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Abstract 
This document is the first deliverable of the third and last iteration of the DAEMON project, which builds 
on the results of the second iteration presented in D2.2, D3.2, D4.2, and D5.2 and covers the following key 
aspects to finalize the DAEMON Network Intelligence (NI) framework. Firstly, it provides a final update on 
the functional and non-functional requirements of the eight NI-assisted functionalities, assessing their risks 
and completion status. Secondly, it presents the final updates of the Network Intelligence Plane (NIP), 
which has evolved throughout the project lifetime into a unified framework incorporating operational 
hierarchy, orchestration, and the N-MAPE-K representation of NI components. Thirdly, it analyzes the 
specific needs that NI algorithms induce on the NIP, discusses the challenges NI algorithms pose in terms 
of management by the Network Intelligence Orchestrator (NIO), and provides functionalities and 
architectural designs to address such challenges. Additionally, the document includes a comprehensive 
literature review on integrating machine learning and NI in mobile network management, highlighting 
key trends and the unique contributions of the DAEMON project within that scope. All these findings 
inform the final updates to the project guidelines, emphasizing the importance of tailored NI design for 
6G network management and the need to develop more interpretable models. 
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Executive summary 
This is the third and last public deliverable of WP2 of the DAEMON project. It builds upon the material of 
the previous deliverable of WP2, i.e., D2.2 [1], and on activities and results achieved during the second 
iteration of the project in WP3 D3.2 [2], WP4 D4.2 [3], and WP5 D5.2 [4]. As a result, the document 
describes the following content. 
First, it provides the final update on the functional and non-functional requirements of the eight NI-
assisted functionalities (Reconfigurable Intelligent surfaces control - RISC, Multi-timescale Edge resource 
management – MTERM, In-backhaul support for service management – IBSSI, Compute-aware radio 
scheduling – CAWRS, Energy-aware VNF control and orchestration – EAWVNF, Self-learning MANO – 
SLMANO, Capacity forecasting – CFORE, and Automated anomaly response – AARES) tackled by 
DAEMON at the end of the WP2. Although no new updates were added to the functionalities, we assess 
the risks to achieve the requirements and its current completion status. For the requirements that were 
not finalized at the time of this deliverable, we also specify what is required to successfully finalize it and 
in which deliverable (e.g., WP3 D3.3, WP4 D4.3, or WP5 D5.3) the results will be provided.   
Second, it presents the final updates of the Network Intelligence Plane (NIP), a collection of modules and 
interfaces responsible for managing NI within the network. In this deliverable, the NIP has evolved, and it 
is presented as a unified framework that brings together (i) the operational hierarchy of NI components 
and their orchestration and (ii) the N-MAPE-K representation of the NI components. By doing so, we make 
another step forward toward the vision of a complete NIP initially presented in D2.2 [1].  
Third, in addition to the unified DAEMON framework, we also identify and present in detail the specific 
needs that NI algorithms pose on the NIP. Moreover, we analyze their specificity in terms of challenges 
towards the procedures for NI management at the Network Intelligence Orchestrator (NIO) level. We 
also devise and describe the functionalities that the NIO shall provide to support such requirements and 
how they fit the whole architecture together. The architectural design is complemented by presenting 
and discussing the interfaces required to allow communication between NIP components and with 
external entities such as the RAN controller and the 5G Core systems. These interfaces are also enablers 
for designing the set of procedures that address the needs and challenges introduced in this document.  
Fourth, this document provides the final, comprehensive overview of the literature review carried out by 
the project, focused on the integration of machine learning and NI in mobile network management. The 
survey highlights key trends in current research and showcases the distinctive contributions made by the 
DAEMON project. The insights that originated from this analysis also support our final updates to the 
project guidelines, including new ones, for practical NI design. As in D2.2 [1], these guidelines focus on 
two main directions: i) NI design tailored to the needs of B5G network management, orchestration, and 
control, and ii) NI design that considers the use of more traditional, more straightforward, or interpretable 
models to avoid overburdening the system with data-heavy models and promotes the utilization of 
models that are easier to understand and interpret. 
We closed this document with additional closing remarks and two appendices containing 
complementary information related to the functional requirements and the literature review.  
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1 Introduction 
Let us recall the twofold target of Work Package 2 (WP2) of the DAEMON project:  

• Design an overall architecture for the harmonized integration of Network Intelligence (NI) in 
Beyond 5G (B5G) systems. 

