
Theodor Kaluza's Theory of Everything: extended

Thomas Schindelbeck, Mainz, Germany  
schindelbeck.thomas@gmail.com
https://zenodo.org/record/832957

Abstract
Using a Kaluza-type of model, describing the laws of electromagnetism within the formalism of differential
geometry, provides a coherent, comprehensive and quantitative description of phenomena related to particles,
including the values for electroweak coupling constants, a convergent series of quantized particle energies
with  limits  given  by  the  energy  values  of  the  electron  and  the  Higgs  vacuum expectation  value.  The
geometry of the solutions for spin 1/2 define 6 lepton-like and 6 quark-like entities with their corresponding
electric charges and allow an accurate calculation of the magnetic moments of baryons. 
Electromagnetic and gravitational terms will  be linked by a series expansion,  the corresponding relation
suggests the existence of a cosmological constant in the correct order of magnitude.
The model can be expressed ab initio, necessary input parameters are the electromagnetic constants.

0.1 Introduction
This is the more adventurous version of the Kaluza model presented in [1]. It aims to give a more general
and free = speculative approach emphasizing aspects of geometry to gather new ideas and test limits of this
ansatz. There will be no focus on formal rigor and neither a thorough proof reading.
The article will be divided in 2 parts: 
-  Euclidean-Geometry:  will  give simple  geometric  relationships  for  the  symmetry and properties  of  the
“elementary” particles of the standard model of particle physics;
- Non-Euclidean-Geometry / Kaluza model: will give ab initio values for the free parameters needed in the
standard model;

0.1.1 5D-photon
The basic  background  will  be  a  flat  5D-world  with  coordinates  of  time,  space  and  the  5 th coordinate,
representing energy, W  1, expressed as length parameter, λ [m] ~ 1/W, to fit in to the other dimensions’ units.
The sign of the latter remains undecided for the time being, ds2 = -c2dt2 + dx2 + dy2 + dz2 +/- dλ2. Since the
5th-coordinate will correspond to terms of the stress-energy-tensor in 4D, Tαβ, flat 5D is equivalent to curved
4D. In the following only energy density, i.e. T00 will be considered. 
The  only  inhabitants  of  this  5D  world  are  supposed  to  be  5D-photons.  Their  flat  4D-version  may  be
characterized by symmetry U(1) representing a rotation of E and B fields in a xy-plane around the axis of
propagation (z),  which is a straight line in 3D-space. Their particle cousins represent localized states of
symmetry SO(3) or the related SU(2),  attributed to fermions,  where the photon is  self-trapped in space
curved by the energy density of its own fields.
The most basic particle properties may be deduced from a very simplified model:
A circular polarized photon with its intrinsic angular momentum interpreted as having its E- and B-vectors
rotating around a central axis of propagation will be transformed into an object that has the - still rotating -
E-vector constantly oriented to a fixed point, the origin of a local coordinate system. The vectors E, B and
C of the propagation velocity2 are supposed to be locally orthogonal  3 and subject  to standard Maxwell
equations. This has the following qualitative consequences:
1) Such a rotation is related to the group SO(3)  (and SU(2) as important special case). In the following a

1 The reasons to do so are essentially the same as in space-time-matter theory, though the more general term “energy” is
preferred as “matter” = mass will be attributed to a special case of symmetry.
2 In the limit r -> rn („particle radius‟) => C -> c0;
3 Referred to as ‟EBC-triple‟ in the following; 
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quaternion ansatz will be used for modeling the respective rotations.
2) E-vector constantly oriented to a fixed point implies charge. 
3) A local coordinate system = rest system implies:
3a) mass;
3b) in case of any lateral extension of the E-field, for r -> 0 the overlap of a rotating E-vector implies rising
energy density, resulting in rising curvature of space-time according to GR or its modification as of equ. (3);
4) The orthogonal vectors E, B and C can be given in 2 different chiral states (left- right-handed). Switching
direction of the fields and chirality will result in corresponding antiparticles.
The crucial  point  for  turning  this  into a  quantitative  model  in  agreement  with  experiments  is  3b).  The
appropriate  tool  for  calculations  will  be  based  on  Kaluza’s  theory.  Spin  will  be  an  explicit  boundary
condition though it  might be considered to be implicit  in Kaluza's ansatz as well,  since electrodynamics
allows solutions for circular polarized light. 

0.1.2 Kaluza model
Theodor Kaluza in 1919 developed a unified field theory of gravitation and electromagnetism that produced
the formalism for the field equations of the general theory of relativity (GR) and Maxwell's equations of
electromagnetism (EM) thus unifying the major forces known at his time. His 5-dimensional model [2] is not
suited to give properties related to particles, a problem addressed by Oskar Klein [3] who introduced the idea
of compactification and attempted to join the model with the emerging principles of quantum mechanics.
Therefore the theory is mainly known as Kaluza-Klein theory today. This version became a progenitor of
string  theory.  The  classical  Kaluza  model  was  developed  further  as  well  [4],  Wesson  and  coworkers
elaborated  a  general  non-compactified  version  to  describe  phenomena  extending  from  particles  to
cosmological problems. The equations of 5D space-time may be separated in a 4D Einstein tensor and metric
terms representing mass and the cosmological constant, Λ. Particles may be described as photon-like in 5D,
traveling on time-like paths in 4D. This version is known as space-time-matter theory [5]. Both successor
theories give general relationships rather than providing quantitative results for specific phenomena such as
particle energy. 
The model described in the following does not attempt to give a complete solution for a 5D theory but to
demonstrate that Kaluza's ansatz provides very simple, parameter-free and in particular quantitative solutions
for  a  wide  range  of  phenomena.  Basic  equations  from the  existing  literature  may  be  used,  with  one
significant simplification: 
Kaluza discovered that Maxwell’s equations may be described within the formalism of GR. To get both these
and the Einstein field equations (EFE) he needed an additional dimension and had to introduce the constant
of gravitation in his metric. He chose a gravitational term to keep the electromagnetic potential terms in the
metric dimensionless, a rather unfitting combination 4. If one settles for electromagnetic phenomena as first
approximation there is no place for the gravitational constant term. This does not give a unification of EM
and GR, however, it is a suitable ansatz to “unify” EM and particle physics. Gravitational terms can be
recovered via a simple series expansion of the electromagnetic equations and such a proceeding may actually
reflect the huge difference in order of magnitude of both phenomena better than the more linear original
approach.
Curvature of space-time based on an electromagnetic version of the field equations of GR will be strong
enough to localize a photon in a self trapping kind of mechanism, yielding energy states in the range of the
particle zoo. Circular polarized light is part of conventional electromagnetic theory, in the following this
feature will  be treated equivalently with the terms angular momentum or spin as intrinsic property of a
photon  and  will  be  a necessary  boundary  condition  in  the  equations  used.  In  particular,  unless  noted
otherwise,  it  is  assumed  that  particles  posses  half-integer  spin  or  are  composed  of  half-integer  spin
components (e.g. mesons). 
The basic proceeding will be as follows:
Kaluza’s equations for flat 5D-space may be arranged to give [5, chapter 6.6]
1) Einstein-like equations for space-time curved by electromagnetic and scalar fields (equ. (5)),

4 In the closing remarks of [2] Kaluza suggests to reconsider „die etwas fragwürdige Gravitationskonstante‟ –„the 
somewhat questionable constant of gravitation‟.
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2) Maxwell equations where the source depends on the scalar field,
3) a wave-like equation connecting the scalar Φ with the electromagnetic tensor (equ. (6)).
Solutions for Φ of 3) in a flat 5D-metric will be used as general ansatz in a 4D-metric. This is considered to
be a proof of concept only, a more thorough ansatz has to be expected to incorporate angular momentum/spin
into the field equations appropriately. 

The solution for Φ gives Φ ~ exp(-(ρ/r)3) and may be seen as representing curvature of space. Due to the
derivation from a Kaluza ansatz coefficient ρ is a function of the electromagnetic potential, A, in the static
approximation of this work the electric potential, ρ ~ ρ0 = Ael = e/(4πεr). The only other parameter entering ρ
will  be  a  function  of  the  fine-structure  constant  5,  α,  which  enters  the  equations  through the boundary
condition half integer spin, requiring a relationship between  Ael, i.e. the values of elementary charge and
electric constant, and ħ/2, see chpt. I 2.1 6. Since a geometric interpretation allows to give α in terms of Γ-
functions ρ may be given in terms of Ael and mathematical constants only. 
Based on this the model  yields absolute particle energies  with limits given by the energy values of the
electron and the Higgs vacuum expectation value. Part of the α-terms included in ρ are identical with  the
ratio of electron and Planck energy, αPl  = We/Wpl,  see chpt.  I 7.1.1  7,  which is convenient for the series
expansion of the exponential used in the metric  to recover an appropriate term for gravitation. With this
ansatz  additional  minor  terms  in  the  field  equations  will  be  in  the  correct  order  of  magnitude for  the
cosmological constant, Λ.
In  1st approximation  for  calculations  of  energy  the  boundary  condition  of  half  integer  spin  may  be
sufficiently dealt with by settling for a fit of the integration limit of the relevant integral involved. A more
detailed analysis of the model parameters requires minor additional assumptions, improving accuracy by
roughly one order of magnitude (chpt. I 2).
Focusing on the angular momentum aspects of the model, in chpt. II 1, II 4 the rotation of a set of orthogonal
E, B, C-vectors, attributed to the electromagnetic fields and the propagation with the speed of light, will be
modeled via quaternions. This gives 3 possible solutions for trajectories of E, B for spin 1/2 enveloping 3
spherical cones corresponding to partial charges 2/3, 1/3 and 1/3 and their complementary 3D-ball sections,
corresponding to partial charges 1/3, 2/3 and 2/3. Each spherical cone and its complement by definition give
back a sphere if angular momentum and chirality match, and may be identified with leptons. Combinations
of such solutions with differences in angular momentum and chirality, implying nodal surfaces and higher
energy states, may represent hadrons. Combining appropriate total spin and using the results of this model
for  energy gives  ab initio values  for  magnetic  moments  for  all  J = 1/ 2  baryons of  the  uds-octet  of  the
standard model of particle physics (SM).
Typical accuracy of the calculations is in the order of 0.0001 8. The deviation of calculated results from the
experimental values will be in the range 0.01 - 0.001, consistent with a variation of input parameters related
to elementary charge in an order of magnitude of QED corrections, which are not included in this model.

0.2 System of natural units
The approach sketched in the introduction requires the use of an electromagnetic unit system appropriate for
the general formalism of GR. It is common to define natural electromagnetic units by referring them to the
value of the speed of light. The same will be done here, thus subscript c will be used.  Retaining SI units for
length, time and energy the electromagnetic constants may be defined as:
c0

2  = (εc μc)-1 (1)
 with εc = (2.998E+8 [m²/Jm])-1 = (2.998E+8)-1 [J/m] 

μc = (2.998E+8 [Jm/s²])-1 = (2.998E+8)-1 [s2/Jm] .
From the Coulomb term b0 = e2/(4πε0) = ec

2 /(4πεc) = 2.307E-28 [Jm] follows for the square of the elementary
charge: ec

2 = 9.671E-36 [J2]. In the following ec
 = 3.110E-18 [J] and ec/(4πεc) = 7.419E-11 [m] may be used

5 The relation of the masses e, µ, π with α was noted first in 1952 by Nambu [6]. MacGregor calculated particle mass 
and constituent quark mass as multiples of α and related parameters [7].
6 The coefficient of angular moment may be interpreted as either σ, which will in general indicate the integration limit, 
(r/ρ)3 for calculating the incomplete gamma function, or its main component αlim ≈ 1.5/α, see chpt. I 3.3. 
7 Giving ρ3 ≈ σ αPl Ael

3;
8 Including e.g. errors due to the numerical approximation of incomplete Γ-functions.
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as natural unit of energy and length 9. 
With the unit system above the 00-component for an electromagnetic stress-energy-tensor, Tαß, of the field
equation in an electrostatic approximation will simply be T00 = E2/2 [m-2]. In the case of T00 referring to
energy density the constant G/c0

4 [m/J]  in the Einstein field equations (EFE) will be replaced by:

(8 π )G /c0
4      =>     ≈   1

εc
    (2)

in an accordingly modified field equation:

Gαβ  = Rαβ  - 1
2

gαβ R  = 1
εc

T αβ     (3)

I Terms based on Non-Euclidean Geometry
Kaluza theory and corresponding integrals

I 1 Kaluza theory
I 1.1 Basic equations
Kaluza theory is an extension of general relativity to 5D-space-time with a metric given as [5, equ. 2.2]:

g AB  = [ (gαβ−κ2 Φ2 Aα Aβ ) −κ Φ2 Aα

−κ Φ2 A β −Φ2 ]     (4)

In (4) roman letters correspond to 5D, Greek letters to 4D. κ corresponds to the constant in the field equation
(2)f, A is the electromagnetic potential. In the context of the electrostatic approximation of this model A will
be assumed to be represented by the electric potential, Ael = ec/(4πεcr) = ρ0/r [-]. Assuming 5D space-time to
be flat, i.e. RAB = 0, gives for the 4D-part of the field equations [5, equ. 2.3]:

Gαβ  = κ2 Φ2

2
T αβ

EM  - 1
Φ ( ∇ α(∂αΦ)  - gαβ □ Φ )     (5)

I 1.2 Scalar Φ
From R44 = 0 follows:

□ Φ  = − κ2 Φ3

4
Fαβ Fαβ     (6)

In  the  following  only  derivatives  with respect  to  r  of  a  spherical  symmetric  coordinate  system will  be
considered. Equation (6) will be used to obtain an ansatz for a metric to get a solution of the 00-component
in (3). A function ΦN

 ΦN  ≈ ( ρ
r )

N−1
eν /2  = ( ρ

r )
N−1

exp (-( ρ
2r )

N
)                10 (7)

yields solutions for an equation of general type of (6), where  the term of highest order of exponential N,
given by Φ'' ~ ρ3N-1 /r3N+1, may be interpreted to provide the terms for A'(r) ~ ec/(4πεcr2 ) ~ ρ0/r2  :

ΦN ' '   ~  ( ρ3 N−1

r3 N+1 )e ν/2  ~ ΦN
3  e−ν(A0 ')2  ≈ [ ( ρ

r )
N−1

eν /2]
3

e−ν ( ρ
r2 )

2
   =   ( ρ

r )3N−3
eν /2  ( ρ

r2 )
2

(8)

R44 = 0 does not have to be obeyed strictly and is secondary to condition RAB = 0. The significance of (7)f lies
in providing the relationship of exponential and pre-exponential terms and first of all in the requirement to
contain powers of Ael ~ (ρ0/r) in the exponent of ΦN, to be used in the following.

9 The term ec/(4πεc) might be a rough measure for the transition between classical and QM descriptions.
10 Below occasionally the notation f(r,N) = ev(r,N) = φN(r) will be used.
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I 1.2.1 Solutions for Φ
The solutions for the scalar Φ depend on the complete metric used. The main problem to obtain R 44 = 0 is to
eliminate the terms of lowest order in ρ, which lack coefficients in their terms enabling an easy cancellation
of them. The easiest method to get a solution of order N is to use spherical coordinates of dimension N+1.
Using e.g. the line element for a 4D metric of [5, equ. 6.76]

ds2  = eν dt2−eλ dr2−eµ r2 (dϑ2+sin2 ϑ dφ2) (9)
and Aα = (Ael, 0, 0, 0) gives as solution for equ.(6) (cf. [5, equ. 6.77], prime corresponds to derivatives with
respect to r): 

Φ ' '+( v '−λ '+2µ'
2

 + 2
r
)Φ '  - 1

2
Φ3 e−v(Ael ' )

2  = 0 (10)

This can be solved with function (7) for N = 2:

 Φ2 '  = [−( ρ
r2 ) + ( ρ3

r4 )]eν /2 (11)

and

 Φ2 ' '  = [2( ρ
r3 )  - 4( ρ3

r5 )  + ( ρ5

r7 )] eν /2 (12)

The ρ1 terms cancel in (10), the ρ3 terms can be eliminated by appropriate choice of v', λ' and µ', a remaining
factor  in  the  ρ5 term  has  to  be  compensated  by  assuming  a  corresponding  factor  in  A el. For  N  =  3
hyperspherical coordinates with the line element

ds2  = eν dt2−eλ dr2−eµ r2 (d ψ2+sin2ψ(dϑ 2+sin2ϑ dφ2)) (13)
may be used. A more complex metric may be used as well to solve equation (8) 11.

I 1.3 Metric 
I 1.3.1 General solution N = {1; 2; 3} 
This article has a focus on a solution of (7) with N = 3. However, all solutions in a 5D space-time according
to chpt. I 1.2.1 with N = {1; 2; 3}, might be used for the ansatz of a metric such as 

g00  = ∑
N=1

3

(ρ0

r )
N−1

exp(−(ρ
r )

N)   (14)

With r in the exponential limited to ec/(4πεc), σ ≈ 1, αPl not included in ρ, see I 7.1, this may be given as 

g00  = exp (−αPl(ρ0

r ))   +  (ρ0

r ) exp(−αPl(ρ0

r )
2

)  +  (ρ0

r )
2

exp(−αPl(ρ0

r )
3

)   (15)

The 3rd term corresponds to the case discussed below, resulting in terms giving the square of the E-field in
G00 and eventually particle energy as well as an equivalent term for gravitation from the series expression.
The second term is the linear version and might be used to construct a Schwarzschild-like solution.
The first term would represent a general vacuum solution, i.e. without presence of any field  ρ0/r. A series
expansion  would  give  the  1  for  flat  space,  while  the  minor  terms  of  G 00 could  give  Λ-like  orders  of
magnitude, see chpt. I 8.1.
To comply to the boundary condition JZ = 1/2 the angular terms of φ and ϑ should be related appropriately to
yield the relationships given by the quaternion model of chpt. II 1.2.

