
688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 1 of 74
© Copyright 2017, the Members of symbIoTe

Symbiosis of smart objects across IoT
environments

688156 - symbIoTe - H2020-ICT-2015

D2.4 – Revised Semantics for IoT and Cloud
resources

The symbIoTe Consortium

Intracom SA Telecom Solutions, ICOM, Greece
Sveučiliste u Zagrebu Fakultet elektrotehnike i računarstva, UNIZG-FER, Croatia
AIT Austrian Institute of Technology GmbH, AIT, Austria
Nextworks Srl, NXW, Italy
Consorzio Nazionale Interuniversitario per le Telecomunicazioni, CNIT, Italy
ATOS Spain SA, ATOS, Spain
University of Vienna, Faculty of Computer Science, UNIVIE, Austria
Unidata S.p.A., UNIDATA, Italy
Sensing & Control System S.L., S&C, Spain
Fraunhofer IOSB, IOSB, Germany
Ubiwhere, Lda, UW, Portugal
VIPnet, d.o.o, VIP, Croatia
Instytut Chemii Bioorganicznej Polskiej Akademii Nauk, PSNC, Poland
NA.VI.GO. SCARL, NAVIGO, Italy

© Copyright 2017, the Members of the symbIoTe Consortium

For more information on this document or the symbIoTe project, please contact:
Sergios Soursos, INTRACOM TELECOM, souse@intracom-telecom.com

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 2 of 74
© Copyright 2017, the Members of symbIoTe

Document Control

Title: Revised Semantics for IoT and Cloud resources

Type: Public

Editor(s): Michael Jacoby

E-mail: michael.jacoby@iosb.fraunhofer.de

Author(s): Michael Jacoby (IOSB), João Garcia (UW), Antonio Paradell (ATOS/WL),
Luca de Santis (NAVIGO), Matteo Pardi (NXW), Karl Kreiner (AIT), Szymon
Mueller (PSNC), Svenja Schröder (UNIVIE), Marcin Płóciennik (PSNC),
Ivana Podnar Žarko (UNIZG-FER)

Doc ID: D2.4-v1.2

Amendment History

Version Date Author Description/Comments

v0.0 01/05/2017 Michael Jacoby (IOSB) TOC created

v0.1 08/06/2017 Michael Jacoby (IOSB) Updated structure

Updated with content from D2.1

Added content to Section 5

v0.2 12/06/2017 Michael Jacoby (IOSB) Added Section 5.1, 5.2

v0.3 16/07/2017 Michael Jacoby (IOSB)

João Garcia (UW)

Antonio Paradell (ATOS/WL)

Luca de Santis (NAVIGO)

Matteo Pardi (NXW)

Karl Kreiner (AIT)

Updated Section 5

Updated Section 5.5.2

Updated Section 5.5.5

Updated Section 5.5.3

Updated Section 5.5.4

Updated Section 5.5.4

v0.4 21/07/2017 Szymon Mueller (PSNC)

Michael Jacoby (IOSB)

Updated Section 5.7

Formatting of whole document

v1.0 26/06/2017 Svenja Schröder (UNIVIE)

Marcin Płóciennik (PSNC)

Michael Jacoby (IOSB)

Update of all sections

Update of all sections

Added Section 5.6.4

v1.1 12/07/2017 Ivana Podnar Žarko (UNIZG-FER)

Michael Jacoby (IOSB)

Updated all sections

Updated all sections

v1.2 14/07/2017 Sergios Soursos Final editing and submission-ready version

Legal Notices
The information in this document is subject to change without notice.
The Members of the symbIoTe Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The
Members of the symbIoTe Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the furnishing, performance, or use of this
material.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 3 of 74
© Copyright 2017, the Members of symbIoTe

Table of Contents

1 Executive Summary 9

2 Introduction 11
2.1 Semantics in symbIoTe 11
2.2 Purpose of the document 11
2.3 Document Scope 11
2.4 Relation to other deliverables 12
2.5 Deliverable Outline 12

3 Background 13
3.1 What are semantics and why do we need it? 13
3.2 Semantic Interoperability 13
3.3 Semantic Web 14

3.3.1 Resource Description Format (RDF) 14
3.3.2 RDF Schema (RDFS) & Web Ontology Language (OWL) 15
3.3.3 SPARQL Protocol and RDF Query Language 17

3.4 Information Models of Existing Platforms used in symbIoTe 18
3.4.1 openUwedat 18
3.4.2 Symphony 19

4 Achieving Semantic Interoperability 22
4.1 Problem 22
4.2 Possible Approaches 22

4.2.1 Core Information Model 23
4.2.2 Multiple Pre-Mapped Core Information Models 23
4.2.3 Core Information Model with Extensions 24
4.2.4 Pre-Mapped Best Practice Information Models 25
4.2.5 Mapping between Platform-Specific Information Models 26

4.3 Comparison of Approaches 26

5 symbIoTe’s Approach to Semantic Interoperability 28
5.1 Survey on Information Model Domains 30
5.2 Core Information Model 32
5.3 Meta Information Model 34
5.4 Platform-Specific Information Models 35
5.5 Best-Practice Information Model 37

5.5.1 Units Of Measurement & Observed Properties 38
5.5.2 Smart Mobility Domain 41
5.5.3 Smart Yachting Domain 45
5.5.4 Smart Residence Domain 47
5.5.5 Smart Stadium Domain 50

5.6 Related Information Models and Ontologies 53
5.6.1 SSNO & SOSA 54
5.6.2 SensorThings API Information Model 55
5.6.3 Schema.org 56
5.6.4 oneM2M Base Ontology 57

5.7 symbIoTe Architecture from the Semantic Interoperability Perspective 59
5.7.1 Component Descriptions 59
5.7.2 Resource Registration 62
5.7.3 Resource Search using Semantic Mapping and SPARQL Query Re-Writing 63
5.7.4 Resource Access 65

5.8 Vision 65

6 Conclusions and Next Steps 69

7 References 70

8 Acronyms 73

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 4 of 74
© Copyright 2017, the Members of symbIoTe

 Table of Figures

Figure 1 Example RDF data depicted as graph. .. 15

Figure 2 The core Information Model of openUwedat. ... 19

Figure 3 openUwedat Information Model for SymbIoTe. ... 19

Figure 4 The Symphony data model. ... 20

Figure 5 Data model for a temperature sensor in Symphony. .. 20

Figure 6 Data model for a linear load actuator in Symphony. .. 21

Figure 7 Schematic representation of the problem of semantic interoperability
between different IoT platforms. .. 22

Figure 8 Solution space for possible approaches to semantic interoperability. 23

Figure 9 Structural similarity between an ontology-based model-driven KES and the
Core Information Model with Extensions. .. 25

Figure 10 High-level diagram showing how symbIoTe approaches syntactic and
semantic interoperability. .. 30

Figure 11 Outcome of the internal survey on which domains must/should/could be
modelled within symbIoTe. .. 31

Figure 12 Core Information Model v1.0.. 33

Figure 13 Meta Information Model v0.2. .. 34

Figure 14 Meta Information Model v1.0. ... 36

Figure 15 Structure of the Best Practice Information Model ... 37

Figure 16 Additional units of measurements defined in the common layer of the BIM. 39

Figure 17 Additional observed properties defined in the common layer of the BIM. 40

Figure 18 The Smart Mobility domain model of the BIM. ... 41

Figure 19 The Smart Yachting domain model of the BIM. ... 45

Figure 20 The actuation part of the Smart Residence domain model of the BIM. 48

Figure 21 The devices and properties part of the Smart Residence domain model of
the BIM. ... 48

Figure 22 The device and service part of the Smart Stadium domain model of the
BIM. ... 50

Figure 23 The parameter classes of the Smart Stadium domain model of the BIM. 51

Figure 24 Semantic Sensor Network (SSN) Ontology. .. 54

Figure 25 Updated SSN (blue) & SOSA (green) Ontology... 55

Figure 26 SensorThings API Information Model. ... 56

Figure 27 The oneM2M Base Ontology v3.2.0 [21]. .. 58

Figure 28 symbIoTe component diagram for Level 1 compliance (from D1.4) with
changes regarding semantic interoperability highlighted in green. 60

file://///pandora.intranet.gr/souse/SymbIoTe/03%20Deliverables/D2.4/D2.4-v1.1.docx%23_Toc487708142
file://///pandora.intranet.gr/souse/SymbIoTe/03%20Deliverables/D2.4/D2.4-v1.1.docx%23_Toc487708144

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 5 of 74
© Copyright 2017, the Members of symbIoTe

Figure 29 Sequence diagram showing resource registration, unregistration and
modification (from D1.4). ... 63

Figure 30 Schematic representation of an example usage of semantic mapping for
semantic interoperability. .. 64

Figure 31 Enhanced sequence diagram describing the search functionality with
respect to SPARQL query re-writing. .. 66

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 6 of 74
© Copyright 2017, the Members of symbIoTe

Table of Tables

Table 1 Most important classes of RDFS. .. 16

Table 2 Most important properties defined in RDFS. ... 16

Table 3 SPARQL query types. ... 17

Table 4 Changes of the Administration component introduced by semantic
interoperability. .. 59

Table 5 Changes of the Registry component introduced by semantic interoperability. 60

Table 6 Changes of the Search Engine component introduced by semantic
interoperability. .. 61

Table 7 Changes of the Semantic Manager component introduced by semantic
interoperability. .. 61

Table 8 Description of the Registration Handler component regarding the symbIoTe
Information Model. .. 62

Table 9 Description of the Resource Access Proxy component regarding the
symbIoTe Information Model. .. 62

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 7 of 74
© Copyright 2017, the Members of symbIoTe

Table of Listings

Listing 1 An example SPARQL query. ... 17

Listing 2 Example stationary CO2 sensor definition. .. 42

Listing 3 Example registration of a calculateGreenRoute service offered by the
enabler. ... 43

Listing 4 Example registration of a pointOfInterestSearch service offered by the
enabler. ... 44

Listing 5 Example RDF registration payload for a light actuator with on/off, RGB and
dimmer functionality. ... 49

Listing 6 Example RDF registration payload for a combined light sensor and actuator
with on/off functionality and internal temperature sensor. 49

Listing 7 Definition of GetInformationService class within the BIM. 53

Listing 8 Definition of PlaceOrderService class within the BIM. ... 53

Listing 9 Example registration of a retailer device. ... 53

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 8 of 74
© Copyright 2017, the Members of symbIoTe

(This page is left blank intentionally.)

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 9 of 74
© Copyright 2017, the Members of symbIoTe

1 Executive Summary

One of the main objectives of the symbIoTe project is creating a mediation framework to
facilitate the discovery and sharing of connected devices across existing and future IoT
(Internet of Things) platforms, as well as to enable platform federations and the rapid
development of cross-platform IoT applications. The problem is that these devices are
managed by different IoT platforms, which are designed for different application domains.
The requirement to enable information technology to deal with the semantic of data has
been one of the grand challenges in the computer science domain in the past, and
probably will be one for the near future. Having this in mind, this document proposes a
complete solution to the problem of semantic interoperability: first, we provide an analysis
of the problem domain and then present a practical solution to the IoT interoperability
problem. Deliverable D2.4 is the revised version of Deliverable D2.1 that focused on the
analysis of the general problem and defined the basic approach to interoperability
specified by the symbIoTe consortium. D2.4 provides more detailed information on how
symbIoTe approaches semantic interoperability thereby going beyond what was stated in
deliverable D2.1.

To understand the motivation of this document one may imagine a typical IoT platform for
any given domain, for example, a climate control system for a smart home. Such a
platform deals with data in a given context where the meaning is predefined, e.g., the
scale of a thermostat ranging from 0 to 5, where 0 means no heating and 5 valve is open.
It also has implicit data models like the location of a radiator, which relates to a room and
maybe to a heating circuit. Another IoT platform could manage for example self-monitoring
devices that collect data within a different context and different predefined meanings of
temperature and locations. To make such different IoT-platforms understand each other,
the meaning of data and concepts must be explicitly defined. The background chapter on
semantic interoperability introduces possible technical solutions for this task. With the
developments influenced by the so-called Semantic Web, there are established standards,
methods and tools available, like the RDF and the OWL format to describe the semantics
of data, which will be used by symbIoTe. The document also describes the achievements
in the development of semantic mapping, to translate one information model into another
that is semantically similar but structurally different. This capability is required for enabling
interoperability between platforms, which operate on individual data models.

There are several ways to achieve semantic interoperability. Section 4 explains and
discusses the possible approaches, from the simplest approach where everybody shares
the same understanding, to the most complex one where everybody may use different
concepts and interpretations that are then translated. From a practical perspective, neither
the easy nor the complex approach is feasible for most real-life applications. Therefore,
symbIoTe proposes an approach where it starts from a set of basic concepts shared
across all platforms that are connected via the symbIoTe framework1. These basic
concepts are sufficient to provide “meta”-understanding about the connected IoT platforms
and their resources, so that symbIoTe can provide a generic interoperable mediation
service for the IoT domain. To cover the actual meaning of platform-specific data, more
detailed platform specific concepts are required. symbIoTe thus proposes an approach
that allows multiple extensions to the basic concepts and aims to provide semantic and

1 We name the chosen approach "Core Information Model with Extensions."

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 10 of 74
© Copyright 2017, the Members of symbIoTe

syntactic transformation as a common interoperability service for those extensions. These
extensions can be platform-specific but also related to existing standard ontologies.

This deliverable further explains how the approach to semantic interoperability presented
in this document is incorporated into the symbIoTe architecture presented in D1.4.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 11 of 74
© Copyright 2017, the Members of symbIoTe

2 Introduction

In the context of this document, semantic can be understood as the meaning of things. Its
main purpose in symbIoTe is to enable interoperability, especially semantic
interoperability, which is “the ability of computer systems to exchange data with
unambiguous, shared meaning” [1] (see Section 3.2 for a detailed definition of semantic
interoperability). Some parts of this deliverable are based on the paper “Semantic
Interoperability as Key to IoT Platform Federation” [2] as well as the paper “Semantic
interoperability in IoT-based automation infrastructures” [3], both of which were authored
as part of the academic dissemination within symbIoTe.

2.1 Semantics in symbIoTe

As the overall objective of symbIoTe is to create an interoperability framework for IoT
platforms and to enable platform federation, achieving (semantic) interoperability is a key
challenge. symbIoTe plans to use semantic technologies to bridge the semantic gap
between existing and future IoT platforms with a goal to enable interoperability on a higher
level, the semantic level, which is a step forward in comparison to state of the art solutions
that primarily focus on syntactic interoperability.

2.2 Purpose of the document

The purpose of deliverable D2.4 “Revised Semantics for IoT and Cloud resources” is to
document the outcomes and results regarding semantics in the symbIoTe project. The role
of semantics within symbIoTe is described and approaches to achieve semantic
interoperability are identified and discussed. A detailed description on how symbIoTe
achieves semantic interoperability and the created information models are presented. This
document also specifies the impact of semantics on the architecture and provides a
realistic vision that goes beyond the project scope.

This document is the revised version of D2.1 “Semantics for IoT and Cloud Resources”
and therefore can be seen as an updated version of it. Most changes are related to
Section 5, especially with respect to the information models.