• Develop a knowledge base and a rigorous methodology for the development of Artificial 
Intelligence (AI) and Machine Learning (ML) tools that effectively support Network Intelligence 
functionalities.  

By achieving the twofold target above, WP2 is contributing to pursuing the following objectives within 
the DAEMON project. 

• Objective 1.1. To enable and drive the coordination and cross-compatibility across NI deployed 
in different network domains operating at different timescales.  

• Objective 1.2. To enable NI deep into the network infrastructure.  
• Objective 3.1. To adjust AI techniques to the specific necessities of the network environment and 

operations and to develop novel AI hybrid approaches.  
• Objective 3.2. To introduce appropriate and tailored cost functions for the networking context 

that can be used for training AI techniques.  
• Objective 3.3. To develop novel AI techniques that can dynamically adapt to available network 

resources by trading off accuracy with, e.g., inference latency or computational complexity.  
During the third public deliverable of the project's WP2, which was built on the material of D2.2 [1], we 
are presenting the following contributions.  

• We provide the final update on the functional and non-functional requirements of the eight NI-
assisted functionalities tackled by DAEMON. Although no new updates were added to the 
functionalities, we assess the risks to achieve the requirements and its current completion status.  

• We evolve the Network Intelligence Plane (NIP) towards the Network Intelligence Stratum, an 
architecture that emerges from a collection of modules and interfaces responsible for managing 
NI within the network, and it is now a unified framework that brings together (i) the operational 
hierarchy of NI components and their orchestration and (ii) the N-MAPE-K representation of the 
NI components. As a result, the original NIP architecture is transformed from a purely separate 
plane to a more orthogonal approach where Network Intelligence Functions (NIFs) and Network 
Intelligence Services (NISs) can effectively be integrated into the traditional planes (data, 
control, and management). 

• We identify and detail the specific needs that NI algorithms pose on the NIP towards the 
procedures for NI management at the Network Intelligence Orchestrator (NIO) level. We also 
devise and describe the functionalities that the NIO shall provide to support such requirements 
and how they fit the whole architecture together.  

• We complete the architectural design with the interfaces required to allow internal and external 
communication of the NIP and its components, together with the set of procedures that address 
the needs and challenges introduced in the previous item.  

• We summarize the outcomes of the comprehensive literature review carried out by the project 
and focus on the integration of machine learning and NI in mobile network management. The 
survey highlights key trends in current research and showcases the distinctive contributions made 
by the DAEMON project. The insights that originated from this analysis also support our final 
updates to the project guidelines on the limits of AI and hybrid approaches for NI and customized 
and adaptable AI for NI. 

• We provide the final updates to the project guidelines, including new ones, on the pragmatic 
design of NI covering the following three aspects: (i) by deriving general guidelines for the design 
of dedicated loss functions that are perfectly aligned with the actual performance metrics, (ii) 
designing a methodology for self-learning AI models that dynamically and automatically 
balance costs and efficiency, and (iii) developing elastic NI models capable of adapting their 
complexity to the context, trading off (computational) complexity for accuracy, responsiveness 
or energy efficiency as needed. 

The first four contributions, which are realized as a full architectural design, complete Objectives 1.1 and 
1.2. On the other hand, the last two contributions, a comprehensive literature review and a set of 
guidelines, complete Objectives 3.1, 3.2, and 3.3 of this project.  
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1.1 Connecting the second and third iterations of the DAEMON project 
To provide a clear understanding of the progress made in the DAEMON project, we situate D2.3 within 
the project's overall work plan schedule. Figure 1 presents the original Gantt diagram, illustrating the three 
iterative phases emphasized in the diagram and the scope of D2.3. Each iteration consists of specific 
phases: (i) the design of the NI framework and NI models, which is conducted in WP2, (ii) the 
implementation of NI-assisted functionalities based on the design, carried out in WP3 and WP4, and (iii) 
the evaluation of NI-assisted functionalities in dependable settings, executed in WP5. The iterative nature 
of the work plan allows each iteration to inform and build upon the preceding one. This flexible structure 
enables the identification and resolution of emerging issues in the developed solutions, ensuring a 
comprehensive approach to problem-solving throughout the project. 

 
Figure 1. Gantt diagram of the DAEMON project, with the three iterations of the work plan highlighted 
and the scope of D2.3.  

