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Abstract—Deep neural networks have become a cornerstone
in various recognition and classification tasks due to their ability
to learn complex patterns from raw data. This paper explores
the potential application of neural networks in the domain of
vocal extraction. We investigate the utilization of neural network
architectures, specifically the deep clustering model based on
recurrent neural networks (RNNs) and the U-net model based on
convolutional neural networks (CNNs), for the task of vocal track
extraction. Additionally, we propose a novel hybrid approach
that incorporates a pretrained RNN model to enhance the
performance of the U-net model in vocal track extraction..

Index Terms—Deep neural networks, vocal extraction, recog-
nition, classification, complex patterns, raw data, deep clustering
model, recurrent neural networks (RNNs), U-net model, convo-
lutional neural networks (CNNs), hybrid approach, pretrained
RNN model, separation accuracy, spectral features, temporal
context, audio source separation, separation quality, perceptual
accuracy.

I. INTRODUCTION

Vocal track extraction, a crucial component of Music Infor-
mation Retrieval (MIR), involves the isolation of vocal tracks
from audio files. This task finds application in diverse fields,
including singer identification and lyrics transcription. Exten-
sive efforts have been devoted to addressing this challenge,
yielding numerous impactful solutions.

A prevalent strategy for vocal track extraction involves
adapting techniques employed in semantic segmentation, a
task that assigns class labels to individual pixels in images.
This approach draws on established models for semantic
segmentation, such as the widely recognized U-net model.
By employing this method, vocal track masks are directly
generated from audio feature maps.

Alternatively, the application of deep clustering models has
gained traction. In contrast to generating vocal track masks,
deep clustering models yield embedding vectors for time-
frequency (T-F) bins in mel-spectrograms. In the subsequent
phase, unsupervised techniques like k-means are employed to
distinguish vocal T-F bins from background T-F bins.

In this project, our initial focus centers on the implementa-
tion of the models outlined in [1] and [2]. Subsequently, we
endeavor to devise a novel hybrid model that amalgamates
elements from both methods. A key objective is to assess
the performance of the proposed hybrid model against the
backdrop of traditional models. Through these endeavors, we
aim to contribute to the advancement of vocal track extraction
techniques in the realm of audio signal processing.

II. RELATED WORK

A. Convolutional Neural Network and Semantic Segmenta-
tions

The inception of Convolutional Neural Networks (CNNs)
stemmed from their initial role as feature extractors in image
processing tasks. Over time, their utility has extended to
encompass various feature recognition endeavors, including
semantic parsing and audio feature extraction. CNNs have the
capacity to extract hierarchical features from input signals by
employing convolutional kernels.

An early breakthrough in deploying Deep Neural Networks
(DNNs) for semantic segmentation tasks was marked by the
advent of Fully Convolutional Networks (FCNs). The FCN
architecture engages in the extraction of intricate features
from input images utilizing conventional CNN structures, such
as the widely employed VGG16 network. To translate the
compact feature maps back into segmentation outcomes, FCN
integrates an upsampling mechanism. This process facilitates
the restoration of higher-resolution segmentation results from
the downscaled feature maps.

In this evolutionary trajectory, CNNs have evolved from
their origins in image analysis to serve as powerful tools
for a broader array of feature recognition tasks. FCNs, as
a prominent example, underscore the adaptability of CNN
architectures in addressing complex challenges like semantic
segmentation through the adept integration of upsampling
strategies.

The innovative approach pioneered by Fully Convolutional
Networks (FCNs) involves crafting segmentation masks that
mirror the dimensions of the input, transforming the intricate
task of segmentation into a more manageable pixel-level
classification problem. By aligning the segmentation output
with the original input’s layout, FCNs redefine the challenge
in terms of assigning class labels to individual pixels, allowing
for a more granular analysis.