I 1.3.2 Example for metric, point charge energy
A general metric using solutions for Φ according to chpt. I 1.2.1 and only diagonal components will be:

gαα  = (ρ0

r )
N−1

exp(−(aρ
r )

N ),   - (ρ0

r )
N−1

exp(−(bρ
r )

N),   −r2 ,   −r2 sin2 ϑ   (16)

11 Using terms of ΦN for canceling of similar terms of other Rαβ components may in fact increase the resources to obtain
a specific solution.  
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Below the metric of (16) with N = 3 will be used.

gµµ  = (ρ0

r )
2

exp(−(ρ
r )

3) ,   −(ρ0

r )
2

exp((ρ
r )

3) ,   − r 2 ,   − r2 sin2ϑ (17)

This is based on the following considerations:
1) flat 5-D-space-time; terms including the 5th-coordinate will  correspond to terms of the stress-energy-
tensor in 4D, Tαβ; in the following only energy density, i.e. T00 will be considered;
2) the limit in absence of electromagnetic fields will not be given by a component gαβ related to gravitational
effects as given in equ. (4), gravitational terms will be recovered by a series expansion of the exponential
terms of (17), see chpt. I 7.1;  
3) coefficient ρ0 in the pre-exponential terms ensures Coulomb terms as limit cases; 
4) Equation (17) is an approximation not only in neglecting contributions of the magnetic potentials but also
in not considering spin, a necessary boundary condition for particles which is not represented in Kaluza’s
equations either. Thus some modification in the metric of (4) has to be expected. A metric according to (17)
will give correct quantitative particle related results. However, only the exponential part of Φ3, ev/2, will be
squared in the metric terms, giving evAαAβ instead of ev(AαAβ)2. This is somewhat ad hoc and considered a
proof of concept only 12.

The exponential part represents Φ2 ~ ev in the metric. The variable r is marked bold if originating from the exponential
term to facilitate a discussion of the implications of its restricted range of validity. 

Γ01
0 = Γ10

0 = - 1/r1 + 3/2 a ρ3/r4 Γ00
1 = - 1/r1 e (a-b)v + 3/2 a ρ3/r4e (a-b)v

Γ11
1 = - 1/r1  + 3/2 b ρ3/r4

Γ12
2 = Γ21

2 = Γ13
3 = Γ31

3 = + 1/r1 Γ22
1 = − r3/ρ0

2 e-bv   = Γ33
1/sin2 ϑ 

Γ23
3 = Γ32

3 = cot ϑ Γ33
2 = − sin ϑ cos ϑ

R00  =  e(a-b)v [-1/r2 + 3 (a-b) ρ3/(rr4) + 6 a ρ3/r5 - 9/2 a (a-b) ρ6/r8) + 2(Γ01
0 Γ00

1)  - Γ00
1 ( Γ10

0 + Γ11
1+ 2Γ12

2)]
= e(a-b)v [-1/r2 + 3 (a-b) ρ3/(rr4) + 6 a ρ3/r5 - 9/2 a (a-b) ρ6/r8)  - Γ00

1 ( -Γ10
0 + Γ11

1+ 2Γ12
2)]

= e(a-b)v [-1/r2 + 3 (a-b) ρ3/(rr4) + 6 a ρ3/r5 - 9/2 a (a-b) ρ6/r8) +1/r2 + 3 a ρ3/(rr4) + 9/4 a2 ρ6/r8 - 1/r2 + 3/2 a ρ3/(rr4) + 3/2 b 
ρ3/(rr4) - 9/4 ab  ρ6/r8  + 2/r2- - 3 a ρ3/(rr4)]
= e(a-b)v [+1/r2 + (9/2a - 3/2b) ρ3/(rr4) + 6 a ρ3/r5 - 9/4 (a2 - ab) ρ6/r8)]
R11 = [+ 1/r2 - 6a ρ3/r5 - 2/r2  + Γ10

0 Γ01
0 + Γ11

1Γ11
1  + 2Γ12

2 Γ21
2 - Γ11

1 ( Γ10
0 + Γ11

1+ 2Γ12
2 )]

= [+ 1/r2 - 6a ρ3/ r5 - 2/r2 + Γ10
0 Γ01

0  + 2Γ12
2 Γ21

2 - Γ11
1 (Γ10

0 + 2Γ12
2)]

= [+ 1/r2 - 6a ρ3/ r5 - 2/r2 + 1/r2 - 3 a ρ3/(rr4) + 9/4 a2 ρ6/r8 + 2/r2 - 1/r2 + 3/2 a ρ3/(rr4) + 3/2 b ρ3/(rr4) - 9/4 ab ρ6/r8 +2/r2 - 
3 b ρ3/(rr4)]
= [+3/r2  - 3/2(a + b)ρ3/(rr4) - 6a ρ3/ r5 + 9/4(+a2 - ab)ρ6/r8]  

R22  = - 1+  e-bv [+3 r2/ρ0
2  - 3bρ3 r3/(ρ0

2r4 ) + 2(Γ21
2 Γ22

1)  - Γ22
1 ( Γ10

0 + Γ11
1+ 2Γ12

2)]
= - 1+  e-bv [+3 r2/ρ0

2 - 3bρ3 r3/(ρ0
2r4 ) - Γ22

1 ( Γ10
0 + Γ11

1)]
= - 1+  e-bv [+3 r2/ρ0

2 - 3bρ3 r3/(ρ0
2r4 ) + r3/ρ0

2 (-2/r1 + 3/2 (a+b) ρ3/r4 )]
= - 1+  e-bv [+3 r2/ρ0

2 - 3bρ3 r3/(ρ0
2r4 ) - 2r2/ρ0

2 + 3/2 (a+b) ρ3r3 /(ρ0
2 r4)]

= - 1+  e-bv [+ r2/ρ0
2 + 3/2 (a - b) ρ3r3 /(ρ0

2r4 )]
g00R00 = e-bv [+1/ρ0

2 + (9/2a - 3/2b) ρ3 r /(ρ0
2 r4) + 6 a ρ3 r2/(ρ0

2 r5) - 9/4 (a2 - ab) ρ6 r2/(ρ0
2 r8)]

g11R11 = - e-bv [+3/ρ0
2 - 3/2(a + b) ρ3 r /(ρ0

2 r4) - 6 a ρ3 r2/(ρ0
2 r5) + 9/4(+a2 - ab) ρ6 r2/(ρ0

2 r8)]     

g22R22 + g33R33 = +2/r2 - e-bv [2/ρ0
2 + 3 (a - b) ρ3r/(ρ0

2r4 )]
In the following b = -a.
g00R00 = eav [+1/ρ0

2 + 6 a ρ3 r /(ρ0
2 r4) + 6 a ρ3 r2/(ρ0

2 r5) - 9/2 a2 ρ6 r2/(ρ0
2 r8)]

g11R11 = - eav [+3/ρ0
2 - 6 a ρ3 r2/(ρ0

2 r5) + 9/2 a2 ρ6 r2/(ρ0
2 r8)]     

g22R22 + g33R33 = +2/r2 − eav [+2/ρ0
2 + 6 a rρ3 /(ρ0

2r4 )]
The solution for R will be:
R = + 2/r2 +  eav [(- 4/ρ0

2 + 12 a ρ3 r2/(ρ0
2 r5) - 9 a2 ρ6 r2/(ρ0

2 r8)]
G00 will be:
G00 = e2av [+1/r2  + 6 a ρ3/(rr4) + 6 a ρ3/r5 - 9/2 a2 ρ6/r8)] - eav ρ0

2/r4 +  e2av [2/r2 - 6 a ρ3/ r5 + 9/2 a2 ρ6 r2/(ρ0
2 r8)] = 

- eav ρ0
2/r4  +  e2av [3/r2 + 6 a ρ3 /(rr4)]

12 A solution of (7) with N = 1 could be inserted directly in Kaluza’s term Φ2AαAβ of (4). Using the coefficients of this 
work this would yield the energy of the electron, however, not the energy relation (24)ff, etc. 
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Using the parameters and terms as given below, volume integrals over the  ρn/rn+2 terms will yield energy
results  εc∫eav  ρn/rn+2 d3r ≈ εc ρ ≈ 1E-22 [J] compared to the term εc∫ eav ρ0

2/r4 d3r ≈ εc ρ0
2 ρ-1  ≈ 1E-13 [J] (both

with coefficients for the electron, σ0αPl;  ρ0 = ec/(4πεcr)),  giving negligible contributions to particle energy
within the parameter range discussed here. This leaves the first term as leading order. With a =1:  
G00 = − ev ρ0

2/r4  
In all parts of this work energy will be expressed as positive value, giving equ. (35).

I 1.4 Euler Integrals
Solutions for integrals over ev, with v according to (7), times some function of r can be given by:

∫
0

r n

exp(−(ρn /r)
N )r−(m+1)dr  = Γ (m /N ,(ρn/rn)

3)  
ρn
−m

N
  =  ∫

(ρn/ rn)
3

∞

t
m
N

 −1
e− t dt  

ρn
−m

N
     (18)

valid for N = {3; 4}, m = {-2; -1; 0; +1;+2}. The term Γ(m/N, (ρn/rn)3) denotes the upper incomplete gamma
function,  given  by  the  Euler  integral  of  the  second  kind. Euler  integrals  yield  positive  values,  the  sign
convention of Γ-functions gives negative values for negative arguments. The abbreviation Γ-1/3 will be used
for |Γ(-1/3)|; in Γ+1/3 the “+” sign will be used if needed for clarity.  In the range of values relevant in this work,
for m/N ≥ 1 the complete gamma function Γm/N is a sufficient approximation, for m/N ≤ 0 the integrals have to be
calculated numerically, requiring an integration limit, see I 5.1. 

An important relation used below will be [8]:
Γ(+x) Γ (-x) = π /(x sin(πx)    =>     Γ1/3 Γ ̶ 1/3  = 3π /sin(π/3) = 30.5 2π (19)

I 2 Angular momentum, coefficient σ 
I 2.1 calculation of σ from integral boundary
The integral limits required for  Euler integrals of (18) with  m/N ≤ 0 are rn („particle radius‟ of state n) in
integrals over ev and (ρn/rn)3 in the Euler integrals. The latter will be expressed via a constant defined as 8/σ  13: 
(ρn/rn)3 = 8/σ (20)

whose value may be derived from the condition for angular momentum Jz = 1/2 [ħ]. 
In 1st approximation: using the term for energy of (39) and the Compton wavelength, λC, according to equ.
(62) below including the term σ1/3 for r2, requires σ1/3 to be of order of the inverse fine-structure constant α-1:
1/c0∫w(r) dr * ∫dr ≈ b0/ρn * σ1/3ρn /c0 ≡  ħ/2   =>   σ1/3 ≈ α-1. 
In the following a simple relation with angular momentum Jz for spherical symmetric states will be given by
applying a semi-classical approach:

J z  = r2 x p (r 1) = r2 W n(r 1)/c0 ≡ 1/2 [ħ] (21)
Using term 2b0 of equ. (39) as constant factor and integrating over a circular path of radius |r 2| = |r1|, equation
(18) will give for m = 0:

Jz = ∫
0

rn

∫
0

2π

J z(r , φ)dφdr  = 4 π
b0

c0
 ∫

0

rn

ev r−1 dr  = 4 π αħ∫
0

rn

ev r−1 dr  = 4 π
3

αħ ∫
8/σ

∞

t -1e-t dt ≡ 1/2 [ħ] (22)

To obtain Jz = 1/2 [ħ] the integral over evr-1 of (22), has to yield α-1/8π.

∫
0

rn

ev r−1 dr  = 1 /3∫
8/σ

∞

t -1 e-t dt  ≡  α−1

8 π
 ≈ 5.45  (23)

Relation (23) may be used for a numerical calculation of the integration limit, 8/σ, giving a value of σ0 for
spherical symmetry, σ0 = 1.810E+8 [-]. Assuming the coefficient Γ-1/3/3 according to (18) has to be part of the
expression for σ0 14 this results in σ0 ≈ 8 (1.5α-1Γ-1/3/3)3. 
To get a more detailed description of σ in a range of 1 percent precision is difficult since there are several
options available and in this range of accuracy QED and other minor effects may be expected which might
be amplified due to the non-linear nature of the gamma functions involved. A factor ≈ 3/2 appears in several

13 Chosen to give coefficient σ in the exponent of ev, see  I 2.4. 
14 Since according to (59)ff σ1/3 is proportional to a length parameter, rn, which according to (18) includes Γ-1/3 /3. 
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terms such as σ0  ~ 1.5α-1 of (),  the ratio of electron and muon energy =1.5088,  Γ-1/3  /Γ1/3  =1.516 and the
irregular electron coefficient in the power series that is part of  αPl as well. The following discusses some
relevant aspects with a focus on identifying possible underlying relationships while minimizing assumptions
about the term ≈ 3/2 in particular. 
Analogous to the postulate for neutral particles to be composed of volume elements of opposite charge,
particles with J = 0, J ≥ 1 may be assumed to be composed of a combination of half integer contributions of
angular momentum J = ± 1/2, adding up accordingly, formally implying appropriate multiples for the relation
of |r2| and |r1| in (21).

I 2.2 σ, geometric interpretation
A coefficient representing geometry, with a value very close to the numerical one, would be:

σ0 ≈ 8 (1.5 α-1 Γ-1/3 /3)3  ≈ 8 (4 π Γ -1/3
3

3 )
3

= 1.772E+8 [-]      (24)

As a consequence a dimensionless volume-like term appears in the denominator of the energy expression
(53)ff for spherical symmetry, approaching the limit of a one-dimensional term, 2Γ -1/3/3, for higher angular
states according to chpt. I 3.3. Expression (24) is closely related to the value of α and will be used in this
context for the calculation of α in chpt. I 5.

I 2.3 σ, expression with Γ-terms
Alternatively a  term may be used that  is  related to  angular  momentum coefficients,  is  expressed using
coefficients considered essential for  yielding basic quantities such as e c itself  and corresponds to the 3rd

power structure of the equations best.
If the equations above are used for the integral over the point charge value only, the result is expected to
yield ec. Since Γ(+1/3)/3 is required to appear as a term in W(ec) due to the Euler integral, a counter term
must be part of ρ in (49)f:

W (ec)  = 
ec

2

4 π εc
∫ exp(−Γ+1 /3

3
e c

4 π ε c
)
3

r−2 dr  = 
ec

2

4 π εc

Γ+1 /3

3 ( Γ+1 /3

3
e c

4 π εc
)
−1

 = ec (25)

For rc follows, considering the basic coefficients only, using (19), (46)

rc  ~ 31.5 Γ−1 /3

3 ∫exp−( Γ+1/3

3
ec

4 π εc )
3

dr  ~ 
Γ−1 /3 Γ+1/ 3

30.5  
ec

4 π εc
 = 

ec

2 εc
(26)

again removing all coefficients that are not part of a Coulomb-expression and suggesting an additional term
of 2π in the denominator of ρ. 
Looking  only  at  the  basic  mathematical  coefficients  entering  the  equation  (61)ff  (i.e.  σ ->  2Γ-1/3/3) an
additional term 1/αlim~(2π)-1Γ+1/3  /Γ-1/3 (bold in (27)) in  ρ would cancel redundant  Γ-1/3/3 terms in the length
expression as well:

λC  ~ 31.5 Γ−1 /3

3
 σ 1/ 3

2
ρ  ~ 30.5 Γ−1/ 3

Γ−1/3

3
2 Γ−1/3

3
 

Γ+ 1/ 3

2 π Γ−1 / 3
 = 

2Γ−1/ 3

3 (27)

The term (2π)-1 Γ1/3  /Γ-1/3 consists of components related to angular momentum and seems to be a suitable
replacement for 1/(2αlim) e.g. in (78) and may thus be used in expressions such as (54)f 15. 

σ 0  = [ 1
4 ( Γ−1/32 π

Γ+1 /3 )
3 2Γ−1 /3

3 ]
3

 = [( Γ−1/3 π
Γ+1 /3 )

3 4 Γ−1 /3

3 ]
3

= 2.008E+8 [-] 16 (28)

The highly nonlinear incomplete  Γ-functions, possible QED corrections, etc.  complicate the selection of a
final version. Thus energies calculated with both the numerical value (close to (24)) and with (28) will be
presented in table 1. 

15 The need of Γ+1/3 /Γ-1/3 to appear in (25)ff and its more pronounced relationship with angular terms is the reason to 
prefer αlim

-1 ≈ 2 (2π)-1 Γ+1/3 /Γ-1/3 over αlim
-1 ≈ (2π)-1 2/3 in spite of the latter term being almost identical to the value of σ0 

fitted to Jz. 
16 Approximating Γ-1/3/Γ1/3  by 3/2 would give σ0=1.821E+8[-], i.e. a term very close to that of the numerical one or (24).
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I 2.4 Coefficient σ as component in ρ
The exponential term, exp(-ρ3/r3), together with the r-2 dependence of the field of a point charge define a
maximum of particle energy near rW(max) ≈ ρ, rapidly approaching 0 for rW(max) > ρ, effectively allowing to
calculate energy terms without using a specific upper integration limit (“particle radius”)  17.  On the other
hand the weaker r-dependence of angular momentum, ~1/r results in the calculated values being completely
dominated by an integration limit, rn. The limit of the Euler integral is given by ρn

3/rn
3, a constant which will

be denoted 8/σ in this work.
A general exponential function of radius featuring a limit radius may be given in 1 st approximation as (cf.
chpt. I 6):

  ev '  = exp(−( ßρ'3

2r3 +[( ßρ '3

2r3 )
2

– 4 ρ '3

2r3 ]
0.5

)/2)   (29)

ß being some general coefficient. At the limit rn of the real solution (29)

(ßρ '3 /rn
3)2  = 8 ρ '3/rn

3     =>    ß  = 8 ( r
ρ

' )
3

= σ     (30)

holds. Within the parameter range of this work the function ev’ ≈ exp(-ßρ‘3/r3)) is a very good approximation
of an equation of the kind of (29) and consequently coefficient σ will be part of the exponential, ρ3 ~ σρ0

3. 

I 2.5 Ground state coefficient, α0

In this model elementary charge may be given as b0∫exp(-(ec/(4πεcr))3)r-2dr ≈ ec, cf. (25), the corresponding
radial distribution of energy has its maximum at rc,max ≈ ec/(4πεc). It has to be expected that the energy of a
(partially-) charged particle lies above ec, Wn > ec,  with a characteristic length, interpreted as the Compton
wavelength, being below rc, λC< rc. Setting angular momentum Jz = ħ/2 as boundary condition results in (cf.
equ  (61)ff) λC ≈ σ0

1/3ρ and since ρ~σ1/3 ~ α-1,  λC ~ α-2 α0
 +1/3  ec/(4πεc).  For above inequalities to hold, an

additional, ground state coefficient, α0 ≤ α6 is required. Assuming that according to the relation given by the
fine-structure constant a basic photon-like state assigned to hc0 should be  α-1 higher in energy than a pure
point charge state would result in α0 ≈ α9, a value that except for the irregular coefficient 2/3 for the energy of
the electron seems to be a good approximation for the relationship of particle energies18. 
This gives ρ3 ~ σ α0 ρ0

3. According to the relationships given below, an angular contribution will have to be
part of the exponent as well, giving 
ρ3 ≈ σ0 σ αlim

-1/2 α0 ρ0
3 = σ αPl ρ0

3 (31)

This reasoning does not apply to intrinsically neutral particles as neutrinos are assumed to be, hence no need
for a factor α0, see chpt. I 3.8.3.