Notice that although D2.2 [1] provided a complete technical foundation towards WP2's main objective 
and DAEMON’s related sub-objective at the end of iteration 2, several research activities were still open 
or raised during the third iteration of this WP: 

• The definition and description of the functional and non-functional requirements were expected 
to undergo minor changes as they reached a high level of maturity during the second iteration. 
However, it was crucial to analyze their actual development status in order to assess the progress 
of their completion and manage the associated risks. This analysis was based on the outcomes 
of WP3, WP4, and WP5 during the second iteration, reported in deliverables D3.2 [2], D4.2 [3], 
and D5.2 [4], respectively. By doing so, WP2 could provide feedback to WP3, WP4, and WP5 if 
further actions were needed to ensure the fulfillment of all the requirements. 

• The initial design of the NIP and its requirements provided a high-level view of what the NIP can 
achieve towards an AI-native architecture for 6G. However, the challenges that raise when 
orchestrating NIFs/NISs could not be identified until the end of the second iteration when WP3 
and WP4 updated the design of their algorithms with the outcomes of D2.2 [1]. As a result, further 
progress was achieved in defining which components should be part of the Network Intelligence 
Orchestrator (NIO), determining the necessary interfaces for communication within the NIP, and 
establishing procedures to address these challenges. 

• Although the first set of practical guidelines for the design of NI algorithms that are tailored to 
mobile network environments and the ones that identify the limits of applying AI/ML in networking 
were presented in D2.2 [1] based on the outcomes of D3.1[5], D4.1[6], and D5.1[7], further 
improvements on the guidelines, including new ones, and clear identification of limitations and 
challenges of them were derived at the end of the third iteration based on the outcomes from 
D3.2 [2], D4.2 [3], and D5.2 [4]. Moreover, the final iteration of the literature review was focused 
not only on recent developments in NI functionalities but also on identifying how the guidelines 
proposed in DAEMON provided a new state of the art in this domain. 
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1.2 Role of Deliverable 2.3 across iterations  
The present deliverable acts as the connecting document between the second and third iterations of 
the project. Namely, D2.3 uses the conclusions and results of the second iteration to pave the way for the 
NI design, development and testing activities of the final iteration of the DAEMON project. The content of 
this document, therefore, describes the work carried out in WP2 during the third iteration of the project. 
As anticipated in the previous subsection, such work addressed the outgoing research activities after the 
second iteration and, more specifically, encompassed the following key aspects: 

• Final updates on functional and non-functional requirements. The document provides the 
ultimate update on the definition of the functional and non-functional requirements for the eight 
NI-assisted functionalities addressed by the DAEMON project. While no new updates were 
added to such requirements with respect to the descriptions in D2.2 [1], the final risks associated 
with meeting these requirements are re-assessed in line with their current completion status. For 
requirements that remain unresolved at this stage, the specific actions that are still needed for 
their successful finalization are outlined, indicating the future deliverable where relevant results 
will be presented. 

• Final updates of the Network Intelligence Plane (NIP). The NIP, responsible for managing NI within 
the network, has undergone significant developments beyond those reported in D2.2 [1]. This 
document presents the final version of the NIP model, which now serves as a unified framework 
encompassing the operational hierarchy and orchestration of NI components, along with the N-
MAPE-K representation of these components. This progress aligns with the vision set in D2.2 [1]. 

• Identification of specific needs and challenges when orchestrating NI. In addition to the unified 
DAEMON framework, the document thoroughly identifies and presents the specific needs that 
NI algorithms impose on the NIP. It analyzes the challenges these needs present regarding the 
NI management procedures at the level of the Network Intelligence Orchestrator (NIO). The 
functionalities required from the NIO to address these needs are described, highlighting their 
integration within the overall architecture. Moreover, the document discusses the interfaces 
necessary to facilitate communication between NIP components and external entities like the 
Radio Access Network (RAN) controller and the 5G Core systems. These interfaces enable 
designing procedures that tackle the needs and challenges introduced. 

• Comprehensive literature review and research gaps that the DAEMON project is tackling, along 
with associated novel guidelines, to achieve a pragmatic design of NI. The document offers a 
final and comprehensive overview of the literature review conducted on integrating machine 
learning and NI in mobile network management. It highlights key trends in current research, 
showcasing the distinctive contributions made by the DAEMON project. The findings from this 
analysis further support the final updates to the project guidelines, including new guidelines, for 
practical NI design. These guidelines, as previously outlined in D2.2 [1], focus on two main 
directions: i) NI design tailored to the needs of B5G network management, orchestration, and 
control, and ii) NI design that emphasizes the utilization of more traditional, simpler, or 
interpretable models to avoid overburdening the system with data-heavy models. 