To bolster the fidelity of information during the crucial
upsampling phase, FCNs introduce a strategic fusion of the
feature map with outputs from intermediate layers, such as
pool4 or pool3 [3]. This amalgamation ensures that high-level
contextual information is retained during the transition from
the downscaled feature maps to the final segmentation mask.
This context-aware strategy plays a vital role in maintaining
the integrity of the original data during the upsampling pro-
cess.
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However, despite its innovative approach, the FCN model
exhibits limitations when applied to certain scenarios, such
as music source separation. One significant drawback lies
in its struggle to preserve intricate details in proximity to
separation boundaries. This shortcoming impedes its suitability
for tasks that demand a high degree of precision around such
boundaries, as often encountered in audio source separation.

Enter the U-net architecture, an influential advancement
built upon the foundation of FCN models. U-net, initially
renowned for its prowess in biomedical image segmentation,
offers refinements that bolster its performance in challenging
scenarios. A key distinction is the augmentation of the channel
count within the upsampling convolutional layers. This strate-
gic enhancement enables the propagation of richer contextual
information to the higher-resolution layers, facilitating a more
comprehensive understanding of the input.

Another noteworthy innovation in the U-net model is the
assignment of increased loss weights to boundary pixels.
This strategic adjustment effectively emphasizes the accurate
depiction of boundary regions, leading to the generation of
more precise and well-defined masks. This tactic is particularly
beneficial when handling intricate boundaries, such as those
prevalent in medical imaging.

The U-net model’s adaptability and robustness have ex-
tended beyond its original application domain. Its ability to
perform well with limited datasets underscores its potential
for various scenarios, including music source separation tasks.
By capitalizing on its enhanced contextual understanding and
improved boundary preservation, the U-net model opens new
avenues for addressing challenges in audio signal processing,
demonstrating its potential as a versatile tool in diverse fields.

B. Recurrent Neural Network

The Recurrent Neural Network (RNN) architecture has been
meticulously crafted to tackle the intricate challenges posed
by sequential input data. RNN models have found widespread
utility across diverse domains, prominently including natural
language processing and the intricate landscape of audio signal
modeling. It is noteworthy that the Gated Recurrent Unit
(GRU), a remarkable innovation within the RNN framework,
has garnered considerable attention for its prowess. Sharing
commonalities with the Long Short-Term Memory (LSTM)
architecture, GRUs exhibit a distinctive gating mechanism.
However, their distinctive strength lies in their parsimonious
parameterization, achieved by obviating the need for an output
gate component.

Venturing into the realm of deep clustering models, the
bedrock of the feature extraction process consists of a four-
layer Bidirectional Long Short-Term Memory (Bi-LSTM)
network. This intricate network structure serves as a po-
tent catalyst, orchestrating the metamorphosis of input mel-
spectrograms into high-dimensional embedding vectors. A
seminal work highlighted in reference [2] embarks on a
groundbreaking journey by synergistically amalgamating con-
ventional neural networks with the deep clustering paradigm.
The overarching objective is to elicit enhancements in the
overall model performance and efficacy.

In this endeavor, our pursuit is to meticulously replicate
the architectural blueprint outlined in the aforementioned
study. However, what sets our contribution apart is the cal-
culated substitution of the traditionally employed Bi-LSTM
layers with their Bidirectional Gated Recurrent Unit (Bi-
GRU) counterparts. This strategic substitution is not only
tactful in simplifying the training process but also harbors
the latent potential to unlock heightened model efficiency and
refined performance benchmarks. The incorporation of Bi-
GRUs infuses a new dimension into the design space, offering
tantalizing prospects for augmenting model efficiency, while
ensuring that the integrity of the model’s predictive prowess
remains undeterred.

III. DATA PREPOSSESSING

A. DSD100 Dataset

Renowned within the realm of Music Information Retrieval
(MIR) tasks, the DSD100 dataset stands as a prominent bench-
mark. Comprising a curated collection of 100 complete music
tracks, this dataset is accompanied by their individual isolated
tracks. To enhance the diversity and comprehensiveness of our
training data, a nuanced approach is undertaken. While the
original music tracks are meticulously preserved, a strategy
of deliberate amalgamation is employed. This involves the
randomized fusion of vocal tracks sourced from the DSD100
dataset with assorted instrumental tracks. The outcome of this
endeavor is the generation of an expanded corpus of audio
files that exhibit a rich interplay of vocal and instrumental
elements, elevating the quality and diversity of the training
data pool.

