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Abstract

One of the limitations of semantic parsing ap-
proaches to open-domain question answering
is the lexicosyntactic gap between natural lan-
guage questions and knowledge base entries
– there are many ways to ask a question, all
with the same answer. In this paper we pro-
pose to bridge this gap by generating para-
phrases of the input question with the goal that
at least one of them will be correctly mapped
to a knowledge-base query. We introduce a
novel grammar model for paraphrase genera-
tion that does not require any sentence-aligned
paraphrase corpus. Our key idea is to leverage
the flexibility and scalability of latent-variable
probabilistic context-free grammars to sample
paraphrases. We do an extrinsic evaluation of
our paraphrases by plugging them into a se-
mantic parser for Freebase. Our evaluation
experiments on the WebQuestions benchmark
dataset show that the performance of the se-
mantic parser improves over strong baselines.

1 Introduction

Semantic parsers map sentences onto logical forms
that can be used to query databases (Zettlemoyer
and Collins, 2005; Wong and Mooney, 2006), in-
struct robots (Chen and Mooney, 2011), extract in-
formation (Krishnamurthy and Mitchell, 2012), or
describe visual scenes (Matuszek et al., 2012). In
this paper we consider the problem of semantically
parsing questions into Freebase logical forms for
the goal of question answering. Current systems
accomplish this by learning task-specific grammars
(Berant et al., 2013), strongly-typed CCG gram-
mars (Kwiatkowski et al., 2013; Reddy et al., 2014),

or neural networks without requiring any grammar
(Yih et al., 2015). These methods are sensitive to the
words used in a question and their word order, mak-
ing them vulnerable to unseen words and phrases.
Furthermore, mismatch between natural language
and Freebase makes the problem even harder. For
example, Freebase expresses the fact that “Czech is
the official language of Czech Republic” (encoded
as a graph), whereas to answer a question like “What
do people in Czech Republic speak?” one should in-
fer people in Czech Republic refers to Czech Repub-
lic and What refers to the language and speak refers
to the predicate official language.

We address the above problems by using para-
phrases of the original question. Paraphrasing
has shown to be promising for semantic pars-
ing (Fader et al., 2013; Berant and Liang, 2014;
Wang et al., 2015). We propose a novel frame-
work for paraphrasing using latent-variable PCFGs
(L-PCFGs). Earlier approaches to paraphrasing
used phrase-based machine translation for text-
based QA (Duboue and Chu-Carroll, 2006; Rie-
zler et al., 2007), or hand annotated grammars
for KB-based QA (Berant and Liang, 2014). We
find that phrase-based statistical machine transla-
tion (MT) approaches mainly produce lexical para-
phrases without much syntactic diversity, whereas
our grammar-based approach is capable of produc-
ing both lexically and syntactically diverse para-
phrases. Unlike MT based approaches, our system
does not require aligned parallel paraphrase corpora.
In addition we do not require hand annotated gram-
mars for paraphrase generation but instead learn the
grammar directly from a large scale question corpus.



The main contributions of this paper are two fold.
First, we present an algorithm (§2) to generate para-
phrases using latent-variable PCFGs. We use the
spectral method of Narayan and Cohen (2015) to
estimate L-PCFGs on a large scale question tree-
bank. Our grammar model leads to a robust and an
efficient system for paraphrase generation in open-
domain question answering. While CFGs have been
explored for paraphrasing using bilingual parallel
corpus (Ganitkevitch et al., 2013), ours is the first
implementation of CFG that uses only monolingual
data. Second, we show that generated paraphrases
can be used to improve semantic parsing of ques-
tions into Freebase logical forms (§3). We build on
a strong baseline of Reddy et al. (2014) and show
that our grammar model competes with MT base-
line even without using any parallel paraphrase re-
sources.

2 Paraphrase Generation Using
Grammars

Our paraphrase generation algorithm is based on
a model in the form of an L-PCFG. L-PCFGs are
PCFGs where the nonterminals are refined with la-
tent states that provide some contextual information
about each node in a given derivation. L-PCFGs
have been used in various ways, most commonly
for syntactic parsing (Prescher, 2005; Matsuzaki et
al., 2005; Petrov et al., 2006; Cohen et al., 2013;
Narayan and Cohen, 2015; Narayan and Cohen,
2016).