2.3 Document Scope

This document reports the work accomplished in T2.1 “Semantics for IoT and Cloud
Resources” with a strong focus on semantic interoperability. It presents a theoretical
analysis of the problem domain of semantic interoperability together with multiple possible
approaches to address this challenge. Furthermore, it discusses to what degree these
approaches are suitable to be used within symbIoTe, and justifies a decision to use the
Core Information Model with Extensions. Thereby, it strongly focuses on the definition of
information models.

Although it is briefly mentioned in the document, syntactic interoperability and how it is
addressed and realized by symbIoTe is not the primary subject to this deliverable.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 12 of 74
© Copyright 2017, the Members of symbIoTe

2.4 Relation to other deliverables

The content of this deliverable was motivated and influenced by the outcome of tasks T1.3
“System requirements” and T1.4 “System architecture” which has been published in D1.2
“Initial Report on System Requirements and Architecture” resp. D1.4 “Final Report on
System Requirements and Architecture”.

The work done in T2.1 “Semantics for IoT and Cloud Resources” and its outcome that is
documented in this deliverable has impact on multiple tasks, as semantic interoperability is
a core functionality of symbIoTe. The need for new functionality and components realizing
semantic interoperability directly influenced T1.4 “System architecture”, T2.2 “Virtual IoT
environment” and T3.3 “Specification & Implementation of IoT Federation”. Furthermore,
T2.3 “Implementation of symbIoTe domain-specific enablers”, T3.2 “Security and Access
Scopes” and T4.1 “Local Registration, Discovery and Interoperability of Smart Objects” are
influenced indirectly by the outcome of this deliverable.

2.5 Deliverable Outline

This deliverable is structured as follows: Section 3 introduces the term semantic
interoperability and provides background information on current semantic web
technologies and standards. In Section 4, the problem of achieving semantic
interoperability between multiple IoT platforms is explained in detail, together with a
number of possible approaches addressing it. Section 5 gives an outline of the approach
chosen by the symbIoTe consortium and justifies the decision. The information models
created and used within symbIoTe are presented in detail. Further, we explain how the
approach to semantic interoperability affects the system architecture and provide a vision
going beyond the project scope. The document closes with Section 6 presenting
conclusions and next steps.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 13 of 74
© Copyright 2017, the Members of symbIoTe

3 Background

3.1 What are semantics and why do we need it?

According to the Merriam-Webster dictionary, semantics is the study of meaning,
especially “the meaning or relationship of meanings of a sign or set of signs” [4]. A sign
here is a fundamental linguistic unit that designates an object or relation and therefore
semantics can be understood as the mapping of signs to their meaning. For example, a
sign could be a word, e.g. the word ‘table’, or a URI (Uniform Resource Identifier) like
‘http://www.example.com/table’ and the corresponding meaning would be the concept of a
table that is defined by its properties and context specifying that it is a constructed thing
which has some legs, a solid top and is normally found in a man-made environment. In
every act of communication, the involved actors, human or computers, require a shared
understanding of things. A typical way to express semantics is via a taxonomy or an
ontology, which is “an explicit specification of a [shared] conceptualization” [5] (explicit
because all relevant elements must be explicitly named in order to avoid
misinterpretations; shared because there must be a common agreement within a specific
domain of interest).

Knowing this, it is obvious that semantics plays an important role in every act of
communication. Without it, we would not be able to understand the meaning of the
exchanged information, or at least we could not be sure that we are having the same
understanding of it as our communication partner. To give an example image two people
having a conversation about the weather and one says “…it had 40 degrees outside”. In
this case, the semantics are not clearly defined as degrees could refer to degrees
Fahrenheit or to degrees Celsius. Communication might work by chance if both
conversation partners e.g. come from the same country and have the same understanding
of degree in the context of temperature but as long as they do not use a shared or agreed
upon vocabulary they cannot be sure that they both have the same understanding of the
exchanged information.

Transferring this example to the technical level of IoT platforms communication where data
is exchanged, processed and interpreted by machines this clear and formal definition of
meaning is even more important. This is because machines (most of the time) do not have
any capability of reasoning to come up with a probably correct interpretation of the
meaning of received data from others (mainly because they don’t have the information
they need for this task, in the given example this would be the cultural background of the
person speaking). Therefore, semantics is essential to bring multiple IoT platforms (which
were created by different persons with different cultural backgrounds and) with focus on
different domains together as they most probably will have different understandings of
things and interoperability most likely will fail.

3.2 Semantic Interoperability

A common understanding of the concept of interoperability is described in the Levels of
Conceptual Interoperability Model (LCIM) [6]. This definition is derived from simulation
theory, but it has a much broader applicability. This definition distinguishes seven levels of
interoperability that are grouped in three parts [7]:

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 14 of 74
© Copyright 2017, the Members of symbIoTe

• Integratability contends with the physical/technical realms of connections between
systems, which include hardware and firmware, protocols, etc.

• Interoperability contends with the software and implementation details of
interoperations, including exchange of data elements based on a common data
interpretation, etc.

• Composability contends with the alignment of issues on the modelling level. The
underlying models are purposeful abstractions of reality used for the
conceptualization being implemented by the resulting simulation systems.

For computer systems, the ability to have a clear and formalized way to express the
meaning of things is an indispensable precondition to achieve semantic interoperability.
Bringing both terms together, semantic interoperability can be defined as “the ability of
computer systems to exchange data with unambiguous, shared meaning” [1].

3.3 Semantic Web

The term Semantic Web was first used by Tim Berners-Lee in his article “The semantic
web” from 2001 stating that “the Semantic Web is not a separate Web but an extension of
the current one, in which information is given well-defined meaning, better enabling
computers and people to work in cooperation” [8].

The main concept of the Semantic Web is to extend the existing World Wide Web from a
web of (interlinked) documents to a web of (interlinked) machine-readable and
processable data. This is achieved through a family of very specific technology standards
driven by the World Wide Web Consortium2 (W3C). As the concept and the ideas of the
Semantic Web are essential to understand the problem of and the proposed solutions to
semantic interoperability presented in this document, the basic technologies and standards
are explained hereafter.

3.3.1 Resource Description Format (RDF)

RDF3 is the (metadata) data model for the Semantic Web and therefore can be seen as its
cornerstone technology. All data on the Semantic Web is represented in RDF, even the
schema description. The main advantage of RDF is its innate flexibility compared to the
tabular data model of relational databases and the tree-based data model of XML.

As shown in Figure 1, data in RDF is often depicted as a labelled, directed graph where
the nodes represent resources (depicted as ovals) or literals (depicted as rectangles) and
the labelled edges represent relations (often also called predicates). This representation
clearly shows the power of RDF to represent data without previously defining its structure,
unlike with relation databases.

2 https://www.w3.org/
3 https://www.w3.org/TR/2004/REC-rdf-primer-20040210/

https://www.w3.org/
https://www.w3.org/TR/2004/REC-rdf-primer-20040210/

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 15 of 74
© Copyright 2017, the Members of symbIoTe

Figure 1 Example RDF data depicted as graph.

All data in RDF is described as a triple (also often called statement or 3-tuple) of the form
(subject, predicate, object), e.g. (<http://en.wikipedia.org/wiki/Oxford> dc11:title
"Oxford"^^xsd:string). Subjects and predicates are resources that are represented by an
URI (Universal Resource Identifier). Objects can also be a resource or a literal (which
basically is another name for value). Datatypes of literals can be defined using XSD
datatypes4. The use of URIs to identify resources (which can be seen as an atomic piece
of information) allows globally unique addressing even between different databases and
thus allows global interlinking of information.

Collections of triples are called a graph. For better data management (e.g. access control,
simplified updating, trust), large collections of RDF data are usually segmented into
different named graphs. Triples stored in a named graph are often referred to as quads as
they are of the form (graph, subject, predicate, object). Databases designed to store RDF
data are referred to as triple (or quad) stores.

RDF is an abstract (metadata) data model, which means there are multiple serialization
formats that can be used to represent RDF data. The most popular are RDF/XML5, N-
Triples6, Turtle7, TriG8, RDFa9, Notation3 (N3)10 and JSON-LD11.

3.3.2 RDF Schema (RDFS) & Web Ontology Language (OWL)

RDFS12 and OWL13 are RDF schema languages, which are used to define meta models
for RDF data. These meta models are often referred to as vocabularies or ontologies,
which are explained in detail in the next section. Both, RDFS and OWL are themselves
expressed using RDF.

3.3.2.1 Vocabularies and Ontologies

The terms vocabulary and ontology are terms used very frequently in the context of
Semantic Web but are often defined and thus used differently. Generally, they are used to
describe a set of triples with a strong logical cohesion, i.e. belonging to a certain domain.
The W3C states, “there is no clear division between what is referred to as vocabularies

4 https://www.w3.org/TR/swbp-xsch-datatypes/
5 https://www.w3.org/TR/rdf-syntax-grammar/
6 https://www.w3.org/TR/n-triples/
7 https://www.w3.org/TR/turtle/
8 https://www.w3.org/TR/trig/
9 https://www.w3.org/TR/rdfa-primer/
10 https://www.w3.org/TeamSubmission/n3/
11 https://www.w3.org/TR/json-ld/
12 https://www.w3.org/TR/rdf-schema/
13 https://www.w3.org/TR/owl2-overview/

https://www.w3.org/TR/swbp-xsch-datatypes/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/trig/
https://www.w3.org/TR/rdfa-primer/
https://www.w3.org/TeamSubmission/n3/
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl2-overview/

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 16 of 74
© Copyright 2017, the Members of symbIoTe

and ontologies. The trend is to use the word ontology for more complex, and possibly quite
formal collection of terms, whereas vocabulary is used when such strict formalism is not
necessarily used or only in a very loose sense” [9].

For the rest of the document we will use the term ontology and refer to it as a set of triples
defining a meta model. This means ontologies only contain information about general
concepts and no data of concrete instances (often called individuals). The main idea
behind developing ontologies is to structure data in a clear and machine-readable way to
have a common understanding of things as well as to enable inference (making implicit
knowledge explicit through reasoning).

3.3.2.2 RDFS

RDFS is the most basic schema language of the Semantic Web. It is a very minimalistic
set of classes and properties used to describe classes of and relations between objects.
RDFS also distinguishes between classes and individuals (instances of classes). The most
important classes are listed in Table 1.

Table 1 Most important classes of RDFS.

Class Name Description

rdfs:Resource all things declared by RDF are resources

rdfs:Class describes the concepts of a class

rdfs:Literal describes the concept of a literal

rdfs:Property the class for properties

Table 2 Most important properties defined in RDFS.

Property Name Description

rdfs:domain defines to which subjects does a property applies

rdfs:range defines the set of values a property can accept

rdf:type used to state that a resource is an instance of a class

rdfs:subClass
Of

defines one class as a subclass of another class

rdfs:label provides a human-readable version of resource’s name

rdfs:comment provides a human-readable description of resource

rdfs:seeAlso link to another resource that might provide additional information

3.3.2.3 OWL

OWL is another RDF schema language, which is more expressive than RDFS and can
express quite subtle ideas about data. It is very efficient as it comes in various flavours,
called profiles, each with a different level of expressivity and therefore complexity and
computational power needed for inference. It includes everything RDFS provides and adds
many new classes and properties like

• owl:TransitiveProperty

• owl:unionOf

• owl:sameAs

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 17 of 74
© Copyright 2017, the Members of symbIoTe

• owl:inverseOf

• owl:hasValue

moreover, some properties to model meta-meta-data like

• owl:import

• owl:versionInfo

• owl:deprecatedProperty

3.3.3 SPARQL Protocol and RDF Query Language

SPARQL14 is the de facto standard query language for RDF data and quite similar to the
query language for relational data SQL.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

3 PREFIX dbp: <http://dbpedia.org/ontology/>

4
5 SELECT ?city ?popTotal

6 FROM <http://example.com/dataset.rdf>

7 WHERE

8 {

9 ?city rdf:type <http://dbpedia.org/class/yago/CitiesInTexas> .

10 ?city dbp:populationTotal ?popTotal .

11 }

12 ORDER BY ?popTotal

Listing 1 An example SPARQL query.

Looking at the overall structure of the example SPARQL query in Listing 1, we see that it is
quite similar to SQL. One main difference is the format of the WHERE clause as with
SPARQL it consists of a list of so-called triple patterns. These triple patterns are normal
triples which can contain a variable (starting with a ‘?’) on every position. When executed,
the variables in the triple patterns are bound to concrete values whereat all occurrences of
the same variable are bound to the same value. This concept is called graph pattern
matching and the results of the query are all possible valid combinations of values bound
to all mentioned variables. In SPARQL, there exist multiple query types as specified in
Table 3.

Table 3 SPARQL query types.

Query Type Description

SELECT returns a list of bindings which is basically a table like in SQL

CONSTRUCT returns a RDF graph which is basically a list of triples

DESCRIBE returns information about a single resource. What will be returned
is not generally defined but rather implementation dependent

ASK returns true if the query has at least one result, otherwise false

14 https://www.w3.org/TR/sparql11-overview/

https://www.w3.org/TR/sparql11-overview/

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 18 of 74
© Copyright 2017, the Members of symbIoTe

3.4 Information Models of Existing Platforms used in symbIoTe

In this section, we highlight the problem of enabling interoperability between multiple
platforms within symbIoTe by providing a practical example. Therefore, we present the
information models of two existing platforms, openUwedat from AIT and Symphony from
NXW that will be used within symbIoTe. These real world examples demonstrate which
services are needed when different IoT platforms want to exchange information.

3.4.1 openUwedat

openUwedat is not a closed system but rather a library and framework for arbitrary time
series oriented applications. It does not use a single data model, but rather adapts the
data model to the needs of specific applications. Nevertheless, there is a core data model
that applies to all applications and there are extensions that apply to individual
applications. Thus, the description of the data model is split into two parts, the general
information model and the information model used for the symbIoTe installation.

3.4.1.1 General Information Model

Like depicted in Figure 2, the core data model of openUwedat is constructed around
datapoints. These datapoints are sources and destinations of time series data.

Each datapoint can be queried to emit TimeSeries data. A TimeSeries is mainly a
container for Slots. TimeSeries object are comparable to the Observations collection of the
OData interface, which is currently used for syntactic interoperability in symbIoTe.

Each Slot has a reference time and zero or more values assigned to it. Thus, it is closely
related to symbIoTe’s concept of an Observation, as defined in Section 5.2.

Each slot’s value can be any type (restricted to Java types at the moment). This is related
to symbIoTe’s idea of an observation value.

TimeSeries have Properties. They are addressed in a dictionary style by using key-strings.
For this reason, the property system is easily extendable with new properties needed for
particular applications.

There is a set of Properties within the core model whose existence is mandatory or at least
strongly recommended:

• ValueKeys: This key describes which values are available within a slot.

• Units: A description of the Units of Measurements (UoM) related to each value.

Datapoints also have properties. The only mandatory property is ObservedProperty.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 19 of 74
© Copyright 2017, the Members of symbIoTe

Figure 2 The core Information Model of openUwedat.

3.4.1.2 Information Model of the SymbIoTe installation

For symbIoTe most of the core model was already covered by openUwedat’s core model.