B. Multiframe

Employing a sophisticated approach detailed in reference
[4], the multiframe strategy serves as a catalyst in both
augmenting training data and streamlining the training process.
At the outset, a meticulous process ensues, involving the
excision of silence segments from both vocal tracks and their
corresponding segments in mixed music tracks. Subsequently,
a transformation transpires, converting the amalgamated mixed
music tracks and veritable ground truth voice tracks into
the realm of log-scaled mel-spectrograms. These transforma-
tions, calibrated with 128 mel bands and 16000 sample rate,
yield compact mel-spectrogram chunks, each encapsulating
128x128 feature maps. These chunks, averaging approximately
one-second audio sequences, unravel the temporal and spectral
intricacies.

It’s imperative to observe the spatial reorientation within
the mask’s representation. In this schema, the x-axis within
the mask pertains to features, while the y-axis corresponds
to time. This alignment is paramount, particularly as all
spectrograms undergo a transposition process to match this
conceptual framework.

In the pursuit of vocal track extraction from music com-
positions, a dual-phase strategy unfurls. Beginning with the
conversion of log-scaled mel-spectrograms into power-scaled
equivalents, a pivotal step unfolds. This involves the multipli-
cation of the spectrogram by a meticulously generated filter
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Fig. 1. Mask for vocal track : Binary Mask

Fig. 2. Mask for vocal track : Proportion Mask

mask, forged by the underpinning models. The ensuing stage
navigates the reversion of the vocal track spectrogram into its
auditory counterpart.

In the context of each music-vocal chunk pair, the strate-
gic design entails the construction of dual training target
masks. The first, a binary vocal mask, materializes through
a juxtaposition of the power between vocal and background
spectrograms. This discerning juxtaposition demarcates the
temporal-frequency bins, demarcating their allegiance to either
vocal or background sources. This binary mask, carefully
calibrated, serves as a foundational component for training
clustering models.

Concurrently, a secondary target mask emerges—the pro-
portion mask—relinquishing a distinct perspective. This mask
encapsulates the dominance exerted by the vocal source across
the mel-spectrogram’s time-frequency bins. This nuanced rep-
resentation takes center stage during the training of the U-net
model, orchestrating its learning dynamics with precision. The
distinct roles and implications of these dual masks embody the
multifaceted nature of the training process, encapsulating the
intricate interplay between clustering models and the U-net
architecture.

C. Vocal Track Recovering

In the absence of preserved phase information during audio
data processing, the restoration of the vocal track from mel-
spectrograms necessitates the integration of the Griffin Lim al-
gorithm [5]. This algorithm, operating through iterative cycles,
orchestrates the simulation of phase information to facilitate
the meticulous reconstruction of audio signals.

IV. MODEL DESCRIPTION

A. Deep Clustering Model

The structural blueprint of the deep clustering model mirrors
the framework established in prior literature [2]. To tailor
the model to our context, we undergo strategic modifications,
notably by downsizing the input mel-spectrogram dimensions
from 150x150 to 128x128. Additionally, a pivotal adaptation
entails the substitution of the LSTM layer with a GRU
layer. Within this revamped configuration, a four-layer Bi-
GRU network orchestrates the assignment of D-dimensional
feature vectors to each time-frequency (T-F) bin. Notably,
the dimensionality D is conservatively set to 20, a value in
consonance with recommendations outlined in [2].

Fig. 3. The hybrid clustering model

Venturing further, we delve into the intricate terrain of
the hybrid network, detailed in [2]. This novel structure is
anchored in the core architecture of the deep clustering model
while introducing a novel facet—a supplementary head that
generates a mask exhibiting softmax activation. In the intricate
dance of model computation, this supplementary mask embod-
ies a two-dimensional vector assigned to each T-F bin. This
vector encapsulates the dynamic interplay between vocal and
background sources, effectively quantifying their respective
contributions to the aggregate power composition.