I 2.6 Relation rn – rn,m electron – muon
The r at the maximum of W(r), see fig.1, may be given as rm ≈ Γ -1/3σ1/3ρn

 /3), thus:

re  ≈ 1.5 α-1 Γ ̶ 1/3σ1/3ρe
 /3 (32)

rµ  ≈ 1.5-1 α+1 [1.5 α-1 Γ ̶ 1/3 σ1/3ρe
 /3 ] =  Γ ̶ 1/3σ1/3ρe

 /3  = rm,e (33)

The factor 1.5 α-1  in the ratio of electron to muon energy is identical to the factor needed to describe the
correct spin 1/2.

I 2.7 1.5088 of the ratio Wµ/We

Factor 1.5088 of the ratio Wµ/We may be subject  to a 3rd power relationship of the same kind as the  α
coefficients:

17 For an upper limit rn ≥ 10ρ other limitations supersede the attainable precision.
18 Such a reasoning for the ground state term might require additional or modified terms of σ0 in place of α only, to 
enter α0 and the power series. In addition it might be terms close to α-1, e.g. such as 2/3 Γ-1/3 /Γ1/3  4πΓ-1/3Γ1/3 of (66) that 
should be used in place of α, though this is opposed to a reasoning involving the definition of α as given above and 
could hardly improve the values of table 1.

9  PP230820



( 1.5133
1.5088 )

3

 = ( 1.5133
1.5 ) (34)

indicating that the particle specific term of ρn and the components of σ are not correctly separated yet even in
the case of spherical symmetric states. 
The  limit  of  a  corresponding  partial  product  in  the  energy  expression  is  given  by  1.5133  Πk=0

∞

(1.5/1.533)^1/3k ≈ 1.5066.

I 3 Particle energy
I 3.1 Energy point charge
The Einstein tensor component G00 will be (I 1.3.2):
G00 = ρ0

2/r4 ev  (35)
and using equ. (3) will give:

ρ0
2

r4 e v  ≈ w
εc

     =>     
εc ρ0

2

r4 ev  ≈ w     (36)

The volume integral over (36) gives the energy of particle n according to:

W n  = εc ρ0
2  ∫

0

rn
ev (n)

r4  d3 r  = 4 π εc ρ0
2  ∫

0

rn
e v(n)

r2  dr (37)

Equation (37) will give as energy for a particle n: 

W n, elstat  = 4 π εc ρ0
2  ∫

0

rn
ev (n)

r2  dr =  b0 Γ(1/3, (ρn/rn)3) ρn
-1/3 ≈  b0 Γ1/3 ρn

-1/3    (38)

including  the  integral  for  the  energy  of  a  point  charge  term  modified  by  ev.  Particles  are  supposed  to  be
electromagnetic objects possessing photon-like properties, thus it will be assumed that particle energy has equal
contributions of electric and magnetic energy, i.e.

Wn = Wn,elstat + Wn,mag  = 2Wn,elstat  ≈  2 b0 Γ1/3 ρn
-1/3 (39)

Fig 1: Example for particle energy Wn calc (r) (normalized) vs lg(r); rW/2 => radius for integral of energy giving
half the final value, Wn/2; rm = energy at maximum W(r); rl ≈ λC;

I 3.2 Quantization with powers of 1/3n over α
Most relations given here are valid for any particle energy which should be expected as there is a continuous
spectrum of energies according to special relativity. However, a particular set of energies may be identified
by relaxing the condition of orthogonality of different states according to quantum mechanics to requiring
different states to 
a) be expressible in simple terms of a ground state coefficient, α0, in the exponent of ev and 
b) to exhibit no dependence on intermediary states.
This may be illustrated best by looking at the square of particle energy e.g. of the point charge, equ. (44)ff.
In a general case ρn may be given as product of ρ0 = ec/(4πεc) [m], σ0 and a partial product of particle specific
dimensionless coefficients, α(n), of succeeding particles representing the ratio ρn+1

3 / ρn
3

  in the exponential of 
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ev as (α0 = ground state coefficient): 
ρn

3  ~ α0 Πk=1
n α(k)            n = {1;2;..}      (40)

or ρn of the energy expression: 
ρn  ~ α0

1/3 Πk=1
n αk

1/3            n = {1;2;..}      (41)
Inserting (40)f in the square of (38)f gives: 

W n
2  = (2 b0 Γ 1/ 3

   3 ρn
)
2

 ~ 
α0

1/3 α1
1/3 ..... αn

1 /3

α0α1 .... αn
(42)

The last expression of (42) is obtained by expanding the product of  αk
2/3 included in  ρn

2 of  (42) with the
product of αk

1/3. 
All intermediate particle coefficients cancel out if a relation αn+1 = αn

1/3 holds:

W n
2  ~ 

α0
1 /3 α0

1/9 ....α0
1/(3 ^(n-1))α 0

1/ (3 ^n)

α0
1 α0

1/3α0
1 /9.... α0

1/ (3^(n-1))  = 
α0

1 / (3 ^n)

α0
                                       (43)

The relationship between a photon-like object and a point charge object (of elementary charge) is based on
the coefficient  α, in turn related to half integer spin. This suggests a  ground state coefficient  α0 ≈ α9 (cf.  I
2.5). This fits the relationship of a set of fundamental particle energies with the charged particle of lowest
energy, the electron, as a ground state quite well, however, requiring an ad hoc factor ≈ 3/2 for the electron
itself. With We as ground state Wn would be given by (40)ff relative to the electron state as:

Wn /We  ≈ 3 /2 α ^(1.5 /3n)
α1.5  ≈  3 /2Πk=1

n α^(-3/3k )                                                             n = {1;2;..} (44)

see table 1. The electron coefficient in the exponential of ev and the energy term equ. (39) would be given as: 
ρe

3  ~ α e  ≈ (3 /2)3 α9      and     W e  ~ α e
−1/3  ≈ 2/3  α−3 (45)

This series is assumed to represent the simplest symmetry of particles close to a point charge, i.e. spherical
symmetric solutions and index n will serve in the following as equivalent of a radial quantum number. For
the angular terms of Φ(r, ϑ, φ), to be indicated by index l, only rudimentary results exist, their contribution
will be assigned to parameter σ, see chpt. I 3.3, I 3.4. 

I 3.3 Upper limit of energy
Non-spherical particle states should exhibit lower values of σ 19. The minimal possible value for σ is defined
by the Γ-term in the integral expression for length, (59)ff, and the integers in (29) to be: 
σmin = (2Γ-1/3/3)3 (46)

leaving a term

α lim  ≈ 1.5α−1≈ 4 π Γ-1/3
2  ≈ 1

4 ( Γ−1/3 2 π
Γ +1/ 3

)
3

(47)

as variable part in σn (see (24)f) 20). The maximum angular contribution to Wmax would be:
ΔWmax, angular

 ≈ 3/2 α-1   (48)
According to (44) and (48), the maximum energy will be Wmax ≈ We 9/4 α-2.5 = 4.05E-8 [J] ( = 1.03 Higgs
vacuum expectation value, VEV = 246GeV = 3.941E-8 [J] [9]).
The maximum angular contribution to energy will require to modify the ground state coefficient, α0, giving
the equivalent to the ratio of electron and Planck energy, αPl, see chpt. I 7.1.1.
The expression of ρe

3 for the electron will be:
ρe

3 ≈ 1.53 σ0 αlim
-1/2 1.53 α9(ec/(4πεcr))3  ≈ 1.53 σ0 αPl (ec/(4πεcr))3      (49)

For other spherical symmetric particles (n = {1;2;..}):

19 According to the geometric interpretation of (24) as well as higher energy Wn,l requiring lower ρn,l.
20 σ0 ≈ (αlim 2Γ-1/3/3)3
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ρn
3 ≈ σ0 αlim

-1/2 1.53 α9 α4.5/α^(4.5/3n)  (ec/(4πεcr))3  ≈ σ0 αPl α4.5/α^(4.5/3n) (ec/(4πεcr))3      (50)
 21

I 3.3.1 Energy value of the Higgs boson
Using the limit of σ according to (46), assuming Γ+1/3  /Γ-1/3 according to (27) to replace αlim, i.e. associating
the maximum angular contribution of chpt. 2.8. with 2π, and using the end of the convergent series in ρ as
α13.5/2 allows to give the exponential term for the Higgs boson, WHiggs, in a particular simple expression: 

exp(−[( ρn/r )3] )  ≈ exp(−(2 Γ−1/3

3 )
3

 1
2 (Γ+1 /3

Γ−1/3
)
3

 α
13.5

2 (ec

4 π εc r )
3)  = (exp(−(Γ+1 /3

3
 α4.5 ec

4 π εc r )
3 ))

2

  (51)

indicating that Γ+1/3  /Γ-1/3 is indeed a necessary term in the equation. Equ. (51) inserted in (15) gives the
energy of the Higgs boson as WHiggs, calc ≈ 22/3 α-4.5 ec = 1.016 WHiggs, exp. 

I 3.4 Other non-spherical symmetric states
Except for the limit case of I 3.3 angular solutions for particle states are not known yet and to extend the
model to such states assumptions have to be made.
Assuming the angular part to be related to spherical harmonics  22 and exhibiting the corresponding nodes
would give the analog of an atomic p-state for the 1 st angular state, y1

0. With the additional assumption that
Wn,l ~ 1/rn,l ~ 1/Vn,l

1/3 ~ (2l+1)1/3 (Vn,l = volume) is applicable for non-spherically symmetric states as well,
this  would  give  W1

0/W0
0 =  31/3  = 1.44.  A second  partial  product  series  of  energies  in  addition  to  (44)

corresponding to these values approximately fits the data, see tab. 1. 
A change in angular momentum has to be expected for a transition from spherical symmetric states, y0

0, to y1
0

which is actually observed with ΔJ = ± 1 except for the pair µ/π with Δ J = 1/2. 
An angular contribution relative  to  the  electron,  f(l),  may be given as function of the angular  quantum
number l for small l, l = {1;2;3}, with a maximum value given as 4πΓ-1/3

2 according to (24) and (46):
(2l+1)1/3  ≤  f(l)  ≤  4πΓ-1/3

2, l = {0;1;2;..}, turning (44) into :

Wn /We  ≈ 3 /2 α ^(1.5 /3n)
α1.5  f(l)  = 3/2Π k=0

n α^(-3/3k) f(l)         n = {1;2;..}         (52)

I 3.5 Results of energy calculation
Table 1 presents the results of the energy calculation according to (52) for y0

0 (bold), y1
0. Only states given in

[9] as 4-star, characterized as „Existence certain, properties at least fairly well explored‟, are included,  up to Σ'0
all  states  given  in  [9]  are  listed.  Coefficients  given  in  col.  4  refer  to  (44)f,  starting  with  the  electron
coefficient in We, including its extra term of 2/3 23. Exponents of -9/2 for Δ and tau are equal to the limit of
the partial product of α(n), including the electron coefficient. 
For comparison 2 different calculation methods for energy are given. 
In col. 5 equ. (24) and (49)f are used with σ0 according to the value of the fit for JZ =1/2 and αPl given by
We/WPl according to the experimental value of the electron and definition (76) for Planck energy. 

W n= 2b0∫
0

rn

exp(−(1.53 δ σ0 αPl
α(−4.5 /3n)

α−4.5 ( ec
4 πεc r )

3))r−2dr    =>    W µ= 2
3

Γ+1 /3 α−1

(σ 0 αPl )1 /3  ec (53)

(n = {0;1;2;..}; 1.5δ = extra coefficient for the electron only,  δ = δ(0,n>0); bold: particle coefficient, note:
electron coefficient, (3/2α3)3, included in αPl;  Muon given as example 24)

21 Since non-rest mass is not restricted to the particular solutions of the model this limit does not apply to these. 
Energies above the value of the Higgs boson/VEV might be possible due to linear combination states or particle 
compounds.
22 yl

m= ∫∫Ψ (φ , ϑ )2 sin(ϑ )dφ dϑ  / 4 π Note: the wave function will not be normalized to 1.
23 i.e. starting the series in (44) with n= 0;
24 The term for the muon is given as reference to avoid ambiguities due to extra term ≈ 3/2 of the electron.
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Table 1: Particle energies; col.2: radial, angular quantum number, *, **see chpt. I 1.3; col.4: α-coefficient in
Wn according  to  (44)f,  n  = {0;1;2;..};  col.5,6:  ratio  of  calculated  energy,  Wcalc,  and literature  value  [9]
according to σ0 of fit JZ =1/2 (approximately (24), giving (53)) and to σ0 of (28) (giving (55)); col.7: angular
momentum Jz [ħ]; 
Blanks in the table are discussed in I 3.8. The values of physical constants are taken from [9].

In col. 6 equ. (49)f is used with σ0 according to (28), based on the considerations of I 2.3, αPl will be replaced
by αlim

-1/2 (3/2 α9) with αlim
-1/2 recalculated from αlim

-1 = σ0 
-1/3

 2Γ-1/3/3 (cf. (54))  25. 

exp (− [( ρn /r )3 ] )  ≈ exp(−[1.53 δσ0 αPl α (n)(ec

4 πεc r )
3 ])  ≈ 

exp (−[1.53δ [( Γ−1/3 π
Γ+1/3

)
34 Γ−1 /3

3 ]
3
α (n)
2 αlim

(ec

4 πεc r )
3 ])  ≈

exp (−[1.53δ [( Γ−1/3 π
Γ+1/3 )

34 Γ−1 /3

3 ]
3

2(Γ+1 /3

Γ−1 /3 2 π )
3

(3
2 )

3
Π k=0

n α ^(9 / 3k)(ec

4 πεc r )
3 ])  ≈ 

(exp (−[1.53δ
π2 Γ−1 /3

3

Γ+1 /3
2 Πk=0

n α ^(3/ 3k)
ec

4 πεc r ]
3

))
2

                                                          n = {0;1;2;..}

(54)

25 Expression intended to emphasize 3rd power relationship, a remaining factor of 2 is attributed to ev/2 being squared.
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n, l J

see I 3.8 - -
0, 0 0.51 1.014 1.002 1/2
1, 0 105.66 1.007 0.996 1/2
1, 1 139.57 1.101 1.088 0

K 495 see I 3.8 0
2, 0 547.86 1.002 0.990 0
2, 1 775.26 1.022 1.009 1
2, 1 782.65 1.012 1.000 1

K* 894 see I 3.8 1
3, 0 938.27 1.011 0.999 1/2

n 3, 0 939.57 1.010 0.998 1/2
958 see I 3.8 0

1019 see I 3.8 1
4, 0 1115.68 1.020 1.008 1/2
5, 0 1192.62 1.014 1.002 1/2

Δ 1232.00 1.012 1.000 3/2
1318 1/2

3, 1 1383.70 0.989 0.977 3/2
4, 1 1672.45 0.982 0.970 3/2

N(1720) 5, 1 1720.00 1.014 1.002 3/2
1776.82 1.012 1.000 1/2

Higgs ∞,∞ * 1.25 E+5 1.042 1.066 0

VEV ∞,∞** 2.46 E+5 1.059 1.083

Wn,Lit       
[MeV] 

α-coefficient in Wn
                                         

α(n)-1/3 [f(l)]
Wcalc/ Wlit 
Equ.(54)

Wcalc/ WLit  
Equ.(56)

e+-  2/3 α-3

µ+-  α-3α-1

π+-  α-3α-1 [31/3] 

η 0  α-3α-1α-1/3

ρ0  (α-3α-1α-1/3) [31/3] 
ω0  (α-3α-1α-1/3) [31/3] 

p+-  α-3α-1α-1/3α-1/9

 α-3α-1α-1/3α-1/9

η'
Φ0

Λ0  α-3α-1α-1/3α-1/9α-1/27

Σ0  α-3α-1α-1/3α-1/9α-1/27α-1/81

∞, 0  α-9/2

Ξ
Σ*0  (α-3α-1α-1/3α-1/9) [31/3]  
Ω-  (α-3α-1α-1/3α-1/9α-1/27) [31/3]  

 (α-3α-1α-1/3α-1/9α-1/27α-1/81) [31/3] 
tau+- ∞, 1  (α-9/2) [31/3] 

 (α-9/2) [3/2 α-1] /2

 (α-9/2) [3/2 α-1] 



W n  = 2b0∫
0

rn (exp (−[1.53δ
π2 Γ−1 /3

3

Γ+1 /3
2

Πk=0
n α ^(3 /3k)

ec
4πε c r ]

3

))
2

r−2  dr    =>   

W µ  = 2ec

Γ+1 /3
3

 2−1 /3[Γ+1 /3
2

π2 Γ−1 /3
3 α− 4]   =  2

2/3

3 π2 (Γ+1/3
Γ−1 /3 )

3

α−4  ec

(55)

(n = {0;1;2;..}; 1.5δ = extra coefficient for the electron; bold: particle coefficient; Muon given as example)

I 3.6 Second solution for energy quantization
A second solution featuring a 3rd power relation for equation (43)f is given by αn+1 = αn

3 with α0 as reference
state the next energy state relative to the electron by definition has to give the Planck energy, followed by a
state of energy ratio α0

3 relative to WPlanck, i.e. ~ 1.4E+72 J roughly in the order of magnitude of the estimated
energy of the observable universe 26, see chpt. II 6.2 as well.
This suggests to change the particle order in table 1 according to table 2:

Table 2: Table with particle energies, emphasizing a relationship between elementary charge and electron as
well as Higgs boson and Planck energy; α-coefficients only, minor terms omitted;

I 3.7 Accuracy of energy calculation
All calculations such as the numerical approximation of Γ-functions are performed with an accuracy of about
0.0001. Agreement with experimental particle energies is typically in a range of ± 0.001 to ± 0.01. There are
three major causes preventing a significant improvement of accuracy. 
1) Especially in the case of particle families 27, effects on top of the relations given in this work have to play
a  role  to  explain  different  energy  levels  of  differently  charged  particles.  This  limits  accuracy  and  the
possibility to precisely identify candidates for the calculated energies (e.g. both ρ0 and ω0 are given for 1.44
α-1α-1/3 in tab. 1).
If possible, particles chosen for y0

0 in table 1 are of charge ± 1. In cases such as Σ with three energy levels,
the intermediate energy level is chosen. For the y1

0 series particles of the same charge as their y0
0 equivalent

are preferred in table 1. 
2.) Principal differences in the ansatz for ρ, such as given in col. 5 and 6 of table 1.