In our estimation of L-PCFGs, we use the spectral
method of Narayan and Cohen (2015), instead of us-
ing EM, as has been used in the past by Matsuzaki
et al. (2005) and Petrov et al. (2006). The spectral
method we use enables the choice of a set of feature
functions that indicate the latent states, which proves
to be useful in our case. It also leads to sparse gram-
mar estimates and compact models.

The spectral method works by identifying feature
functions for “inside” and “outside” trees, and then
clusters them into latent states. Then it follows with
a maximum likelihood estimation step, that assumes
the latent states are represented by clusters obtained
through the feature function clustering. For more de-
tails about these constructions, we refer the reader to
Cohen et al. (2013) and Narayan and Cohen (2015).

The rest of this section describes our paraphrase

generation algorithm.

2.1 Paraphrases Generation Algorithm

We define our paraphrase generation task as a sam-
pling problem from an L-PCFG Gsyn, which is esti-
mated from a large corpus of parsed questions. Once
this grammar is estimated, our algorithm follows a
pipeline with two major steps.

We first build a word latticeWq for the input ques-
tion q.1 We use the lattice to constrain our para-
phrases to a specific choice of words and phrases
that can be used. Once this lattice is created, a gram-
marG′

syn is then extracted fromGsyn. This grammar
is constrained to the lattice.

We experiment with three ways of constructing
word lattices: naı̈ve word lattices representing the
words from the input question only, word lattices
constructed with the Paraphrase Database (Ganitke-
vitch et al., 2013) and word lattices constructed with
a bi-layered L-PCFG, described in §2.2. For exam-
ple, Figure 1 shows an example word lattice for the
question What language do people in Czech Repub-
lic speak? using the lexical and phrasal rules from
the PPDB.2

OnceG′
syn is generated, we sample paraphrases of

the input question q. These paraphrases are further
filtered with a classifier to improve the precision of
the generated paraphrases.

L-PCFG Estimation We train the L-PCFG Gsyn

on the Paralex corpus (Fader et al., 2013). Par-
alex is a large monolingual parallel corpus, contain-
ing 18 million pairs of question paraphrases with
2.4M distinct questions in the corpus. It is suit-
able for our task of generating paraphrases since
its large scale makes our model robust for open-
domain questions. We construct a treebank by pars-
ing 2.4M distinct questions from Paralex using the
BLLIP parser (Charniak and Johnson, 2005).3

Given the treebank, we use the spectral algorithm
of Narayan and Cohen (2015) to learn an L-PCFG

1Word lattices, formally weighted finite state automata, have
been used in previous works for paraphrase generation (Langk-
ilde and Knight, 1998; Barzilay and Lee, 2003; Pang et al.,
2003; Quirk et al., 2004). We use an unweighted variant of
word lattices in our algorithm.

2For our experiments, we extract rules from the PPDB-
Small to maintain the high precision (Ganitkevitch et al., 2013).

3We ignore the Paralex alignments for training Gsyn.
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Figure 1: An example word lattice for the question What language do people in Czech Republic speak? using the
lexical and phrasal rules from the PPDB.

for constituency parsing to learn Gsyn. We follow
Narayan and Cohen (2015) and use the same fea-
ture functions for the inside and outside trees as
they use, capturing contextual syntactic information
about nonterminals. We refer the reader to Narayan
and Cohen (2015) for more detailed description of
these features. In our experiments, we set the num-
ber of latent states to 24.

Once we estimate Gsyn from the Paralex corpus,
we restrict it for each question to a grammarG′

syn by
keeping only the rules that could lead to a derivation
over the lattice. This step is similar to lexical prun-
ing in standard grammar-based generation process
to avoid an intermediate derivation which can never
lead to a successful derivation (Koller and Striegnitz,
2002; Narayan and Gardent, 2012).