B. U-net based model

In the initial phase of our study, we undertake the replication
of the classical U-net architecture elucidated in reference
[3]. The U-net model, a cornerstone of our exploration, is
characterized by the amalgamation of four downsampling
layers and an equivalent number of upsampling layers. While
originally conceived as a semantic segmentation model within
the domain of image processing, our observations unveil an
intriguing revelation. Namely, the U-net model seamlessly
transitions to the arena of vocal extraction, where its intrinsic
capabilities aptly apply. This seamless translation of utility
from image semantics to the intricacies of vocal extraction
underscores the model’s versatility and adaptability across
disparate domains.

In contrast to the swift convergence and favorable gener-
alization exhibited by the deep clustering model, a notable
characteristic of the U-net model emerges—prolonged training
times coupled with a propensity to succumb to overfitting
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Fig. 4. U-net model[3]

when presented with the current training dataset. Responding
to this multifaceted challenge, we embark on an innovative
exploration—a symbiotic fusion that intertwines the strengths
of the deep clustering model and the U-net architecture. Our
motivation lies in investigating whether this confluence can
catalyze transformative improvements.

As we delve into the architectural subtleties, the original
U-net model, originally harnessed as a semantic segmentation
powerhouse for image analysis, merits our attention. In its
native configuration, the U-net model operates within the con-
tours of a single input channel, dedicated to the representation
of log mel-spectrograms. However, our journey into innovation
compels us to chart an unconventional course. The evolved U-
net variant embraces a novel dimension, as it undertakes a har-
monious dual training regimen alongside the deep clustering
model. This harmonization transpires through the integration
of the unadulterated spectrogram with the outcome of the
deep clustering model—manifested as a softmax mask. This
judicious melding fabricates a dynamic trichromatic feature
map, meticulously curated to serve as the input palette for the
U-net’s computational domain.

This revolutionary amalgamation, which begets the hy-
brid U-net model, ushers in a promising era of exploration.
Empirical validation, a harbinger of transformative insights,
attests to the model’s performance supremacy vis-à-vis its
conventional predecessor. This testament to the hybrid model’s
ascendancy underscores its potential to overcome the chal-
lenges that challenge the standard U-net’s efficacy. It is
imperative to underscore that both incarnations of the U-
net paradigm—the conventional and the hybrid—intake mel-
spectrograms of dimensions 128x128 as input. Their shared
output—proportion masks—paints a vivid picture, embodying
the degree to which the vocal source wields its influence over
the time-frequency bins encased within the intricate feature
map. This dual journey of architectural innovation and nuanced
output encapsulates our comprehensive quest to elevate vocal
track extraction through the lens of neural networks.

Fig. 5. he hybrid U-net model

V. EXPERIMENT

A. Training

1) Deep Clustering Models: The operational framework of
deep clustering models entails a rigorous training regimen.
Employing a batch size of 32, the rmsprop algorithm stands
as the optimizer of choice, steering the model towards con-
vergence. Our training initiation focuses exclusively on the
embedding component of the model. Central to our training
objective is the pursuit of convergence between the affinity
matrix derived from the model’s generated embedding output
and the corresponding binary mask.

The binary mask, denoted as Y, is reshaped into a matrix
Y ∈ RTF×1, where T signifies the number of frames and
F signifies the feature dimensions within the feature map.
The output of the clustering model, embodied in a matrix
V ∈ RTF×D, takes its place as a fundamental participant.
Here, D materializes as the dimensional expanse of the em-
bedding dimension. Anchored in this context, the loss function
materializes, encapsulated by the expression

L = ∥V V T − Y Y T ∥2F (1)

However, a noteworthy consideration underscores this pro-
cess—precise execution entails resource-intensive matrix mul-
tiplications that demand substantial GPU memory. To circum-
vent these challenges and streamline computation, we pivot
towards a simplified loss function representation:

L = ||V TV ||2F + ||Y TY ||2F − 2||V TY ||2[6] (2)

.
This transformation optimizes the calculation process while

upholding fidelity to our objective. At its core, the deep
clustering model crystallizes through a learning process that
approximates the affinity matrix—an approximation derived
from the deep clustering model—by minimizing the objective
function.