26 Baryonic matter ≥ 1E53 kg  ≈ 1E+70J. Total Energy ≈  1E+72J.
27 Particle families, defined here as possessing the same exponent n in (44) but being different in charge, show a typical
spread in energies of 3-4MeV and no dependence on total particle energy.
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n, l

v -1,0 5.50E-21

- 3.11E-18 Reference
0, 0 8.19E-14
1, 0 1.69E-11
2, 0 8.78E-11
3, 0 1.50E-10

n 3, 0 1.51E-10
4, 0 1.79E-10
5, 0 1.91E-10

Δ 1.97E-10
Higgs ∞,∞ 2.01E-08

Planck 1.67E+8

~1.4E+72

Wn,Lit       [J] α-coefficient (energy)         Calculated energy relative  
to electron

 1/(4π|Γ-1/3|3/3)
ec

e+-  α-3 /(4π|Γ-1/3|3/3) ≈ α-2

µ+-  α-2α-1 
η 0  α-2α-1α-1/3

p+-  α-2α-1α-1/3α-1/9 
 α-2α-1α-1/3α-1/9 

Λ0  α-2α-1α-1/3α-1/9α-1/27 
Σ0  α-2α-1α-1/3α-1/9α-1/27α-1/81

∞, 0  α-2α-3/2 
 α-2(α-5/2)  WHiggs, calc= 0.90 WHiggs, exp

WHiggs/We  (WHiggs/We)
3  α-2(α-5/2) (α-5/2)3       WPl, calc = 1.28 WPl, def

WPl/We (WPl/We)
3  α-2(α-5/2) (α-5/2)3 [(α-5/2) (α-5/2)3 ]3   



3) The accuracy of the calculations is already in the order of magnitude of expectable QED corrections.
Since these originate from the  interaction of particles with the vacuum they may not be included in the
equations of this model yet may have some influence on experimental values.
To illustrate possible QED-Effects and the non-linearity of the Γ-functions, a calculation of σ0 with values of
(22)f varying within +/-1.00116 gives a range of energy values of +/-1.006, varying within +/-1.001162 gives
a range of energy values of +/-1.013 compared to the values given in table 1. 

I 3.7.1 Comparing with QCD results
The SM does not provide quantitative results for energy of leptons. As for comparing accuracy of the energy
calculation with results from quark models, calculations of simplicity comparable to the model presented
here,  using  constituent  quarks  and  spin-spin  interaction,  yield  approximately  the  same  accuracy  [10].
However, more recent lattice-QCD calculations for particle mass use the mass of current quarks as input
parameter [11, 12, 13]. 
For particles consisting of u, d, s quarks accuracy of lattice-QCD calculations is approximately in the range
of ~ 0.01 for particles with mass of the proton or higher, however, drops significantly for hadrons of lower
mass. Compared to this work these calculations need a significant larger set of input parameters, consisting
typically of 2-4 quark masses, coupling parameters and reference hadron mass. The light quark masses used
in these calculations exhibit differences in the order of 10% and are in general not consistent in order of
magnitude with those used in other QCD calculations e.g. of magnetic moments or strong decay [14, 15, 16].

I 3.8 Additional particle states
Assignment of more particle states will not be obvious. The following gives some possible approaches.
I 3.8.1 Partial products
Additional  partial  product  series  will  have to  start  with higher  exponents  n  in  α^(-1/3n)  giving smaller
differences in energy while density of experimentally detected states is high. There might be a tendency of
particles to exhibit a lower mean lifetime (MLT), making experimental detection of particles difficult 28. To
determine the factor yl

m of higher angular states requires an appropriate ansatz for a metric / differential
equation yet to be found. 
One more partial  product  might  be inferred from considering d-orbital-like  equivalents  with a factor of
(2l+1)1/3 = 51/3 as energy ratio relative to η, giving the start of an additional partial product series at 5 1/3 W(η)
= 937MeV i.e. close to energy values of the first particles available as starting point, η', Φ0. However, in
general it is not expected that partial products can explain all values of particle energies.

I 3.8.2 Linear combinations 
Particles  supposed  to  be  attributed  to  S-quaternion/s-quark  states  do  not  fit  well  to  the  simplest
interpretations of this model. Approaches not in-line with the SM may be considered as well. 
The first particle family that does not fit to the partial product series scheme are the kaons at ~ 495MeV.
They might  be considered to be linear combination states  of π-states.  The π-states of  the y 1

0 series are
assumed to exhibit one angular node, giving a charge distribution of +|+, -|- and +|-. A linear combination of
two π-states would yield the basic symmetry properties of the 4 kaons as:

         +         -         -            +
K+     +       + K-    -        - KS

o    +      + KL
o     +        -

         +         -          -                        -
 (+/- = charge)
providing two neutral kaons of different structure and parity, implying a decay with different parity and MLT
values. For the charged Kaons, K+, K-,   a configuration for different chirality equal to the configuration for
charge of KS

o  and KL
o might be possible, giving two versions of P+ and P- parity of otherwise identical

particles and corresponding decay modes not violating parity conservation. The same would hold for K*
particles.
A linear combination of 3 such  π-states would result  in an essentially spherical symmetric object which
might be attributable to the η-particle.

28 Which might explain missing particles of higher n in the y0
0 and y1

0 series as well.
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I 3.8.3 Neutrinos
Neutrinos are not part of the energy series (44)ff and thus not related to Planck energy via the coefficient αPl

and the considerations of chapter I 7.1 related to gravitation, thus they need to be treated differently. 
One might look for additional terms in (15) or just omit αPl in expressions such as (49)f. This would yield a
particle energy of ≈ 1E-20[J] (≈0.1eV), i.e. in the order of magnitude expected for the heaviest neutrino [17].
The source of a vacuum energy, ρvac, or cosmological constant term, ΛC, is considered to be due to an extra
term in G00, in this model maybe originating from the vacuum term of (15). However, there are some points
concerning neutrinos and ρvac that should be noted.
The omitting of factor αPl is vaguely related to the term for vacuum energy, ρvac (5.3566E−10 [J/m3], Planck
collaboration [18]), of chpt. I 8.1. Looking at the energy density of a state according to relation (53), omitting
αPl, one gets an energy of 6.5E-21[J] 29 and a Compton wavelength, λC = 3.1E-5[m] giving an energy density
w = 2.2E-7. Less heavy neutrinos might be closer to ρvac. If the states of this model would be considered to be
excitations of a single field, the lowest neutrino state would be the lowest excitation and might be viewed to
correspond to the zero energy of the vacuum. 

 I 4 Magnetic moment 30

Within this model particles are treated as electromagnetic objects principally enabling a direct calculation of
the magnetic moment M from the electromagnetic fields.
The magnetic moment Me of the electron is given as product of the anomalous g-factor, ga = 1.00116, Dirac-
g-factor, gD = 2, and the Bohr magneton, µB = e ħ/(2me), times the quantum number for angular momentum 
J = 1/2: 

M (e)  = ga gD µB /2  = ga
2e c0

2

2W e
 ħ
2

 = ga 9.274E-24 [Am2 ] (56)

The factor  ga arises  from the interaction  of  the  electron with  virtual  photons as  calculated  in  quantum
electrodynamics  and should not  be part  of  a  calculation of  the  magnetic moment  from the field of  the
electron itself. Within this model the factor 2 of gD originates from the fact that particle energy is supposed to
be equally divided into contributions of the electric and magnetic field,  W el =  Wmag = Wn/2 and only the
magnetic field, i.e. Wmag contributes to the magnetic moment.
Inserting the term for particle energy of (38)f in (56) gives: 

M (e)
ga

 = 
e ħc0

2

2W e
 = 

e ħc0
2

2
 

3 ρe

2b0 Γ 1/3
 = e c0 ρe  ( Γ  ̶ 1/3

3
 3

Γ  ̶ 1/3 )  
3 [ħc0 /b0]

4 Γ 1/3
 = e c0 ρe

Γ  ̶ 1/3

3
 [ 9 [α−1]

4 Γ1/3 Γ  ̶ 1/3 ]  ≈ 
e c0 λe

4 π
(57)

The term on the right is obtained by expansion with Γ-1/3/3 using (19) and (66) , to give an expression using
λC . The last term could be expressed through the second term via W = hc0/ λC.
A similar term will be obtained by a calculation starting directly from the fields as given by the following
equation.
The relation of the values of E and B in an electromagnetic wave is given by B = E/c 0.  This gives as first
approximation for the value of Mn  of a particle n: 

Mn  ≈ 1
μ ∫

0

λC , n

B(r)Ψ n(r)
2 d3 r  = εc0∫

0

λ C, n

E (r)Ψ n(r)2 d3 r  = e c0 ρn

Γ  ̶ 1/3

3
 [30.5 3

2
[α ]−1]  = ec0 λC ,n      (58)

A simple ansatz with M = IA = ec0πR2/(2πR) with R = λc would give: M = ec0 λc/2. The missing factor 4π, 2π,
indicates a spherical symmetric particle state.

I 5 Coupling constants
I 5.1 Photon energy
In the following a term for length expressed via the Euler integral of (18) will be introduced for λC,n: 

29 I.e. Wv, calc ≈ 0.04eV, compare with mv   < 0.08 eV [17];
30 Note: to allow for comparison with tabulated values of M in units of [Am2] the calculations in this chapter use          
e [C] not ec  [J], conversion factor: [m2C/s ] /[m2 J/s ] = e/ec = 1/19.4 [C/J]. 
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rx = ∫
0

rx

ev dr  = ρn /3 ∫
(ρn/ rx)

3

∞

t -4/3 e-t dt ≈ Γ(-1/3, (ρn/rx)3)  ρn/3 (59)

In the limit (ρx/rx)N -> 0

Γ(-1/N, (ρx/rx)N) = ∫
(ρx /r x)

N

∞
t−(1/ N +1)e−t dt ≈ N (ρx/rx)-1 = N σ1/3/2          (60)

holds. Equation (60) inserted in the right side of (59) gives back rx, however, (59)f may be seen as expressing
rx in terms useful for this model, i.e. ρn, σ0 and Γ-functions. 

Fig. 2: rn vs λC

The  integration  limits  for  calculating  angular  momentum  in  z-direction,  rn of Jz, (20)ff,  and
(Compton-)wavelength, λC,  supposed to represent the rotating E-vector and in turn total angular momentum
J should be related by the factor √3 of the ratio J/Jz:

                                             λC / rn  = (1/2(1/2 + 1))0.5 / (1/2)  = √3                  
31 (61)

Using equ. (60) for the incomplete Γ-function and multiplying rx in the integration limit (ρn/rx)3 by √3 gives
in good approximation (using (24)):
λC,n  ≈ 31.5 σ0

1/3/2 ρn/3 ≈ 30.5 4π Γ-1/3
3/3 ρn (62)

With (24) and (62) energy of a photon may be expressed as:

WPhot,n = hc0/λC,n  = hc0  / ∫
λC , n

e v dr =
2hc0

30.5 ρn σ 0
1 /3 ≈ 

3 hc0

30.5 4 π Γ−1/3
3 ρn

(63)

I 5.2 Fine-structure constant, α
The energy of a particle  is assumed to be the same in both photon and point charge description. Equating
(39) with (63) gives:

Wpc,n = WPhot,n = 2b0 Γ1/3 ρn
-1 /3 ≈

2hc 0

30.5 ρn σ 0
1 /3 ≈

3 hc0

30.5 4 π Γ−1/3
3 ρn

(64)

Using (19) for an argument of 1/3:
Γ+1/3 Γ−1/3  = 30.5 2π (65)

and the 1st term from right of equation (64) will give (note: h => ħ):

α−1  = 
hc0

2π b0
 ≈ (2Γ +1/3

30.5 2π )  (4 π
3

Γ−1/3
3 )  ≈ 2

3
Γ−1/3

Γ +1/3
4 π Γ+1/3 Γ−1/3  ≈ 4 π Γ+1/3 Γ−1/ 3 (66)

The last expression is emphasized since it has a simple interpretation in terms of the coefficients of the
integrals over exp(-(ρ/r)N). Equations (64)ff are based on the integral over a 3-dimensional point charge term
modified by the exponential term according to (7) with N = 3, and  a complementary integral - in 3D for
length, λC - to yield a dimensionless constant. 
This may be generalized to N dimensions (N ={3; 4}), to give a point charge term (SN = geometric factor for
N-dimensional surface, in case of 3D: 4π; 4D: 2π2):

∫
0

r

ev ( N )r−2(N−1)  d N r  = SN∫
0

r

e v( N )r−(N−1)dr (67)

that has to be multiplied by a complementary integral 

31 Alternatively: λC,n = 3ρhc0/(2b0Γ1/3) = 3π α-1 ρ/Γ1/3; rn = 3/2 α-1 ρ Γ-1/3/3  =>  λC,n/rn = 6π/(Γ1/3Γ-1/3) = 6π/(2π√3) = 30.5
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z

√ 3
2

ħ

1
2

ħ
λ

rn



∫
0

r

ev ( N )r (N−3)dr      (68)

The exact result depends on the integration limit of the second integral, cf. II 5.1. However, in terms of the Γ-
functions both electroweak coupling constants can be given in 1st approximation as

α N
−1  = SN  

Γ (+m /N )Γ (−m/ N)
m2  =  S N

Γ (+(N −2)/N )Γ (−(N−2)/ N )
(N−2)2     (m = N-2, cf. (18)) (69)

Table 3: Values of electroweak coupling constants 

Since the values of the coupling constants depend on integrals over space they are in general dependent on
the frame of reference, tab. 3 gives the values in a rest frame. Considering that the dominant contribution
comes from the complementary integral, the values of the coupling “constants” should increase in non-rest
frames, their inverse should decrease. 
In chpt. II 5.1 a more detailed treatment of coupling constants in N dimensions will be given.

I 6 Wave function and differential equation
Quantum mechanics is a useful tool to describe phenomena of particles. Thus it is expectable that some
congruence with the Kaluza-type model given here and quantum mechanical concepts has to exist.

I 6.1 Radial part
A solution for a wave such as  (29)

  e v(r )=φ (r)  = exp(−( ρ3

2r4 +[( ρ3

2r4 )
2

– 4 ρ3

σ 2r5 ]
0.5

)r /2)   (70)

might be deduced from 4 boundary conditions:
1.) To be able to apply φ(r) to a point charge φ(r = 0) = 0 is required.
2.) To ensure integrability an integration limit is needed. This may be achieved by φ(r) being in the form of a
solution of a 2nd order differential equation of a general type of a damped oscillation.
3.) φ(r) should be applicable regardless of the expression chosen to describe the electromagnetic object. In
particular requiring a point charge and a photon representation of a localized electromagnetic field (particle)
to have the same energy, an exponent of r is required to be 3 in the approximation for small r.
4,) The Euler integrals for m/N ≤ 0 require an integration limit (ρ/r)3 = 8/σ
In all integrals over φn(r) equ. (71) may be used as approximation for (70) 

φn(r<r n)  ≈ exp(−ρn
3

r3 ) = ev(r) (71)

φ(r) may be interpreted in a quantum mechanical way as acting as a probability amplitude on an 
electromagnetic field. 
The function φ is a very good approximation of equation (70) and though it should be basically related to
function Φ and the field equations of GR a differential equation resembling quantum mechanical expressions
may be constructed from a differential equation of the damped oscillation type. The approximation (r < rn),
(σ -> 1) of equation (70) provides a solution with the following coefficients: 

− r
6

d 2 φ(r)
dr2  +  ρ3

2r3
dφ(r)

dr
 −  ρ3

r 4 φ (r)  =  0  32 (72)
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4D
3D 136.8

Dimension – 
space

coupling 
constant Value of inverse of coupling constant, αN

-1

α4 = αweak 2π2 Γ+1/2 Γ-1/2 /4  =  π3  = 31.0
α3 = α 4π Γ+1/3 Γ-1/3  = 4π Γ+1/3 Γ-1/3 =



An equation such as (72) may be turned into a more conventional  expression containing terms used in
quantum mechanics by using a quantum mechanical operator for kinetic energy, T =  (ħc0)2 r /b0, i.e. c0

2 r /b0

representing 2/(2m) 33, and the 3rd term in the series expansion for energy, (84), for potential energy, V:
V(r) = b0 ρ3/(2 r4) (73)

and a corresponding expansion by (ħc0)2α2 /b0
2 for the 2nd order term of (72) (with one b0-term used up in

V(r)), an approximate differential equation for this model may be given that resembles quantum mechanical
terms :

−
(ħc0)

2 r
α−2 b0

 
d2 φ(r)

dr2  +  r V (r)  
dφ(r)

dr
 −  V (r)φ(r)  = 0 (74)

A solution such as (70) might be related to a differential equation such as (72) if one applies the approach
used in I 7.1.2, i.e. considering a subset of r terms (those given in (72)) to turn into constants. Though this
should strictly be applied only for r ≥ λC, one might treat these r-terms as varying sufficiently slowly for r
approaching λC coming from r < λC,  as  well.  This would suggest  an interpretation related to a damped
oscillation.
The range of validity of the approximation of a differential equation of type (72) has to be examined further.

I 6.2 Angular part
For a differential equation of type (72) a separation of variables will in general not be possible, the spherical
harmonics such as Y10 will not be a solution for (72). However, the agreement with particle energies, as seen
in tab.1, seems to justify to use the first few spherical harmonics as an approximation.

I 7 Particle-particle interaction 
The concept of forces of this model is quite different from that of the SM that is based on particle exchange.
Within the framework of  GR all  forces  should  be traced back to  space-time,  curved by energy related
quantities. Here electromagnetism is the starting point, additional forces should be part of a series expansion
of the EM-terms. The 2nd order term will in general be attributed to gravitational effects for r > λC, for r < λC

it will be responsible for particle energy and thus might be vaguely related to effects traditionally attributed
to the strong interaction. Weak interaction will be not part of the series expansion and has to be interpreted in
different terms.
In  short,  the  set  of  interactions  gravitation,  electromagnetic,  weak,  strong  of  the  SM  will  turn  into
electromagnetic  + next order term (= interaction based on r-4-term in (84) for r > λC, gravitation for r < λC).