This document serves as the foundation for the subsequent stages of the third iteration of the DAEMON 
project. Specifically, it will guide the updated design and implementation of NI-assisted functionalities by 
i) ensuring the fulfillment of all their requirements; ii) verifying that the proposed solutions meet the 
project's Key Performance Indicators (KPIs) in terms of performance, aligning with the functional and non-
functional requirements and NI design guidelines outlined in this deliverable (including any requirements 
not yet achieved); and, iii) delivering a final version of the NI functionalities that fully aligns with the 
detailed architecture, including interfaces, and NIP procedures presented in this document. 

1.3 Relationship to the other deliverables of DAEMON 
Based on the discussion in Section 1.2, the relationship of D2.3 with the other project deliverables of the 
second and third are described below.  

• D2.2. This document builds upon the requirements, novel NIP, and guidelines for the pragmatic 
design of NI defined in D2.2 [1]. In addition, it extends the vision for a NI orchestration framework 
by defining more detailed functional blocks, interfaces, and procedures to orchestrate 
intelligence, realizing a final version of the DAEMON’s proposal for an NI plane.  

• D3.2 and D4.2.  This document considers the outcomes of these deliverables of the project, which 
presented journaled and improved NI algorithms that adhere to the updated requirements 
presented in D2.2 [1]. Moreover, after providing a suitable representation of the NI algorithm, 
which are compatible and can be managed by the initial NI plane design, and the updates on 
how these NI algorithms operate across network functionalities after D2.2 [1], these deliverables 
also exposed the set of challenges and needs that raised when the NIP will orchestrate them.  



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

14 

• D5.2. A comprehensive performance assessment was conducted within D5.2 [4] for the updated 
NI-assisted functionalities developed in WP3 and WP4 during the second iteration of the project. 
Such an assessment established a clear connection to the project's KPIs and specifically linked 
them to the requirements specified in this document. 

• D3.3 and D4.3. According to the overall framework defined by the DAEMON project, the solutions 
related to Real-Time Control and VNF Intelligence, and Intelligent Orchestration and 
Management are developed by WP3 and WP4, respectively, always considering the 
requirements set in the context of Task 2.1 in WP2 (NI functional and performance requirements). 
As discussed below, most of the requirements set for these families are already meeting (and 
sometimes even exceeding) the requirements. However, for some of them, the necessary details 
needed to understand why such requirements are eventually met will be described in the last 
iteration of WP3 and WP4 and hence provided in D3.3 and D4.3. In these cases, we clearly 
indicate for each requirement if that is the case.  

• D5.3. A final comprehensive performance assessment will be conducted for the updated NI-
assisted functionalities developed in WP3 and WP4 in this deliverable. D5.3 will include the 
performance evaluations required to achieve the requirements that have not been validated 
at the time that D2.3 and depend on them.  For example, D5.3 will provide a set of performance 
evaluations of the initial proofs-of-concept on coordinating a pair of NI algorithms and the NIP 
components involved in them (see Section 5.3.1), which are required to finalize the set of 
requirements associated with the NIP (see Section  2).  

1.4 Structure of the document  
The high-level structure of this deliverable is summarized as follows.  

• Section 2 provides the final version of the requirements for the eight NI-assisted functionalities 
addressed by DAEMON at the end of WP2. Although no new updates were introduced in the 
description of the requirements, which reflects their maturity at this point of the project, the risks 
involved in meeting these requirements and their status of completion are assessed. For 
requirements that are not yet finalized, the document specifies what is needed for successful 
completion and indicates in which deliverable the results will be provided. 

• Section 3 presents the final architectural design of the NIP as a unified framework. It incorporates 
the operational hierarchy of NI components, their orchestration, and the N-MAPE-K 
representation of these components. This progress aligns with the envisioned complete NIP 
architecture from D2.2 [1]. 

• Section 4 and Section 5 delve into the specific needs posed by NI algorithms on the NIP and the 
required procedures to address them. Specifically, Section 5 analyzes the challenges faced in 
managing NI at the Network Intelligence Orchestrator (NIO) level and outlines the functionalities 
the NIO should provide to address these needs. The architectural design presented in Section 3 
is supported by discussing the necessary interfaces described in Section 4 for communication 
between NIP components and external entities like the RAN controller and the 5G Core systems. 
These interfaces facilitate the design of procedures that tackle the introduced needs and 
challenges. 