Paraphrase Sampling Sampling a question from
the grammar G′

syn is done by recursively sampling
nodes in the derivation tree, together with their la-
tent states, in a top-down breadth-first fashion. Sam-
pling from the pruned grammar G′

syn raises an is-
sue of oversampling words that are more frequent
in the training data. To lessen this problem, we fol-
low a controlled sampling approach where sampling
is guided by the word lattice Wq. Once a word w
from a path e in Wq is sampled, all other parallel
or conflicting paths to e are removed from Wq. For
example, generating for the word lattice in Figure
1, when we sample the word citizens, we drop out
the paths “human beings”, “people’s”, “the pop-
ulation”, “people” and “members of the public”
from Wq and accordingly update the grammar. The
controlled sampling ensures that each sampled ques-
tion uses words from a single start-to-end path in
Wq. For example, we could sample a question what

is Czech Republic ’s language? by sampling words
from the path (what, language, do, people ’s, in,
Czech, Republic, is speaking, ?) in Figure 1. We
repeat this sampling process to generate multiple po-
tential paraphrases.

The resulting generation algorithm has multiple
advantages over existing grammar generation meth-
ods. First, the sampling from an L-PCFG grammar
lessens the lexical ambiguity problem evident in lex-
icalized grammars such as tree adjoining grammars
(Narayan and Gardent, 2012) and combinatory cate-
gorial grammars (White, 2004). Our grammar is not
lexicalized, only unary context-free rules are lexi-
calized. Second, the top-down sampling restricts the
combinatorics inherent to bottom-up search (Shieber
et al., 1990). Third, we do not restrict the generation
by the order information in the input. The lack of
order information in the input often raises the high
combinatorics in lexicalist approaches (Kay, 1996).
In our case, however, we use sampling to reduce
this problem, and it allows us to produce syntacti-
cally diverse questions. And fourth, we impose no
constraints on the grammar thereby making it eas-
ier to maintain bi-directional (recursive) grammars
that can be used both for parsing and for generation
(Shieber, 1988).

2.2 Bi-Layered L-PCFGs

As mentioned earlier, one of our lattice types is
based on bi-layered PCFGs introduced here.

In their traditional use, the latent states in L-
PCFGs aim to capture syntactic information. We in-
troduce here the use of an L-PCFG with two layers
of latent states: one layer is intended to capture the
usual syntactic information, and the other aims to
capture semantic and topical information by using a
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Figure 2: Trees used for bi-layered L-PCFG training. The questions what day is nochebuena, when is nochebuena
and when is nochebuena celebrated are paraphrases from the Paralex corpus. Each nonterminal is decorated with a
syntactic label and two identifiers, e.g., for WP-7-254, WP is the syntactic label assigned by the BLLIP parser, 7 is the
syntactic latent state, and 254 is the semantic latent state.

large set of states with specific feature functions.4

To create the bi-layered L-PCFG, we again use
the spectral algorithm of Narayan and Cohen (2015)
to estimate a grammarGpar from the Paralex corpus.
We use the word alignment of paraphrase question
pairs in Paralex to map inside and outside trees of
each nonterminals in the treebank to bag of word
features. The number of latent states we use is 1,000.

Once the two feature functions (syntactic in Gsyn

and semantic in Gpar) are created, each nontermi-
nal in the training treebank is assigned two latent
states (cluster identifiers). Figure 2 shows an exam-
ple annotation of trees for three paraphrase questions
from the Paralex corpus. We compute the parame-
ters of the bi-layered L-PCFGGlayered with a simple
frequency count maximum likelihood estimate over
this annotated treebank. As such, Glayered is a com-
bination ofGsyn andGpar, resulting in 24,000 latent
states (24 syntactic x 1000 semantic).