I 7.1 Gravitation
I 7.1.1 Planck scale
Expressing  energy/mass  in  essentially  electromagnetic  terms  suggests  to  test  if  mass  interaction  i.e.
gravitational  attraction  can  be  derived  from  the  corresponding  terms.  Assuming  the  expansion  of  the
incomplete Γ-function for the integral over r-2,  Γ(1/3,ρn/r3) (83)f, might be an adequate starting point for
gravitational attraction as well, implies that the Coulomb term b0 will be part of the expression for FG, i.e. the
ratio between gravitational and Coulomb force, e.g. for the electron,  FG,e /FC,e = 2.41E-43, should be a term
that can be given as completely separate, self-contained expression. 
This  is  equivalent  to  assume  that  gravitational  interaction  is  a  higher  order  effect  with  respect  to
electromagnetic interaction and as such should be of less or equal  strength compared to the latter.  This
suggests to use the expression
b0 = G mPl

2 = G WPl
2 /c0

4               (75)

32 [N15.1] dφ(r)/dr = 3 σρ3 r -4 φ(r)
[N15.2]  d2φ(r)/dr2 = 9 (σρ3)2 r -8 φ(r)  - 12 σρ3 r -5 φ(r) + 6 σρ3 r -5 φ(r) (polar coordinates)   
[N15.1] -[N15.2] inserted in (72) gives: 
[N15.3] r/6 {-9 (σρ3)2 r -8

 + 6 σρ3 r -5} + 3/2 (σρ3)2 r -7  - σρ3 r-4 = 0  
[N15.4] -3/2  (σρ3)2 r -7 + σρ3

 r -4+ 3/2 (σρ3 )2
 r -7 - σρ3

 r-4  = 0
33 Assuming Wn,kin = Wn/2
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as definition for Planck terms , giving for the Planck energy WPl
 :

WPl
  = c0

2 (b0 /G)0.5 = c0
2 (αhc0/G)0.5 (76)

Using (76) gravitational attraction FG in the classical limit can be expressed as:

FG  = 
b0W n W m

W Pl
2

1
r2 (77)

The value of WPl according to definition (76) allows to give the ratio of We and WPl as (cf. (45), (47)f) 34:
W e

W Pl
 = 4.9 E -22  ≈ 

α e

2α lim
 ≈ 1.52 α 10/2  ≝ αPl  (78)

i.e. the relation between We and WPl is given by αe, the electron coefficient in the exponent of ev, (45), times
the angular limit factor according to (47) divided by two 35. 
The constant G may be given as:

G  ≈ 
α Pl

2 c 0
4 b0

W e
2 (79)

Since We may be expressed as function of π, Γ1/3, Γ-1/3 and ec only, (53), (55), G may be expressed as a 
coefficient based on electromagnetic constants, G ≈ c0

4α24/(4πεc).

Gcalc  = 
c 0

4

4 π ε c
 ( (4 π )3 Γ  ̶ 1/3

7  α15

3π 2/3 Γ1/3
)

2

 = 1.0013 Gexp   (80)

or

Gcalc  ≈ 
c0

4

4 π ε c ( 1
3 π2/ 3  ( Γ−1/3

Γ1/3 )
4

α12)
2

 ≈  
c0

4

4 π ε c
 2
3

 α 24  = 1.0008 Gexp   (81)

I 7.1.2 Gravitation from series expansion of exponential function
Terms for gravitation may be recovered via a series expansion of either the Γ-function, see (83)f below, or
the exponential ev e.g. in (35)f. The latter gives for the first two terms of energy density:

w  ≈ 
εc ρ0

2

r4 e v  ≈ εc E2[1 + σαPl( e c

4 πεc r )
3]  (82)

which is a very good approximation for r >  αλC.  The 1st term is the classical Coulomb term for energy
density.  The 2nd term contains  by definition the ratio  between Coulomb and gravitational  terms for  one
particle, αPl. To turn this into the exact Coulomb / gravitation relationship requires 
1) coefficient σ to approach unity, which may be approximately justified by considering the limit of chpt. I
3.3,
2) parameter r in ec /(4πεcr) to turn into a constant,
3) parameter r to approach the value ec/(4πεc).
For condition 2) one has to consider that r in the exponential may not be considered to be a free parameter
for r > λC, the limit of a real solution for an equation such as (70). Using the limit of σmin of (46) and inserting
the Compton wavelength of the electron in (82) would give a value two orders of magnitude off to yield the
expected value for the electrostatic / gravitation ratio. Since σ is essentially related to spin of a particle and it
has to be assumed that spin does not play a role for r >> λC, one might omit this coefficient in (82) as well as
in the term for λC and thus recover the exact gravitational term.
The same proceeding could be used for a N=2 solution of (7) giving a potential term in the metric (cf.  I
1.3.1). The general expression for the series expansion would be: 

Coulomb-term (1 + αPl). 

34 Within the precision of the model parameters, such as (24)f and in particular of the extra factor of ≈ 2/3 of We.
35 A factor 2 might correspond to relate only the electrostatic contributions of (39) for the electron with the 
electrostatically defined value of a Planck state, see I 3.3.1 as well. 
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Particle interaction would be given by the square of the αPl term multiplied by appropriate coefficients from
the α-series according to (44) for particles of spherical symmetry in a rest system. Since the 2 nd term of such
a series expansion should not exceed the 1st, electromagnetic one, the maximum relativistic mass for such
particles would be defined by αe

-1, while the inverse of the maximum angular term, i.e. αlim
-1 as given in (47)

secures that particles that are not spherical symmetric in a rest system can not exceed the Planck limit either,
this gives relation (78).  
The approach using assumptions 1) - 3), is supported by the considerations of chpt. I 8.1, yielding a term for
the cosmological constant in the correct order of magnitude.

I 7.1.3 Series expansion of Γ(1/3,(ρn/rn)3) 
The series expansion of Γ(1/3,(ρn/rn)3) in the equation for calculating particle energy (38)f gives [8]:

Γ (1/3 ,  (ρn/ r)3)  ≈ Γ1/3  - 3( ρn

r )  + 3
4 ( ρn

r )
4

 - 3
7 ( ρn

r )
7

 + ... (83)

and for Wn(r): 

W n(r)  ≈ W n  - 2b0
3 ρn

3 ρn r
 + 2b0

3
4

ρn
4

3 ρn r4  = W n  - 
2b0

r
 + b0

ρn
3

2r 4       (84)

The 2nd term in (84) drops the particle specific factor  ρn and gives twice  36 the electrostatic energy of two
elementary charges at distance r. The 3rd term is an appropriate choice for the 0 th order term of the differential
equation (cf. I 6) as potential energy term. It is supposed to be responsible for the localized character of a
particle state and may be identified with the “strong force” of the standard model  as observable e.g. in
particle scattering.

I 7.1.4 Virtual superposition states
Within this model particles might interact via direct contact in place of interaction via boson-exchange. The
particles are not expected to exhibit a rigid radius. Within the limits of charge and energy conservation a
superposition of many states might  be conceivable, extending the particle in space with radius ~ r m,n,  rn

appropriate for energy of each virtual particle state (VS)  37, providing a source of energy at a distance rVS

from the  primary particle and in turn contributing to the stress-energy tensor responsible for curvature of
space-time that manifests itself in gravitational attraction.   
In  general  VS are not  supposed to consist  of  analogues of e.g.  spherical  symmetric states covering the
complete angular range of 4π but to be an instantaneous, short term extension of the (rotating) E-vector thus
requiring the angular limit factor of (46). A long range effect of the 3rd, the strong interaction term, of (84)
may be exerted via virtual particle states. To estimate such an effect in first approximation the following will
be used;
- the 3rd term of equ. (84) with ρ according to (49)f, 
- the angular limit state of σmin according to (46)  approximated as  ≈ 1,
- (ec/(4π εc))3  ≈ (α-1 re)3, which might be considered to represent the cube of a natural unit of length. ρ
For any VS at r = α-1  rVS = ΠW,VS

1/3 ec/(4πεc) 38, i.e. the radius of the VS in natural units,  equ. (85) will hold:

W VS(r)≈ b0
ρVS

3

(α−1  rVS)
4  ≈

b0 α0 ΠW , VS(α
−1re )

3

(α−1  rVS)
3(α−1  rVS)

 ≈ 
b0α 0 ΠW ,VS(α

−1r e)
3

(ΠW ,VS
1 /3 α−1  re)

3(α−1  rVS)
 ≈ 

b0 α 0

(α−1  rVS )
 ≈ 

   b0

(α−1rVS)
 (FG ,e

FC ,e )
0.5

(85)

Considering that the composition of the stress-energy tensor from virtual states is expected to be based on a
much more complex mechanism requiring consideration of all possible virtual states at a particular point and
appropriate averaging, (85) seems to be a quite acceptable first approximation. 
The  crucial  factor  that  turns  the  r-4 dependence  of  the  strong  interaction  term  into  r-1 of  gravitational
interaction is the proportionality of ρn to any characteristic particle length, rn, rm,n, λC,n etc. which is valid for

36 Due to adding up the electromagnetic contributions in (39): Wn = 2Wn,el = 2Wn,mag = Wn,el + Wn,mag

37 The superposition states considered here would be not virtual in a Heisenberg sense, the energy is provided by the 
source particle.
38 Π W,VS = Π k=1

VS α^(-3/3 k ) ; i.e. the product of all spherical symmetric particle coefficients except for electron in the 
energy representation of equ. (44);
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each particle state subject to the relations of this model.
Equ. (85) is a representation of the gravitational energy of the electron, terms for other particles may be
obtained by inserting values according to (52) in (85) which might be interpreted as the intensity/frequency
of emergence of virtual states being proportional to the energy of the primary particle.
Gravitational attraction, Fm,n; r between two particles m and n at a distance Rm,n would be given as: 

Fm ,n; r  ≈ 1
b0

 W VS(m,r) W VS(n,r)  ≈ b0  
W m W n

W e
2  Rm,n

2  ( FG, e

FC,e
)  ≈ b0  

ΠW ,m ΠW ,n

   Rm, n
2  α 0

2           (86)

It has to be noted that the result of  (85) corresponds to the reasoning of I 7.1.2, i.e. in the limit of Planck
energy defined relative to the electron by α0, the gravitational term will equal the electrostatic term, i.e.

b0 α0
2 ΠVS (n)

2  ⩽ b0
          (87)

has to hold, which requires the maximum possible energy state to exhibit a coefficient in (44) of:
ΠW ,max  = α0

−1           (88)
Through equ. (85) a relation between the ground state of the series given in chpt. I 2.5 and the upper limit
term, the 3rd term of the series expansion, equ. (84) is established. All the relevant relationships given above
can thus be derived from either the assumption that the electron constitutes a ground state or that the 3 rd term
of equ. (84) represents gravitational interaction.
The qualitative features of such a model may be summarized as:
- particle energy and radius are not static, generation of virtual states with an intensity proportional to energy
  of the primary particle, W0, provides energy at a distance, resulting in a contribution to the stress-energy 
  tensor proportional to W0/rVS and the associated gravitational effect;
- the 3rd term in the energy equation (84) that is responsible for effects associated with the strong force at
  short distances is identical with the term responsible for gravitational effects at long distance;
- energy and distance (and implicitly t) are intrinsically connected  (=> energy-space-time).

I 7.2 Strong interaction
In the SM “strong interaction” is responsible for bonding of quarks in nuclei and nuclear bonding. 
There is no need for the first in case of this model. 
The r-4-term term in the expansion of energy, (84), chpt. I 7.1.3, as used in the differential equation, chpt. I 6,
as well, may be interpreted in terms of a potential that, since it is the decisive term for forming a particle
state and is significant only for r < λC, might be considered to play the equivalent role of “strong interaction”
for this case.
As for bonding in nuclei a mechanism with exchange of particles should be compatible with this model.
More direct EM-interaction might be considered as well (cf. II 3).    39

I 7.3 Weak interaction
Weak interaction does not fit in the expansion scheme given above and thus can not have any interpretation
similar  to  the  one  given  for  strong  interaction.  Particle  exchange  as  underlying  mechanism  might  be
compatible with this model in this case as well. In general there seems to be a close relationship between this
model and electroweak theory,  however, based on different principles, to be discussed in II.

39 According to the former interpretation of this model it would be suggestive to interpret strong interaction as 
evidenced in scattering events to be in 1st approximation due to direct interaction of the respective electric and magnetic 
fields. Such an interaction should depend on: 1) comparable overall spatial extension and strength of the fields (i.e. 
essentially energy density ), 2) comparable spatial extension and field strength of volume elements attributable to partial
charge. Condition 1) should prevent neutrinos or the electron to exhibit effective interaction with hadrons, condition 2) 
prevents interaction of the τ which is at the end of the partial product series for y1

0 and should exhibit a high, potentially 
infinite number of radial nodes, separating densely spaced volume elements of alternating charge. A special relationship
of “leptons” to neutrinos might be due to their weak electromagnetic interaction compared to that of the hadrons. 

22  PP230820



I 8 Cosmology
I 8.1 Cosmological constant Λ
The 2nd term on the right side of the full 5D equation (5), ~ 1/Φ ( ∇α(∂α Φ)  - g αβ □ Φ ) , might be considered
to be a natural candidate for the cosmological constant term, gαβΛ. Its exact expression will depend on the
complete 4D or 5D metric used. Nevertheless it will have to contain terms of type g αβΦ''/Φ such as ρn

3/r5 or
ρn

6/r8 with all r originating from derivatives of the exponential only. Using r = ec/(4πεc) as upper bound of r,
as suggested in I 7.1.2 will yield approximate values in the order of magnitude of critical, vacuum density, ρc,

ρvac and of Λ: 

Φ ' '
Φ

 ≈ ρ3

r5  ≈ 
αPl

(ec/(4 π ε c))
5 ( ec

4 π εc
)
3

 =  αPl( 4 π εc

ec
)
2

= 0.089 [m-2] (89)

Multiplied by εc this gives an energy density of 2.97E-10 [J/m3].
Multiplied by the conversion factor for the electromagnetic and gravitational equations, equ. (2), 8πεcG/c0

4 
equ. (89) gives as estimate for Λ:

αPl
(4 π )2 ε c

3

ec
2

8πG
c0

4  ≈ 6.17E-53 [m-2]    40 (90)

The first term of (15) in chpt. I 1.3.1 should represent a vacuum term and thus be the most likely source for a
term such as ρn

3/r5 . 
41 
Dark energy is related to Λ and considered to be responsible for the accelerated expansion of the universe.
An “electromagnetic version of  Λ, such as given by (89), should have drastically stronger effects, maybe
having some relationship to cosmic inflation.

I 8.2 Dark matter 
Dark matter refers to the concept to attribute gravitational effects that cannot be explained by conventional
theories of gravity to a yet undetected type of matter that contributes a multiple of ordinary, baryonic mass.
An alternate approach to explain the underlying phenomena is to modify the standard laws for gravitation. In
particular  MOND is  able  to  explain  many  phenomena  in  the  range  of  low strength  of  gravitation  and
correlate them with the presence of baryonic matter [19], e.g. the baryonic-Tully–Fisher relation, vϕ

4 ~ GMgal.
Term such as (1 + a0/a) might indicate that a series expansion such as used in this model could be of some 
use to gain a MOND-like expression.

I 8.3 Relationships to black holes
The size of the ring singularity of an electron in the Kerr–Newman metric will be:
Ra,e = ħc0/(2We) = λC,e/(4π) (91)

40 Λ ≈ 1.11E-52 [m-2] with Hubble constant H0 = 67.66 [km/s/Mpc] [18]
41 An interpretation such as given in I 7.1.4 implies that at least part of the energy in the “vacuum” is supplied by 
virtual particle states. Such a contribution to vacuum energy is not constant but scales with the magnitude of 
gravitational effects (i.e. W0/rVS).In this model energy of a VS is intrinsically connected to distance itself. If spacetime is
directly constituted by the presence of energy, the expansion of the gravitational field via VS contributes to the 
expansion of the universe. From this perspective a possible expansion of the universe is restricted by the available total 
energy and infinite expansion would require a complete conversion of matter into radiation.  
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II Terms based on Euclidean Geometry

II 1 Quaternion-based quark-like model 
The model as described above emphasizes a Kaluza-like ansatz with spin as boundary condition. Reversing
the main focus, emphasizing angular momentum and implicitly assuming curvature of space as necessary
boundary condition for localization is a straight forward alternate way to get additional information about the
states of this model [20].
II 1.1 Rotating orthogonal vector triple of E, B and C – EBC-triple 
Defining particles as being based on an orthogonal vector triple of E, B and C of the propagation velocity 42

rotating in 3D with the E-vector constantly oriented to a fixed point in a local coordinate system (EBC-
triple), the vectors E, B and C being supposed to be locally orthogonal and subject to standard Maxwell
equations has the following consequences 43:
1) Such a rotation is related to the group SO(3) (and SU(2) as important special case). In the following a
quaternion ansatz will be used for modeling the respective rotations.
2)  E-vector  constantly  oriented  to  a  fixed  point  implies  charge.  As  implicitly  assumed  above,  neutral
particles are supposed to exhibit nodes separating corresponding equal volume elements of reversed E-vector
orientation and opposite polarity.
3) A local coordinate system = rest system implies mass.
4) In case of any lateral extension of the E-field, for r -> 0 the overlap of a rotating E-vector implies rising
energy density, resulting in rising curvature of space-time according to GR or its modification as of equ. (3).
5) As essentially electromagnetic waves such states are consistent with a “point-like” structure function on
the other hand imply a spatial distribution of energy density and angular momentum / spin.
6) Simple rotations of such an EBC-triple with half the angular frequency of E, B, or C may serve as model
for S =1/2. The trajectory of the E-vector encloses a spherical cone or -mirrored at the center – a spherical
double  cone  with  a  surface  area  relative  to  a  sphere  of  2/3,  1/3,  1/3,  respectively,  or  equivalently  the
complementary  toroidal  wedges  of  surface  fraction  1/3,  2/3,  2/3.  Each  of  the  3  pairs  of  cone  and
complementary  toroid are  identical  to  a  sphere,  and  may correspond to a  charge 1 or  0.  i.e.  the  basic
geometry of the solutions corresponds to 6 leptons and 6 quarks of the SM 
7) Chirality, Helicity, Spin
Geometry  allows  for  2  different  chiral  orientations  of  the  EBC-triple  (right-  left-handed),  each  with  2
different spin orientations. This has the following consequences:
- Chirality is an absolute attribute independent of reference frame;
-  a  pair  of  chiral  states  may exist  in  3 triplet-like  states,  “LL”,  “RR” and 1/√2 (LR+RL)  taking  the

equivalent role of “color” in decays;
- If each particle (-component) has a well defined chirality, there have to exist forbidden transitions for

different chiral particles, being a possible explanation for unobserved transitions such as µ -> e + γ or the
stability of the proton;

- Phenomena such as “handedness” in electromagnetism, the “chirality” of the weak interaction and matter-
antimatter asymmetry might be based on a universal preference for one chiral set of states.