Two important extensions were needed nevertheless:

• We needed a simple ID that can be exposed via the OData interface. This was
added to the set of properties.

• Each datapoint (aka Sensor or Resource) has a concept of location. For the
symbIoTe use case, this concept is simple as we are dealing with fixed stations.
Therefore, we just added a property location, which is composed of longitude,
latitude and altitude.

Figure 3 openUwedat Information Model for SymbIoTe.

3.4.2 Symphony

Symphony is the NXW platform for the integration of home/building control functions,
devices and heterogeneous subsystems. Symphony is a service-oriented middleware
integrating several functional subsystems into a unified IP–based platform. As
hardware/software compound, Symphony encompasses media archival and distribution,
voice/video communications, home/building automation and management, and energy
management. The platform owns a generalized abstract model for all the Internet
Connects Objects (e.g., smartphones, printers, sensors, actuators, etc.), managing a set of
context-driven decisions/actions. This leads to a quite complex data model, partitioned into
subcomponents, one for each service provided by the platform.

Figure 4 depicts a high-level diagram that explains the Symphony platform data model.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 20 of 74
© Copyright 2017, the Members of symbIoTe

Figure 4 The Symphony data model.

Since Symphony integrates a large number of sensors and actuators, two examples are
shown below:

• a temperature sensor (depicted in Figure 5)

Figure 5 Data model for a temperature sensor in Symphony.

• a linear load actuator (depicted in Figure 6)

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 21 of 74
© Copyright 2017, the Members of symbIoTe

Figure 6 Data model for a linear load actuator in Symphony.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 22 of 74
© Copyright 2017, the Members of symbIoTe

4 Achieving Semantic Interoperability

In this section, we introduce the problem of semantic interoperability between multiple IoT
platforms. Furthermore, we present multiple possible approaches how semantic
interoperability can be achieved on a general level together with their advantages and
disadvantages, which is the outcome of the analysis on semantic interoperability within the
symbIoTe project.

4.1 Problem

Figure 7 Schematic representation of the problem of semantic interoperability between
different IoT platforms.

Figure 7 depicts the general problem of semantic interoperability between multiple IoT
Systems. Each IoT platform models its data using an internal information model that is
used by native applications of this specific platform. As different IoT platforms are
designed by different bodies/communities/companies and often focus on different aspects
within IoT they tend to have platform-specific information models that differ in multiple
aspects. Closing this semantic gap means enabling semantic interoperability.

4.2 Possible Approaches

As outcome of our research on the problem domain of how to achieve semantic
interoperability, we identified a possible solution space, which is depicted in Figure 8. It
can be thought of as a line between two opposed approaches, which are, on the one side,
using a single core information model that all platforms must use and, on the other side,
using completely independent platform-specific information models for each platform,
which then need to be aligned using semantic mapping techniques. In between, there
exists a large, not clearly defined number of intermediate solutions. In the following, we
present the two basic solutions together with three representative intermediate solutions.
These approaches are motivated by and in-line with the concepts presented by Wache et
al. [10] and Choi et al. [11].

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 23 of 74
© Copyright 2017, the Members of symbIoTe

Figure 8 Solution space for possible approaches to semantic interoperability.

4.2.1 Core Information Model

The most widespread approach amongst existing platforms is to use a single core
information model that all platforms must comply with. This means that a platform can only
expose data that fits into this core information model, as custom extensions are not
permitted. If a platform needs to expose data that does not fit into the core information
model the platform cannot expose this data and cannot inter-operate with others. From our
perspective this is rather some form of standardization than an approach to enable true
semantic interoperability that will also work without adaption (e.g. changing the
“standard”/Core Information Model) when new IoT platforms covering eventually new
domains will emerge.

Pros

• easy to implement and use since the data from all platforms follows the same
information model

• resulting system easy to use for app developers who only need to know one
information model

Cons

• finding/defining an information model all platforms can agree upon may be difficult

• information model tends to become complex as it must comprise all data that
should be exchangeable between platforms

• will always exclude some platforms whose internal information model does not fit
the core information model

• no way to integrate future platforms with information models not compatible to the
core information model without breaking the existing system

4.2.2 Multiple Pre-Mapped Core Information Models

Based on the single core information model approach this one tries to make it more easy
and convenient for platform owners to integrate their internal information model by
supporting not only a single core information model but also multiple ones. To achieve that
a large number of existing platforms can easily participate it would be a good idea to
choose well-established information models (e.g. the Semantic Sensor Network Ontology
[12] (SSN) or the oneM2M ontology [13]) as core information models. To ensure
interoperability between platforms using different core information models the supported
models are already mapped to each other. As it will not always be possible to map two
core information models completely there will be some degree of information loss if

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 24 of 74
© Copyright 2017, the Members of symbIoTe

platforms conform to different core information models. On the other hand, if they comply
with the same model, they will be fully interoperable.

Pros

• flexible approach as further core information models and mappings can be added
over time

• does not enforce use of one single core information model which excludes less
platforms from participating

Cons

• may still exclude some platforms whose information model does not match any of
the core information models

4.2.3 Core Information Model with Extensions

This approach is based on an information model that is designed to be as abstract as
possible but at the same time as detailed as needed. Therefore, the core information
model should try to only define high-level classes and their interrelations, which act as
extension points for platform-specific instantiations of this information model. These
platform-specific instantiations either use the provided classes directly or they can define a
subclass, which can hold any platform-specific extensions to the core information model,
e.g. additional properties. Besides the high-level classes, the core information model may
also contain properties the system needs that will be very general properties like ID or
name in most of the cases.

This approach resembles an approach for a model-driven knowledge engineering system
(KES) presented by Studer et al. shown in Figure 9a where a domain ontology is extended
to an application ontology which is mapped to a method ontology that is finally used to
define in- and output of a method used to solve a problem. The core information model
with extensions can be very closely matched to this approach as depicted in Figure 9b.
The main difference is, that there exists not only a domain ontology that is extended but
rather the core information model, which contains the domain model and the system model
(which can be seen as a platform-specific extension of the domain model to the system
that provides the interoperability). The application ontology corresponds to the platform-
specific model, which is a platform-specific extension to the core information model, and
the method ontology corresponds to the internal information model of the platform as
depicted in Figure 9.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 25 of 74
© Copyright 2017, the Members of symbIoTe

Figure 9 Structural similarity between an ontology-based model-driven KES and the Core

Information Model with Extensions.

This results in an information model that has a minimalistic core that all platforms must
conform to and extension points to realize custom requirements. Two platforms using
different extensions can directly understand each other in terms of the core information
model and when they need also to understand the custom extensions, they must define a
semantic mapping between their extensions.

Pros

• provides basic interoperability between platforms by defining minimalistic core
information model

• provides full flexibility by custom extensions, i.e. no platforms are excluded

• high acceptance from adopter-side as it combines basic out-of-the-box
interoperability (by the core information model) with support for complex scenarios
(through extensions and semantic mapping)

Cons

• requires semantic mapping when custom extensions need to be understood by
different platforms

• defining a semantic mapping can be a complex task and requires additional work
from developers/platform owners

• design of the core information model is a complex task

4.2.4 Pre-Mapped Best Practice Information Models

Essentially, this is the same approach as Multiple Core Information Models but with one
small but significant modification: the provided information models are no longer seen as
core information models but rather as best practice information models. Hence, platforms
must not be compliant to any of the provided information models as in the previous
approach but can choose their information model freely. If they choose to re-use one of the
provided best practice information models they will gain instant interoperability to other
platforms also aligned with one of the best practice information models.

Pros

• no limitations on information model, hence does not exclude any platform

• best practice information models make usage for inexperienced platform owner
more easy

(a) Ontology-based approach for a model-
driven KES (based on Figure 6 from [43]).

(b) Conceptual structure of the Core
Information Model with Extensions approach.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 26 of 74
© Copyright 2017, the Members of symbIoTe

• better and broader interoperability due to already aligned best practice information
models

Cons

• no initial interoperability between platforms as long as no mapping is defined when
no pre-mapped information model is used

• defining a semantic mapping can be a complex task and requires additional work
from developers/platform owners

4.2.5 Mapping between Platform-Specific Information Models

In this approach, there is not anything like one or more core information models. Instead,
every platform independently provides its own information model. Interoperability is only
achieved through mapping between these platform-specific information models.

Pros

• not limited only to a fixed set of information models but rather supports all possible
information models

• mappings can be added iteratively increasing the degree of interoperability
Cons

• no initial interoperability between platforms as long as no mapping is defined

• defining a semantic mapping can be a complex task and requires additional work
from developers/platform owners

• the system does not understand any of the data it is processing

4.3 Comparison of Approaches

Section 4 presents the analysis of possible approaches for the semantic interoperability. It
is required to decide how independent IoT platforms should exchange meta-information
and thus create a pool of IoT data sources, resources and services available to the
applications. Such an interoperability is a crucial functionality for symbIoTe because it
addresses the need for a common framework across existing and future IoT platforms.
The framework will enable discovery and sharing of resources for rapid cross-platform
application development. Those applications exploiting multiple data sources and
resources will bring new innovative functionalities and lift up IoT to the next technology
level.

The first described approach “Core Information Model” seems to be the most suitable to
enforce interoperability between IoT platforms. Theoretically, if a shared vocabulary exists
there is no need to worry about inconsistency, complexity and performances issues of
additional operations like translations (complete or incomplete). Moreover, the
development process is simplified because developers can stick to only one standard
solution. From a business point of view application development becomes quicker and
cheaper. A popular understanding in the IoT domain is, that the quality und usefulness of
offered IoT services increases with the number of IoT devices and platforms deployed.
However, in the majority of the use cases heterogeneity has to be considered when
introducing a service or a product to the market. Nowadays, there are many IoT platforms
utilizing different information models to describe their resources, applying policies to share
their data and comprising implementation limits preventing smooth integration with other
platforms. It would be extremely difficult to convince IoT platform vendors to make deep
(and thus expensive) changes in their product. More realistic is to propose the solutions,

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 27 of 74
© Copyright 2017, the Members of symbIoTe

which try to find some compromise and balance. Nonetheless, the pursuit of
interoperability with the use of all possible platform-specific information models (“Mapping
between Platform-Specific Information Models”) is not a straightforward direction either. In
this case, semantic mapping and complexity for developers would bring disadvantages like
translation performance issues, possible slow progress of application development,
incomplete translations and the costs of supporting of new emerging information models.

If two aforementioned approaches are not suitable then one can analyse the three others
described in the previous subsections. The first one, “Core Information Model with
Extensions”, specifies the very abstract representation of an information model, which may
be applicable to any IoT platform. This allows for exchanging at least a set of basic,
platform-independent information. Any specific information may be modelled as an
extension including required mapping (translation) between extensions of respective
platforms. Apart from obvious advantages like flexibility and partial standardization, one
should emphasize the downsides. It is not clear if the generic abstract representation is
enough useful for interoperability and effective in real use cases. Moreover, certain
mappings between extensions may still be complex and incomplete. Regarding the last
two approaches, “Multiple Pre-Mapped Core Information Models” and “Pre-Mapped Best
Practice Information Models”, they are based on mappings of a subset of information
models. They require the implementation of translation mechanisms which results in all
related difficulties but may be suitable if it is assumed that the number of information
models is limited and stable. Moreover, those models are well known and widely accepted.

While Section 4 discussed all potential approach to semantic interoperability in detail, the
next chapter will present the chosen approach within symbIoTe.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 28 of 74
© Copyright 2017, the Members of symbIoTe

5 symbIoTe’s Approach to Semantic Interoperability

We analysed the approaches to semantic interoperability presented in Section 4 regarding
their suitability for symbIoTe and decided to follow the Core Information Model with
Extensions approach mainly due to two reasons. First, symbIoTe needs to have at least
some degree of understanding about the resource descriptions exposed by the platforms
to be able to provide additional services, e.g., location-based search for sensors. For this,
we need platforms to use the same terms to describe all information that is relevant to
symbIoTe. This is achieved by having a common, minimalistic Core Information Model
(CIM) covering these symbIoTe-relevant terms. Second, this approach gives almost full
flexibility to platforms as it allows them to model all non-symbIoTe-relevant information
within extensions with the only restriction that they must be extensions of the CIM. Due to
the first reason, the approaches Pre-Mapped Best Practice Information Models and
Mapping between Platform-Specific Information Models are not suitable as with these
approaches, symbIoTe would not be able to understand any of the resource descriptions
exposed by the platforms. On the other side, the approaches Core Information Model and
Multiple Pre-Mapped Core Information Models are not suitable as they require a complete
model of the whole IoT domain to be agreed upon between all platforms. Even if all
platforms could agree on such a model, it would massively limit the degree of freedom of
the platforms to expose their data as they want or need to. This approach enables
symbIoTe to support two patterns for semantic interoperability.

We name the first pattern interoperability by standardization, which means that as long as
platforms use (partially) the same vocabulary to describe their resources, they are
interoperable out-of-the-box. This is the de-facto standard level of semantic interoperability
as it can be found in real-world systems. In symbIoTe, we enforce these vocabularies (also
called models in our case) to be aligned with our Core Information Model. By this, we
enable also out-of-the-box interoperability (in terms of the CIM) between platforms that use
different vocabularies. Furthermore, we provide a Best-Practice Information Model (BIM),
which is a special kind of Platform-Specific Information Model tailored to the domains of
the use cases.

We name the second pattern interoperability by mapping. This allows two platform that use
completely disjoint (besides the CIM which they both have to extend) vocabularies to
interoperate by defining a mapping between their models. symbIoTe uses this mapping
information to transparently hide the fact that the other platform uses a completely different
vocabulary. From platform owner’s side it seems as if the other platform is using the same
model.

Supporting the interoperability by mapping pattern is a very complex task and goes far
beyond the current state-of-the-art15. Therefore, this document focuses on the
interoperability by standardization pattern and explains the idea behind the interoperability
by mapping pattern but does not provide further technical details on its implementation.
Furthermore, at the end of this section, we provide a vision on how an integrated
interoperability solution including mapping could be designed to make it useable in
practice.

15 Note that interoperability by mapping is not foreseen in symbIoTe Description of Action.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 29 of 74
© Copyright 2017, the Members of symbIoTe

Figure 10 shows the concept for realizing the Core Information Model with Extensions
approach presented in Section 4.2.3. On the left and right hand side, we see two typical
vertical IoT silos. Each platform uses its own internal information model to provide a
platform-specific API, which is then used by native applications. Between those two
vertical IoT silos, we see the symbIoTe interoperability framework depicted in light grey
providing interoperability between the two IoT platforms. As proposed in Section 4.2.3 and
shown in Figure 9b, symbIoTe uses two central information models: the Core Information
Model (CIM) describing domain specific information (matches the Domain Model in Figure
9b) and the Meta Information Model (MIM) describing symbIoTe internal meta information
about platforms and resources (matching the System Model in Figure 9b). For a platform
to become symbIoTe-compliant, it must expose its data using a Platform-Specific
Information Model (PIM), which is the CIM with platform-specific extensions to it. We also
depict the key idea of the interoperability by mapping pattern depicted by the arrow
connecting two platform-specific information models. This allows to define how the
platform-specific extension of one platform can be translated into the platform-specific
extensions of another platform, and therefore allows to define an arbitrary degree of
interoperability between two platforms (i.e. the detail of alignment between two PIMs).
When an app or a platform queries symbIoTe to find resources of interest on all available
platforms, symbIoTe uses these mappings between platform-specific extensions to re-
write the original query to fit the platform-specific information model of each extension and
to execute the query against the stored metadata (resource metadata is of course in line
with each PIM). Details on the symbIoTe Information Model as well as semantic mapping
enabled by SPARQL query re-writing are provided in the following sections.