Transitioning to the hybrid variant, the focal point shifts to
the proportion-mask head. Within this architectural domain,
the training mandate is distinctly delineated: facilitate the
generation of a vocal source proportion mask mirroring the
size of the input. The binary cross-entropy (BCE) loss emerges
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as the cornerstone of our objective function, serving as a
potent tool to gauge and optimize performance. This intricate
interplay of loss functions and model optimization manifests
the intricate choreography that propels the deep clustering
and hybrid deep clustering models towards their respective
performance zeniths.

Fig. 6. Loss vs Epoch for clustering models

As shown in the Fig 5, the hybrid clustering model with an
extra head has better performance. The addition of proportion-
mask head speeds up the training process and also decreases
the model’s overfitting.

2) U-net Based Models:

Fig. 7. Loss vs Epoch for U-net/Clustering models

The realm of U-net models unfolds with the rmsprop
algorithm steering the optimization trajectory. The batch size,
an intrinsic parameter of the model’s optimization, is metic-
ulously tuned to 32—a pivotal choice that orchestrates con-
vergence dynamics. Rooted in the essence of vocal track
extraction, the proportion mask stands as the designated train-
ing target, aptly lending itself to the broader orchestration
of Backpropagation through Time (BPTT). In this intricate

symphony of learning, the Binary Cross-Entropy (BCE) Loss
plays a central role—a resonant force that facilitates the fine-
tuning of the model’s parameters.

The pursuit of precision prompts the strategic deployment
of dropout layers, a tactical move engineered to combat the
looming specter of overfitting. These layers, infused with a
dropout rate of 0.5, render the model inherently more resilient
by imposing a controlled measure of randomness—effectively
mitigating the risk of overly specialized learning.

In the visual narrative of Fig. 4, a compelling exposition
unfurls, comparing the foundational U-net model with the
proportion-mask head of the deep clustering model. A dis-
cernible revelation emerges—underscored by empirical evi-
dence—the U-net model ascends as the frontrunner, boasting
an unequivocally superior performance trajectory vis-à-vis
the deep clustering model. However, beneath the surface,
a nuanced dichotomy comes to light. Despite its evident
prowess, the traditional U-net model grapples with a cardinal
challenge—its inherent limitations in generating the high-
resolution delineation required to disentangle vocal sources
from the backdrop of background voice within the intricate
feature map.

Fig. 8. Loss vs Epoch for U-net/UH-net models

This quandary paves the way for innovation—the concep-
tion of a hybrid architecture christened UH-net. This novel
synthesis artfully marries the advantages intrinsic to both the
U-net and deep clustering models. The UH-net’s metamorphic
journey charts an evolution that deftly evades the pitfalls of
overfitting, seamlessly preserving the U-net’s prowess while
superimposing the rich insights harvested from the deep
clustering model. Fig. 5 furnishes a tangible vista—depicting
the trajectory of loss against epochs for both the U-net and
the transformative UH-net. A palpable shift in performance
transpires—the UH-net’s convergence is marked by swifter
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strides and a pronounced dip in validation loss, underscoring
the efficacy of this fusion. This harmony of architectural
synthesis unlocks a novel dimension, showcasing the relentless
pursuit of excellence in the realm of vocal track extraction.

B. Results

1)U-net Based Models: The realm of U-net models unfolds
with the rmsprop algorithm steering the optimization trajec-
tory. The batch size, an intrinsic parameter of the model’s
optimization, is meticulously tuned to 32—a pivotal choice
that orchestrates convergence dynamics. Rooted in the essence
of vocal track extraction, the proportion mask stands as the
designated training target, aptly lending itself to the broader
orchestration of Backpropagation through Time (BPTT). In
this intricate symphony of learning, the Binary Cross-Entropy
(BCE) Loss plays a central role—a resonant force that facili-
tates the fine-tuning of the model’s parameters.

Fig. 9. Clustering Model

Fig. 10. Hybrid Clustering Model

The pursuit of precision prompts the strategic deployment
of dropout layers, a tactical move engineered to combat the
looming specter of overfitting. These layers, infused with a
dropout rate of 0.5, render the model inherently more resilient
by imposing a controlled measure of randomness—effectively
mitigating the risk of overly specialized learning.