II 1.2 Quaternion U, D, S-components 
It is suggestive to implement the model described in  II 1.1 in the form of quaternions. In the following a
standard algorithm for rotation with quaternions will be used.
A “dreibein” of three orthonormal vectors E, B, C (EBC-triple), described as imaginary part of a quaternion
with real parts set to 0, will be subject to alternate, incremental rotations around the axes E, B and C.
For each E, B and C the following variables will be defined:
 - de, db, dc: incremental step for rotation angle, 
- de_sum, db_sum, dc_sum: total rotation angle, 

42 Orthogonal spatial „Dreibein‟
43 This is a simplified picture neglecting the role of 4th and 5th dimension that might have an influence in attributing 
states of this model relative to states of the SM.
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- ex, ey, ez, bx, by, bz, cx, cy, cz: cartesian components of the respective vectors,
- eex, eey, eez, bbx, bby, bbz, ccx, ccy, ccz: cartesian components of the respective vectors to be buffered 
until rotation around the axes E, B and C is complete, 
- uu, sih, qw, qx, qy, qz: internal variables for quaternion-rotation calculation.

The following part of the algorithm gives the rotation of B around the E axis for an incremental step de:
de_sum = de_sum + de;     uu = Sqr(ex ^ 2 + ey ^ 2 + ez ^ 2);    sih = Sin(de / 2);    qw = Cos(de / 2);    qx =
(ex / uu) * sih    qy = (ey / uu) * sih;    qz = (ez / uu) * sih;   bx = bbx;    by = bby;    bz = bbz;    
bxx = bx * (qx * qx + qw * qw - qy * qy - qz * qz)  + by * (2 * qx * qy - 2 * qw * qz) + bz * (2 * qx * qz + 2
* qw * qy);    
byy = bx * (2 * qw * qz + 2 * qx * qy)   + by * (qw * qw - qx * qx + qy * qy - qz * qz) + bz * (-2 * qw * qx
+ 2 * qy * qz);
bzz = bx * (-2 * qw * qy + 2 * qx * qz)  + by * (2 * qw * qx + 2 * qy * qz) + bz * (qw * qw - qx * qx - qy *
qy + qz * qz);  
bx = bxx;  by = byy;  bz = bzz;

This has to be followed by rotation of C around the E axis; and equivalent routines for the rotation of E, B 
around the C axis and the rotation of E, C around the B axis. After each incremental step for de, db, dc the 
Cartesian components of the E, B, C vectors may be stored in a list, tab. 5 gives an example. A rotation is 
considered complete if all vectors regain there starting values.
The  vectors  are  thought  to  indicate  spatial  orientation  only,  polarity  orientation  of  E  and B  has  to  be
considered in the analysis of the results. Orientation of angular momentum remains a free parameter.
In the following only solutions where one of the incremental angles of rotation has half the value of the other
two will be considered. This may serve as a primitive model for spin J = 1/2.
There are 3 possible solutions for de, db and dv respectively, to be called U, D, S:

Tab. 4; UDS-States, including average of the x, y, z-components and total average of the E-and B- field for
complete rotation;

The average of the x, y, z-components of the field are multiples of 1/9th, the average total E- and B-field is
1/3rd or 2/3rd, respectively, the surface ratio of the enclosed spherical cap is 1- E-avg, 1-B-avg.

Fig. 3; Rotation geometry for e.g. E-field; E-avg = 1/3, 2/3, 2/3; Relative area of the enclosed spherical cap =
2/3, 1/3, 1/3; Schematic, not to scale;

It has to be noted that the U and D components are symmetric in their E and B-components, while in S E-
and B-components are symmetric to each other.
A typical table for results of a U-rotation with starting values E(1,0,0), B(0,1,0), C(0,0,1) will look like this:
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de = 0.5 db = 0.5 dc 0.5 de = db = 0.5 dc 0.5 de = 0.5 db = dc
E-comp E-avg B-comp B-avg E-comp E-avg B-comp B-avg E-comp E-avg B-comp B-avg

2/9, 2/9, 1/9 1/3 4/9, 4/9, 2/9 2/3 4/9, 4/9, 2/9 2/3 2/9, 2/9, 1/9 1/3 4/9, 4/9, 2/9 2/3 4/9, 4/9, 2/9 2/3
U D S



Table 5: U-rotation with starting values E(1,0,0), B(0,1,0), C(0,0,1) 

The diagram for the E,B, C-components as function of dc will look like this:

Fig. 4.: a) E-components for Cartesian starting values   b)  E-components after coordinate transformation 

From a coordinate transformation to a representation with one Cartesian coordinate as axis of rotation (in fig
4 rotation +26,6°,  z-axis, -41,8° x-axis, to give y-axis as axis of rotation) one can infer that the E-vector
circumvents a spherical cap of area 2πr 2/3r. Mirroring at the center of rotation gives a value of 2/3 of the
surface of a sphere,  which according to Gauss’ law represents 2/3 of a full  point  charge.  The analogue
procedure yields a value of 1/3 of a point charge for D and S-rotations.
U, D and S-components thus have the same spin and partial  charge as u, d and s-quarks, however, are
considered to identify parts of a coherent electromagnetic wave. This is on the one hand consistent with a
“point-like” structure function on the other hand implies a spatial distribution of energy density and angular
momentum / spin imparting a certain volume to the “particle”, a feature necessary to interpret scattering
experiments such as [21, 22], which the quark model realizes via the concept of sea quarks + gluons.
There  is  no  need  for  phenomenona  such  as  “confinement”,  “color  charge”  or  “gluons”.  However,  the
possibility to change orientation in the E, B, C-dreibein from left to right handed has to be considered, see II
5.3.

II 2 Magnetic moments of baryons from U, D, S-components
There is a crucial test for the applicability of such a quaternion-based model: magnetic moments of uds-
baryons.
To  calculate  these  three  components  of  U,  D,  S  will  be  combined  that  represent  orthonormal  starting
conditions for E, B, C. Spin / angular moment of the 3 components has to add up to J = 3/2 for the omega-
baryon, to J = 1/2 for all other baryons discussed below. Within this model this is not an assumption but may
be calculated in principle in detail. In the following it will be sufficient to have two components sharing the
same orientation of the axis of rotation, i.e. both can be transformed according to fig 4. with the same set of
rotation angels or -in a trivial case- include 2 identical components. Together with the freedom in choosing
direction of rotation, allowing for cancelling or adding up spin as needed, this will be sufficient to obtain  J =
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E B C
de_sum db_sum dc_sum x y z x y z x y z

0 0 0 1 0 0 0 1 0 0 0 1
0.5 1.0 1.0 1.000 0.018 -0.017 -0.017 1.000 0.009 0.018 -0.009 1.000
1.0 2.0 2.0 0.999 0.035 -0.035 -0.035 0.999 0.018 0.035 -0.017 0.999
1.5 3.0 3.0 0.997 0.053 -0.052 -0.052 0.998 0.028 0.053 -0.025 0.998
2.0 4.0 4.0 0.995 0.071 -0.068 -0.068 0.997 0.037 0.071 -0.032 0.997
,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,,
,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,,

117.5 235.0 235.0 0.992 -0.085 0.089 0.089 0.995 -0.040 -0.085 0.047 0.995
118.0 236.0 236.0 0.995 -0.068 0.071 0.071 0.997 -0.032 -0.068 0.037 0.997
118.5 237.0 237.0 0.997 -0.052 0.053 0.053 0.998 -0.025 -0.052 0.027 0.998
119.0 238.0 238.0 0.999 -0.035 0.035 0.035 0.999 -0.017 -0.035 0.018 0.999
119.5 239.0 239.0 1.000 -0.017 0.017 0.017 1.000 -0.009 -0.017 0.009 1.000
120.0 240.0 240.0 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000

Sum field component 0.111 0.222 0.222 0.222 0.444 0.444 0.444 0.444 0.444
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1/2,  J = 3/2 baryons. 
Table 6 gives an example for UUD and DDU. 

Tab. 6: Example for appropriate combinations of U- and D-components for proton and neutron

In D_inv and U_inv the sign of E- and B-components is  inverted.  The D and U for calculation of the
effective B-field include the appropriate sign from their charge while U_inv, D_inv components represent the
actual  geometric  orientation  of  the  E,  B-vector  only,  which  is  needed  for  calculation  of  the  angular
momentum J from the square of the electromagnetic fields. In table 6 ”Rot_X_axis” and ”Rot_Z_axis” give
the angle of rotation needed to transform to a representation with y-coordinate as axis of rotation for the B-
field. From this one can see that for the proton U_1 and D_inv as well as for the neutron D_2 and U_inv are
equivalent, i.e. they posses identical orientation of spin. Since orientation of rotation is a free parameter
opposite spin will cancel both contributions, leaving the 3 rd component’s spin of J = 1/2 as total spin of the
nucleon. 
The U and D components are complementary with respect to the sign and relative value of the components
of  the  E- and B- fields (given in  tab.  6  only for  the Bx,  By,  Bz-components  relevant  for  calculating a
geometry-based average value of B, B_Avg) attributable to proton and neutron. The starting values of E, B,
C are given for reference only.

The results for U and D are exceptional in regard to a large number of such solutions and the exchangeability
of  U and D  44.  In  rare  cases  where a  U solution does  not  match a  D-solution and vice  versa  a closer
examination of a control sample gives components where the condition J = 1/2 is not met. Exchangeability of
components for particle pairs is in general not found for particles including an S-component, maybe due to
its different internal symmetry compared to U and D. In the case of the solutions examined, compliance with
condition J = 1/2 for the lambda-particle (UDS) can be maintained by using a spin-cancelling UD-solution in
combination with an S-component, for UUS, DDS, USS-combinations trivial solutions with two identical U,
D, S-components exist, in the case of DSS, xi-, one can resort to the method used for the nucleons to find a J
= 1/2 solution. 
The results given are from a subgroup of results, a comprehensive study of all solutions is pending. Control

44 Each triple of UDS solutions yields roughly 50+ solutions for B-avg in a range ~ 0- 0.555, so on average any 
magnetic moment is expectable to be hit by chance with an accuracy of ~1%. The solutions for p and n are within 0.2% 
of the experimental value, which is hardly convincing. On the other hand, the probability that an exchange of the UDS-
parameters gives the corresponding partner is ~ 1/50+. Other solutions have to be checked for their resulting spin and 
some of the other solutions might actually be values attributable to other particles.
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UUD Proton DDU Neutron

U_1 D_1 D_1_inv
-Ez -Bx Cy -Ex -Bz Cy Ex Bz Cy

Bx, By, Bz -0.444444 0.444444 -0.222222 -0.222222 0.222222 -0.111111
E B E B E B

Rot_Z_axis -45 135 -45 135 45 45
Rot_X_axis 19.47 19.47 19.47 19.47 -19.47 109.5

U_2 D_2 D_2_inv
-Ex By -Cz Ey -Bx -Cz -Ey Bx -Cz

Bx, By, Bz -0.222222 0.444444 -0.444444 -0.111111 0.222222 -0.222222
E B E B E B

Rot_Z_axis -26.57 116.56 -26.57 116.56 26.57 26.57
Rot_X_axis 41.82 41.81 41.82 41.81 -41.8 131.8

E, B inverted D_inv U_inv U
-Ey -Bz Cx -Ez -By Cx Ez By Cx

E B E B E B
Rot_Z_axis -45 135 -26.57 116.56 45 45
Rot_X_axis 19.47 19.47 41.82 41.82 19.47 109.5

D U U
Ey Bz Cx Ez By Cx Ez By Cx

Bx, By, Bz 0.222222 0.222222 0.111111 0.444444 0.444444 0.222222 0.444444 0.444444 0.222222

-0.148148 0.37037 -0.185185 0.037037 0.296296 -0.037037
B_Avg 0.439790 0.300890

Start value

Start value

Start value

Start value

Bx, By, Bz  
Avg(UUD)



samples have been made to check that a) in rare cases where a U and D solutions do not match a UUD/DDU
pair the condition for S = 1/2 is not met; b) all U and D- components shown in the tables in combination with
an S are components appearing in  UUD/DDU-pairs as well.
Results for appropriate USD-combinations are shown in tab. 7. 

Table 7: Combinations of USD-components for calculating magnetic moments of baryons.

To calculate magnetic moments, above factors of B_avg, derived from the quaternion model, have to be
multiplied by a factor considering the absolute strength of fields. Using the simple model of a current loop,
M = I*A , gives for magnetic moments of baryons with S = 1/2 45:

Mn  ≈ e c0 λC/2  *  B_avg   (= 2πµBohr∗ B_avg)       (92)

Factor 2π of the Bohr magneton, applicable for the electron and muon, is considered to represent a degree of
rotational  freedom  of  simple  particles  that  more  complex  structures  composed  of  several  U,  D,  S-
components do not exhibit.

Tab.  8:  Magnetic  moments  for  UDS-Baryons;  col.3:  Compton wavelength;  col.4:  magnetic  moment  for
current loop; col.5: average B-component from quaternion calc.; col.6: values from experiment [9]; col.7:
ratio calculated / experiment value; col8: ratio (calculated constituent quark model) / experiment value [9] 

Minor systematic errors have to be expected in this model. The ratio of particle magnetic moments for pairs
of particles from the same family gives:

Table 9: Ratio of particle magnetic moments of baryon pairs compared for calculated (based on B_avg, col.5
in Tab. 3) and experimental values [9]; col. 3 after [9], (* p/n calc. via Clebsch-Gordan coefficients, Σ, Ξ via
fit based on p, n, Λ0); 

The role of S-components needs some more research. The deviation of the nucleons and sigmas is in the
order of QED corrections. This is not the case for the xis which are not part of one of the α-series for energy.
If one looks at interchangeability of B-components only, (4/9, 4/9, 2/9-solutions characterized as 4 in the
following, 2/9, 2/9, 1/9 as 2), it is possible to obtain symmetric solutions (i.e. exchange of the components)
between 4 and 2 for all particles.

45 No experimental data for Σ0. Using the value for Λ0 would give 2.8E-27[Am2]
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USD Lambda UUS Sigma + DDS Sigma - USS Xi 0 DSS Xi - SSS Omega -

U U D S S S
Bx,By,Bz -0.444 0.444 -0.222 -0.222 0.4444 -0.444 -0.111 -0.222 0.222 -0.222 -0.444 -0.444 0.444 -0.222 0.444 -0.222 0.444 0.444

S U D S S S
Bx,By,Bz 0.444 -0.444 0.222 -0.222 0.4444 -0.444 -0.111 -0.222 0.222 -0.222 -0.444 -0.444 -0.444 0.444 -0.222 -0.222 0.444 0.444

D S S U D S
Bx,By,Bz 0.222 0.222 0.111 0.4444 0.4444 0.222 0.444 0.444 0.222 0.444 0.444 0.222 0.222 -0.222 0.111 0.444 0.444 0.222

0.074 0.074 0.037 0.000 0.444 -0.222 0.074 0.000 0.222 0.000 -0.148 -0.222 0.074 0.000 0.111 0.000 0.444 0.370
B_Avg 0.111 0.497 0.234 0.267 0.134 0.579

Bx,By,Bz  
Avg(UUD)

B_Avg
UUD 1.32E-15 3.17E-26 0.440 1.39E-26 1.41E-26 0.988 -

n DDU 1,32E-15 3.17E-26 0.301 9.55E-27 9.66E-27 0.988 0.973*
UDS 1.10E-15 2.64E-26 0.111 2.94E-27 3.10E-27 0.949 -
UUS 1.04E-15 2.50E-26 0.497 1.24E-26 1.24E-26 1.002 1.090
DDS 1.04E-15 2.50E-26 0.234 5.83E-27 5.86E-27 0.994 0.897
USS 9.43E-16 2.26E-26 0.267 6.05E-27 6.31E-27 0.958 1.152
DSS 9.38E-16 2.25E-26 0.134 3.01E-27 3.06E-27 0.983 0.784
SSS 7.41E-16 1.78E-26 0.579 1.03E-26 1.02E-26 1.010 0.909

λC e c0 *λC /2
|M|Calc =  
ec0λC Bavg/2 |M|Exp[Am2]

|M|Calc/ |
M|Exp

|M|Calc/|M|Exp 
Const. quark

p+-

Λ0

Σ+

Σ-

Ξ0

Ξ-

Ω-

|M|Calc – Col.6 B_avg – Col.5 Const. Quarks
M(p/n)_Calc/M(p/n)_Exp 0.999809 1.001187 0.973*

1.007813 1.001111 1.115
0.974652 0.969601 1.470

M(Σ+/Σ-)_Calc/M(Σ+/Σ-)_Exp
M(Ξ0/Ξ-)_Calc/M(Ξ0/Ξ-)_Exp



Tab. 10: B-comp: short for 4/9, 4/9, 2/9 and 2/9, 2/9, 1/9 solutions, bold indicates U with charge 2/3, all other
charges 1/3; Calc/Lit indicates the ratio of magnetic moments of particle pairs compared for calculated and
literature values.           

However, this would involve DDD solutions for the negative baryons.

II 3 Nucleons – stability, bonding in nuclei,  scattering
Apart from the quantitative results for partial charges and magnetic moments some qualitative trends for
nucleon properties may be inferred from the quaternion-based model.
The spin-cancelling of a UD-unit involves components with opposite charges occupying the same spatial
area, which is energetically favorable. This suggests among other things:
1) Comparatively lower energy for particles with UD-component;
2) High stability / life time of the nucleons;
3) A possible contribution to bonding in nuclei via UD-U—D-UD, a direct U-D-bond even without meson
intermediate;
4) If such an inter-nucleon UD-bond plays a role in bonding in nuclei this would suggest a significant change
in UD-structure between isolated and bound nucleons, which might play a role in the “EMC-effect” [21];
5) In DIS-experiments the ratio of the structure functions of neutron and proton, F 2

n(x)/F2
p(x) approaches 1

for x -> 0 (x = Bjorken-scale) which would be in agreement with a supposed identical field distribution of E
and B-fields in the nucleons. For x -> 1 this model predicts the ratio F2

n(x)/F2
p(x) to approach

(z(UD)2 + Z(D)2)/(z(UD)2 + Z(U)2) = ((+1/3)² + (-1/3)²)/((+1/3)² + (+2/3)²) = 2/5 
which is in good agreement with high precision scattering experiments which yield values in the range 0.4 –
0.5 [22].