To enable syntactic interoperability, which is a prerequisite for semantic interoperability,
we need platforms to expose their data in a unified way. For that, symbIoTe defines the
Interworking Interface, a REST-based interface with JSON payload that is motivated by
the Open Data Protocol16 (OData). The data returned by each platform through the
Interworking Interface is based on the platform’s PIM. This means, upon a request to a
platform the response may contain more information than defined in the CIM. If the
requester is only interested in data based on the CIM, any additional fields in the JSON
object can be ignored. However, if the requester is another platform using a different PIM
and given that there exists a mapping in the Core between those two PIMs, a data
transformation is required which transforms the original JSON object to another object in
line with requester’s PIM.

Data transformation cannot be performed by symbIoTe Core Services because this would
require the Core to have access to all the data transferred between platforms, which
breaches security. The queried platform would be capable of doing this without violating
the security concept; however, platform owners might not be willing to provide, maintain
and pay the computational resources needed to execute this task just to provide their data
in any desired format to anyone consuming data from their platform. Therefore, this task
might be performed on the requester-side. For this reason, symbIoTe will provide this
functionality as a library that can be used by any consumer.

All information models created in symbIoTe are realized as OWL ontologies and are
available on GitHub17. They are also hosted on the symbIoTe website under the following

16 http://www.odata.org/
17 https://github.com/symbiote-h2020/Ontologies

http://www.odata.org/
https://github.com/symbiote-h2020/Ontologies

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 30 of 74
© Copyright 2017, the Members of symbIoTe

URLs so that all their URIs are resolvable via HTTP according to the principles to Linked
Data [14]:

• Core Information Model https://www.symbiote-h2020.eu//ontology/core

• Meta Information Model https://www.symbiote-h2020.eu//ontology/meta

• Best-Practice Information Model https://www.symbiote-h2020.eu//ontology/bim

Figure 10 High-level diagram showing how symbIoTe approaches syntactic and semantic
interoperability.

5.1 Survey on Information Model Domains

To find out which domains need to be covered by the symbIoTe information models, we
conducted a project-internal survey. We started out by collecting requirements about
relevant domains and came up with the following twelve domains that are divided into four
groups:

• Observation & Measurement

o Time: Concepts of time instant, time interval, time zones, etc.

o Location: Basic geo-location like long/lat/alt, polygon, symbolic location.

o Sensors: Definition of an abstract concept of a sensor.

o Units of Measurement: Abstract concept, may include some model of units.

• Access & Control

o Actuators: Definition of an abstract concept of an actuator.

https://www.symbiote-h2020.eu/ontology/core
https://www.symbiote-h2020.eu/ontology/meta
https://www.symbiote-h2020.eu/ontology/bim

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 31 of 74
© Copyright 2017, the Members of symbIoTe

o Services: Services offered by symbIoTe-compliant IoT platforms.

o Protocols: Protocols via which these platforms can be accessed.

• Interoperability

o symbIoTe infrastructure: Description of symbIoTe-compliant platforms for
discovery purpose.

o Quality of Service / SLA: Concepts describing QoS parameters of
interoperability e.g. reliability, availability, response time, etc.

o Trading & Bartering: Concepts like cost and utility functions, algorithms, etc.

• Security

o Identity & Access Management: Concepts needed for IAM like roles, access
rights, etc.

o Encryption: Abstract concept, may include concrete encryption algorithms.

We then asked the project partners to state their opinion whether these domains must,
should, or could be part of the core ontology. The outcome is shown in Figure 11, which
shows that location and time are believed to be the most important concepts together with
units of measurement and sensors. For identity & access management, actuators and
symbIoTe infrastructure there is a strong position that these concepts should be part of the
CIM. Services and Protocols are open for discussion as at most 50% of partners think that
this should be an essential element of the CIM. The same goes for Bartering & Trading.
Encryption & Quality of Service / SLA is not considered part of the CIM.

Figure 11 Outcome of the internal survey on which domains must/should/could be
modelled within symbIoTe.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Quality of Service / SLA

Encryption

Trading & Bartering

Protocols

Services

symbIoTe Infrastructure

Actuators

Identity & Access management

Sensors

Units of Measurement

Time

Location

MUST SHOULD COULD

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 32 of 74
© Copyright 2017, the Members of symbIoTe

5.2 Core Information Model

The Core Information Model (CIM) is the central information model of symbIoTe and
serves a two-fold purpose. First, it defines all the terms (classes and their relations) that
symbIoTe components, especially the Core, can understand. The second purpose is that it
serves as a shared vocabulary between all symbIoTe-compliant platforms and thereby
enables out-of-the-box interoperability between them. Therefore, it is designed as a trade-
off between a detailed and sophisticated model, which is easy to use out-of-the-box, and a
very abstract and general model, which allows for maximal interoperability. As ontology
design is always an iterative process, it did undergo multiple changes and extension within
seven iterations until the final version 1.0 of the CIM.

The central class of the model is Resource which is also used within the Meta Information
Model to link a Resource belonging to a Platform (or more specific, to an implementation
of the Interworking Interface; see following section for details). symbIoTe knows different
types of resources, which are modelled as subclasses of Resource in the CIM. They are
divided into Service and Device, which is further divided into Sensor, which can be a
MobileSensor or a StationarySensor, and Actuator. For better overview, classes and
relations belonging exclusively to one of these domains are highlighted using the same
shade of green. Elements defined in other, already existing ontologies are highlighted in
light grey. In the following, these three main domains are described in detail.

The sensor domain is strongly influence by the Semantic Sensor Network (SSN) ontology
[12] as well as the Sensor-Observation-Sampling-Actuator (SOSA) ontology [15], which is
part of the proposal for a re-design of the SSN ontology. Therefore, the basic classes and
their relations of the SSN ontology can be found in the CIM: Sensor, Observation,
ObservationValue, Property, FeatureOfInterest and UnitOfMeasurement. As the SSN
ontology does not allow to define the capabilities of a sensor without having existing
observations from that sensor, we added a relation between Sensor and Property as well
as one between StationarySensor and FeatureOfInterest to support definition of properties
(and feature of interest) a sensor can observe. For modelling observation times, we re-use
the W3C Time Ontology18.

The second major domain covers the actuating part and is based on the combination of
two actuator models. From the Actuation-Actuator-Effect ontology pattern19, which applies
the Stimulus Sensor Observation pattern [16] to the actuation domain we took the idea of
actuators triggering effects, and from the SOSA ontology the idea of linking actuators to a
feature of interest and its properties. Therefore, the classes FeatureOfInterest and
Property belong neither to the sensing nor to the actuating domain, but are rather used as
a link between them. For better usability, we introduced the Capability class grouping
multiple effects of an actuator in a re-usable block, which can be used in a functional
interface style as they represent method definitions and link them with their real-world
effect.

The third major domain is the service domain. In the CIM diagram, it is rather small as it
consists only of a single class, the Service class, and four outgoing relations. This is
because the most complexity of the service model is related to the modelling of
parameters and datatypes, which is a crosscutting domain.

18 https://www.w3.org/TR/owl-time/
19 http://ontologydesignpatterns.org/wiki/Submissions:Actuation-Actuator-Effect

https://www.w3.org/TR/owl-time/
http://ontologydesignpatterns.org/wiki/Submissions:Actuation-Actuator-Effect

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 33 of 74
© Copyright 2017, the Members of symbIoTe

Figure 12 Core Information Model v1.0.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 34 of 74
© Copyright 2017, the Members of symbIoTe

Besides the three major domains, there are even more classes and relations that belong to
some crosscutting (sub) domains, i.e., they are being used in a subset of the three major
domains. They can roughly be categorized into the domains datatypes, parameters and
location. The datatype domain allows definition of primitive and complex datatypes, which
can be used as datatype for in- and output parameters. The parameter domain allows
definition of input parameters as well as fine-grained restrictions to those parameters. Both
are use in the service, as well as the actuation domain.

The location domain allows definition of locations in three different types: by well-known
text (WKTLocation), GPS position (WGS84Location) and as a symbolic location
(SymbolicLocation). When one of the first two formats is used, symbIoTe can understand
which data and devices can be found by location using the symbIoTe Search feature
provided by its Core Services.

5.3 Meta Information Model

The Meta Information Model (MIM) is used to store metadata about platforms and
resources within the symbIoTe Core components. Like the CIM, it was designed iteratively
through three iterations. It started as a model linking platforms, information models and the
mappings between information models. With version 0.2, it evolved to a more complex
model as depicted in Figure 13.

Figure 13 Meta Information Model v0.2.

MIM defines that a user can be the owner of multiple platforms and information models.
Each platform can expose multiple implementations of the Interworking Interface
(represented by class InterworkingService) which uses a specific information model and
exposes some resources based on this model. Furthermore, the MIM allows specifying
mappings between two information models that are defined using some sort of a mapping
language.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 35 of 74
© Copyright 2017, the Members of symbIoTe

The final version (v1.0) of the MIM is depicted in Figure 14. It is the same as v0.2 but with
some extensions to support different tasks and functionalities within symbIoTe, e.g.
federations and access management that will be presented hereafter.

Access Management is covered by the classes AccessAttribute and
MetaAccessAttribute. MetaAccessAttribute allows defining platform-specific attributes
together with value restrictions, while the class AccessAttribute is used for user-specific
instantiation of the attributes carrying also the value of the attribute.

Federation Federations comprise a number of Interworking Interface implementations.
They may agree on a common SLA that is stored as a string inside the MIM and can be
defined using any suitable domain-specific language.

Optional Features are an extension that allows to model if a Platform or a Resource
support different kind of features. This can be for example subscription to resources or
prioritized or exclusive resource access.

Resource Status & Resource Popularity extension allows accessing the status and the
popularity of a resource determined via monitoring.

Further, some additional changes are worth mentioning. First, each InformationModel now
has a definition in the form of an OWL ontology definition and second, each Mapping has a
definition in the form of an Alignment, which links to the ontology of the Alignment API [17].

5.4 Platform-Specific Information Models

As explained in Section 5 and depicted in Figure 10, symbIoTe allows platforms to define
custom extensions of the CIM called Platform-Specific Information Models (PIMs). A PIM
must be an extension of the CIM, meaning that it is not allowed to alter or change parts of
the CIM. PIMs are intended to solely contain additional classes and predicates that are
necessary for describing the data provided by a specific platform. This enables platforms
to describe their domain with an adequate level of detail. It is possible for multiple
platforms to use the same PIM. Actually, such approach leads to interoperability by
standardization which is encouraged to be used whenever possible.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 36 of 74
© Copyright 2017, the Members of symbIoTe

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 37 of 74
© Copyright 2017, the Members of symbIoTe

5.5 Best-Practice Information Model

The Best Practice Information Model (BIM) is a special kind of PIM that is designed to
cover the domains of the use cases. As stated previously in Section 5, symbIoTe supports
two kinds of interoperability: interoperability by standardization and interoperability by
mapping. In four out of five use cases, the interoperability by standardization is used.
According to this, the BIM is used as a “standardized” or “agreed-upon” information model
throughout those four use cases. The fifth use case, the EduCampus use case, will be
realized using the semantic mapping approach described in Section 5.7.3. The symbIoTe
use cases are presented in detail in D1.3 “Final Specification of Use Cases and Initial
Report on Business Models”.

Figure 15 Structure of the Best Practice Information Model

Figure 15 depicts the structure of the BIM. As every PIM, it is an extension of the CIM.
Additionally, it uses the Ontology for Quantity Kinds and Units (QU ontology), which is an
ontology defining units and physical properties. Based on the QU ontology, the BIM
provides a common layer defining additional units of measurements and observed
properties that are shared across all of the use case domains.

On the top of that common layer, we have four separate parts of the BIM, one for each of
the four use case domains: Smart Mobility, Smart Yachting, Smart Stadium and Smart
Residence. Below the use case name stands the relative URI of the model, followed by the
list of platforms brought into symbIoTe by partners that will be used within the use case.
These parts of the BIM where developed separately by the use case owners in tight
collaboration with T2.1 in an iterative manner. They are use-case-specific and cover two
aspects: 1) Which data does an application/enabler (the concept of enablers within
symbIoTe is explained in detail in D2.3 “Report on symbIoTe Domain-Specific Enablers
and Tools”) need to understand from a platform? 2) If an enabler is used, what does an
app need to understand about the offered services from an enabler?

It might be puzzling for some readers that these models appear sometimes a bit
“disconnected”. The reason for this is that it is not a model in the classical sense of an

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 38 of 74
© Copyright 2017, the Members of symbIoTe

UML diagram but rather a collection of terms, called a vocabulary, need to describe the
domain and needed for the services provided in the use cases. Although one does not see
it at a first glance, these models are completely connected (between their components).
This means that each element is reachable from each other element by some path. The
main reason it may appear unconnected is that many connections are only created upon
usage of the model, e.g. registering resources of a platform that is using the BIM within
symbIoTe. Another reason is, that the models are quite complex and displaying them in a
graphical way is not always appropriate, as it would get confusing. Therefore, at some
points, the models are depicted in a partially informal and incomplete way (e.g. by
including tables into the figures). For better understanding of connections that are made at
registration time of resources, we also provide a number of small RDF examples how the
payload of such a registration could look like.

In the following sections, we will present the different parts of the BIM in detail. However,
they are not explained and described down to the smallest detail, as this would go beyond
the scope of this document. Please refer to the ontology definitions available on GitHub20
for the most detailed information about the BIM (and other information models in
symbIoTe).

5.5.1 Units Of Measurement & Observed Properties

The BIM re-uses an existing ontology called Ontology for Quantity Kinds and Units (QU
ontology) for describing units of measurement and observable properties. It is partially
based on the OMG SysML QUDV (Quantities, Units, Dimensions and Values) which is part
of the OMG SysML 1.2 standard [18]. It has been made available by the W3C Semantic
Sensor Network Incubator Group21. In symbIoTe, it is used as a structured collection of
units and observable properties.

5.5.1.1 Units of Measurement

To identify which units of measurement are needed within the BIM, we gathered
information about which units are used by existing platforms or needed within a use case
from platform and from use case owners. Figure 16 shows all the needed units and the
alignment of the QU ontology with the CIM. Units already defined within the QU ontology
are displayed in light grey whereas units defined by the BIM are display in white. The
newly defined units are aligned within the taxonomy of the QU ontology.