• Section 6 offers a final and extensive overview of the literature review on integrating machine 
learning and NI in mobile network management. It highlights key trends in current research and 
emphasizes the distinctive contributions made by the DAEMON project. The findings from this 
analysis also support the guidelines presented in the following Section.  

• Section 7 provides the final updates to the project guidelines for practical NI design. These 
guidelines, similar to D2.2 [1], focus on two main directions: i) NI design tailored to the needs of 
B5G network management, orchestration, and control; ii) NI design that prioritizes the use of 
more traditional, straightforward, or interpretable models to prevent system overload with data-
intensive models and promote the use of models that are easier to understand and interpret.  

• Section 8 summarizes and concludes the work carried out in WP2 during the third iteration.  
In addition, this deliverable includes two appendixes, which are presented next.  

• Appendix A details the full list of requirement trees for each NI-assisted functionality, as well as 
for the NI plane. These tree structures are too long to be included in the main body of the 
document, but they complement the content in Section 2.  

• Appendix B reports the complete taxonomy table of the related works studied by the project as 
part of the literature survey. Again, the table is too large to be included in the main body of the 
document, but it completes the discussion in Sections 6 and 7 of the deliverable.  
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2 Updated Network Intelligence functional requirements 
Requirements elicitation is the process of gathering and specifying the prerequisites for a software system. 
DAEMON initially identified the functional and non-functional requirements for the eight Network 
Intelligence (NI)-assisted functionalities presented in Section 3 of D2.1 [8]. The main objective of this task 
was to establish a set of requirements that the design and implementation of NI functionalities should 
comply with. The requirement elicitation involves not only the identification and collection of 
requirements, but also their analysis and refinement during the project lifecycle. Appendix A in D2.2 [1]  
includes the updated state of requirements after the first iteration. 
In this third iteration (see Table 1), only two new requirements have been included (FR-IBSSI-002 and NFR-
NIP-009). FR-MTERM-004, FR-MTERM-004.01, FR-MTERM-006 and FR-MTERM-007.00 updated their KPIs. Lastly, 
FR-AARES-000 reduces its risk after averaging the children's initial risks. Table 1 summarizes the progress 
and evolution of the functional requirements over time in WP2. It can be observed that the project is now 
in a mature stage from the requirement perspective, so only minor changes (or even no changes) are 
expected at the end of the project. 

Table 1. Evolution of the functional requirements during the three iterations in WP2. 

Iteration New Updated Reorganized Total 
Iteration 1 81 0 0 81 
Iteration 2 24 18 12 102 
Iteration 3 2 5 0 104 

An important aspect to clarify in this iteration is that in Section 2.2 of D2.2 [1], we indicated that the NIP 
covered all the KPIs of the project. The main reason for this was to indicate that since the NIP will assist 
any NI functionality in achieving their associated KPIs, then those KPIs would also be covered by the NIP. 
However, in this document, we removed the KPI field from the NIP requirements to dispel any confusion. 
Moreover, the NIP is a novel component of future AI-native 6G architectures; therefore, their associated 
KPIs are still to be defined. As part of the effort to set a set of reference performance metrics, we expect 
to deliver a set of baseline reference values in D5.3 to achieve the completeness of the NIP requirements, 
as explained in more detail in Table 3. 
According to the good practices recommended by the standard O/IEC/IEEE 29148:20181 on which we 
based our requirement elicitation documents, requirements have an associated risk level. In D2.2 [1], we 
preserved the initial risk estimations for the majority of the requirements and updated the risk 
management of a few of them after the first iteration. 
In this deliverable, we have included new data to report the progress in meeting the requirements and 
how we mitigated the initial risks to achieve them after the second iteration. Table 2 shows a complete 
requirement table showing three new fields in a new section named Current Status.  
The Percent Complete reports up to what extent a requirement has been completed and validated at 
DAEMON. In order to estimate this value, we have analyzed the previous deliverables, the content of the 
current one, and all the papers and activities that report the work made in DAEMON until now.  
The Risk Management field assesses how well the initially identified risks were tackled, taking into account 
we tried to reduce as much as possible their impact on requirements compliance. This value has been 
categorized as Successful (all identified risks were avoided or mitigated), Effective (some risks could not 
be fully canceled, but this only had a minor impact on the completion of the requirement), or Partial 
(some uncontrolled risks have impacted the requirement completion partially).  
Considering the level of requirements completeness is strongly related to how well risks were managed, 
the Percent Complete and Risk Management values are correlated. Finally, the new Rationale field 
provides a justification for the Percent Complete and Risk Management fields. Within this text, we provide 
evidence supporting the Percent Complete and Risk Management values by referencing and linking to 
previous deliverables, featured articles, or sections of this deliverable.  
 