Consider an example where we want to gen-
erate paraphrases for the question what day is
nochebuena. Parsing it with Glayered will lead to
the leftmost hybrid structure as shown in Figure 2.
The assignment of the first latent states for each non-
terminals ensures that we retrieve the correct syn-
tactic representation of the sentence. Here, how-
ever, we are more interested in the second latent
states assigned to each nonterminals which capture
the paraphrase information of the sentence at vari-
ous levels. For example, we have a unary lexical rule
(NN-*-142 day) indicating that we observe day
with NN of the paraphrase type 142. We could use
this information to extract unary rules of the form
(NN-*-142 w) in the treebank that will generate

4For other cases of separating syntax from semantics in a
similar way, see Mitchell and Steedman (2015).

words w which are paraphrases to day. Similarly,
any node WHNP-*-291 in the treebank will gener-
ate paraphrases for what day, SBARQ-*-403, for
what day is nochebuena. This way we will be able
to generate paraphrases when is nochebuena and
when is nochebuena celebrated as they both have
SBARQ-*-403 as their roots.5

To generate a word latticeWq for a given question
q, we parse q with the bi-layered grammar Glayered.
For each rule of the form X-m1-m2 → w in the bi-
layered tree with X ∈ P , m1 ∈ {1, . . . , 24}, m2 ∈
{1, . . . , 1000} and w a word in q, we extract rules
of the form X-∗-m2 → w′ from Glayered such that
w′ 6= w. For each such (w,w′), we add a path w′

parallel to w in the word lattice.

2.3 Paraphrase Classification
Our sampling algorithm overgenerates paraphrases
which are incorrect. To improve its precision, we
build a binary classifier to filter the generated para-
phrases. We randomly select 100 distinct questions
from the Paralex corpus and generate paraphrases
using our generation algorithm with various lattice
settings. We randomly select 1,000 pairs of input-
sampled sentences and manually annotate them as
“correct” or “incorrect” paraphrases.6 We train our
classifier on this manually created training data.7 We

5We found out that our Gpar grammar is not fine-grained
enough and often merges different paraphrase information into
the same latent state. This problem is often severe for nontermi-
nals at the top level of the bilayered tree. Hence, we rely only
on unary lexical rules (the rules that produce terminal nodes) to
extract paraphrase patterns in our experiments.

6We have 154 positive and 846 negative paraphrase pairs.
7We do not use the paraphrase pairs from the Paralex corpus

to train our classifier, as they do not represent the distribution
of our sampled paraphrases and the classifier trained on them
performs poorly.



follow Madnani et al. (2012), who used MT metrics
for paraphrase identification, and experiment with 8
MT metrics as features for our binary classifier. In
addition, we experiment with a binary feature which
checks if the sampled paraphrase preserves named
entities from the input sentence. We use WEKA
(Hall et al., 2009) to replicate the classifier of Mad-
nani et al. (2012) with our new feature. We tune the
feature set for our classifier on the development data.

3 Semantic Parsing using Paraphrasing

In this section we describe how the paraphrase al-
gorithm is used for converting natural language to
Freebase queries. Following Reddy et al. (2014), we
formalize the semantic parsing problem as a graph
matching problem, i.e., finding the Freebase sub-
graph (grounded graph) that is isomorphic to the in-
put question semantic structure (ungrounded graph).

This formulation has a major limitation that can
be alleviated by using our paraphrase generation al-
gorithm. Consider the question What language do
people in Czech Republic speak?. The ungrounded
graph corresponding to this question is shown in
Figure 3(a). The Freebase grounded graph which re-
sults in correct answer is shown in Figure 3(d). Note
that these two graphs are non-isomorphic making it
impossible to derive the correct grounding from the
ungrounded graph. In fact, at least 15% of the ex-
amples in our development set fail to satisfy isomor-
phic assumption. In order to address this problem,
we use paraphrases of the input question to gener-
ate additional ungrounded graphs, with the aim that
one of those paraphrases will have a structure iso-
morphic to the correct grounding. Figure 3(b) and
Figure 3(c) are two such paraphrases which can be
converted to Figure 3(d) as described in §3.2.

For a given input question, first we build un-
grounded graphs from its paraphrases. We con-
vert these graphs to Freebase graphs. To learn this
mapping, we rely on manually assembled question-
answer pairs. For each training question, we first
find the set of oracle grounded graphs—Freebase
subgraphs which when executed yield the correct
answer—derivable from the question’s ungrounded
graphs. These oracle graphs are then used to train
a structured perceptron model. These steps are dis-
cussed in detail below.