5.5.1.2 Observed Properties

For observed properties, we also gathered the needs of platform and use case owners and
tried to re-use what is already present within the QU ontology. Figure 17 shows only some
of these properties as the Smart Mobility use case relies on the list of air quality pollutants
as defined by the European Environment Agency22 which comprises around 500 different
observable properties for air quality. Furthermore, it shows the alignment of the QU
ontology with the CIM through making qu:QuantityKind a subclass of core:Property. As the

20 https://github.com/symbiote-h2020/Ontologies
21 https://www.w3.org/2005/Incubator/ssn/
22 http://dd.eionet.europa.eu/vocabulary/aq/pollutant/

https://github.com/symbiote-h2020/Ontologies
https://www.w3.org/2005/Incubator/ssn/
http://dd.eionet.europa.eu/vocabulary/aq/pollutant/

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 39 of 74
© Copyright 2017, the Members of symbIoTe

QU ontology uses SKOS to classify properties, we decided to also do this for the observed
properties within the BIM and added respective instances of skos:Scheme.

Figure 16 Additional units of measurements defined in the common layer of the BIM.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 40 of 74
© Copyright 2017, the Members of symbIoTe

Figure 17 Additional observed properties defined in the common layer of the BIM.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 41 of 74
© Copyright 2017, the Members of symbIoTe

5.5.2 Smart Mobility Domain

Figure 18 The Smart Mobility domain model of the BIM.

The Smart Mobility and Ecological Routing use case addresses the problem of inefficient
transportation and poor air quality that many European cities face nowadays. This use
case offers the ecologically most preferable routes for motorists, bicyclists and pedestrians
based on the available traffic and environmental data acquired through various
platforms. This scenario is extremely relevant for people who travel within the major
European cities, since a constant exposure to pollutants can cause severe health
problems. It is also of interest to the municipalities’ governing bodies that, by helping their
citizens to avoid these health problems, they can reduce health care costs. Additionally,
the use case will provide a way for users to search for Points of Interests, filtered by
certain factors such as air quality, noise pollution and parking availability. symbIoTe will
empower this use case by providing platform interoperability, allowing developers to easily
access and handle data from different platforms and domains in the same manner.

The Smart Mobility domain model is depicted in Figure 18. It is rather simple as the basic
functionality needed from the platforms for this use case is air quality sensing (which is
already cover by the CIM). The only extension needed to the sensing domain is the added
optional ObservationType of an observation. The classes MovementType, PointOfInterest,
PointOfInterestType, Level and Waypoint are only used to describe in- and output
parameter of the services offered by the enabler for this use case.

Listing 2 shows an example definition for the registration of a stationary CO2 sensor.
Besides the definition of the observed property bim:carbonDioxideConcentration only
terms already defined in the CIM are used.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 42 of 74
© Copyright 2017, the Members of symbIoTe

sensorX a owl:NamedIndividual ;

 a core:StationarySensor ;

 core:observesProperty bim:carbonDioxideConcentration ;

 core:locatedAt [a WGS84Location ;

 geo:lat "48.2081743"^^xsd:double ;

 geo:long "16.3738189"^^xsd:double

] ;

 core:hasFeatureOfInterest [a WGS84Location ;

 geo:lat "48.2081743"^^xsd:double ;

 geo:long "16.3738189"^^xsd:double

] .

Listing 2 Example stationary CO2 sensor definition.

Listing 3 and Listing 4 are more complex examples of an RDF specification used to
register the calculateGreenRoute and pointOfInterestSearch services offered by the
enabler within symbIoTe.

The calculateGreenRoute service computes a route between two points taking into
account the transportation method preferred by a user. It takes three parameters as input:

• start and end, which have a complex datatype based on core:WGS84Position but
using only its geo:lat and geo:long attributes. They represent the locations of the
start and the end of the desired route.

• movementType is a string-valued parameter which only accepts the label-values of
instances of the class MovementType, which represents the preferred method of
transportation of the user.

The return type of the service is again a complex datatype based on the class Waypoint
containing the attributes geo:lat and geo:long from WGS84Position together with an
optional hint of type string.

The pointOfInterestSearch searches for PoIs within a certain area following user’s
preferences. It takes as input parameters:

• location, representing the centre of the area where the user wants to find PoIs and
represented as a complex datatype based on core:WGS84Position

• radiusInMeter an integer value that represents the radius in meters around the
point defined by location that should be considered

• POIType a string-valued parameter representing the type of PoI the user is looking
for; realized as complex data with a restriction to instances of the class
PointOfInterestType

• propertyType a string-valued parameter that indicates the type of sensor which will
aid in the search of the PoI

• propertyLevel a string-valued parameter which only accepts the label-values of
instances of the class Level and it indicates the level of a certain amount of an
observed property indicated in propertyType

The service will return an array of objects of the class PointOfInterest, with their respective
name, position and type.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 43 of 74
© Copyright 2017, the Members of symbIoTe

calculateGreenRouteService a owl:NamedIndividual ;
 a core:Service ;
 core:name "calculateGreenRoute"^^xsd:string ;
 core:hasParameter [a core:Parameter ;
 core:name "start"^^xsd:string ;
 core: mandatory "true"^^xsd:boolean ;
 core:hasDatatype [a core:ComplexDatatype ;
 core:basedOnClass core:WGS84Location ;
 core:hasProperty [a core:PrimitiveProperty
 core:hasDatatype xsd:double ;
 core:basedOnProperty geo:lat
] ;
 core:hasProperty [a core:PrimitiveProperty
 core:hasDatatype xsd:double ;
 core:basedOnProperty geo:long
]]] ;
 core:hasParameter [a core:Parameter ;
 core:name "end"^^xsd:string ;
 core: mandatory "true"^^xsd:boolean ;
 core:hasDatatype [a core:ComplexDatatype ;
 core:basedOnClass core:WGS84Location ;
 core:hasProperty [a core:PrimitiveProperty
 core:hasDatatype xsd:double ;
 core:basedOnProperty geo:lat
] ;
 core:hasProperty [a core:PrimitiveProperty
 core:hasDatatype xsd:double ;
 core:basedOnProperty geo:long
]]] ;
 core:hasParameter [a core:Parameter ;
 core:name "MovementType" ;
 core:mandatory "false"^^xsd:boolean ;
 core:hasDatatype xsd:string ;
 core:hasRestriction [a InstanceOfRestriction ;
 core:onlyInstancesOfClass bim:MovementType ;
 core:valueProperty rdfs:label
]] ;
 core:hasReturnType [a core:ComplexDatatype ;
 core:basedOnClass bim:Waypoint ;
 core:hasProperty [a core:PrimitiveProperty
 core:hasDatatype xsd:double ;
 core:basedOnProperty geo:lat
] ;
 core:hasProperty [a core:PrimitiveProperty
 core:hasDatatype xsd:double ;
 core:basedOnProperty geo:long
] ;
 core:hasProperty [a core:PrimitiveProperty
 core:hasDatatype xsd:string ;
 core:basedOnProperty bim:hint
]] .

Listing 3 Example registration of a calculateGreenRoute service offered by the enabler.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 44 of 74
© Copyright 2017, the Members of symbIoTe

poiSearchService a owl:NamedIndividual ;
 a core:Service ;
 core:name "pointOfInterestSearch"^^xsd:string ;
 core:hasParameter [a core:Parameter ;
 core:name "location"^^xsd:string ;
 core: mandatory "true"^^xsd:boolean ;
 core:hasDatatype [a core:ComplexDatatype ;
 core:basedOnClass core:WGS84Location ;
 core:hasProperty [a core:PrimitiveProperty
 core:hasDatatype xsd:double ;
 core:basedOnProperty geo:lat
] ;
 core:hasProperty [a core:PrimitiveProperty
 core:hasDatatype xsd:double ;
 core:basedOnProperty geo:long
]]] ;
 core:hasParameter [a core:Parameter ;
 core:name "radiusInMeter"^^xsd:string ;
 core: mandatory "true"^^xsd:boolean ;
 core:hasDatatype xsd:string
] ;
 core:hasParameter [a core:Parameter ;
 core:name "pointOfInterestType" ;
 core:mandatory "false"^^xsd:boolean ;
 core:hasDatatype xsd:string ;
 core:hasRestriction [a InstanceOfRestriction ;
 core:onlyInstancesOfClass bim:PointOfInterestType ;
 core:valueProperty rdfs:label
] ;
 core:hasParameter [a core:Parameter ;
 core:name "propertyType"^^xsd:string ;
 core: mandatory "false"^^xsd:boolean ;
 core:hasDatatype xsd:string ;

 core:hasRestriction [a InstanceOfRestriction ;
 core:onlyInstancesOfClass core:Property ;
 core:valueProperty rdfs:label

]] ;
 core:hasParameter [a core:Parameter ;
 core:name "propertyLevel" ;
 core:mandatory "false"^^xsd:boolean ;
 core:hasDatatype xsd:string ;
 core:hasRestriction [a InstanceOfRestriction ;
 core:onlyInstancesOfClass bim:Level ;
 core:valueProperty rdfs:label
]] ;
 core:hasReturnType [a core:ComplexDatatype ;
 core:basedOnClass bim:PointOfInterest ;
 core:hasDatatype [a core:ComplexDatatype ;
 core:basedOnClass core:WGS84Location ;
 core:hasProperty [a core:PrimitiveProperty
 core:hasDatatype xsd:double ;
 core:basedOnProperty geo:lat
] ;

 core:hasProperty [a core:PrimitiveProperty
 core:hasDatatype xsd:double ;
 core:basedOnProperty geo:long

Listing 4 Example registration of a pointOfInterestSearch service offered by the enabler.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 45 of 74
© Copyright 2017, the Members of symbIoTe

5.5.3 Smart Yachting Domain

The Smart Yachting use case consists of the following two showcases:

• Smart Mooring aims to automate the mooring procedure of the port, which is quite a
bureaucratic and tedious process (Marinas operate in strongly regulated contexts).
For this showcase, Navigo is working to integrate its PortNet application, which is a
workflow management system that controls and supervises a certain number of
Port’s authorization procedures.

• Automated Supply Chain aims to identify the needs for goods and services on
board, by using IoT sensors, so that automated requests for offers can be issued in
the marketplace service in the Port, implemented by another application developed
by Navigo infrastructure (Centrale Acquisti).

Figure 19 The Smart Yachting domain model of the BIM.

To better understand the model, it makes sense to provide a brief description of how these
two showcases will work. They will both operate in a context that involves the following
conditions:

• The Port has an IoT Platform.

• The Yacht has an IoT Platform on board.

• The platforms interoperate through symbIoTe.

• No need for the platforms to be the same, as long as they are both symbIoTe
enabled (e.g. a vessel might have a simplified system like Navigo Digitale Yacht,
whereas a yacht might have Nextworks’ Symphony on board).

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 46 of 74
© Copyright 2017, the Members of symbIoTe

• The Port IoT Platform connects with sensors and "devices" in its area through both
LoRaWAN (Long Range Wide Area Network) and WiFi.

• Navigo’s applications, the aforementioned PortNet and Centrale Acquisti, will be
both integrated in the symbIoTe ecosystem through Enablers. This should facilitate
other actors (e.g. other ports with different applications) to implement the Smart
Yachting use case by simply rewriting the integration logic between their
applications and the enablers.

symbIoTe will allow to automatically retrieve yacht data that is essential to process the
mooring workflow or the supply chain request.

For Smart Mooring it is also assumed that the Yacht is seen as a Smart Device and the
port is a Smart Space (Level 3 compliance as explained in D1.4 “Final Report on System
Requirements and Architecture”). Moreover, we assume that the Yacht maintains its ID
when moving between Ports: the Yacht will be therefore seen as an example of a Roaming
Device, achieving Level 4 symbIoTe compliance.

The Smart Yachting domain model is depicted in Figure 19. As shown, the model revolves
around the concepts of Yacht, Port and Services. It was indeed important to provide a
formal description of the kinds of services that a Yacht, on the one hand, supports, and a
Port, on the other, offers. The services implemented in the Smart Yachting use case have
been described as entities of the HarbourServiceType class. This allows the model to be
easily extended over time.

Accessing yacht’s machine data through symbIoTe will be different in the two showcases.

For Smart Mooring, the workflow application needs, on the one hand, to simply retrieve a
set of machine data from the yacht sensors; on the other it also needs the latest route of
the yacht (that is, the route from the latest port to the present position), which is of course
a much richer type of information.

For the former case, the model introduces the concept of YachtComponent which features
two main subclasses, one – Exhaust – to provide an indication of the current temperature
of the two classic yacht exhausts, and the other – Tank – to measure the level of the
different tanks within the boat.

Exhaust and Tank are superclasses that generalize the actual sensors that provide
measurements: in this regard, each of their subclasses constitutes a FeatureOfInterest,
linked to a specific Property of the yacht for which a machine value (tankLevel,
exhaustTemperature) can be measured and provided.

Route on the other hand is a time-ordered sequence of geographic coordinates. Each
position (RoutePoint) has an associated timestamp plus an actual geo-position. A specific
service must be provided on the yacht side to provide the latest route
(getLatestRouteService).

As said, the Automated Supply Chain showcase will be based on identifying, through IoT
sensors, the needs for goods and services on board of a Yacht, so that automated
requests for offers can be issued on the marketplace platform of the Port.

We identified two main kinds of needs, MaintenanceNeed and ConsumableNeed. The
former will be always associated to a particular instance of the class Fault (e.g.
engineFault, electricFault, etc). A ConsumableNeed more generically identifies a resupply

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 47 of 74
© Copyright 2017, the Members of symbIoTe

need on board, e.g. the need to purchase wine if sensors in a smart fridge detect a low
number of bottles.

From a technical viewpoint, the problem of easily and effectively classifying the needs,
(those necessary to the Yacht and those offered by local suppliers in the Port’ Supply
Chain platform) has been addressed by associating each one of them to a
PotentialSupplierOrganization. The latter has instances, which are generic categories,
used to identify a possible supplier. For this purpose, we decided to use a standard,
general-purpose ontology like schema.org, given its diffusion in the IT community. For
example, http://schema.org/ElectronicsStore can be used as a
PotentialSupplierOrganization when a communication appliance like a router is broken
while http://schema.org/Winery when the wine stocks are low.

Two specific services – getMaintenanceNeedService and getConsumableNeedService –
will be exposed by the Yacht to provide information about the current needs on board.

5.5.4 Smart Residence Domain

The Smart Residence use case aims to demonstrate interoperability across different smart
home IoT solutions through a generalized abstract model to describe inter-connected
objects, providing a dynamic configuration of available services and a natural and
homogeneous user experience at home. Moreover, it shows how concepts of collecting
health information (e.g. weight, blood pressure) can be embedded into a smart home.
Depending on context and usage scenario, dynamically discovered functions will be
presented on different devices (e.g. smart phones, TV screens, touch panels, smart
objects), instantiated in a local/remote cloud and finally executed by the appropriate
physical devices (e.g. light switches, speakers, displays, motor shades).

Residential automation involves a common collection of devices, which are usually
installed in a domestic smart environment, i.e. lighting, thermostats and HVAC, motorized
shades, curtains and blinds, sprinkler systems, and so forth. The Smart Residence domain
model of the BIM aims to reflect the hardware generally provided for an automated home,
in order to simplify device modelling to platform owners, which wants to join the symbIoTe
environment.