 
 
 
 

                                                        
1 https://standards.ieee.org/standard/29148-2018.html  
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Table 2. New fields are included to gather information about the Current Status of the requirement. 

FR-EAWVNF-001.00 
Description DAEMON’s EAWVNF shall measure the energy footprint of VNFs in terms of CPU 

usage. 
Version 001M2 
Owner UMA 
Priority High 
Risk 2 
Risk Description Calculating the cost of executing any kind of code, on specific hardware 

accurately is a complex task, since there are several factors that we need to 
quantify in order to calculate the energy footprint. The theoretical values given 
by CPU providers usually do not coincide with the real ones.  

Rationale We need to identify what are the factors that should be considered in the 
formula that calculates the global energy footprint of the VNFs instantiated for 
each application, in terms of computation. We know that the processor type of 
the device where a VNFs is running influences the energy footprint, but there 
are also other parameters that make the software provoke the hardware to 
consume more energy, like the size of VNF input. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  
Parents FR-EAWVNF-001 

Current Status 
Percent complete 100% 
Risk management Successful 
Rationale In the placement solution presented in D4.2 [3], the energy model used to 

estimate the energy consumption explicitly includes the energy cost of 
computation calculated from the CPU cycles and the CPU frequency along 
with other factors. In the placement and autoscaling solution presented in 
D4.2 [3], the energy consumption model calculates the energy footprint of 
VNFs in terms of CPU usage according to the node in which VNFs are going to 
be deployed. 

The new information provided in each requirement helps us understand the status of the functionalities 
assisted by NI. The information in Figure 2 and extended in Table 3 shows the completion percentage for 
the different functions. We can see that reported progress is above 70%, and some, such as NIP, CAWRS, 
or IBSSI, are almost or already completed. It is expected that there will be unfinished functionalities at this 
stage because some of them depend to a large extent on experimentation, the results of which will be 
obtained at the end of the project and will be presented in deliverables D3.3, D4.3, and D5.3, as listed 
and described in Table 3.  
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Figure 2. First-level structure of the functionalities’ requirements tree of the DAEMON project. 

Table 3. Overall progression and risk management. 

Functionality 
group 

Percent 
complete 

Risk 
management 

Explanation 

RIS control 
(RIS) 

75% Successful Reconfigurable Intelligent Surfaces (RIS) enable 
programming the wireless channel, conventionally 
considered a passive component, towards specific 
needs, e.g., focusing electromagnetic radiation 
towards specific locations. However, such a new 
dimension further complicates the intelligence in 
charge of optimizing wireless links. The ambition of 
DAEMON was to assess RIS-controlling NI empirically, 
which involved developing a complete RIS prototype. 
This involved severe risks of failing as RIS prototypes were 
nonexistent at the beginning of the project. 
Nevertheless, all the risks have been successfully 
mitigated, as will be described in D3.3 (design of NI) 
and D5.3 (empirical evaluation). 

Multi-
timescale 
Edge 
resource 
management 
(MTERM) 

90% Effective The MTERM functionality aims at automatically manage 
and orchestrate resources and services in distributed 
edges and in different timescales. The solutions 
designed throughout the project’s development fulfilled 
or are about to fulfill such a goal. For example, the 
solution presented in Section 3.1 of D3.2 [2] performs 
management and orchestration of services across 
multiple edges, as indicated by requirements FR-
MTERM-004 and FR-MTERM-020. Similarly, the solution in 
Section 3.5 of the same deliverable manages resources 
in multiple timescales, as indicated by FR-MTERM-020. 
Finally, the risks were estimated as low-risk given the 
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expertise of the consortium, which led to effective risk 
mitigation.    
Next, deliverables (D3.3 and D4.3) will present the final 
results on these solutions and a 100% completion is 
expected at the end of the project.  

