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Abstract

Let aq,as,...,a, be positive and pairwise coprime integers with product P. For each i,
1 <i<k,set A; = P/a;. We find closed form expressions for the functions g(A;, As, ... , Ag)
and n(Ay, As, ... , Ay) that denote the largest (respectively, the number of) N such that the
equation Ayxy + Asxs + -+ + Apzr = N has no solution in nonnegative integers x;. This is
a special case of the well-known Coin Ezchange Problem of Frobenius.

1. Introduction

Given positive integers ay, as, . . . , ax, relatively prime, it is well-known that for all sufficiently
large N the equation

a1r1 + Aoy + - -+ apxry = N (1)

has a solution with nonnegative integers x;. If we denote by g(ai,as, ... ,a;) the largest
integer N such that (1) has no solution in nonnegative integers, then it is a well-known
result of Sylvester that g(ay,as) = ajas — a; — as. The related functions n(ay,as, ... ,ax)
and s(aq, as, ... ,a) denote the number of positive integers N for which (1) has no solution
and the sum of such integers, respectively. While it is well-known that n(ai,a2) = (a3 —
1)(az — 1)/2, the corresponding result s(ay, as) = (a1 — 1)(az — 1)(2a1a9 — a3 —as — 1)/12 is
more recent and less known [4]. Except when the a;’s are in arithmetic progression [1, 5, 9, 15]
or in certain other particular cases with three or more variables [2, 3, 7, 10, 11, 12, 13, 14],
there is no closed form expression for either g or n. More information on this problem may
be found in the recently published monograph [8].

The purpose of this note is to obtain a formula for the functions g and n in a special case.
More specifically, we shall henceforth assume that the a;’s are pairwise coprime with product
P, and set A; = P/a; for 1 <i < k. We determine g(A;, A, ..., Ag) and n(Ay, As, ..., A)
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by two methods. The first method uses a reduction formula while the second method is
direct. We note that g(A;, As) = g(ai1, az) and n(Ay, Ay) = n(ay, as).

We close by showing that the set S* introduced in [16] has exactly one element in the
special case we are dealing with. Since it is known (and easy to see from the definition of
S§*) that g € §*, we have further confirmation of the result for g in the special case.

2. Main Results

For the sake of completeness, we prove two well-known results that help in evaluating the
functions g and n in the general case.

Lemma 1 [3, 13]. Let ged(aq,as,...,a;) =1, and for 1 < j < ay — 1, let m; denote the
least positive integer N congruent to j mod a; such that (1) has a solution in nonnegative
integers. Then

(a) glar,az,... a;) = 1;]2%)1{1 m; — ai;
1= 1= a — 1
b) n(ay,as,...,ax) = — m; —j) = — m; — :
() (17 25 7k> GIZ(J j) G1Z J 9
7j=1 7j=1
Proof.
(a) From the definition of m; it follows that m; — a; is not representable by ay,... ,a; in

nonnegative integers for each i, 1 < ¢ < a;. On the other hand, any N greater than
each m; — a; and congruent to j mod a; must be at least m;, and hence representable
by aq, ... ,a; in nonnegative integers.

(b) Since the numbers congruent to j mod a; and not representable by ay, ... ,a in non-
negative integers form an arithmetic progression with first term j, last term m; — a;
and common difference a;, their number is given by (m; — j)/a;. The second part of
the lemma now easily follows. O

Lemma 2 [6, 11]. Let ay,aq,...,ar be positive integers. If ged(as,...,a;) = d and
a; = da;j for each j > 1, then

(a) glar,ag,... a5) =dglar,ay,... al)+a(d—1);

(b) nlar,as,...,ar) =dn(ar,aj,... ,a;) + 3(a1 — 1)(d — 1);
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Proof. As in Lemma 1, for each j, 1 < j < a; — 1, let m; and m; denote the least pos-
itive integer congruent to j mod a; representable as a nonnegative linear combination of
ai,as, ... ,a; and ay, aq, ... ,a,, respectively. Since each such m; and m]( must also be rep-
resentable as a nonnegative linear combination of ao, ... ,a; and of aj, ... ,a/, respectively,
it follows that {m; : 1 <j <a; —1} = {dm;:1<j<a; —1}. We now apply Lemma 1.

For part (a) we have

a,as, ... ,Q = max m; — ay
g( 3 ) ) k) 1<j<ar—1 7
= d| max m/—a | +a(d—1)
1<j<ai-1 7

dg(ay,as, ... a))+a(d—1).
For part (b) we have

1 e 1
n(ay,as, ... ,a5) = — mj—i(al—l)
aq =
1 e 1 1
- d|= f = 1))+ (e —1)(d—1
o 2 mi= g >)+2<a1 d—1)

= dn(ai,aq,...,a}) + 3(a; — 1)(d —1).

|

Theorem 1. Let ay,as,... ,a; be pairwise coprime, positive integers with product P. Let
A; = P/a; for 1 < i < k. Let o, denote the sum of the products of the a;’s taken r at a
time, so that o, = P and 0,1 = A1 + Ay +--- + Aj. Then

(a) g(A17A27 s 7Ak?) = (k - 1)0k — Ok—1;
1

(b) n(Al,AQ, ce ,Ak) = 5{(]{? — 1)0k — Of—1 + 1}.

