a combination of Picard and P
iterative schemes. The efficiency of present iterative scheme is to provide faster convergence
in contrast to several well-known iterative schemes. It is efficiently illustrated with the help of
a numerical example followed by a graph. Some convergence and stability results for
contraction mappings in the context of Banach spaces are established using the proposed
scheme. Additionally, to support our claim, MATLAB programme is used to approximate fixed

points for contraction mappings.
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1. Introduction

Many non-linear problems pertaining to engineering, integral equations, economics,
differential equations, management, and game theory, among others, can be solved using fixed
point theory. In this regard, Banach contraction theorem [3] is the first and most significant
tool in the hands of authors for ensuring the existence and uniqueness of fixed points. However,
once the existence of a fixed point in a mapping is confirmed, the challenge is to determine the
value of that fixed point, and iterative schemes excel in this respect. The celebrated Banach
Contraction Theorem uses the Picard [14] Iterative scheme to approximate the fixed point of
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contraction mappings. Following that several new iterative schemes were developed by
researchers to approximate the fixed points of nonlinear mappings fulfilling various contractive
conditions. Faster convergence is an essential element for considering one iterative scheme
over another. Some of the well-known iterative schemes are: Picard [14], Mann [11], Ishikawa
[8], Agarwal [2], Noor [12], Abbas [1], CR [5], Picard-Mann [9], Picard-S [6], Picard-SP [10].
Rhoades [15] examined the convergence rates of the Mann and Ishikawa iterative schemes in
1976 and concluded that the Mann iterative scheme converges faster than the Ishikawa iterative
scheme for decreasing functions while the Ishikawa iterative scheme is more effective for
increasing functions (see also [16]). Agarwal et al. [2] showed in 2007 that the Agarwal
iterative scheme converges faster than the Mann iterative scheme and at the same rate as the
Picard iterative scheme for contraction maps. In 2014 Gursoy and Karakaya [6] demonstrated
using numerical examples that the Picard-S iterative scheme for contraction mappings
converges faster than all Picard, Mann, Ishikawa, Noor, SP, CR, S, and some other iterations.
In 2015, Sainuan [17] claimed that P-iteration converges faster than S-iteration for the class of
continuous and non-decreasing functions, and he presented numerical examples to compare P-
iteration to Ishikawa and S-iterations. Kumar and Chugh [10] illustrated in 2019 using a
numerical example that the Picard-SP iterative scheme converges faster than the Picard,
Krasnosel'skii, Mann, Ishikawa, and Picard-Krasnosel'skii iterative schemes for contraction
mappings in Banach space.

Motivated by the above, we propose a novel iterative scheme called Picard-P hybrid iterative
scheme in this study to approximate fixed points of contraction mappings. We provide some
convergence results for contraction mappings in Banach spaces. We discuss the stability of our
iterative scheme. We demonstrate that the suggested scheme outperforms various well-known
and leading iterative schemes in terms of convergence speed. Furthermore, the effectiveness of
the proposed scheme is illustrated using a numerical example followed by a graph. To back up
our assertion, we utilise the MATLAB programme to approximate fixed points for contraction

mappings.

2. Preliminaries

In this paper, the set of all positive integers is denoted by N. Assume T represent a mapping on
the nonempty subset of Banach space X called B. Fixed point is a point that remains constant
under a given mapping. Let, F = {x € B : Tx = x }, be the set of all fixed points of the

mapping T on B. The mapping T: B — B is said to be a contraction if
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d(Tx,Ty) < ad(x,y) , forallx,ye Bandae€(0,1). (2.1)
Here are a few of the definitions and lemmas:
Throughout this section we have m € N and {a,,}, {b,,} and {c,,} are sequences in [0,1],

satisfying appropriate conditions.

Definition 2.1.[4] Let {x,,} and {y,,,} be two real sequences converging to x and y, respectively.