In-backhaul 
support for 
service 
intelligence 
(IBSSI) 

95% Successful DAEMON developed solutions that operate in the user 
plane to support NI. Such solutions allow learning 
network policies using the user plane itself as well as 
performing inference at line-rate. All the risks were 
correctly managed during the project. For example, for 
FR-IBSSI-002, which aims at integrating Network 
Intelligence within programmable switches, risks were 
estimated as intermediate at the start of the activity, 
due to the limitation of the computing environment 
offered by programmable switch ASICs; such risks were 
avoided by using models that are relatively simple and 
mappings of such models that are tailored to the target 
hardware. Performance has been shown to achieve the 
envisioned accuracy. Similarly, for FR-IBSSI-002.01, which 
indicates that DAEMON shall handle both packet-level 
and flow-level inference, and which suffers from the 
same risks, these risks were avoided by designing novel 
approaches to feature representation that suited the 
target hardware. 

Compute-
aware radio 
scheduling 
(CAWRS) 

100% Successful This functionality takes care of embedding Computing 
Awareness in the Wireless Access Network functions 
such as the ones running in the gNB. All the 
requirements related to this group have been 
successfully fulfilled, from both the algorithmic and the 
performance perspective. The main design principles 
and results are already available in D3.2 [2] and D5.2 
[4], while further improvements are going to be 
introduced in D3.3 and D5.3. 

Energy-
aware VNF 
placement 
(EAWVNF) 

90% Effective Energy-aware VNF placement functionality aims to 
monitor and measure energy efficiency. We already 
identified the factors that significantly impact energy 
consumption (D3.1 [5], Section 5.3.2.1, D3.2 [2], Section 
3.3.3, and journal [9]) requested by requirement FR-
EAWVNF-002 and their derived ones. Those factors were 
used to estimate energy consumption (FR-EAWVNF-001 
and its derived requirements) and to monitor the 
impact of hardware resources of VNFs (solutions 
presented in D4.2 [3]; FR-EAWVNF-2). The cost in terms of 
migration (FR-EAWVNF-003, FR-EAWVNF-004 and its 
derived requirements) and scaling (FR-EAWVNF-006 and 
its derived requirements) are partially solved, as 
presented in the energy-aware placement solution for 
VNFs (section D4.2 [3]). Next deliverable D3.3 will extend 
the empirical evaluation of SAVRUS, demonstrating that 
SAVRUS generates meaningful results sufficiently fast by 
analyzing SAVRUS validity and SAVRUS scalability. It will 
also update the SAVRUS algorithm with Inductive 
Transfer Learning and Scoring Functions to improve the 
creation and updating of the energy-aware rankings of 
features. Also, it will describe changes in the algorithm 
to reduce the Curse of Dimensionality and the Negative 
Transfer, two drawbacks of the algorithm. In the 
following deliverable, D4.3, the iTarea algorithm will be 
updated to incorporate the energy consumption 
prediction provided by a Gradient Boosted Regression 
Trees algorithm. 
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Self-learning 
MANO 
(SLMANO) 

80% Effective DAEMON designed autonomous and self-learning 
orchestrators and controllers that operate with minimal 
human intervention. In particular, the set-up and life 
cycle management we investigated via learning 
placement/routing algorithms and self-tuning control 
loop respectively. While the design principles are 
introduced in D4.1 [6], updated in D4.2 [3] and will be 
completed in D4.3, the performance results have been 
reported in D5.1 [7] and D5.2 [4] and will be 
complemented in D5.3. All proposed tools were 
evaluated on artificially generated data, which was 
constructed to be as close to realistic data as possible 
(e.g., exposing diurnal patterns, random noise, flash 
crowd). Nevertheless, testing them on actual data 
(once they become available) is reserved for future 
work. 

Capacity 
forecasting 
(CFORE) 

90% Effective DAEMON designed Capacity Forecasting models 
capable of anticipating the amount of resources 
needed to accommodate future mobile service 
demands, so as to support Network Intelligence (NI) 
algorithms across the mobile network architecture. This 
largely achieved the targets set at the beginning of the 
action, including aspects such as the capability to 
operate at different timescales (FR-CFORE-001) and on 
streaming data (FR-CFORE-003), the awareness of 
monetary costs for decision-making FR-CFORE-002), or 
the possibility to self-learn the objective loss function (FR-
CFORE-005). Details on the design and evaluation of the 
models are provided in D2.2 [1], D4.2 [3] and D5.2 [4], in 
addition to refinements that are developed in the last 
iteration of the project, as presented in Section 7.1.3 of 
the present document and later complemented in D4.3 
and D5.3. 