Proof. This is a direct consequence of Lemma 2. We induct on k. If k = 2, these are just
the well-known results mentioned in the Introduction. We observe that Ay is a multiple of
Aj/ay = Aj for each j # k since AjlayAy = op and ag|A; if j # k.

For part (a), by the induction hypothesis, we have

A A Ap_
g(A17A27"'7Ak:) = a’k’g(_la_Qa"'7 k 1,Ak>+Ak(ak—1)
Q. Qg Qg
A A Aj_
= akg(_l7_27"'7 u 1>+0k_Ak
ar Qg Qg

= CLkg(All,AQI, ,A]é_1>+0'k—Ak
= (k=2)o — (op—1 — Ap) + 0, — Ay,
= (k—l)ak—ak,l.
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For part (b), by the induction hypothesis, we have

A, A A 1
n(Ay, As, ... Ap) = akn<a—la—2 ;1,Ak>+§(ak—1)(Ak—1)
k k k
A As Ap_q 1 1 1 1
— a2 —op— —ap — A+ =
akn(ak’ak’ ’ ax +20k 2ak 9 k+2

1 1 1 1
= Qa n<A1,7A2,a s >Ak,:—1) + 50k — 50k — _Ak + =

2 2 2 2
1
= 5{(]?—2)01@ —(op_1 — Ap) +agp +op —ap — Ap + 1}
1

= 5{(/{2 — 1)0k — Op—1 + 1}.
O

The proof of Theorem 1 given above is based on Lemma 2. It is indeed possible to give
an independent proof. Using the notation of Theorem 1, we give a

Second proof of Theorem 1. Let ay,as,...,a; be pairwise coprime, positive integers.
Let o, denote the sum of the products of the a;’s taken r at a time, and let A; = oy /a; for
1 S] S k. Then g(Al,AQ, . ,Ak) = (k - 1)0k — Of—1-

Proof. 1f each z; > 0 and
A1$1+A2$2—|—"'+Akxk: (k—l)O’k—O'k_l, (2)

A;x; = —A; mod a;, so that z; > a; — 1 since ged(ay;, A;) = 1. But then

k k
Z ijj Z Z Aj(CLj — 1) Z kO’k — Ok—1,
j=1 j=1

and (2) has no solution in nonnegative integers.

Since the A;z; + Ajx; = A;j(x; + a;) + Aj(x; — a;), and since ged(Ay, Ag, ..., Ag) = 1, we
can always write any N in the form Az + Asxe + -+ + Agay, with 0 < 2; < a; — 1 for
1<j<k-—1 Now,if N> (k—1)o; — oz and we choose z; as above, then

_N- ST Aja; - ST Ajlay —x;— 1)

x —1>-1.
k A A >
Thus z; > 0, and every N greater than (k — 1)o, — op_; is expressible as a nonnegative
linear combination of the A;’s. o
Lemma 3. Let a1, a9, ... ,a; be pairwise coprime, positive integers, and let A; = o} /a; for

1 < j < k. If p,q are integers such that p + ¢ = g(A;, A, ... , Ax), then exactly one of the
equations Ayxy + Aoxe + -+ + Apx, = p and Ayxy + Asxe + -+ + Apx, = ¢ is solvable in
nonnegative integers ;.
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Proof. 1f both the equations had a solution, so would g(Aj, As, ..., Ax), contradicting its
definition. Suppose A;xq + Asxy + -+ + Az = p has no solution in nonnegative integers.
Choose z; such that 0 <z; <a; —1for 1 <j <k —1. But then 2, <0, and

k-1
g=(k—1)ox —ok_1—p= Z Aj(a; —x; — 1) + Ap(—xp)
j=1

is expressible in the given form, proving the lemma. O

Corollary 1. Let ay,as,... ,a, be pairwise coprime, positive integers. Let o, denote the
sum of the products of the a;’s taken r at a time, and let A; = o4 /a; for 1 < j < k. Then
n(Al,AQ, ce ,Ak) =1 (/{3 — 1)0k — Op—1 + 1}

2

Proof. 1f we pair p with ¢ whenever p + ¢ = g(A1, As, ... , Ay) and p,q > 0, by Lemma 1,
1
n(Al,AQ, Ce ,Ak> = 5 {1 —f-g(Al,AQ, e ,Ak)} .