3.1 Ungrounded Graphs from Paraphrases

We use GRAPHPARSER (Reddy et al., 2014) to con-
vert paraphrases to ungrounded graphs. This conver-
sion involves three steps: 1) parsing the paraphrase
using a CCG parser to extract syntactic derivations
(Lewis and Steedman, 2014), 2) extracting logi-
cal forms from the CCG derivations (Bos et al.,
2004), and 3) converting the logical forms to an un-
grounded graph.8 The ungrounded graph for the ex-
ample question and its paraphrases are shown in Fig-
ure 3(a), Figure 3(b) and Figure 3(c), respectively.

3.2 Grounded Graphs from Ungrounded
Graphs

The ungrounded graphs are grounded to Freebase
subgraphs by mapping entity nodes, entity-entity
edges and entity type nodes in the ungrounded
graph to Freebase entities, relations and types,
respectively. For example, the graph in Fig-
ure 3(b) can be converted to a Freebase graph in
Figure 3(d) by replacing the entity node Czech
Republic with the Freebase entity CZECHRE-
PUBLIC, the edge (speak.arg2, speak.in) between
x and Czech Republic with the Freebase re-
lation (location.country.official language.2, lo-
cation.country.official language.1), the type
node language with the Freebase type lan-
guage.human language, and the TARGET node
remains intact. The rest of the nodes, edges and
types are grounded to null. In a similar fashion,
Figure 3(c) can be grounded to Figure 3(d), but
not Figure 3(a) to Figure 3(d). If no paraphrase is
isomorphic to the target grounded grounded graph,
our grounding fails.

3.3 Learning

We use a linear model to map ungrounded graphs
to grounded ones. The parameters of the model
are learned from question-answer pairs. For ex-
ample, the question What language do people in
Czech Republic speak? paired with its answer
{CZECHLANGUAGE}. In line with most work on
question answering against Freebase, we do not rely
on annotated logical forms associated with the ques-
tion for training and treat the mapping of a question
to its grounded graph as latent.

8Please see Reddy et al. (2014) for more details.
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Figure 3: Ungrounded graphs for an input question and its paraphrases along with its correct grounded graph. The
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the circles indicate NL or Freebase events, the edge labels indicate binary NL predicates or Freebase relations, and the
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Let q be a question, let p be a paraphrase, let u be
an ungrounded graph for p, and let g be a grounded
graph formed by grounding the nodes and edges of
u to the knowledge baseK (throughout we use Free-
base as the knowledge base). Following Reddy et al.
(2014), we use beam search to find the highest scor-
ing tuple of paraphrase, ungrounded and grounded
graphs (p̂, û, ĝ) under the model θ ∈ Rn:

(p̂, û, ĝ) = arg max
(p,u,g)

θ · Φ(p, u, g, q,K) ,

where Φ(p, u, g, q,K) ∈ Rn denotes the features for
the tuple of paraphrase, ungrounded and grounded
graphs. The feature function has access to the para-
phrase, ungrounded and grounded graphs, the origi-
nal question, as well as to the content of the knowl-
edge base and the denotation |g|K (the denotation
of a grounded graph is defined as the set of enti-
ties or attributes reachable at its TARGET node). See
§4.3 for the features employed. The model parame-
ters are estimated with the averaged structured per-
ceptron (Collins, 2002). Given a training question-
answer pair (q,A), the update is:

θt+1 ← θt+Φ(p+, u+, g+, q,K)−Φ(p̂, û, ĝ, q,K) ,

where (p+, u+, g+) denotes the tuple of gold para-
phrase, gold ungrounded and grounded graphs for

q. Since we do not have direct access to the gold
paraphrase and graphs, we instead rely on the set of
oracle tuples, OK,A(q), as a proxy:

(p+, u+, g+) = arg max
(p,u,g)∈OK,A(q)

θ · Φ(p, u, g, q,K) ,

where OK,A(q) is defined as the set of tuples (p, u,
g) derivable from the question q, whose denotation
|g|K has minimal F1-loss against the gold answerA.
We find the oracle graphs for each question a priori
by performing beam-search with a very large beam.

4 Experimental Setup

Below, we give details on the evaluation dataset and
baselines used for comparison. We also describe the
model features and provide implementation details.