Then we can say that the sequence {x,,} has faster convergence than {y,,} if

. lxm—x|l _

m—oo [[ym=ll

Definition 2.2. [4] Assume that {u,,}and {v,,} are two fixed point iterative schemes
converging to a certain fixed point g. If ||u,,, — ql| < x,, and ||v,,, — ql| <y, for all m € N,
where {x,,,} and {y,,} are two sequences of positive numbers converging to zero. Then we say

that {u,, } converges faster than {v,,} to q, if {x,,,} converges faster than {y,,}.

Definition 2.3. [7] Let {s,,,} represent any random sequence in B. The iterative scheme w4
=1 (T, u,,), converging to fixed point g, is therefore said to be T-stable or stable with regard to
T, iffor e = lIsme1 — f(T,sp)Il,m=0,1,2,3, ..., we have
lim €, = lim s, = Q.
m—oo

m-—oo

Lemma 2.4. [1] Let {¢t,,} be a sequence of positive real numbers which satisfies:

tm+1 < (1 - Sm) tm.

If {sp} < (0,1)and };n_; Sy, =, then lim t,,, = 0.

m-oo

Lemmaz2.5. [19] Let {a,}m=0 and {Bm}m=o are non-negative real sequences satisfying the
following inequality:
Am+1 = (1 - ym) am + ﬁma

where y,, € (0,1) forallm € N, Y00 _ ¥m = © and Bm 0 asm— . Then lim an =0.

Ym m—oo

Some pre-existing Iterative schemes are listed below.

Picard[14] established the iterative scheme specified by {x,,,} in 1890 as:

{ Xy € B,

2.2
Xm+1 = TXp. (22)
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Mann[11] established the one-step iterative scheme specified by {s,}in 1953 as:
{ So € B,
Sme1 = (1 — ey )sm + i TS,

Ishikawa[8] established the first two-step iterative scheme specified by {y,,}in 1974 as:

(2.3)

yO € B )
ZIm = (1 - bm )ym + bm Tym, (2-4)
Ym+1 = (1 — Cm )ym + e Tz,

Khan[9] established the two step Picard-Mann hybrid iterative scheme specified by {y,,} in
2013 as:

yO € Br
Im = (1 - by ):Vm + by TYm, (2-5)
Ym+1 = TzZp,

Gursoy and Karakaya[6] established the three step Picard-S hybrid iterative scheme specified
by {v,,} in 2014 as:

Vg € B,
tm =1 —ay,) vy, + ay, Ty,

s = — by)Tv, + by Tty (2.6)
VUm+1 = T'Sp,
Sainuan[17] established the three step P iterative scheme specified by {u,,} in 2015 as:
Uy € B,
Zm =0 — ap)uym + ay Tuy, 27)

Ym = — by ) zy + by Tzy,
Unt1 = (1 — ) Tzym + Cn Tym,
N. Kumar and R. Chugh[10] established the Picard-SP iterative scheme specified by {t,,} in
2019 as:

to € B,
Ym =1 — ap)tym + anTty,
Zm = (1 = byp)Ym + by Tym, (2.8)
Xm = = ¢p)zm + Tz,
tm+1 = TXp.

3. Main Results :

We now introduce a new hybrid iterative scheme “Picard-P iterative scheme” as follows:

79 € B,
tm = (1 - ap)tym + am Ty,
Sm = (1= by) ty + by Tty : (3.1)

Uy =1 - )Tty + e TS,
Tm1 = TUm

where {a,,},{b,,} and {c,,} are sequences in [0,1], satisfying appropriate conditions.
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Here we prove that the sequence generated by the proposed Picard-P iterative scheme
converges to a fixed point of the mapping T faster than other existing iterative schemes. We
proved some convergence results for contraction mappings in Banach spaces. We discuss the
stability of our iterative scheme. We demonstrated a numerical example to show that Picard-P
iterative scheme converges faster than Picard, P, Picard-Mann, Picard-S and Picard-SP iterative

schemes.