The corollary now follows from Theorem 1. |

The evaluation of g given in Theorem 1 can also be derived by explicitly determining the
set §*, introduced in [16], since g(ay, as, ... ,ax) is the largest element in $*(aq, as, ... ,ax).
For positive and coprime integers aq, as, . .. , ay, let I'* denote the positive integers in the set
{a1z1 + agwo + - - + agxy - x; > 0}. Then

S*(ar,a9,...,a5) ={n ¢l :n+I*CI*} C{m;—a;:1<j<a —1}.
Moreover,
mj —ay € S*(ay,aq, ... ,ap) <= m; +m; >mjy; for 1 <i<a; —1. (3)

We refer to [16] for the more notations and results. With the notations above, we show
that S*(Aq, As,... ,Ax) = {(k — 1)ox — ox_1} for each k > 2. Since g(ai,as,...,axr) €
S*(ay,aq, ... ,ax), this further verifies the first result of Theorem 1.

Theorem 2. Let ay,as,...,a; be pairwise coprime, positive integers. Let o, denote the
sum of the products of the a;’s taken r at a time, and let A; = o4 /a; for 1 < j < k. Then
S (A1, Ag, ..., Ag) ={(k — D)oy — oy} for k > 2.

Proof. We prove the result by inducting on k. The case k = 2 is a special case of the
main result in [16]. Given pairwise coprime, positive integers aq, as, ... ,ay, define integers
Ay, Ag, ..., Ay as above. As in the proof of Lemma 2, for each j, 1 < j < Ay —1, let M; and
M, denote the least positive integer congruent to j mod Ay, representable as a nonnegative
linear combination of Ay, Ay,... Ay and A], A,, ... A |, Ay, respectively, where A =
Aj/ay for 1 < j <k —1. Then {M; : 1 Sngk—l}:{aij/:l < j < Ap —1}. Observe
that each A/ divides Ay, and that {A{, A5, ..., A/ _,} is just the set of A;’s corresponding
to ay, ag, ... ,ap_1. From (3), M; — Ay € S*(Ay, As, ..., Ay) if and only if M; + M; > M.,
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for 1 < i < Ay — 1, which holds precisely when Mj’ + M > M, for 1 <i< Ap—1.

Jj+i
Thus M; — A € S*(A1, Az, ..., Ay) if and only if M} — A, € S*(A], Ag,... , Af_,, Ay) =
S*(A{, A, ..., A/ _;), which is the set {(k — 2)ajas---ar—1 — (A{ +---+ A/ _;)}, by the

induction hypothesis. It now follows that S*(Ai, Ay, ..., Ax) = {axM] — A} = {(k —
2)arag - ap—ag(A{+- -+ AL ) FarAr—Art = {(k—Dajag - ap — (A1 + As+ -+ A },
as desired. O

Acknowledgment. The author wishes to thank the referee for some valuable comments
and for pointing out the eighth reference.

References

[1] P.T.Bateman, Remark on a Recent Note on Linear Forms, American Mathematical Monthly 65 (1958),
517-518.

[2] A. Brauer, On a Problem of Partitions, American Journal of Mathematics 64 (1942), 299-312.
[3] A. Brauer and J. E. Shockley, On a problem of Frobenius, Crelle 211 (1962), 215-220.

[4] T. C. Brown and P. J. Shiue, A remark related to the Frobenius problem, Fibonacci Quarterly 31
(1993), 31-36.

[5] D. D. Grant, On linear forms whose coefficients are in Arithmetic progression, Israel Journal of Math-
ematics 15 (1973), 204-209.

[6] S. M. Johnson, A Linear Diophantine Problem, Canadian Journal of Mathematics 12 (1960), 390-398.

[7] A. Nijenhuis and H. S. Wilf, Representations of integers by linear forms in non negative integers,
Journal of Number Theory 4 (1972), 98-106.

[8] J. L. Ramirez Alfonsin, The Frobenius Diophantine Problem, Oxford University Press, 2006.

[9] J. B. Roberts, Note on Linear Forms, Proceedings of the American Mathematical Society 7 (1956),
465-469.

[10] J. B. Roberts, On a Diophantine problem, Canadian Journal of Mathematics 9 (1957), 219-222.
[11] O. J. Rédseth, On a linear Diophantine problem of Frobenius, Crelle 301 (1978), 171-178.

[12] O. J. Rédseth, On a linear Diophantine problem of Frobenius II, Crelle 307/308 (1979), 431-440.
[13] E. S. Selmer, On the linear Diophantine problem of Frobenius, Crelle 293 /294 (1977), 1-17.

[14] E. S. Selmer and O. Beyer, On the linear Diophantine problem of Frobenius in three variables, Crelle
301 (1978), 161-170.

[15] A. Tripathi, The Coin Exchange Problem for Arithmetic Progressions, American Mathematical Monthly
(1994), no. 10, 779-781.

[16] A. Tripathi, On a variation of the Coin Exchange Problem for Arithmetic Progressions, Integers:
Electronic Journal of Combinatorial Number Theory (2003), 3, no. A01, 1-5.