4.1 Evaluation Data and Metric
We evaluate our approach on the WebQuestions
dataset (Berant et al., 2013). WebQuestions con-
sists of 5,810 question-answer pairs where ques-
tions represents real Google search queries. We use
the standard train/test splits, with 3,778 train and
2,032 test questions. For our development experi-
ments we tune the models on held-out data consist-
ing of 30% training questions, while for final testing



we use the complete training data. We use average
precision (avg P.), average recall (avg R.) and aver-
age F1 (avg F1) proposed by Berant et al. (2013) as
evaluation metrics.9

4.2 Baselines

ORIGINAL We use GRAPHPARSER without para-
phrases as our baseline. This gives an idea about the
impact of using paraphrases.

MT We compare our paraphrasing models with
monolingual machine translation based model for
paraphrase generation (Quirk et al., 2004; Wubben
et al., 2010). In particular, we use Moses (Koehn et
al., 2007) to train a monolingual phrase-based MT
system on the Paralex corpus. Finally, we use Moses
decoder to generate 10-best distinct paraphrases for
the test questions.

4.3 Implementation Details

Entity Resolution For WebQuestions, we use
8 handcrafted part-of-speech patterns (e.g., the pat-
tern (DT)?(JJ.?|NN.?){0,2}NN.? matches
the noun phrase the big lebowski) to identify candi-
date named entity mention spans. We use the Stan-
ford CoreNLP caseless tagger for part-of-speech
tagging (Manning et al., 2014). For each candidate
mention span, we retrieve the top 10 entities accord-
ing to the Freebase API.10 We then create a lattice in
which the nodes correspond to mention-entity pairs,
scored by their Freebase API scores, and the edges
encode the fact that no joint assignment of entities
to mentions can contain overlapping spans. We take
the top 10 paths through the lattice as possible en-
tity disambiguations. For each possibility, we gener-
ate n-best paraphrases that contains the entity men-
tion spans. In the end, this process creates a total of
10n paraphrases. We generate ungrounded graphs
for these paraphrases and treat the final entity dis-
ambiguation and paraphrase selection as part of the
semantic parsing problem.11

GRAPHPARSER Features. We use the features
from Reddy et al. (2014). These include edge align-

9https://github.com/percyliang/sempre/
blob/master/scripts/evaluation.py

10http://developers.google.com/freebase/
11To generate ungrounded graphs for a paraphrase, we treat

each entity mention as a single word.

ments and stem overlaps between ungrounded and
grounded graphs, and contextual features such as
word and grounded relation pairs. In addition to
these features, we add two new real-valued features
– the paraphrase classifier’s score and the entity dis-
ambiguation lattice score.

Beam Search We use beam search to infer the
highest scoring graph pair for a question. The search
operates over entity-entity edges and entity type
nodes of each ungrounded graph. For an entity-
entity edge, there are two operations: ground the
edge to a Freebase relation, or skip the edge. Sim-
ilarly, for an entity type node, there are two opera-
tions: ground the node to a Freebase type, or skip
the node. We use a beam size of 100 in all our ex-
periments.

5 Results and Discussion

In this section, we present results from five dif-
ferent systems for our question-answering experi-
ments: ORIGINAL, MT, NAIVE, PPDB and BILAY-
ERED. First two are baseline systems. Other three
systems use paraphrases generated from an L-PCFG
grammar. NAIVE uses a word lattice with a sin-
gle start-to-end path representing the input question
itself, PPDB uses a word lattice constructed using
the PPDB rules, and BILAYERED uses bi-layered L-
PCFG to build word lattices. Note that NAIVE does
not require any parallel resource to train, PPDB re-
quires an external paraphrase database, and BILAY-
ERED, like MT, needs a parallel corpus with para-
phrase pairs. We tune our classifier features and
GRAPHPARSER features on the development data.
We use the best setting from tuning for evaluation
on the test data.

Results on the Development Set Table 1 shows
the results with our best settings on the develop-
ment data. We found that oracle scores improve sig-
nificantly with paraphrases. ORIGINAL achieves an
oracle score of 65.1 whereas with paraphrases we
achieve an F1 greater than 70 across all the mod-
els. This shows that with paraphrases we elimi-
nate substantial mismatch between Freebase and un-
grounded graphs. This trend continues for the final
prediction with the paraphrasing models performing
better than the ORIGINAL.