Theorem 3.1: Let C be a nonempty closed and convex subset of a Banach space X, let T: C —»
C be a contraction mapping. Let {r;,,} be a sequence generated by iterative scheme (3.1) with
real sequences {a,,},{bn,}and {c,}in [0,1] satisfying X.;n_o c;y=o0. Then {r,} converges

strongly to a unique fixed point of T.

Proof: The well known Banach contraction principle guarantees the existence and uniqueness
of a fixed point p. We shall show that r;;, — p for m — oo. From iterative scheme (3.1), we
have
ltm — Pl =111 = am ) 1 + am Trn — pll
=1 — am)tm + am Tt — (1 — ay, + an) 2l
<@ - ap)litg — pll + anllTr, — pll
<@ = ap)ling — pll + apallr, — pll
=(1 = a1 =a)llrm — pll. (3.2)
Similarly,
Ism — pll =111 = by Ve + b Tty — pll
<@ = bp)lltm — pll + byllTtm — pll
<@ = bp)lltm — pll + bpallt, — pll
< (1 — by (1 — a:))(l - a,(1 - a))llrm— pll. (3.3)
lum — pll = I(1 = ¢ )Tt + Cu Tsm — DI
<@ = )Tty — pll + cullTsm — pll
<1 - cp)allty — pll + cmallsm — pll
<1-cp)ad - a,A—a)ln,— vl + cpa(l — b, (1—a))(1 —
am (1 — a))llr, — pll
za(l — a,(1—a))A — bpc,(1 —a)lln, — pll. (3.4)
I7m+1 — pll = ITw — pll

< allum — pli
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= az(l - am(l - a) )(1 - bmcm(1 - a))”rm - p”
< a?(1 = bpcpn(1-a)lln, — pll (3.5)
By using the fact that (1 — a,,(1—a)) <1and (1 — byp(1—a)) < 1for @ €(0,1) and

{a,}and {b,,} in [0,1]. From (3.5) we have
”rm+1 - p” < az(l - bmcm(1 —CZ))”T'm - p”
7 — pll < @®(1 - byt (1 - @) llrm—y — pll

rmer = Il < @?(1 = bp_pmz(1 - @) Tz — Pl (3.6)

I~ pll < @®(1 — boco(1-a))liro  pll
Now, from (3.6) we can easily find
I7mes = pll < @™ Dllrg — plITTRZo(1 - bren(1 - ) 3.7)
where (1 - bpc, (1 -a)) € (0,1) because a € (0,1) and by, c,€ [0,1], for all m € N. As we
know that 1-t<e~¢ forall t € [0,1], so from (3.7), we get

lIro— plla®(m+®)

e(1-®) I5zobnen

Irmer = pll < (3.8)

Taking limits both sides, inequality (3.8) yields lim ||r,, — p|| =0, i.e 1, — p for m — oo as
m—oo

required.

Theorem 3.2. Let C be a nonempty closed and convex subset of a Banach space X, let T: C —»
C be a contraction mapping. Let {r;,} be a sequence generated by iterative process (3.1) with
real sequences {a,,},{b,}and {c,,}in [0,1] satisfying Y;r—¢ b am=o0. Then the iterative

scheme is then stable with regard to T'.

Proof. Assume {v,,} © X to be any random sequence in C and a sequence t,,,1 =f (T, 13,)
formed by (3.1) converges to a unique fixed point p (by above result 3.1) and ¢, =
lvimer = F(Tvm)ll.
We will prove that lim €,,=0 & lim v,,=p.
n—-oo n—-oo
Let lim €,,=0. By using (3.5), we get
n—->oo

1Vm+1 = pll < 1vimsr = FT vl + £ (T, vm) = pll

— (1 - Cm)[(l - bm)T{(l - am)vm + amTvm}] +
T Em* HT [ cmTI(1 = by){(1 = am)vm + amTvm} + by T{(1 — am)vm + amTvm}]] B p”

< EmT az(l - bmcm(1 —0{)) ”vm - p”
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Define a,;, = |V — 2ll, B = bmCm(1 - @) € (0,1) and y,,, = €,,, = 0, which implies that ;—m

m

— 0 as m — oo. Then by lemma 2.5, we get lim a,, =01i.e., lim v, =p.
m—oo

m—oo

Conversely,

Let lim v, =p, we have
m—oo

€Em = ”Um+1 - f(T’ Um)”
= ”Um+1 - p” + “f(T' vm) - p”
<NWmer — Pl + @?(1 = by (1 - @) llvm, — pll

This implies that lim €,, = 0.
m-—oo

Hence our Picard-P hybrid iteration scheme (3.1) is T stable.