This includes both devices (e.g. lights, fan-coils, curtains, environmental sensors, etc.) and
their capabilities, since they affect specific properties of the ambience where they are
installed in. Only domotics have been taken into consideration when designing this
information model, because it is the main and mostly diffused context, while other areas
like for example audio-video or video-surveillance have been excluded, in order to keep
the model simpler.

Particular attention has been given to actuators, which are described with a set of
capabilities, having effects on a single or a set of properties, as depicted in Figure 21. This
allows registering a device that can affect multiple properties on different Feature of
Interests, which is shown in detail in the two RDF examples given in Listing 5 and Listing
6.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 48 of 74
© Copyright 2017, the Members of symbIoTe

Figure 20 The actuation part of the Smart Residence domain model of the BIM.

Figure 21 The devices and properties part of the Smart Residence domain model of the
BIM.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 49 of 74
© Copyright 2017, the Members of symbIoTe

roomX a owl:NamedIndividual ;
 a bim:Room .

lightX a owl:NamedIndividual ;
 a Light ;
 a core:Actuator ;
 a core:FeatureOfInterest ;
 core:hasCapability [a OnOffCapability ;
 core:hasEffect [a OnOffEffect ;
 core:actsOn lightX
] ;
 core:hasEffect [a Effect ;
 core:affects illuminance ;
 core:actsOn roomX
]] ;
 core:hasCapability [a DimmerCapability ;
 core:hasEffect [a DimmerEffect ;
 core:actsOn roomX
]] ;
 core:hasCapability [a RGBCapability ;
 core:hasEffect [a RGBEffect ;
 core:actsOn lightX
]

 core:hasEffect [a Effect ;
 core:affects illuminance ;
 core:actsOn roomX
]] .

Listing 5 Example RDF registration payload for a light actuator with on/off, RGB and
dimmer functionality.

roomX a owl:NamedIndividual ;
 a bim:Room .

lightY a owl:NamedIndividual ;
 a Light ;
 a core:StationarySensor ;
 a core:Actuator ;
 a core:FeatureOfInterest ;
 core:hasCapability [a OnOffCapability ;
 core:hasEffect [a OnOffEffect ;
 core:actsOn lightY
]

 core:hasEffect [a Effect ;
 core:affects qu:illuminance ;
 core:actsOn [
 a owl:NamedIndividual ;
 a bim:Room
]]] ;
 core:observesProperty qu:temperature ;
 core:hasFeatureOfInterest lightY .

Listing 6 Example RDF registration payload for a combined light sensor and actuator with
on/off functionality and internal temperature sensor.

Figure 21 presents the device classification used as well as properties used in the health
and ambient-assisted-living subdomain. Although it is not visualized as a separate part,
tracking of health-related information at a user’s home can be embedded in a smart home
environment in this use case. Following the concepts of the CIM, it defines a Person

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 50 of 74
© Copyright 2017, the Members of symbIoTe

providing several health-related properties, namely blood pressure (systolicBloodPressure
and diastolicBloodPressure), the heart rate as well as gait measurements (stepLength,
strideLength and cadence). These properties are observed by HealthDevices (a
BodyScale, BloodPressureMeter and a GaitMeasureDevice).

5.5.5 Smart Stadium Domain

Smart Stadium enhances the user experience of visitors coming to a stadium. In the retail
context, it provides communication between visitors and retailers across large distances in
the stadium.

Visitors are identified by their smartphones while retailers (both moving carts and physical
shops) are identified by their POS (Point of Sale) Terminal and nearby located beacons.

From the visitors’ point of view, Smart Stadium brings the opportunity of detecting closest
retailers, place orders with them wherever they are and to receive the products they
bought directly in their seat.

On the other hand, retailers can broadcast their offers and promotions to all visitors inside
the stadium, or moving near specific areas inside the stadium. Retailers can send their
promotions to large SmartTVs, named Promowalls, spread throughout the stadium.

Figure 22 The device and service part of the Smart Stadium domain model of the BIM.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 51 of 74
© Copyright 2017, the Members of symbIoTe

Figure 23 The parameter classes of the Smart Stadium domain model of the BIM.

Once all the participants of the use case were identified, four platforms came up:

• Visitor platform: in charge of taking care of all visitor devices, as well as
providing backend information.

• Remote Ordering platform: manages all retailers and their devices and provides
access to them.

• Promotion and Information platform: provides access and contents for all
Promowalls inside the stadium.

• Beacon platform: provides an extensive catalogue of beacons spread
throughout the stadium.

The Smart Stadium BIM uses the generic Device class from the CIM to model the IoT
devices involved in this use case.

Each intelligent device provides services to interact with them, either to gather information
or sending information. All services listed in Figure 22 cover the functionalities described
above.

On the other hand, Figure 23 illustrates the data model used in this use case. As this
figure depicts, the model is coupled across platforms as all of them are involved in
commercial processes.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 52 of 74
© Copyright 2017, the Members of symbIoTe

The model is straightforward to understand:

• The top half of the picture describes a simple model for shops, products,
promotions and orders:

o In Smart Stadium, shops offer a list of products to be sold and can offer
promotions associated to them. There are two types of shops: physical
shops depending on the products they sell: FoodStore and GoodStore
(assuming sport-related products).

o Furthermore, the model illustrates the information (named Catalog) available
on each Promowall: promotions associated to shops and products as well as
relevant information (messages) of the stadium and sport events.

It is relevant to mention that initially we evaluated using either GoodRelations23 or
schema.org to model our retail-scoped data model.

GoodRelations is the most powerful Web vocabulary for e-Commerce, and appeared to be
a fitting solution for us. The same could be said for schema.org that describes multiple
entities we need like Order, Message, Attachment, Store, etc.

Nevertheless, we decided to create our own model with our own versions of those classes.
The reason for this was, in short, that the models from GoodRelations and schema.org are
too complex. Generally, complexity is not a bad thing for such a model. However, in this
special case, the classes depicted in Figure 23 are used to describe to data structures
used as parameters and return values of the smart stadium services. Making them more
complex as needed would mean to complicate the usage dramatically. For example, the
class Message is also defined with schema.org and it also contains a property sender. The
type of sender within schema.org is however, (Audience or Organization or Person) which
are all again complex types with many properties that are not needed within this use case.
As these classes are used to describe the allowed (JSON) structure of parameters, this
makes quite a difference as it would need to change the structure of the JSON element.
For this reason, we decided not to re-use the existing classes directly but to re-create
custom versions that are strongly based on the original ones, but simpler and adapted to
the concrete use case. However, alignment can easily be achieved later on (at least to
some degree), e.g., by linking similar concepts with owl:sameAs.

Listing 7 and Listing 8 give an example definition of the GetInformationService and
PlaceOrderService definition. Listing 9 shows registration of an example retailer device
providing these services.

23 http://www.heppnetz.de/projects/goodrelations/

http://www.heppnetz.de/projects/goodrelations/

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 53 of 74
© Copyright 2017, the Members of symbIoTe

GetInformationService a owl:Class ;

 rdfs:subClassOf bim:RetailerService ;

 core:name "getInformation"^^xsd:string ;

 core:hasReturnType [a core:ComplexDatatype ;

 core:basedOnClass bim:Store ;

 core:hasProperty [a core:PrimitiveProperty ;

 core:hasDatatype xsd:string ;

 core:basedOnProperty bim:id ;

] ,

 core:hasProperty [a core:PrimitiveProperty ;

 core:hasDatatype xsd:string ;

 core:basedOnProperty bim:name ;

]] .

Listing 7 Definition of GetInformationService class within the BIM.

PlaceOrderService a owl:Class ;

 rdfs:subClassOf bim:RetailerService ;

 core:name "placeOrder"^^xsd:string ;

 core:hasParameter [a core:ComplexDatatype ;

 core:basedOnClass bim:Order ;

 core:hasProperty [a core:ComplexProperty ;

 core:basedOnProperty bim:hasOrderItem ;

 core:hasDatatype [a core:ComplexDatatype ;

 core:basedOnClass bim:OrderItem ;

 core:hasProperty [a core:PrimitiveProperty :

 core:basedOnProperty bim:quantity ;

 core:hasDatatype xsd:string ;

] ;

 core:hasProperty [a core:PrimitiveProperty :

 core:basedOnProperty bim:productId ;

 core:hasDatatype xsd:string ;

]]]] ;

 core:hasReturnType xsd:string .

Listing 8 Definition of PlaceOrderService class within the BIM.

retailerDeviceX a bim:RetailerDevice ;

 rdfs:label "device of retailer X@en"^^xsd:string ;

 core:locatedAt [a WGS84Location ;

 geo:long "8.414127"^^xsd:double ;

 geo:lat "49.020464"^^xsd:double ;

] :

 core:providesService [a owl:NamedIndividual ;

 a bim:GetInformationService] ;

 core:providesService [a owl:NamedIndividual ;

 a bim:PlaceOrderService] .

Listing 9 Example registration of a retailer device.

5.6 Related Information Models and Ontologies

A vast amount of information models and ontologies related to the IoT domain exist.
However, most of them are quite specific, e.g., focused on a specific subdomain, certain
use cases or even single applications, and/or are of low quality. Nevertheless, some of
them are of high quality and well established in the IoT domain. In the following, we
present the related models that influenced the symbIoTe information model the most.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 54 of 74
© Copyright 2017, the Members of symbIoTe

5.6.1 SSNO & SOSA

The Semantic Sensor Network (SSN) Ontology [12] can easily be called the most
important ontology in the sensing domain. It was created by the W3C Semantic Sensor
Network Incubator Group and motivated by OGC’s Sensor Model Language (SensorML)
[18] and Observations and Measurements (O&M) [19]. It is a high-level ontology and built
around the Stimulus Sensor Observation (SSO) pattern [16]. Figure 24 shows the ontology
structure of the SSN ontology.

symbIoTe is strongly inspired by the SSN ontology in terms, especially by its skeleton. It
boroughs multiple concepts, e.g. Device, Sensor, Property, FeatureOfInterest, Observation
and additionally many relations between them. However, the SSN ontology did not support
important things we need in symbIoTe, e.g. querying what feature of interest a sensor
observes before it has any observations.

Figure 24 Semantic Sensor Network (SSN) Ontology.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 55 of 74
© Copyright 2017, the Members of symbIoTe

Figure 25 Updated SSN (blue) & SOSA (green) Ontology.

These problems were then partially addressed by the updated version of the SSN ontology
that goes hand in hand with the introduction of the Sensor, Observation, Sample, and
Actuator (SOSA) ontology. Figure 25 shows the updated SSN ontology (depicted in blue)
together with the SOSA ontology (depicted in green). Unfortunately, this updated version
together with the SOSA ontology were released too late to be integrated into the symbIoTe
Core Information Model. However, multiple things that were created within the symbIoTe
CIM were also introduced in the same or a very similar way in the SOSA ontology, which
indicates that the CIM is designed well and does address relevant issues.

symbIoTe Information Models are not aligned with the SSN or the SOSA ontology so far.
Adding an alignment to SSN would be possible (e.g. by adding owl:equivalentClass tags) if
needed as the sensing part is strongly motived by the concept of the SSN ontology. Some
concepts similar in the CIM and SOSA could be mapped this way.

5.6.2 SensorThings API Information Model

The OGC SensorThings API [20] standard provides an open and unified framework to
interconnect IoT devices, data and applications over the Web. Up to now, only the first part
of the standard is published which covers the sensing domain. The second part, covering
actuation domain, is not yet published and is still under discussion. Sensor Things API has
influenced symbIoTe in two ways. First, its information model, depicted in Figure 26, has
been used as inspiration and basis for discussion regarding the relation between Sensor
and Observation, which is done differently in SensorThings API than in SSN. Second, the
REST- and JSON-based API that is using OData has been adopted in symbIoTe.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 56 of 74
© Copyright 2017, the Members of symbIoTe

Figure 26 SensorThings API Information Model24.

5.6.3 Schema.org

Schema.org is an initiative trying to “standardize” ontologies in multiple domains to
describe structured/semantic data on the web. It was launched by Bing, Google and
Yahoo! in 2011, but the work is community driven and most communication takes place on
the W3C public vocabularies mailing list.

It is mentioned here, because it may have a big influence on symbIoTe or at least on the
semantic interoperability part of it. As explained previously in the document, the symbIoTe
consortium takes a position that using a common, shared vocabulary is always the best
option. However, we also agree that this will not be possible in all cases. schema.org now
tries exactly to do this and we are looking forward to see how this initiative evolves.

Furthermore, there is an extension of schema.org called iot.schema.org aiming at defining
common, shared vocabularies for the IoT domain. Unfortunately, again, this project has
started too late to be recognized by symbIoTe and it is progressing very slowly.

For now, schema.org is only used within some parts of the BIM where it is suitable, e.g.,
the Smart Yachting part of the BIM. We considered using it also in the smart stadium part
of the BIM, but the schema.org classes turned out to be too complex for that special kind

24 http://docs.opengeospatial.org/is/15-078r6/15-078r6.html

http://docs.opengeospatial.org/is/15-078r6/15-078r6.html

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 57 of 74
© Copyright 2017, the Members of symbIoTe

of usage scenario. However, we designed our classes a simplified version of the
schema.org classes, which makes adding an alignment later on easy and straightforward.

The BIG IoT (Bridging the Interoperability Gap of the Internet of Things)25 H2020 project is
developing an extension to schema.org for the mobility domain called mobility.schema.org
[21]. Once this vocabulary is finished, we will check to align the smart mobility part of the
symbIoTe BIM to it.

5.6.4 oneM2M Base Ontology

oneM2M is a global standardization body for the machine-to-machine (M2M)
communications and IoT which has been established in 2012 following an initiative from
the European Telecommunications Standards Institute (ETSI). It is formed as an alliance
of standardization organizations with 200 member companies from across the world
working together “to develop a single horizontal platform for the exchange and sharing of
data among IoT devices and applications” [22]. oneM2M focuses on standardization of
platform interfaces and aims to provide an interworking framework across different sectors.
Within this interworking framework, semantic interoperability plays a central role. Just like
symbIoTe, oneM2M has recognized that agreeing on one (or very few) complete
ontologies (“complete” meaning covering the whole IoT domain) is not a suitable
approach. Therefore, oneM2M pursues a quite similar approach as symbIoTe by providing
a core ontology, called oneM2M Base Ontology, and allowing custom extensions of it.
However, there are two major differences regarding the approach to semantic
interoperability between oneM2M and symbIoTe.

The first one is the information model shared between platforms. Figure 27 shows the one
used in oneM2M called oneM2M Base Ontology. Some classes like Device and Service
appear in the oneM2M Base Ontology as well as the CIM. Furthermore, they both follow
the design principle to create a rather abstract high-level ontology that can be extended.
Nonetheless, they are quite different: the major difference is that in oneM2M actuation
and sensing capabilities are modelled as functions, while in the CIM we use separate
classes for them. These are contrary design decisions, but it was made because
symbIoTe needs a deeper understanding of things to provide additional services on top of
them.

The second major difference is related to semantic mapping. Although oneM2M states to
support semantic mapping, it is limiting support only to sub-classing the concepts of the
oneM2M Base Ontology and expressing equality by using the concepts provided by RDFS
and OWL (rdfs:subProperty, owl:equivalentProperty, rdfs:subClassOf and
owl:equivalentClass). Our vision regarding semantic mapping goes beyond that allowing
also complex mappings to be defined.