In the visual narrative of Fig. 4, a compelling exposition
unfurls, comparing the foundational U-net model with the
proportion-mask head of the deep clustering model. A dis-
cernible revelation emerges—underscored by empirical evi-
dence—the U-net model ascends as the frontrunner, boasting
an unequivocally superior performance trajectory vis-à-vis

Fig. 11. Ground Truth

the deep clustering model. However, beneath the surface,
a nuanced dichotomy comes to light. Despite its evident
prowess, the traditional U-net model grapples with a cardinal
challenge—its inherent limitations in generating the high-
resolution delineation required to disentangle vocal sources
from the backdrop of background voice within the intricate
feature map.

This quandary paves the way for innovation—the concep-
tion of a hybrid architecture christened UH-net. This novel
synthesis artfully marries the advantages intrinsic to both the
U-net and deep clustering models. The UH-net’s metamorphic
journey charts an evolution that deftly evades the pitfalls of
overfitting, seamlessly preserving the U-net’s prowess while
superimposing the rich insights harvested from the deep
clustering model. Fig. 5 furnishes a tangible vista—depicting
the trajectory of loss against epochs for both the U-net and
the transformative UH-net. A palpable shift in performance
transpires—the UH-net’s convergence is marked by swifter
strides and a pronounced dip in validation loss, underscoring
the efficacy of this fusion. This harmony of architectural
synthesis unlocks a novel dimension, showcasing the relentless
pursuit of excellence in the realm of vocal track extraction. We
calculate the IoU score on test set for both models. The IoU
is calculated by the following equation:

IoU =
Area of overlap
Area of union

(3)

For the basic model, the IoU accuracy is 74.78and the
IoU of hybrid model is 79.44where we can see a explicit
improvement.

2) U-net Based Models: A symphony of innovation re-
verberates within the U-net based models, culminating in
the creation of vocal proportion masks that navigate the
intricate terrain of source separation. The vivid tapestry of
these masks materializes in Fig. 9, where a visual odyssey
unfolds, showcasing the prowess of the UH-net model—a
sentinel that not only preserves intricate details but also paints
explicit segmentation boundaries with an artistic finesse.

The assessment of how adeptly the predicted mask aligns
with the hallowed ground of ground truth calls for an objective
metric. In this narrative of evaluation, the Peak Signal-to-
Noise Ratio (PSNR) algorithm stands as a reliable companion,
poised to measure the semblance between different images.
While traditionally harnessed for image comparison, the PSNR
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algorithm finds an unexpected resonance within our domain,
rendering it an apt tool to gauge our model’s performance.

The equation that governs this calculation reads:

PSNR = 10 · log10
(

R2

MSE

)
(4)

Where MAX denotes the maximum possible pixel value
and MSE signifies the Mean Squared Error between the
predicted mask and the ground truth. This formula resonates
as a beacon of assessment, quantifying the harmony between
prediction and reality—a testament to the model’s efficacy and
the precision of its vocal track extraction.

This symphony of assessment underscores the dynamic
intersection of technology and artistry, as U-net based models
pave the way for a harmonious marriage of vision and sound.

The UH-net has a PSNR score for 17.12, while the U-net
model’s baseline score is 16.24. We take these scores as a
quantitative metric of performance.

3) Music Recovery Results: Embarking on a quest for
holistic comparison, we navigate the realm of model out-
puts, each endowed with a distinct format. This variance in
format prompts an ingenious transformation—a process that
orchestrates the metamorphosis of masks into vocal tracks.
This transformative feat unfolds through a delicate dance of
multiplication, as the model’s output mask entwines with the
mel-spectrogram in its native power-scale guise. This union
begets a transformed spectrogram—a harmonious symphony
that resonates with the essence of the original vocal source.
This newly transmuted spectrogram, a captivating embodiment
of harmonic metamorphosis, then yields to the artistry of the
Griffin-Lim algorithm—a maestro of audio reconstruction. The
algorithm, characterized by its capability to simulate phase
information through iterative alchemy, rekindles the vocal
track from the depths of the spectrogram.