Theorem 3.3. Let C be a nonempty closed and convex subset of a Banach space X, let T: C —»
C be a contraction mapping such that each of the iterative schemes: Picard(2.2), P(2.7), Picard-
Mann (2.5), Picard-S(2.6), Picard-SP(2.8) and Picard-P(3.1) converges to the same fixed point
p of T, where {a,,}im=0, {bmtm=0and {cy}m=o are real sequences in [0,1] such that 0 < u
< Qm, b, cm< 1, for all m € N and for some p. Then the Picard-P hybrid iterative scheme

(3.1) surpasses all other iterative schemes in rate of convergence.

Proof: Assume that for mapping T, p represents its fixed point. Utilising Picard iterative
scheme (2.2) with (2.1), we accomplish
IXm+1 — Il = ITxm — pll

< allxy, = pll

< a™lx; — pll (3.9)
Suppose
Im =a™lx; — pll. (3.10)
Utilising P iterative scheme (2.7) with (2.1), we accomplish
lum+1 — PI= I = ¢ )(TZy — 0) + i (Tym — DI
<@ = cp)allzy —pll + cm @ llym — pll
=l —cn)allzm —pll + cma lI(1 = by )(Zm — ) + by (T2 — D)
<A -cm)allzn —pll + cmal(X = b)) lzm — pll + bnallzm — pll]
=a(1-1 - a)bpem)llzm —pll
=a(l-(1— a)bpcn))(X — ap)llum —pll + anllTuy —p
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<a(1-(1 - bpe)(A = ay)llum —pll + amallu, —p ]
=a(1-(1 - a)bpcn)(1- (11— d)ay)llun —pll
<[a(1-1-a)p)][1-A-a)w] lluy, —pll

<[a(1-Q—a)u)] ™1 -1 —a)p™llu, —pll (3.11)
Let
hy = [1-(1 = a)pu] ™a(1 -1 - a)u)]"lw —pll 3.12)
Utilising Picard-Mann iterative scheme (2.5) with (2.1), we accomplish
IYm+1 — pll = 1Tzp — pll
< allzm — pll
=all(X = by )Y =) + b (Tym — D)
< al(X = bp)llym — pll + b @ [lym — pll]
=a(l-(1=a)by) llym =l
<a(l-(1-a)w llym —rpll

< [a(1-(1—a)w]™lly. —pll (3.13)
Let
Jm = la(1 -1 —a)w)]"ly: —pll (3.14)
Utilising Picard-SP iterative scheme (2.8) with (2.1), we accomplish
ltm+r — pll = ITxm — pll
< allxy, —pll
=all( = em)(@Zm —p) + o (Tzm — DI
<a(l — ep)llzm —pll + cm @ |z — Dl
=la (-1 —-a)e)]llzm —pll
=la(1-A=-a)e)]ll(X = by )Yim —P) + b (Tym — D)
<[a (-1 —-a)e)][(X = by ))lym —pll + by & llym — pll]
=la Q-1 -a)e)](A -1 =a)by)llym —pll
=la(l-1-a)em)]1-1—a)b)ll(A — aw ) —p) + am (Tt — Pl
Sla(1-A—-a)e)]A-A = a)bp)[(X = am)litm —pll + ama |ty —pll]
cFla@-A-a)e)](1-(1 —a)byp)(1 -1 - a)ay)llty, —pll]
Sla(l-A-a)W]A-A-a)W@-1-a)w |ty —pll
<[e(1-1-a)WI-A-a)wllit, —pl
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<[a@1-A-a)w]™[A-QAQ—a)W]*™it, —pll (3.15)
Let
km = [a(1-(1—a)W]™[(1-1Q = a)W]*™ty, —pll (3.16)
Utilising Picard-S iterative scheme (2.6) with (2.1), we accomplish
lvm+1 — pll = ITsm — pll
< alls; — pll