As the first release of the oneM2M Base ontology was in December 2016 [13] it did not
have a strong influence on the symbIoTe information models. In fact, it can be seen as an
acknowledgement of symbIoTe’s approach to semantic interoperability that oneM2M also
supports semantic mapping and highlights its importance.

25 http://big-iot.eu/

http://big-iot.eu/

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 58 of 74
© Copyright 2017, the Members of symbIoTe

Figure 27 The oneM2M Base Ontology v3.2.0 [23].

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 59 of 74
© Copyright 2017, the Members of symbIoTe

5.7 symbIoTe Architecture from the Semantic Interoperability
Perspective

In this section, we provide details on how the chosen approach to semantic interoperability
influences the symbIoTe architecture, as defined in D1.4 “Final Report on System
Requirements and Architecture” [24]. We start from a modified version of the component
diagram for symbIoTe Level 1 compliance as presented in D1.4, which highlights all
components that are directly influenced by semantics. We then describe how the
functionality of these components is adapted to support semantics. Additionally, we
provide sequence diagrams showing the internal workflow between components for basic
operations like resource registration. Details on how semantic mapping and SPARQL
query re-writing influence the architecture can be found in the next subsection. This
document provides only a coarse overview of how semantic influence the architecture and
implementation. Details on the architecture can be found in D1.4 “Final Report on System
Requirements and Architecture” [24] and details on implementation in D2.5 “Final
symbIoTe Virtual IoT Environment Implementation” [25].

5.7.1 Component Descriptions

Figure 28 shows the symbIoTe component diagram for Level 1 compliance. All
components that are directly affected by semantics are highlighted in green. The most
affected parts of the architecture are those that enable interaction between the symbIoTe
Core Services and symbIoTe-enabled IoT platform. Besides the components highlighted in
green also every other component in the Core is influence by semantics, as they need to
be aware of and use the defined information models. However, in this document, we focus
on the components that are more affected by semantics than just by adopting the models.

The following tables describe the functionality specific to semantic interoperability for the
most influenced components. The component descriptions must be understood as an
update/extension to the complete component definitions in D1.4.

Table 4 Changes of the Administration component introduced by semantic interoperability.

Component Administration

symbIoTe
Domain

APP

Description This component enables registration of a PIM through its interface. The
PIM should be provided in the RDF format, which can be verified to
check if the PIM is aligned with the CIM. The models are stored in the
Registry and in the Semantic Manager for further validation.
This component will also provide an interface to register mappings
between two PIMs. The used language to define the mapping is EDOAL.
The mappings are stored in the Registry and Search Engine and later on
used for SPARQL query re-writing.

Provided
functionalities

• Provides an interface for registration of a PIM.
• Provides an interface for registration of a mapping.

Relation to other
components

Registry: stores PIMs and mappings
Semantic Manager: stores PIMs for validation
Search Engine: stores mappings

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 60 of 74
© Copyright 2017, the Members of symbIoTe

Figure 28 symbIoTe component diagram for Level 1 compliance (from D1.4) with changes
regarding semantic interoperability highlighted in green.

Table 5 Changes of the Registry component introduced by semantic interoperability.

Component Registry

symbIoTe
Domain

APP

Description The registry must allow resources to be registered according to the CIM,
BIM or any valid PIM. Furthermore, the Registry stores the definition of
PIMs. All interfaces should communicate using the Semantic Web
technologies. In case of data manipulation (insertion, deletion, update),
resources and resource metadata should be communicated in the RDF
format (e.g., as payload of REST message).

Provided
functionalities

• Handles requests for resource registration according to CIM, BIM or
any valid PIM.

• Stores definitions of PIMs.

Relation to other
components

Search Engine: uses PIM definition for SPARQL query re-writing

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 61 of 74
© Copyright 2017, the Members of symbIoTe

Table 6 Changes of the Search Engine component introduced by semantic interoperability.

Component Search Engine

symbIoTe
Domain

APP

Description This component allows searching for registered resources across
platforms registered to symbIoTe in a unified way. A query must be
formulated against an information model previously registered with
symbIoTe, which can be either the CIM, any PIM or the BIM, i.e., a
special case of PIM that is used by multiple platforms. The goal is to
return cross-platform results that satisfy the conditions of the query.
When the query is formulated against the CIM than it can be
answered by straightforward execution. Otherwise, if the query is
formulated against a PIM (or, as a special case, the BIM), the query is
translated based on the mappings between the used PIM and other
PIMs with the help of the Semantic Manager to provide results across
multiple platforms. The component’s primary interface accepts
SPARQL queries, but to simplify its usage, it also offers multiple pre-
defined parameterized search queries (such as: search for a property,
location, owner, etc.), which will be subsequently transformed to the
SPARQL query using pre-prepared templates before executing it in
Search component.

Provided
functionalities

• Search for resources with support for SPARQL query re-writing.

Relation to other
components

Semantic Manager: provides query re-writing functionality

Table 7 Changes of the Semantic Manager component introduced by semantic
interoperability.

Component Semantic Manager (SM)

symbIoTe
Domain

CLD

Description This component stores the CIM, MIM, BIM and all PIMs. Upon
registration of a new PIM, it is validated and checked to be compliant
with the CIM.

When registering resources to symbIoTe Core by using JSON
description, the component translates resource description to RDF. It
also validates the resources described using RDF to ensure they
conform to the information model they claims to be using
(PIM/BIM/CIM).

Provided
functionalities

• stores MIM, CIM, BIM, PIMs
• validates PIMs
• validates if the instances of data (resource descriptions)

conform to PIM/BIM/CIM they claim to be using
• translates resource descriptions from JSON to RDF format
• translates resource descriptions from RDF to JSON format
• provides SPARQL re-writing functionality.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 62 of 74
© Copyright 2017, the Members of symbIoTe

Relation to other
components

Registry: sends the resource description obtained during registration
process for validation. Sends new PIM models being registered by the
platforms.

Search Engine: Provides SPARQL re-writing functionality needed by
Search.

Table 8 Description of the Registration Handler component regarding the symbIoTe
Information Model.

Component Registration Handler (RH)

symbIoTe
Domain

CLD

Description Registration using the PIM relies on the Semantic Web technologies.
PIM and resource instances description should be provided in the RDF
format for the general version of the API of this component but for ease
of usability additional interfaces hiding the Semantic Web technologies
can be added.

Provided
functionalities

• Registers resources to the symbIoTe core, virtual and physical,
using the PIM

• Updates resource status and unregistered resources

Relation to other
components

Registry (within symbIoTe Core Services): stores data about resource
according to the PIM, assigns unique symbIoTe IDs and maintains
information about current resource status.

Table 9 Description of the Resource Access Proxy component regarding the symbIoTe
Information Model.

Component Resource Access Proxy (RAP)

symbIoTe
Domain

CLD

Description This component enables symbIoTe-compliant access to resources
within an IoT platform or (enabler acting as a platform). The data
generated by IoT Services must be returned in accordance with the
used PIM. This means that the returned JSON object must fit the PIM,
i.e., it must contain additional properties of an object that are defined
within the PIM.

Provided
functionalities

• Ensures formatting of data generated by resources in
accordance with the PIM

Relation to other
components

Application/Enabler: provides requested data

5.7.2 Resource Registration

In this section, we describe in detail how resource registration is affected by introduction of
the semantic interoperability approach. Figure 29 shows the sequence diagram for
resource registration and is taken from Deliverable D1.4. As the dashed lines represent
optional messages (Message 2 to 6), they are neglected in this document.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 63 of 74
© Copyright 2017, the Members of symbIoTe

The workflow is as follows. First, The Resource Handler (RH) notifies the RAP and the
Monitoring component updates the changes (Message 1). Then the RH sends a
register/unregister/modify request to the Registry (Message 7). The payload of this request
is a JSON object according to the available resource types in the CIM. If a PIM is used on
platform side, it additionally contains a RDF description of the affected resource. This
message is forwarded to the Semantic Manager (SM) (Message 8). In case there is not yet
an RDF description, (i.e. when the platform does not use a PIM) the SM converts the
JSON object into RDF. If the RDF description already exists, it is checked by the SM to
comply with the used PIM. The RDF description is also stored in the Search Engine
(Message 8). Finally, the Core Resource Monitor (CRM) and Core Resource Access
Monitor (CRAM) are notified about the changes (Message 9) and the result is provided to
the RH (Message 10).

Figure 29 Sequence diagram showing resource registration, unregistration and
modification (from D1.4).

5.7.3 Resource Search using Semantic Mapping and SPARQL Query Re-Writing

Ontologies are a way to formally describe the concepts and relations within a domain.
However, even if two ontologies cover the same domain, they can describe the domain
quite differently, e.g. use a taxonomy with another scope or granularity, use the same
terminology but in a different language or even use a different terminology. Such
differences between ontologies are called ontology mismatches.

Semantic mapping refers to the idea to resolve ontology mismatches by defining
statements and rules how data expressed using one ontology can be translated into the
terms of another ontology. As depicted in Figure 30, such a statement or rule is called a
correspondence pattern and consists of a source ontology, a target ontology and some
correspondence/transformation information. All correspondence patterns having the same

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 64 of 74
© Copyright 2017, the Members of symbIoTe

source and destination ontology together form an alignment between the two ontologies.
Such an alignment contains all correspondence patterns necessary to translate instances
of the source ontology into instances of the target ontology. Some mismatches are so
profound that this translation is not possible without loss of information. In fact, this is quite
common as only the data modelled in both ontologies, i.e., a semantic intersecting set of
the two ontologies, can be safely translated between them.

Figure 30 Schematic representation of an example usage of semantic mapping for
semantic interoperability.

As depicted in Figure 30, semantic mapping is not only about defining mapping between
ontologies but also about using these mappings at runtime to mediate between them. This
functionality is provided as an execution framework or a mediator. In symbIoTe, this will be
implemented using SPARQL query re-writing techniques [26] [27] [28]. How this works in
detail is shown in Figure 31, which is an enhanced version of the sequence diagram
describing the symbIoTe Core search functionality taken from D1.4 “Final Report on
System Requirements and Architecture”.

The part most relevant to semantic mapping in Figure 31 is highlighted in green. With
message 5, the Search Engine receives a SPARQL query which has to be formulated
against an information model (in this context, information model and ontology are used
synonymously) previously registered with symbIoTe. Optionally, the search can be invoked
using a flag to indicate the query re-writing should be used. If done so, the green part of
the diagram is executed, otherwise the grey part (normal query execution).

We are aware that not all people are familiar with semantic technologies like SPARQL and
that enforcing them to use semantic technologies can be quite an entry barrier. As
SPARQL is only a direct interface to the Search Engine, this does not mean it must be the
only one. To facilitate access to the Search Engine we are planning to also provide a

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 65 of 74
© Copyright 2017, the Members of symbIoTe

simpler interface with a limited subset of functionality, e.g., a REST-based interface
supporting multiple pre-defined parameterized SPARQL queries.

If a search requests specifies to use query re-writing, the workflow is as follows. First, the
Search Engine looks up all existing mappings M1..n (Message 11a) related to the used
information model IMQuery in the query Q. The other information models related to IMQuery
via the mappings M1..n are referred to as IM1..n. Then, the Search Engine forwards the
query Q and the mappings M1..n to the Semantic Manager with the request to re-write the
query based on the mappings (Message 11b). The Semantic Manager returns the re-
written queries Q1..n to the Search Engine (Message 11c) which then executes them
(Message 11d) receiving a list of query results. These are forwarded to the Semantic
Manager for result re-writing (Message 11e) and the re-written results QR1..n are returned
back to the Search Engine (Message 11f). As final step, the Search Engine combines the
re-written results QR1..n. After that, the workflow is the same as for a normal query without
query re-writing.

Following this approach, symbIoTe is able to answer queries across all platforms using a
different information model than the one used in the query by applying SPARQL query re-
writing. Multiple different types of ontology mismatches exist, and only a subset will be
supported for SPARQL query re-writing by symbIoTe. This means that PIMs, which extend
the CIM in such ways that they have serious types of mismatches will probably not be able
to interoperate in practice.

5.7.4 Resource Access

Resource access is influenced by semantic interoperability in two ways. First, the REST-
based interface for resource access, called Interworking Interface/API, is based on the
concepts that are defined within the CIM, e.g. Sensor, Actuator and Service. These are
used to define the URLs/URL patterns that the RAP exposes. Second, the model used on
platform side, BIM or PIM, determines the structure of the JSON object returned as
response to a call to these URLs. As any PIM must be an extension of the CIM, anyone
can at least understand the properties of the JSON object that are defined in the CIM. If
the PIM defines additional properties, these can either be ignored if understanding is not
achievable or be translated to fit the own PIM using a symbIoTe library.

5.8 Vision

As stated before in this document, the second approach to semantic interoperability,
interoperability through mapping, has not been foreseen (in such a detail) in the DoA.
Nevertheless, the symbIoTe consortium decided that this approach is of such importance
that it should be addressed. As it is quite complex and touches multiple areas of current
research, symbIoTe focuses on analysing it and providing a proof-of-concept solution
limited in functionality and ease-of-use. Additionally, we provide this section, which puts
the proof-of-concept solution in a larger context. This section will therefore present an
overall vision how this approach could be realized in detail covering the needed
technologies that are currently under research or not yet developed. Furthermore, it
explains which components and technologies are needed to make the proof-of-concept
solution more convenient to use, especially for non-experts, and lists pitfalls that are
already recognized by the consortium.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 66 of 74
© Copyright 2017, the Members of symbIoTe

Figure 31 Enhanced sequence diagram describing the search functionality with respect to
SPARQL query re-writing.

Figure 30 depicts a schematic representation on how semantic mapping can be used to
achieve semantic interoperability and which kind of software and tools are involved. In the
centre, we see an alignment as an aggregation of multiple correspondence patterns. To
formulate, express and exchange such correspondence patterns, a mapping language is
needed. The main criteria for choosing a mapping language is its expressivity identifying
what kind of ontology mismatches can be resolved using this language. This first requires
a classification of ontology mismatches. This area has been subject to research for around
20 years [29] [30] [31] [32] [33], but up to now there has not been a generally accepted
classification. Choosing a mapping language is an even more complex thing to do. There a
multiple existing ones but most of them were not designed to be used as a mapping
language. For example, the well-known Semantic Web standards from the W3C like
SPARQL Construct26, SPARQL Inferencing Notation (SPIN) 27 or Semantic Web Rule
Language (SWRL) [34] could be used in such a way. As they were not created for that
purpose, they will most likely turn out to have a limited expressivity in the context of

26 https://www.w3.org/TR/rdf-sparql-query/#construct
27 https://www.w3.org/Submission/spin-overview/

https://www.w3.org/TR/rdf-sparql-query/#construct
https://www.w3.org/Submission/spin-overview/

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 67 of 74
© Copyright 2017, the Members of symbIoTe

semantic mappings. Another candidate would be OWL with its predicates owl:sameAs,
owl:equivalentProperty and owl:equivalentClass, but obviously the expressivity is quite
limited as the mentioned predicates can only express equality. Furthermore, there are
vocabularies and languages specifically designed for defining mapping between
ontologies, e.g. the Alignment Format [17] and its extension EDOAL (Expressive and
Declarative Ontology Alignment Language) [35], C-OWL [36] or MAFRA (Ontology
MApping FRAmework) [37]. symbIoTe proposes to use EDOAL for the proof-of-concept
implementation as it seems the most mature and has the highest expressivity. This proof-
of-concept implementation will be used be the EduCampus use case.