All our proposed paraphrasing models beat the
MT baseline. Even the NAIVE model which does not
use any parallel or external resource surpass the MT

baseline in the final prediction. Upon error analy-
sis, we found that the MT model produce too simi-
lar paraphrases, mostly with only inflectional varia-
tions. For the question What language do people in
Czech Republic speak, the top ten paraphrases pro-
duced by MT are mostly formed by replacing words
language with languages, do with does, people with
person and speak with speaks. These paraphrases
do not address the structural mismatch problem. In
contrast, our grammar based models generate syn-
tactically diverse paraphrases.

Our PPDB model performs best across the para-
phrase models (avg F1 = 47.9). We attribute its suc-
cess to the high quality paraphrase rules from the
external paraphrase database. For the BILAYERD

model we found 1,000 latent semantic states is not
sufficient for modeling topical differences. Though
MT competes with NAIVE and BILAYERED, the per-
formance of NAIVE is highly encouraging since it
does not require any parallel corpus. Furthermore,
we observe that the MT model has larger search
space. The number of oracle graphs – the number
of ways in which one can produce the correct Free-
base grounding from the ungrounded graphs of the
given question and its paraphrases – is higher for
MT (77.2) than the grammar-based models (50–60).

Results on the Test Set Table 2 shows our final
results on the test data. We get similar results on the
test data as we reported on the development data.
Again, the PPDB model performs best with an F1

score of 47.7. The baselines, ORIGINAL and MT,
lag with scores of 45.0 and 47.1, respectively. We
also present the results of existing literature on this
dataset. Among these, Berant and Liang (2014) also
uses paraphrasing but unlike ours it is based on a
template grammar (containing 8 grammar rules) and
requires logical forms beforehand to generate para-
phrases. Our PPDB outperforms Berant and Liang’s
model by 7.8 F1 points. Yih et al. (2015) and Xu et
al. (2016) use neural network models for semantic
parsing, in addition to using sophisticated entity res-
olution (Yang and Chang, 2015) and a very large un-
supervised corpus as additional training data. Note
that we use GRAPHPARSER as our semantic parsing

Method avg oracle
F1

# oracle
graphs

avg F1

ORIGINAL 65.1 11.0 44.7
MT 71.5 77.2 47.0
NAIVE 71.2 53.6 47.5
PPDB 71.8 59.8 47.9
BILAYERED 71.6 55.0 47.1

Table 1: Oracle statistics and results on the WebQues-
tions development set.

Method avg P. avg R. avg F1

Berant and Liang ’14 40.5 46.6 39.9
Bast and Haussmann ’15 49.8 60.4 49.4
Berant and Liang ’15 50.4 55.7 49.7
Reddy et al. ’16 49.0 61.1 50.3
Yih et al. ’15 52.8 60.7 52.5
Xu et al. ’16 53.1 65.5 53.3

This paper
ORIGINAL 53.2 54.2 45.0
MT 48.0 56.9 47.1
NAIVE 48.1 57.7 47.2
PPDB 48.4 58.1 47.7
BILAYERED 47.0 57.6 47.2

Table 2: Results on WebQuestions test dataset.

framework for evaluating our paraphrases extrinsi-
cally. We leave plugging our paraphrases to other
existing methods and other tasks for future work.

Error Analysis The upper bound of our para-
phrasing methods is in the range of 71.2–71.8. We
examine the reason where we lose the rest. For the
PPDB model, the majority (78.4%) of the errors are
partially correct answers occurring due to incom-
plete gold answer annotations or partially correct
groundings. Note that the partially correct ground-
ings may include incorrect paraphrases. 13.5% are
due to mismatch between Freebase and the para-
phrases produced, and the rest (8.1%) are due to
wrong entity annotations.

6 Conclusion

We described a grammar method to generate para-
phrases for questions, and applied it to a question
answering system based on semantic parsing. We
showed that using paraphrases for a question an-
swering system is a useful way to improve its per-
formance. Our method is rather generic and can be
applied to any question answering system.
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