=al[(1 = by )(Tvy —p) + by (Tt — DI

< a*((1 = byp)llvm = pll + byllt, —pll)

=a?((1 = by)llvm —pll + bl = @) (Wm =) + am (Tvm —p)II)
< a*((@ = by v = pll + b1 = ap)llvim = pll + ambpallvy, — pll)
=a*(1-(1 = @)bpey)llvy —pll

<[e?(1-1 - a)p)]llvy —pl

<[?(1-(1 - a)p®)] ™lv, — ol (3.17)
Let
im = [a?(1-(1 = a)p®)] "lv, — pll (3.18)
Utilising Picard — P iterative scheme (3.1) with (2.1), we accomplish
ITm+1 — pll = ITuy — pli
< allu, — pll
=all(@ = cp )(Ttm —p) + cm (Tsm — D)
<a?[(1 — cp)lltm =PIl + cm llsm —pll]
=a?[(1 = cp)litm —pll + e (X1 = by )(tm — D) + b (Tt — P
<a?[(1 = cp)litm —pll + ¢ (1 = b))t —pll + bpcpeallt, —pll]
=a*(1-(1—a)bmey) litm —pll
=a’(1-(1 = a)bmey) (1 = am ) —p) + am (Tt — D)l
<a?(1-(1 = a)bpen)[(1 — ap)lirm —pll + aaplln, —pll]
=a?(1-(1—a)bmen) (1 -1 = a)an) lIr, —pl
< [a?(1-(1—a)p)][A -1 - a)W]ln, — ol

<[a?(1-(1 = a)p®)]™[(A -1 = a)w]™lr —pll (3.19)
Let
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bn = [@?(1-(1 — )™ [(1 - (1 = a)W]™ Iy — pll (3.20)
Now, we find the rate of convergence of our iterative scheme (3.1) as

a) By using (3.10) and (3.20), we have

Im _ [@(1-0-a))]" [ -G-a)WI™ -l
Im am|lx; - pl

= [a(1-(1—a)pd)] ™ [(1-(1 - a)w)]™ |'|';1 ’;'|'| S0asm—oow  (3.21)

Thus {r,,} converges faster than {x,,} to p. That is, the Picard-P iterative scheme converges
faster than Picard Iterative scheme.
Similarly,

b) By using (3.12) and (3.20), we have

tm _ [@?(1-G-a)u)]" [ -(-a)w]™r-pll
i [a(1-(1-a)w)] ™ [(1 -(-a)u)] ™ [us —pl|

= qn Pl gasm o w (3.22)
lur—pl

Thus {r,,} converges faster than {u,,} to p. That is, the Picard-P iterative scheme converges
faster than P Iterative scheme.
Similarly,

c) By using (3.14) and (3.20),we have

n _ [@?(1-0-)u?)]" [ (1 -G-a)w]™lirs—pl

A [a(1 -(1-a) 1™ y1pl
=[a(1-(1-a) 2)]"1"";1 ’;':l S 0asm—w (3.23)

Thus {r,,} converges faster than {y,,} to p. That is, the Picard-P iterative scheme converges
faster than Picard-Mann Iterative scheme.
Similarly,

d) By using (3.16) and (3.20), we have

b _ [@?(1--a)u?)]" [ -G-a) W™ -
km  [a(-(1-a)W]™[1 -(1-a)W]2™ It —pll

_ [ (1-0-a)p?)]" lIrs-pl
T T la-G—owE™ Na-pll Oasm— oo (3.24)

Thus {r,,} converges faster than {t,,} to p. That is, the Picard-P iterative scheme converges

faster than Picard-SP lterative scheme.
Similarly,
e) By using (3.18) and (3.20), we have

tm _ [@2(1-(-a))|"[1-0-a)W]™lr-pll
im [a2(1-(1- a)p?)] ™|lv, —pl|
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=[1 -1 - a)minzel

—0asm— o
lvi—pll

(3.25)

Thus {r,,} converges faster than {v,,} to p. That is, the Picard-P iterative scheme converges
faster than Picard-S Iterative scheme. This completes the proof.