II 4 Six geometrical objects for leptons and hadrons  
Older versions of this work operated under the tacit understanding that equivalent to concepts of quantum
mechanics a rising “quantum number”, n, in equations such as (52) would concur with a rising number of
spatial “nodes” of the associated wave, finally reaching infinity in particles such as the delta or tau 46. While
such an assumption is supported somewhat particularly in the progression in the first couple of particles, i.e.
neutrinos, e and µ to mesons and to baryons as well as the increasing number of particles with high values of
spin, it does deviate considerably from the SM concepts in case of n => ∞. Experimental properties of the
delta particles may be explained sufficiently with uds-quarks and are in contradiction to the assumptions for
the tauon showing lepton properties given in the note below. As demonstrated in II 1, II 2 the UDS-scheme
works well for baryons, not requiring an increasing number of “nodes”. An approach such as used in I 3.8.2
for going from the pion to the kaons and finally an eta may be the way to match both approaches: a basic
half-integer  spin object  may be described with the “cone” geometry of II  1 which might  in general  be
mirrored at the origin, giving a p-orbital-like symmetry and occupying approximately 1/3 of the total sphere,

46 Suggesting the following explanation for the outstanding character of the τ: According to this model it is suggestive 
to interpret strong interaction as evidenced in scattering events to be in 1st approximation due to direct interaction of the 
respective electric and magnetic fields. Such an interaction should depend on: 1) comparable overall spatial extension 
and strength of the fields (i.e. essentially energy density ), 2) comparable spatial extension and field strength of volume 
elements attributable to partial charge. Condition 1) should prevent neutrinos or the electron to exhibit effective 
interaction with hadrons, condition 2) prevents interaction of the τ which is at the end of the partial product series for y1

0

and should exhibit a high, potentially infinite number of radial nodes, separating densely spaced volume elements of 
alternating charge. A special relationship of “leptons” to neutrinos might be due to their weak electromagnetic 
interaction compared to that of the hadrons. 
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B-comp B-Avg Charge Particle B-comp B-Avg Charge Particle Calc/Lit
UUD 0.440 +1 p DDU 0.301 0 n 1.000
UUS 0.474 +1 222 DDD 0.237 -1 0.943
USS 0.267 0 222 DDD 0.134 -1 0.975
USD 0.444 0

442 224
444 Σ+ Σ-

444 Ξ0 Ξ-

442 Λ0, Σ0



resulting in factor 31/3 of I 3.4. Only if such an object is able to occupy the total space of a sphere at least
approximately this may result in a fit of the spherical alpha series for energy. 
I.e. the approach of chpt. I, an approximation neglecting angular terms / magnetic vector potential / time as
variable, is too simplistic to be used to obtain more information about the internal structure of particles. 
It may be left undecided, if an equivalent of a ”linear combination” of UDS-components refers to an actual
“steady  state“  spatial  configuration  (favoured  for  hadrons)  or  a  temporal  average  of  an  object  with  a
consistent phase relation (sufficient for leptons).
This concept will be discussed in the following. The basic principles will be constructive interference and
matching chirality.

I 4.1 General classification system for particles
U, D, S-components for mesons and leptons
The reasoning given above with ortohogonal E,B,C-vectors rotating around a central point yields 3 solutions
that may be attributed to J = 1/2, each representing a rotation with half speed around one of the axes E, B, C. 
The trajectory is considered to be the envelope of a cone, composing 3 such cones with orthogonality of all
E, B-fields involved as boundary condition, yields the magnetic moments as demonstrated above.
Regarding only the trajectory, this model lacks “volume”, which one might get by assuming that the inner
part of the cone is filled with the respective fields as well, either by some allowed extension, fluctuation
range,  by  the  uncertainty  principle  or  whatever.  The  surface  of  a  cone  turns  into  a  spherical  cone  as
elementary geometric object as used above. Referring the 2/3, 1/3 charges to the full sphere would require a
double spherical cone. 

Fig. 5: Double cone (blue) and toroidal wedge (white) for each of the J = 1/2 trajectories of the E- or B-fields

Looking at this one can see that the surface of revolution as given by the trajectory of the E-vector defines
actually 2 different objects, the double spherical cone (blue) and the complement of the full ball (white), to
be called a toroidal wedge in the following. It would be arbitrary to assume that the inner part of the cone
may be “filled” with E-field, while the inner part of the toroidal wedge may be not. Thus the trajectories of
the E- (and of course the B-) field for spin 1/2 define in fact 6 different 3D-geometric objects:
3 x (double) spherical cone = U,D,S; charge 2/3, 1/3, 1/3
3 x toroidal wedge = U-Complement,  D-Complement,  S-Complement;  charge 1/3, 2/3, 2/3. 
This suggests to use the U, D, S-Complements as candidates for an equivalent of the c,b,t-quarks. 
There are two points that support such an interpretation:
1) Due to its extension/geometry the fields of different toroidal wedges should interact more than those of
spherical cones, a trend to higher energies should be expected, in particular for the Complement-S = T.
2) The simplest version for a particle of same phase, same angular momentum, same chirality would just be
given by a double spherical cone and its  complement,  which would be nothing else than a ball  -  in 1 st

approximation, there still would be a difference in symmetry due to locally different distribution of field
density.
The balls of 2) should be the objects of lowest energy, for any such an object with charge 1 there could exist
an uncharged one of the same symmetry. They might thus be identified with the leptons.
An electron might be considered e.g. as an D + D-Complement = anti-C particle, however, unlike a D-meson
with spin 1/2. While this is not possible with quarks, i.e. objects with particle character, it is possible with an
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electromagnetic wave 47. 
The non-spherical symmetry of the tauon might be considered due to a distortion associated with its S-
complement.
In such a picture the neutrinos might represent a state where the center of rotation is not at the “tip” of an E-
vector, but at its “center” resulting in neutral particles
Only if combinations of these elements with different spin, chirality are formed, and nodes aka field-free
areas separate them, a differentiation will be necessary, resulting in mesons and baryons.

Such a concept of 3 generations differs from that of the SM that groups related states differing in charge by 1
unit which is a necessity for a process involving a charged W-boson.

II 5 Relationship to electroweak phenomena 
The series expansion for energy according to (84) does not provide a term identifiable with electroweak
interaction. However, there are some indications that this model incorporates elements of electroweak and
Higgs mechanism, in particular if considering a 4th spatial dimension, i.e. a 5D space-time ansatz.
1.) This model originates from establishing a relation between two rotating objects  48, one attributable to
SO(2), U(1) symmetry - a photon 49 - and one attributed to SO(3), SU(2) symmetry - particles,  i.e. the model
is based on the symmetries of electroweak interaction.
2.) SU(2) symmetry is directly related to the property “mass”. 
3.) The values for the fine-structure and the weak coupling constant may be combined in a single expression
with dimension (4, 3) as parameter, see I 5 and II 5.1.
4.) An interpretation in different dimensions suggests to classify the objects of this model into groups that
may be identified with the particles of the Higgs mechanism, see II 5.2.

II 5.1 Coupling constants in N dimensions - geometry
The exact result of the integrals given in I 5 depends on the integration limit of the second integral.
The  integration  limits  for  calculating  angular  momentum  in  z-direction,  rn of Jz, (22)ff,  and
(Compton-)wavelength, λC,  supposed to represent the rotating E-vector and in turn total angular momentum
J should be related by the factor √3 of the ratio J/Jz:, see chpt. I 5.1.
3D case:
The 3D case of the coupling constant is easy to interpret, for the 4D-case some assumptions have to be made
concerning the integration limit. The following gives an alternative, more detailed interpretation than given
in I 5 (φN = exp(-(ρ/r)N)).
The exact value of the product of the integrals (67)f, depends on the integration limit relevant for the second
integral, i.e. the lower integration limit of the Euler integrals, which can be expressed as 3D volume with Γ-1/3

as radius (24):

ρn
3 / λC ,n

3  = 8 /(31.5σ 0)  = (30.5 4 π
3

 Γ- 1/3
3)

−3

    (93)

The additional factor 30.5 may be interpreted as the ratio between rn of equ. (22)ff and λC,n as required in the
expression for photon energy. This gives Γ(-1/3, 1/σ0) ≈ 36π2Γ-1/3 and 

2∫
0

r

φ3 r−2 d r∫
0

r

φ3 dr  ≈ 2[ Γ 1/3

3 ][2π 2π 9
Γ−1/3

3 ]  = 4 π Γ 1/3 Γ−1/3  2π  = 2 π  α−1  50 (94)

The result of (94) yields a dimensionless constant α' = h c0 4π ε/e2  and it is a matter of choice to include 2π in

47 In the simplest case it might be viewed only as a time average of its (hypothetical) constituents. 
48 If not indicated otherwise, rotation is relating to the E-field.
49 U(1) is the symmetry group for electromagnetism for general reasons. The isomorphic rotation group SO(2) does 
characterize a photon of spin 1 if one considers the projection of the rotation of E (and B) vector with respect to the axis
of propagation on the plane orthogonal to it.
50 Factor 2 from adding electric and magnetic contributions to energy;
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the dimensionless coupling constant. Factor 9 cancels the corresponding factors from the Euler integrals. The
remaining factor of 4π is needed to yield the correct value of α. A general N-dimensional version of ( 93) may
be given as:

8 /σ N  = (30.5δV N  (Γ (- 1/N ))N )−N /(N−2)
    (95)

VN is  the  coefficient  for  volume  in  N-D,  coefficient  30.5 will  be  omitted  in  4D where  coordinate  r  is
considered to be directly related to energy via rn ~ 1/Wn and rn might be directly identified with λC,n; subscript
in σN corresponds to dimension in the following.

4D case:
Using φ4 according to the definition (7)  and (95) for 4D

ρn
4 / rn

4  = 8 /σ4  = (π 2

2
 (Γ- 1/4 )

4)
−2

= 1.232E-7   (96)

as integration limit, with (18) the non-point-charge integral in 4D will be given by:

∫
0

r

φ4 r dr  ~ Γ (−1/2 ,8/σ 4)  = ∫
8/σ4

∞

t−1.5 e−t dt  = 5687  ≈ 16 π 4 Γ−1/2 (97)

The 4D equivalent of (94) will be:

2∫
0

r

φ4 r−3 dr∫
0

r

φ4 r dr  ≈ 2 [ Γ 1/2

4 ][16 π4 Γ−1 /2

4 ]  = π2

2
Γ 1/2 Γ−1/2  4 π2  = π3 4π2   = αweak

−1 4 π2 (98)

The interpretation is the same as in the 3D-case:
A 4π2 term originating from the second integral of equation (98) is required for turning h2 into ħ2 since the
integral refers to ρn

2 and thus to the square of energy and h, ħ. Factor 16 cancels the corresponding factors
from the Euler integrals. The remaining factor of π2/2 is needed to yield the correct value of αweak .

2D case: 
the 2D case is not as straightforward as the 4D case. The integral over the 1D point charge  

∫
0

r

φ2 r−1 dr  = Γ (0 , ρn
2/ r2

2)  /2        (99)

features Γ(0, x), with Γ(0, x) -> ∞  for x -> 0 and m = N-2 = 0 in the equations above. Setting nevertheless
m=1 in the 2D equivalent of the integration limit

ρn
2 / λC ,n

2  = 8 /(σ 2)  = ( 30.5 π  Γ−1/2
2)−2  ≈ 1 / 4676      (100)

and  calculating  Γ(0,  ρ2
2/r2

2)  numerically  gives  ∫φ2r-1 dr  ≈  Γ(0,  ρ2
2/r2

2)/2  =  7.872/2.  In  the  2D case  the
complementary integral would be identical to the point charge integral, giving 2(∫φ2r-1 dr)2 ≈ 4π3/4 = π3 , i.e.
the same value as 4D, maybe giving an alternate candidate for αweak .

II 5.2 Electroweak bosons / Interpretation in 4D space
The  mapping  of  the  electroweak  constants  to  3  and  4  dimensions  invites  speculation  if  electroweak
interaction and the Higgs mechanism may be interpreted in a 4D spatial scheme. Identifying the 4 th spatial
dimension with energy or equivalently curvature of space-time implies a relation of the Higgs field with x4. 
The Higgs mechanism is based on the symmetry breaking of the Higgs field. The most obvious symmetry
breaking associated with the creation of a “localized photon" in this model is the generation of +/- charge due
to the persistent orientation of the E-vector towards the origin, corresponding to SO(3) or related symmetry
and implying curvature of space and non-orthogonality to the x4 / energy coordinate. 
In general rest-mass is supposed to correspond to 51:

- curvature of 4D space time
- non-orthogonality to x4

- a coherent object with 3D spatial distribution of (field-) energy
- SO(N) symmetry

Above  considerations  suggest  to  classify  all  particles  in  such  an  EBC-quaternion  scheme.  The  basic

51 The first 3 points more or less paraphrase the same content.  

32  PP230820



requirements will be a slight variation of chapter X:
- E, B, C are orthogonal
- overlapping fields correspond to spatial variation of energy density / varying 5 th dimension contribution /
rest system / mass
- rotation with respect to a fixed point,
- coherence.
The  condition  “constant  orientation  of  the  E-vector  to  a  fixed  point”  will  be  dropped.  This  allows  an
analogue rotation where the center of rotation might be interpreted to mark the “center” of a E and B vector,
resulting in neutral particles.
A solution for J = 1 may be achieved either by an equal rotation of all 3 of the EBC-components (assumed to
correspond to  W-bosons),  or  by  an  equal  rotation  of  the  EB-components,  with  the  C-component  being
independent from the EB-rotation. An obvious solution for the latter is represented by E ~ B, C(x,y,z) =
constant (= straight, light ray), the photon. A second solution might be possible, where the rotation of the C
component is decoupled from that of E,B, i.e. EB rotate around the C-axis while the rotation direction of C is
constant, describing a plain circle locally orthogonal to the EB-plane. This might be a reason for the Z 0 to be
characterizable by the Γ-term (Γ-1/3/3)2.
The electroweak bosons show some numerical relationship with the dimensionless coefficients related to
geometry, the Γ-functions, see tab. 11, that might represent a minimum value of energy for the respective
symmetry with respect to the vacuum value (point).

Table 11: Comparison of point charge coupling constant values with electroweak energy scale
Relationships from EW-theory grey background (only approximate equivalent for VEV=2W/g); W/Z = e/g’;
√2 originating from relationship with GF

The terms indicated in bold are direct consequences of this model, italic indicates a conjecture fitting this
model. The energy values of the Higgs and Z0 bosons can be derived from the expectation value of the Higgs
field, VEV/√2 = 246GeV/√2, according to the 1 and 2D dimensionless coefficients for length (col. 7). A
corresponding factor  for  the  W-bosons is  not  obvious  52.  In  case  of  the  Higgs boson the corresponding
integral for N = 1 in (18) gives a length corresponding to 1D and no point charge.  
This suggests to interpret the Higgs-boson as a 1-dimensional object, related to the limiting case of rotating
states where the angular extension approaches zero. This might reduce such an object to a “pure” E-vector in
a rest system with no propagation and thus no B-field.
The Z0 would represent an object where the VEV is distributed over a plane area. 
The Higgs-boson is subject to the same 1D interpretation from the progression of the particle series:
The “rotating E-vector” of chpt. 3 may be interpreted to cover the whole angular range in the case of y 0

0

while a y1
0 object might be interpreted as forming a double cone. Increasing the number of angular nodes

would  close  the  angle  of  the  cone  leaving  in  the  limit  l  ->  ∞,  a  state  of  minimal  angular  extension
representing the original (E-)v ector, extending in both directions from the origin. Considering only „half“
such a state, extending in one direction only, would feature the energy of the Higgs boson, W  ≈ WHiggs.
“Minimal angular extension” might imply that the contribution of the magnetic field to total particle energy
according to (39) does vanish, giving an alternate interpretation for the factor of 2 appearing in connection
with extremal particle state such as in (78).
Zero charge and parity +1 might be explainable by radial nodal planes.

52 For W+/- 3/Γ1/3 is used as a first guess for the boson energy relation, since Γ1/3 is the characteristic coefficient for 
energy and W ~1/r holds. 
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Point charge Bosons

4D g 1 174.1 160.8 0.924 4
1D Higgs 125.4 128.6 1.026 0.720 1
2D g' 0.541 91.2 95.0 1.041 0.542 2
3D e 0.476 80.4 84.8 1.055 0.462 3

Dimens
ion - 
space

Value of 
charge ~ 
α1/2

Value 
relative 
to g

Electroweak 
bosons + 
VEV

W  
[GeV]

Γ-coefficient 
relative to 
VEV

VEV/√2 
divided by 
Γ-coeff.

W(calc)/
W(Lit)

W relative 
to VEV/√2

Kaluza 
coeff. N 
for Φ

π-3/2 VEV/√2 2W+/-/g
Γ_/3

π-4/2 Z0 (Γ_/3)2

(4πΓ+Γ-)-0.5 W+/- Γ_2    /(3Γ+)



Higgs and the other electroweak bosons do not represent extended quantum fields but the EM-fields with the
smallest possible extension. The vacuum expectation value might be considered to be something point-like, a
transition state for the E-vector to switch its orientation. Such a process might in itself be seen as some kind
of 5D-oscillation.

II 5.3 Aspects related to chirality
II 5.3.1 Left- and right handedness, Chirality
The orthogonal vectors of the  EBC-triple allow for two mirror symmetric versions, right-/left-handed, i.e.
"chiral" versions. To avoid confusion with the more specific definition of "chirality" in particle physics in the
following the term “handedness” will be used. The handedness is not a consequence of the cross product of
E X  B but defined by the 3rd component,  velocity  C or energy flux respectively, being an independent
physical parameter, i.e. S =  E X B will be replaced by S = ± E X B in a more general case.
In case of a circular polarized photon 4 different states are possible, left- and right handed, each with two
different circular polarisation states (= angular momentum states = spin states), and might be expressed as a
rank 4 vector equivalent to a spinor. Particles are modeled by rotation of the  EBC - tripel and posses the
same 4 possible states. 
Experimental evidence shows that only half of the above discussed, geometrically feasible states are realized.
In electrodynamics, which in all practical cases is based on the properties of electrons and protons, this is
associated with concepts such as the "Right-Hand-Rule" and the plus sign in S = + E X B, in particle physics
with the concept of "chirality" and chiral theories. Both phenomena would be based on the realization of
only one of two possible geometric solutions in nature. 
As  far  as  particles  are  concerned  one  of  the  2  possible  solutions,  “antimatter”,  seems  to  be  strongly
suppressed on the level of the universe.
This hints at the phenomena "Right-Hand-Rule" in EM, Chirality in particle physics and matter/antimatter
asymmetry in the universe being all based on the same asymmetry.
Identifying particles and antiparticles with handedness allows to define "chirality" independent of mass and
reference frame.
Handedness  and  polarisation  state  orientation  have  to  play  a  role  in  the  realisation  of  possible  decay
channels.