In the upper centre of Figure 30, we see the user, who in our case is a platform owner of
an IoT platform. He has knowledge about the information model used in his/her platform
(Information Model A) as well as about the one used in another platform (Information
Model B). Based on this knowledge he wants to formulate a mapping/alignment between
the two information models using a mapping language. As this is a complex task, he
should be supported by tools. One option thereby would be to add a Matcher to the
workflow. A matcher is a tool that automatically discovers correspondences between two
given ontologies, e.g., by applying different similarity measures [38] [11] [39] [40]. This
problem is known as ontology matching and is a broad research area on its own. An
international workshop (called International Workshop on Ontology Matching28) is
addressing issues in this field every year. Another option to support a user in defining
semantic mappings is by providing a visual editor. A wide body of research on visual aids
for semantic mapping covers surveys [41] and example editors [42] [43] [44], but up to
now, only very few types of ontology mismatches, often even only equality between
classes can be expressed since the complexity level of ontologies can increase very
quickly. However, providing a suitable graphical user interface that is intuitive gets
noticeably harder with rising expressivity of the mapping language.

An additional challenge is that the whole tool chain has to work with the same mapping
language. This is a big problem with currently existing prototypes and software artefacts as
they are often using some proprietary mapping language because there is no well-
established standard so far.

Once an alignment between two information models is defined at design-time, it can be
used at run-time by some kind of mediator to translate information expressed using
information model A to information model B. In symbIoTe, we realize this mediator using
SPARQL query re-writing.

Another challenge is the question “How does one even find another platform using a
different PIM that is worth the effort to define a mapping to it in the first place”? For
symbIoTe, this is considered to be done either offline, e.g., by knowing the owner of a
different platform or through search via the SPARQL endpoint where one can browse the
models of other platform and thereby can identify platforms that may offer resources that
are of interest. However, for this to work in a more user-friendly way, especially in cases of
dynamical interaction of platforms, a more sophisticated search would be desirable. Such
search feature could be quite primitive, e.g., a simple full-text search on the terms defined
in the PIMs, or more sophisticated using concepts like phonetic search, natural language
processing or translations to enable finding of relevant terms even if they do not
syntactically match a search term or are expressed in another language.

28 http.//om2017.ontologymatching.org

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 68 of 74
© Copyright 2017, the Members of symbIoTe

To conclude this short discussion, we also see that this approach paves the way for further
research topics. One possible area of research could be the theoretical evolution of the
requirements for and the impact of enabling the chaining of mappings. This means that if
there is a mapping between platform A and platform B and one between platform B and
platform C, then we could theoretically chain these mappings and gain a mapping between
platform A and platform C. With this technique, only a few mappings would be needed to
make many platforms interoperable. Another very exciting question is, whether such a
network of models and mappings between them can be seen as creating some sort of a
unified common vocabulary in a hidden manner. Eventually, such a system could even
become a transition from custom, separated models to a unified model and could replace
or at least boost classical standardization work.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 69 of 74
© Copyright 2017, the Members of symbIoTe

6 Conclusions and Next Steps

This deliverable presents the work done in the symbIoTe project regarding semantics and
especially semantic interoperability. It introduces the topics of semantics, semantic
technologies and semantic mapping in Section 3.

In Section 4, the problem of semantic interoperability between multiple heterogeneous IoT
platforms is described together with a formal analysis of the solution domain to this
problem. Additionally, five different possible approaches to achieve semantic
interoperability are presented, ranging from a “monolithic” approach where all platforms
use a single completely agreed upon information model, to a “distributed” approach where
each platform defines their own information model and exchange information via mappings
between those information models. The section closes with a comparison of the five
approaches identifying their advantages and disadvantages.

As semantics is essential for IoT platform interoperability (as explained in Section 3.1), we
decided to build upon well-established semantic technologies (e.g. RDF) to describe
information models. In Section 5, we present symbIoTe’s approach to semantic
interoperability, which is based on the Core Information Model with Extensions approach
introduced in Section 4.2.3. In Section 5.2 to Section 5.5, we provide detailed information
on the created information models in, namely the Core Information Model (Section 5.2),
Meta Information Model (5.3), Platform-Specific Information Models (Section 5.4) and the
Best-Practice Information Model (Section 5.5). In Section 5.6, we explain how these
models related to other already existing ontologies and models like the SSN and SOSA
ontology, the SensorThingsAPI Information Model, Schema.org and the oneM2M Base
Ontology. In the following section, we present the influence of the semantic interoperability
approach to the symbIoTe architecture and implementation.

As explained in the previous section, our approach to semantic interoperability using
semantic mapping is very powerful and has a high potential to influence how semantic
interoperability is approached in the future. However, there are several hard research
questions to be answered before this technology can be used to its full extent. As next
steps, we focus on implementation of the parts of the symbIoTe approach to semantic
interoperability that go beyond what we promised in the DOA, namely the semantic
mapping.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 70 of 74
© Copyright 2017, the Members of symbIoTe

7 References

[1] Network Centric Operations Industry Consortium, “NCOIC, "SCOPE",” 2008.

[2] M. Jacoby, A. Antonic, K. Kreiner, R. Lapacz and J. Pielorz, “Semantic Interoperability
as Key to IoT Platform Federation,” Interoperability and Open-Source Solutions for the
Internet of Things, Forthcoming 2017.

[3] R. Herzog, M. Jacoby and I. Podnar Zarko, “Semantic interoperability in IoT-based
automation infrastructures,” at-Automatisierungstechnik, vol. 64, no. 9, pp. 742-749,
2016.

[4] “Merriam-Webster,” 06 04 2016. [Online]. Available: http://www.merriam-
webster.com/dictionary/semantics.

[5] T. R. Gruber, “A translation approach to portable ontology specifications.,” in
Knowledge acquisition 5.2, 1933, pp. 199-200.

[6] A. Tolk and J. A. Muguira, “The levels of conceptual interoperability model,” in
Proceedings of the 2003 Fall Simulation Interoperability Workshop, Citeseer, 2003,
pp. 1-11.

[7] “Wikipedia,” [Online]. Available: https://en.wikipedia.org/wiki/
Conceptual_interoperability#Levels_of_conceptual_interoperability. [Accessed 06 04
2016].

[8] T. Berners-Lee and L. Ora, “The semantic web,” Scientific american, pp. 28-37, 2001.

[9] W3C, “Vocabularies,” [Online]. Available:
https://www.w3.org/standards/semanticweb/ontology. [Accessed 06 10 2016].

[10] H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann and
S. Hübner, “Ontology-based integration of information-a survey of existing
approaches,” in IJCAI-01 workshop: ontologies and information sharing, 2001.

[11] N. Choi, I.-Y. Song and H. Han, “A survey on ontology mapping,” ACM Sigmod
Record, 2006.

[12] M. Compton, P. Barnaghi, L. Bermudez, R. García-Castro, O. Corcho, S. Cox, J.
Graybeal, M. Hauswirth, C. Henson and A. Herzog, “The SSN ontology of the W3C
semantic sensor network incubator group,” Web Semantics: Science, Services and
Agents on the World Wide Web, 2012.

[13] oneM2M Partners Type 1, “oneM2M Base Ontology,” 2016.

[14] C. Bizer, T. Heath and T. Berners-Lee, “Linked data - The story so far,” Semantic
services, interoperability and web applications: emerging concepts, pp. 205-227,
2009.

[15] S. Cox, “SOSA ontology,” 2016. [Online]. Available:
https://www.w3.org/2015/spatial/wiki/SOSA_Ontology. [Accessed 30 06 2017].

[16] K. Janowicz and M. Compton, “The stimulus-sensor-observation ontology design
pattern and its integration into the semantic sensor network ontology,” in Proceedings
of the 3rd International Conference on Semantic Sensor Networks-Volume 668, 2010,
pp. 64-78.

[17] J. Euzenat, “An API for ontology alignment,” in International Semantic Web
Conference, Springer, 2004, pp. 698-712.

[18] O. SysML, OMG Systems Modeling Language, Version 1.2, 2013.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 71 of 74
© Copyright 2017, the Members of symbIoTe

[19] S. Cox, Observations and Measurements (O&M), Open Geospatial Consortium, 2011.

[20] S. Liang, C.-Y. Huang and K. Tania, OGC SensorThings API-Part 1: Sensing, 2016.

[21] B. I. Consortium, “Deliverable 3.2.a Semantic Interoperability Design for Smart Object
Platforms and Services,” 2016.

[22] oneM2M, “The interoperability enabler for the entire M2M and IoT ecosystem,”
oneM2M whitepaper, 2015.

[23] oneM2M, “Technical Specification: Base Ontology,” TS-0012-V2.3.0, 2017.

[24] symbIoTe consortium, “D1.4 - Final Report on System Requirements and
Architecture,” 2017.

[25] symbIoTe consortium, “D2.5 - Final symbIoTe Virtual IoT Environment
Implementation,” 2017.

[26] G. Correndo, M. Salvadores, I. Millard, H. Glaser and N. Shadbolt, “SPARQL query
rewriting for implementing data integration over linked data,” in Proceedings of the
2010 EDBT/ICDT Workshops, ACM, 2010, p. 4.

[27] M. Konstantinos, N. Bikakis, N. Gioldasis and S. Christodoulakis, “SPARQL-RW:
transparent query access over mapped RDF data sources,” in Proceedings of the 15th
International Conference on Extending Database Technology, ACM, 2012, pp. 610-
613.

[28] B. Quilitz and U. Leser, “Querying distributed RDF data sources with SPARQL,” in
European Semantic Web Conference, Springer, 2008, pp. 524-538.

[29] P. Visser, D. M. Jones, T. J. Bench-Capon and M. J. Shave, “Assessing heterogeneity
by classifying ontology mismatches,” in Proceedings of the FOIS, 1998.

[30] P. Visser, D. M. Jones, T. J. Bench-Capon and M. J. Shave, “An analysis of ontology
mismatches; heterogeneity versus interoperability,” in AAAI Spring Symposium on
Ontological Engineering, Stanford CA., USA, 1997.

[31] M. Klein, “Combining and relating ontologies: an analysis of problems and solutions,”
in IJCAI-2001 Workshop on ontologies and information sharing, 2001.

[32] F. Scharffe, O. Zamazal and D. Fensel, “Ontology alignment design patterns,”
Knowledge and Information Systems, 2014.

[33] M. Rebstock, J. Fengel and H. Paulheim, Ontologies-based business integration,
Springer Science & Business Media, 2008.

[34] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M. Dean, “SWRL: A
semantic web rule language combining OWL and RuleML,” W3C Member submission,
vol. 21, p. 79, 2004.

[35] J. Euzenat, F. Scharffe and A. Zimmermann, “Expressive alignment language and
implementation,” 2007.

[36] P. Bouquet, F. Giunchiglia, F. Van Harmelen, L. Serafini and H. Stuckenschmidt, “C-
OWL: Contextualizing ontologies,” in International Semantic Web Conference,
Springer, 2003, pp. 164-179.

[37] A. Maedche, B. Motik, N. Silva and R. Volz, “MAFRA—An Ontology MApping
FRAmework in the Context of the Semantic Web,” in Workshop on Ontology
Transformation at ECAI-2002, 2002.

[38] P. Shvaiko and J. Euzenat, “A survey of schema-based matching approaches,” in
Journal on data semantics IV, Springer, 2005, pp. 146-171.

[39] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic schema

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 72 of 74
© Copyright 2017, the Members of symbIoTe

matching,” the VLDB Journal, vol. 10, no. 4, pp. 334-350, 2001.

[40] B. T. Le, R. Dieng-Kuntz and F. Gandon, “On ontology matching problems,” ICEIS (4),
pp. 236-243, 2004.

[41] M. Granitzer, V. Sabol, K. W. Onn, D. Lukose and K. Tochtermann, “Ontology
alignment—a survey with focus on visually supported semi-automatic techniques,”
Future Internet, vol. 2, no. 3, pp. 238-258, 2010.

[42] Á. Siciliaa, G. Nemirovskib and A. Nolleb, Map-On: A web-based editor for visual
ontology mapping.

[43] S. Massmann, S. Raunich, D. Aumüller, P. Arnold and E. Rahm, “Evolution of the
COMA match system,” in Proceedings of the 6th International Conference on
Ontology Matching-Volume 814, 2011, pp. 49-60.

[44] M. Kerrigan and A. Mocan, “The web service modeling toolkit,” in European Semantic
Web Conference, Springer, 2008, pp. 812-816.

[45] H. Rijgersberg, M. van Assem and J. Top, “Ontology of units of measure and related
concepts,” Semantic Web, pp. 3-13, 2013.

[46] M. Botts and A. Robin, SensorML: Model and XML Encoding Standard 2.0, OGC 12-
000, 2014.

[47] P. Visser, D. Jones, T. Bench-Capon and M. Shave, “Assessing heterogeneity by
classifying ontology mismatches,” Proceedings of the FOIS. vol. 98, 1998.

[48] R. Studer, V. R. Benjamins and D. Fensel, “Knowledge engineering: principles and
methods,” Data & knowledge engineering, 1998.

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 73 of 74
© Copyright 2017, the Members of symbIoTe

8 Acronyms

API Application Programming Interface

BIM Best Practice Information Model

C-OWL Context OWL

CIM Core Information Model

EDOAL Expressive and Declarative Ontology Alignment Language

IAM Identity & Access Management

ID Identifier

IM Information Model

IoT Internet of Things

IoT-EPI IoT-European Platforms Initiative

JSON JavaScript Object Notation

JSON-LD JSON-based Serialization for Linked Data

KES Knowledge Engineering System

LCIM Levels of Conceptual Interoperability Model

MAFRA Ontology MApping FRAmework

MIM Meta Information Model

N3 Notation3

OData Open Data Protocol

OWL Web Ontology Language

PIM Platform-Specific Information Model

QoS Quality of Service

QR Query Results

RDF Resource Description Framework

RDFa Resource Description Framework in Attributes

RDFS RDF Schema

REST Representational State Transfer

SE Core Security Handler

SIM symbIoTe Information Model

SLA Service Level Agreement

SPARQL SPARQL Protocol and RDF Query Language

SPIN SPARQL Inferencing Notation

SQL Structured Query Language

SSN Semantic Sensor Network

688156 - symbIoTe - H2020-ICT-2015 D2.4 – Revised Semantics for IoT and Cloud Resources
 Public

Version 1.2 Page 74 of 74
© Copyright 2017, the Members of symbIoTe

SWRL Semantic Web Rule Language

symbIoTe Symbiosis of Smart Objects across IoT Environments

Turtle Terse RDF Triple Language

UoM Units of Measurements

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WGS World Geodetic System

WKT Well-Known Text

XML Extensible Markup Language

XSD XML Schema Definition