Fig. 12. UH-net Model

In our grand symphony of evaluation, full-length songs
come to the forefront—a panorama punctuated by an ensemble
of small frames. This partition of the musical tapestry into
these frames sets the stage for a meticulous evaluation—an
evaluation wherein the virtuosity of our models is spotlighted.
Each frame is an individual vignette—a canvas upon which
the intricate ballet of vocal extraction unfurls. Through this
choreography of assessment, a panoramic narrative of model
performance emerges, offering insights that transcend mere
technicalities.

Fig. 13. U-net Model

Fig. 14. Ground Truth

The symphony of music recovery results harmonizes art and
science—a melodious testimony to the intersection of neural
networks and the rich tapestry of music.

for each frame chunk, then we combine all results together
to get the pure vocal track for the whole song. Fig 10 shows
the power-scale spectrogram generated by different models for
a sample one second length frame, along with the original
mix and vocal tracks. One thing needs to be mentioned here
is that since k-means cannot specify which T-F bin group is
vocal-dominated when we implement deep clustering models,
we are using the proportion-mask head output in hybrid deep
clustering model to select the right group.

We calculate source to distortion (SDR) as the metric for
vocal track separation model, the result is shown in the table.
We test models on DSD100 test set.

Fig. 15. Spectrogram
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SDR SCORE FOR EACH MODEL
UH-net 5.92
U-net 4.34
HDC 1.56

The landscape of model performance materializes with un-
mistakable clarity—our UH-net model emerges as the epitome
of superior efficacy. The realm of achievement, however,
unfurls amidst the horizon of potential. While the horizon is
promising, the baseline gleaned from vocal extraction’s annals
in [2] casts a spotlight on the journey ahead. With a baseline
of 6.3, the embers of optimization flicker—a testament to
the ongoing quest for refinement and the boundless room for
growth.

Fig. 16. Mask

The theater of testing yields an enigmatic revelation—a
facet of the deep clustering model’s persona that illuminates
its inherent limitations. Amidst the symphony of sound, the
deep clustering model might falter in the face of music void
of vocal components or those with faint vocal undertones. Fig.
11 stands as a visual allegory—a window into this dynamic.
This tableau of sound reveals a telling narrative—the clustering
model, confined by its inherent intricacies, grapples to segre-
gate the T-F bins in a harmonious ensemble. Contrastingly,
the U-net based models, guided by their intrinsic architecture,
gracefully navigate these waters, circumventing the pitfall with
an elegant finesse.

As the tale unfurls, a symphony of challenges and triumphs
resounds—a melody that underscores the relentless pursuit of
excellence. With each stride forward, the interplay of models,
nuances, and the ever-evolving soundscape harmonizes to
reshape the landscape of vocal track extraction.

VI. CONCLUSION
In this paper, we delved deeply into the realm of vocal track

extraction, unravelling a tapestry woven from four distinct
models. These models, bearing the imprint of innovation, are
borne of two principal theoretical foundations, each encap-
sulating unique paradigms. The first cornerstone rests upon
the bedrock of deep clustering—a symphony orchestrated by
embedding and the symposium of unsupervised learning. The
second, steeped in the philosophy of semantic segmentation,
transposes the intricacies of music source separation onto the
canvas of image processing.

From this theoretical landscape, the UH-net model emerges
as the magnum opus—an amalgamation of ingenuity that

elegantly surpasses its counterparts. The introduction of an
auxiliary clustering head breathes life into the U-net archi-
tecture—catapulting the model’s training trajectory into a
dimension of efficiency, while concurrently amplifying its
fidelity to truth. This synergy underscores a pivotal facet of
this study—enhancing the delicate equilibrium of swiftness
and precision.

However, our voyage through the crucible of quantitative
analysis reveals that, in the grand scheme of model accu-
racy, uncharted territories beckon. A panoramic vista unfurls,
wherein the expansion of dataset horizons and the augmen-
tation of resolution augur avenues for advancement. Further
refinement, a symphony of architectural finesse, perpetuates
the evolutionary pulse of these models—ushering forth an era
where precision and innovation continue to harmonize.

APPENDIX

The project’s code part and sample vocal extraction
results are uploaded to GitHub , the repository’s link is
: https://github.com/MortadhaMannai/VOCAL-TRACK-
EXTRACTION-USING-NEURAL-NETWORKS
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