II 5.3.2 Relationship with Dirac-Spinor
A Spinor is characterized by requiring a rotation of 720° to go back to its original state. Neither reduction of
a particle to a point in space nor plane wave solutions are required for the Dirac equation or its solution, the
formalism may be referred to an actual 3D-rotation, cf. e.g. Ohanian [23], Battey-Pratt and Racey [24]. The
formalism above conforms to such approaches. The interpretation in form of 2 spin states is straightforward.
Concerning the additional 2 states in a Dirac-spinor, that conventionally are associated with antiparticles, this
may be covered by this model as well. Antiparticles are supposed to exhibit opposite charge and handedness
(„chirality“) compared to the corresponding particle. Applying the quaternion-based rotation model given
above, a change of handedness / chiral orientation may be achieved not by changing the rotation speed of one
pair of EB, etc. vectors with respect to the 3rd component, but changing the rotation speed of one  vector
only, e.g. E or B, etc. with respect to the 3rd component. This works i.a. with a reduction by 0.5 of rotation
speed, i.e. a rotation of 720° to go back to the original state of a spinor. 
I.e. all 4 components of a spinor may be associated with actual 720° rotations.

II 5.3.3 Color 
The two possible chiral configurations, right-handed “R” and left-handed “L” suggest to be a possible source
for a factor 3 frequently appearing in the quantitative interpretation of processes involving a quark-antiquark-
pair, such as in the decay, e.g. of the W- or Z-boson, or in the coefficient R of electron-positron-annihilation.
While this is attributed to the 3 “colors” of quarks in the SM, the same factor would result for any UDS-pair
having the possibility to exist in triplet-like states, “LL”, “RR” and 1/√2 (LR+RL) 53 (referring to an axial
vector representing the EBC-configuration). 

53 With a singlet state corresponding to destructive interference;
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II 6 Miscellaneous
II 6.1 Γ-functions
Γ-functions,  which are central  in the equations of this  model,  represent  a generalized factorial  function.
There are hints that relationships between Γ-functions with arguments 1/2, 1/3 and 1/4 exist that might be
useful in interpreting aspects of this model in 3- and 4-spatial dimensions. 
For e.g. Γ+1/3, Γ-1/3 and Γ-1/4 of the integral over φ4(r) dr 

 Γ-1/4 = 1.002 Γ+1/3 Γ-1/3
2 /9          (101)

holds, i.e. since the ρ terms cancel for spherical symmetric states, the integral ∫φ 4(r)dr yields essentially the
same value as the product of ∫φ3(r)dr (∫φ3(r)dr)2 which might represent 3D curvature of space (cf. W-boson in
tab. 11). For a static case one might interpret this as the product of 3D curvature of space multiplied by the
inverse of the integral over the 4th spatial coordinate, which itself might represent energy, to be a constant ≈1.

∫
0

r

φ3 r−2 dr (∫
0

r

φ3 r−2 dr )
2

(∫
0

r

φ4 dr )
−1

 = 4
27

Γ +1/3 Γ−1/3
2

Γ−1/ 4
 ≈ 4

3
(102)

(Pending appropriate integration limits)
Calculating R4 from the 4D-surface, 2π2 R4

3 = 1.5 α-2.5 gives a value of
R4 = 2 πΓ-1/3 (103)

the Higgs vacuum state might be interpreted as a corresponding pole of the hypersphere.

II 6.2 5D space-time
This is in part some extension of II 5.2 to get additional food for thought.
The line element in 5D will be ds2 = -c2dt2 + dx2 + dy2 + dz2 +/- dλ2. 
The 4D-photon may be characterized by symmetry U(1) representing a rotation of E and B fields in a xy-
plane around the axis of propagation (z), which is a straight line in 3D-space; E⊥B⊥C. The following refers
to an appropriate rotating coordinate system. The E- and B-fields do not overlap in 3D-space. They will have
some “natural” progression  54 along the path of their coordinate and may be considered to be a vector of
constant length for sake of simplicity as will the 5 th coordinate to be characterized by the wavelength, λ, of
the photon. The coordinates z and t are not constant but may be characterized equivalently via their relation
to λ. For certain symmetric cases, like the 4D-photon itself or spherical symmetric particles, one might think
of all ct, x, y, z, λ-vectors to have the same length. 
This  suggests  to  search  for  a  geometric  explanation of  the  relationship between particle  energies  using
Lorentz transformation.
One way to explain the concepts of this model is the “rotating E-vector”. According to the considerations
given above the state of maximum energy (particle rest frame) that coincides with that of the Higgs boson /
VEV, represents an extremal state for such a “rotating localized photon”. In the simple picture given above,
the “rotating E-vector” does not simply spread out the associated energy over a larger volume, there has to be
some more complex mechanism based on the modified field equations of GR. For example, the relationship
between the delta particle and the Higgs-boson, the endpoint of the spherical symmetric and purely linear
series, is given by a difference in wave length / energy equivalent to the symmetry factor 4πΓ-1/3

2 (except for
factor 2 considered for the moment to be due to missing B-field of the boson). I.e. the difference in energy is
proportional to volume while within the energy series and in the first different y l

m-states it is proportional to
V1/3.
One might either start out from the “maximum curvature of spacetime”of a Higgs-state, that may be spread
over a larger volume - as seen from flat space - resulting in particles of less average curvature and thus less
energy. In other words, if a vector of given energy-/density/curvature would rotate/spread over the complete
sphere, the lower energy density in turn would lead to a less curved space. In complete spherical symmetry
“curvature” is spread out most evenly corresponding to the lowest energy.  The coefficient Γ -1/3, attributed to
integrals over φ(r)dr to yield lengths should appear as term 4πΓ -1/3

3
 /3 in the expressions for a spherical

symmetric object. 

54 E.g. something of the kind given in III 3;
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Alternatively  one  may  start  from  assuming  ec to  be  a  distinguished  natural  unit  for  energy,  being  a
characteristic constant for “minimal curvature of spacetime” (involving “charge”). Angular momentum of
particles requires the relationship given in chpt.  I  2.5, considering the volume 4πΓ -1/3

3
 /3 would give the

energy of the electron. WHiggs would represent the corresponding maximum of energy / curvature. An “α-free”
solution  for  particles  with  no  charge,  ec /(4πΓ-1/3

3/3)  might  tentatively  be  considered  as  lower  limit
representing a particle with no (partial) charge, maybe a neutrino.
Considering the electron to be equivalent to a spherical symmetric object “containing” one Higgs boson (or
one “unit” of VEV) spreading out, one might ponder what the energy of a spherical object of “maximum
curvature of spacetime” is, i.e. a spherical symmetric electron-type object containing not one Higgs boson
but being filled up with Higgs boson-like curvature. Such a hypothetical object might be constructed by
raising the energy ratio Higgs / electron to a power of 3, i.e. filling the whole 3D volume with Higgs particles
55.  The resulting energy would be close to the Planck energy (≈ 1.8 WPl; Table 2 gives a corresponding
estimate in terms of powers of α), implying both a Planck particle and a Higgs boson to represent some kind
of “maximum curvature of spacetime” though in different symmetry. 

What is the conserved quantity in all processes?

III Miscellaneous
III 1 Particle decay / mean lifetime
To check if the model yields any information about mean lifetimes (MLT) the particles attributed to y 0

0 and
y1

0 are arranged according to their α-exponent index n and indicated for different types of particle families in
fig. 6. There seems to be a tendency for charged particles to be significantly more stable than neutral ones
and for y1

0- lifetimes to be lower than y0
0- lifetimes.  56

Figure 6:  Mean lifetime for y0
0 (blue) and y1

0 (red) particles;  Box: charged only (+,-),  neutral  only (0),
charged and neutral particle families with near identical MLT (+,-,0).

 Table 12: Values for mean lifetime [9] used in fig. 6

55 Implying a 4th power relationship between WPl and We ; The interpretation of a Planck particle as 3D object is 
supported by the possible description of such a state as a black hole.
56 In [7] a dependence of MLT on α is given, however, there seems not to be a direct relation to the α-coefficients of 
this work.
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MLT [s] log(MLT) n(alpha)
∞ 0

2.20E-06 -5,7 1
5.00E-19 -18,3 2

p ∞ 3
n 8.80E+02 2,9 3

2.60E-10 -9,6 4
7.40E-20 -19,1 5
8.00E-11 -10,1 5

Δ 5.60E-24 -23,3 ∞
2.60E-08 -7,6 1
8.50E-17 -16,1 1
4.50E-24 -23,3 2
7.80E-23 -22,1 2
1.80E-23 -22,7 3
8.20E-11 -10,1 4
1.70E-23 -22,8 5
2.90E-13 -12,5 ∞

e+-

µ+-

η 

Λ0

Σ0

Σ+-

π+-

π0

ρ0+-

ω0

Σ*0+-

Ω-

N(1720)
tau+-



In this model a stable particle above the ground state requires a symmetry-forbidden transition to prevent it
to decay to a lower state of energy. A decay of the electron would obviously violate charge conservation. A
decay of the proton might be strongly inhibited, if conservation laws for its partial components have to be
observed. 
Electronic transition times in atoms and molecules may differ by up to 17 orders of magnitude depending on
selection rules and might be exceeded significantly in the case of particles. Thus 17 orders of magnitude
relative to the free neutron, i.e. ≈1E+20 [s] would not be a particular unreasonable estimation and place the
MLT of  a  free  proton  already  well  above  the  currently  estimated  age  of  the  universe  of  ≈1E+17  [s].
Experiments measuring the lifetime of a proton in an H-atom of water (e.g. Super-Kamiokande [25]) give
results of ≈ 1E+41 [s] 57. 
The stability of the nucleons (and Λ0) may be attributable to the UD-combination discussed in II 3.
With  regard  to  parity  violation  in  electroweak  decays,  due  to  the  character  of  particles  as  extended
electromagnetic objects, asymmetry in decays involving inhomogeneous EM-field settings, e.g. polarized
nuclei, would have to be expected.

III 2 Scattering
U, D and S-components have the same spin and partial charge as u, d and s-quarks, however, are considered
to identify parts of a coherent electromagnetic wave. This is on the one hand consistent with a “point-like”
structure function and the original SLAC experiments [27] on the other hand implies a spatial distribution of
energy  density  and  angular  momentum  /  spin  imparting  a  certain  volume  to  the  “particle”,  a  feature
necessary to interpret  scattering experiments such as  EMC [28] or MARATHON [22], which the quark
model realizes via the concept of sea quarks + gluons.
In DIS-experiments the ratio of the structure functions of neutron and proton, F 2

n(x)/F2
p(x) approaches 1 for x

-> 0 (x = Bjorken-scale) which would be in agreement with a supposed identical field distribution of E and
B-fields in the nucleons, while for x -> 1 F2

n(x)/F2
p(x) is expected to approach (z(UD)2 + Z(D)2)/(z(UD)2 +

Z(U)2)  =  ((+1/3)²  +  (-1/3)2)/((+1/3)²  +  (+2/3)2)  =  2/5  which  is  in  good agreement  with  high  precision
scattering experiments which yield values in the range 0.4 – 0.5 (EMC [28], MARATHON [22]).
A possible  contribution  to  bonding  in  nuclei  via  a  UD-U—D-UD inter-nucleon  bond  might  suggest  a
significant change in UD-structure between isolated and bound nucleons, which might play a role in the
“EMC-effect” [21].

III 3 Free particle
Omitting the 0th order term in the differential equations might produce the equation of a free particle. Using
the following version of equ. (72) for the electron gives: 

 r
6

d2 φ(r)
dr2  - ρ3

2r 3
dφ(r)

dr
= 0 (104)

d2 φ(r)
dr2 ≈ 3 ρ3

r 4
dφ(r)

dr
+.…   ?? (105)

indicating there could exist  a function in the general  form of  (106) for a photon,  maybe describing the
decrease of the electromagnetic fields perpendicular to wave propagation.

 φ(r) ≈ exp(−ρ3

r3 ) + .... (106)

III 4 Elementary charge
III 4.1 Electrical charge
As φ(r) approaches 1 for  r  ̶ > rn  the Gauss integral ε0  ∫E(r)φ(r) dA approaches the limit of the elementary
charge e. Since for r  ̶ > 0 the term E(r)φ(r) goes to zero, there is no 'point charge' at the origin.

57 The electron in the H-atom of water has a nonzero probability at the proton position. It is well known that the 
environment influences decay (neutron), electromagnetic forces influence decay (neutral pion) and last not least the 
proton can react directly with an electron as evidenced by electron capture. All these effects alter the lifetime of 
particles and should alter MLT relative to a free proton to some extent.
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At a distance of rm  marking the approximate maximum of W(r),  φ(r) attains a value of 0.667 yielding a
calculated charge of 2/3 e and a value of Wn of Wn = Wn/4 58.
The parameters of the electron in this model approximately fit the Schwinger limit m e

2co
3/(e  ħ) =1.3E+18

[V/m] in form of We/(ere) ≈ 3.6E+17 [V/m] [29].

III 4.2 Magnetic charge
It might be an artefact of an overly simplified model, but actually the quarternion-ansatz of chpt. II does not
distinguish  electric  and  magnetic  fields,  both  field  vectors  have  the  same  center  of  rotation,  outward
orientation and same phase. 

III 5 Pauli exclusion principle, Spin–statistics theorem

IV Discussion
IV 1 General relationship with QM
Quantum mechanical theories seem to be effective theories that may start on scales of approximately the
particle. The wave function will have to be related to the wave properties of electromagnetic fields, its square
giving a probability density that will be equivalent to the square of E, B, i.e. energy density.  The parameter
mass will  give a sufficient average for the integral over electromagnetic energy density.
General features of quantum mechanics that emerge from this Kaluza ansatz include quantization of energy
or  the  pivotal  constant  of  quantum  mechanics,  Planck’s  constant,  h,  that  may  be  derived  from  the
electromagnetic constants and geometry as expressed in the derivation of α. 
Some  applications  of  QM  such  as  QED  59 or  the  Schrödinger  equation,  the  foundation  of  theoretical
chemistry, are extremely efficient and it seems unlikely they could be replaced by anything better. However,
QCD seems to lack this kind of performance. 
It might be no surprise that a theory which can not give any fundamental quantitative information about
elementary mass struggles to give a model for mass-mass interaction.

IV 2 Relationship with the standard model of particle physics
The standard model of particle physics (SM) originated from the observation that the symmetries of certain
particles, the hadrons, can be ascribed to the composition from 6 distinct objects possessing appropriate
properties  such  as  partial  charge  and  spin  1/2  After  some  hesitation  these  objects  were  accepted  as
elementary particles. The combination of 2 gives mesons, 3 give baryons. Particles that do not fit into the
scheme are considered separate entities, leptons, elementary as well though with quite different properties
than quarks. Both leptons and quarks are featured in two distinct theories, electroweak theory (EW) and
quantum chromodynamics (QCD).
It requires extraordinary evidence to justify a distinction of particles such as electron and proton that for the
most part are characterized by a similar set of properties. Such extraordinary evidence is considered to be
given by the possibility to explain a wide range of particle phenomena based on the properties of these
objects.
Quantitative calculations in EW and QCD may be quite precise,  however,  apart  from a rather  complex
formalism,  require  the  input  of  appropriate  free  parameters,  such  as  the  Weinberg  angle,  Higgs  VEV,
electroweak coupling constants, mass of elementary particles, etc.
This  article  is  divided  into  2  parts.  The  second part,  Euclidean  Geometry,  reproduces  the  lepton/quark
scheme of the SM with the corresponding set of properties, thereby allowing to hijack associated concepts,
e.g.  for  modeling  scattering  or  particle  decay  if  necessary.  However,  there  exist  some  fundamental
differences compared to the SM concept.
1) The basic entities of the model are electromagnetic waves not particles, eliminating the need for features

58 For the pair e, µ the value of rm  is also distinguished by the relation rµ = rm,e , see I 2.6.
59 Considerations such as given in I 7.1.4 for virtual particles and the high precision of QED results for effects 
involving point charges could be an indication that effects of virtual states might involve the presence of point charges.
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such as confinement, color charges 60, etc.
2) The basic ordering scheme is much simpler. It relies on the 3 possibilities for a EBC-triple to yield a spin
1/2 object, in turn leading to 6 geometric objects that can be used to define leptons, mesons and hadrons. I.e.
the leptons are not leftovers but an integral part of the classification scheme.
3) The most basic properties such as the existence of 3 neutrinos, 3 charged leptons and 6 quark-like objects,
as  well  as the  charges 2/3 and 1/3 of quark-like  objects  are  not  a postulate  inferred from experimental
particle properties but are inherent in the model itself.
4) Even on its simplest level the model can be used to precisely calculate complex properties such as the
relative values of magnetic moments of baryons ab initio.
Still such a quaternion-based model might have the smell of a toy model if not the Kaluza ansatz of part I
would  provide  the  most  important  ingredient  for  such  objects  to  exist:  the  appropriate  Non-Euclidean
geometry. The model can be based on the solid foundation of the formalism of GR and it is possible to
calculate the values for the free parameters needed in the SM.
The major deviation from conventional GR is dropping the constant of gravitation in the field equations, a
minor  thing  from a  mathematical  point  of  view.  Kaluza’s  original  ansatz  was  able  to  produce  correct
expressions for both GR and EM but failed to reconcile the huge difference in order of magnitude of both
effects.  The  remedy  proposed  here  to  reunite  both  is  an  almost  trivial  one,  series  expansion.  That  the
coefficients used in this approach have some significance is attested by both the results for particles as well
as the possibility to produce a reasonable term for the cosmological constant. 
Thus this ansatz seems to be an opportunity to gain a new perspective to address problems at the scale of
cosmology as well. Another example is the reduction in the set of values of natural constants:
e, c0, ε, µ, h, G, α, αweak, energies of elementary particles  =>  e and c0 
which downsizes the space for speculations about  concepts such as the anthropic principle or fine-tuned
physical constants significantly.

Formally not only GR and EM are based on differential equations of at most 2nd order but QM-terms are as
well and the formalism of non-Euclidean geometry of GR might be the most flexible one, able to incorporate
the other two. The ability of a Kaluza model to yield a  simple, coherent,  comprehensive and first  of all
quantitative description of phenomena related to particles, absorbing phenomena attributed to “strong” and
“weak” forces underscores its claim to be a step towards a TOE.
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