Now we will illustrate numerically the convergence of Picard-P hybrid iteration scheme with
other iterative schemes like Picard, P, Picard-Mann, Picard-SP and Picard-S. MATLAB

software is used for generating the comparison table and graph.

31;7 V reC, where C = [0,2] € X = R.

Example 3.4. Consider T: C — C is given by Tr =

Take a,, = 0.5 b,, = 0.5 ¢,,, = 0.3 V. m € N starting with x; = 2. In comparison to the other

Picard, P, Picard-Mann, Picard-S and Picard-SP iterative schemes, the Picard-P iterative

scheme (3.1) converges more quickly, as seen in the following table 3.5 and graph 3.6:

Table 3.5. Comparison table of Picard, P, Picard-Mann, Picard-S, Picard-SP and Picard-P

iterative schemes

S.No | Picard P Picard-Mann Picard-S Picard-SP Picard-P

1 2.00000000000000000 | 2.00000000000000000| 2.00000000000000000| 2.00000000000000000( 2.00000000000000000| 2.00000000000000000
2 -0.10000000000000001 | -0.43956999999999996| -0.41500000000000004| -0.74890000000000001 | -0.60255099999999995| -0.83187099999999992
3 -0.72999999999999998| -0.89530607169999987| -0.88592499999999996| -0.97898293000000014| -0.94734476413300006( -0.99057754645299989
4 -0.91899999999999993| -0.98044212725427693| -0.97775537499999987| -0.99824087124100003| -0.99302407638663226( -0.99947193743586560
5 -0.97570000000000001 | -0.99634639379237133| -0.99566229812499996| -0.99985276092287168| -0.99907580871193036 -0.99997040578971830
6 -0.99270999999999998| -0.99931746982435277| -0.99915414813437509| -0.99998767608924444| -0.99987756036558262| -0.99999834145167321
7 -0.99781300000000006 | -0.99987249653788735| -0.99983505888620317| -0.99999896848866976| -0.99998377882991352( -0.99999990704997610
8 -0.99934390000000006| -0.99997618107824271| -0.99996783648280962| -0.99999991366250163| -0.99999785097072347| -0.99999999479080182
9 -0.99980317000000007 | -0.99999555038722643| -0.99999372811414788| -0.99999999277355145| -0.99999971529015430| -0.99999999970806086
10 -0.99994095099999991 | -0.99999916876783779| -0.99999877698225892| -0.99999999939514628| -0.99999996228078558| -0.99999999998363887
11 -0.99998228530000000| -0.99999984471751968| -0.99999976151154046| -0.99999999994937383| -0.99999999500284531 -0.99999999999908307
12 -0.99999468558999993| -0.99999997099167981| -0.99999995349475035| -0.99999999999576272| -0.99999999933796191 -0.99999999999994849
13 -0.99999840567699994 | -0.99999999458095568| -0.99999999093147629| -0.99999999999964539| -0.99999999991229116| -0.99999999999999711
14 -0.99999952170309991 | -0.99999999898766823| -0.99999999823163788| -0.99999999999997036| -0.99999999998838018| -0.99999999999999978
15 -0.99999985651092993| -0.99999999981088616| -0.99999999965516939| -0.99999999999999756| -0.99999999999846056 -1.00000000000000000
16 -0.99999995695327892| -0.99999999996467159| -0.99999999993275812| -0.99999999999999978| -0.99999999999979605| -1.00000000000000000
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Graphl: Convergence of Picard-P Iterative Scheme with Picard, P, Picard-Mann, Picard-S and Picard-SP Iterative Schemes
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