Automated 
anomaly 
response 
(AARES) 

90% Successful DAEMON implements three different activities for real-
time anomaly detection and automated anomaly 
response, namely, A9, A19 and A25, as reported in D5.2 
[4]. We provide details on the solution and its 
implementation in D4.2 [3] and D3.2 [2], which we will 
complement with their final status in D4.3 and D3.3, 
respectively. The reported status in D5.2 [4] shows an 
average completion of approximately 70% towards 
collecting the corresponding KPIs, which we will further 
update in D5.3. 

Network 
Intelligence 
Plane (NIP) 

95% Successful The DAEMON’s NIP shall manage, coordinate, and 
orchestrate network intelligence with a closed control 
loop to meet service KPIs in different micro-domains. All 
the risks were correctly managed during the project by 
ensuring that each iteration (first in D2.1, second in D2.2 
[1], and final in D2.3) of the architectural design added 
or improved the required functionalities, thus avoiding 
the initially foreseen risks. An example is FR-NIP-002, 
which aims to define internal and external interfaces. 
This deliverable provides the functional blocks and 
procedures necessary to realize it. This is also confirmed 
by the percentage of completion of the set of 
requirements at this point, which is expected to achieve 
100% by the end of the project once we provide a set 
of measurements of the NIP’s performance in D5.3. 
These performance measurements are intended to be 
used as reference values for future implementations of 
the NIP beyond the lifetime of the project (see FR-NIP-
003 and FR-NIP-005 for more details). 
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Some factors may affect a completion percentage. The first is the priority. A requirement with low priority 
will receive fewer resources to be completed than others with high priority. That factor can be controlled 
since more resources can be allocated. However, other factors, such as risk can affect the completion 
rate as some of them cannot be completely avoided or mitigated. Figure 3 shows the relation between 
the risk level (estimated during the elicitation) and its management (reported during the execution after 
two iterations). As expected, requirements with lower risk level estimates (1 or 2) have had better risk 
management (75% successful, 23% effective, 2% partial). Conversely, the requirements with an estimation 
of high-risk levels (4 or 5) reported difficulties during risk management (38% successful, 43% effective, 19% 
partial). Overall, it can be observed that risk management has been successful in DAEMON: 65% 
successful, 28% effective, and 7% Partial. 

 
Figure 3. Initial risks and their management. 

This success in identifying and managing risks has positively impacted the completion percentage. Figure 
4 shows how requirements’ risk levels (estimated in advance) are related to the completion percentage 
(reported currently). It can be observed that every requirement has some degree of completion, even 
the ones with the highest risk level, meaning that risk management has been greatly successful. It also 
shows that the risk level estimation was properly assessed during the requirements elicitation. Finally, the 
requirements with risk identified as low are all nearly complete, regardless of their priorities. 

 
Figure 4. Estimated risk versus percent completed. 

Notice also that although some KPIs were only covered by single NI functionality during the requirement 
definition phase (e.g., AARES - Automated anomaly response and RIS - Reconfigurable Intelligent 
Surfaces), most of them have achieved a high completion status at this point and it is expected that they 
continue its progress to achieve its 100% by the end of the project. This is also a result of the DAEMON’s 
strategy of having multiple partners working on different algorithms under the same NI functionality (see 
Table 17 D5.2 [4]) or exceeding the expectations of some functionalities that were able to provide results 
to a KPI that was initially not planned as a requirement (see Table 24 in D5.2 [4] where K7 was evaluated 
IBSSI - In-backhaul support for service intelligence). 
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3 Network Intelligence Plane: Final architectural design 
B5G and 6G networks set forth a vision for end-to-end NI coordination aimed at ensuring a conflict-free 
and synergic operation of the many NI algorithms running across schedulers, controllers, and 
orchestrators in the network. As a first step in the rigorous design of a complete framework for the joint 
operation of NI instances, we have identified a set of gaps in the current frameworks for network 
management that the main Standard-Defining Organization (SDO) entities, such as 3rd Generation 
Partnership Project (3GPP) and the European Telecommunications Standards Institute (ETSI), as well as by 
global industrial initiatives like O-RAN, are not currently delivering to support the native integration of NI 
and, subsequently, its practical adoption within 6G networks. These gaps can be the following: they do 
not provide (i) mechanisms to coordinate intelligence across different network micro-domains or (ii) 
solutions for decentralized and unified data management across NI instances. Also, their (iii) support for 
managing the NI lifecycle is minimal, and there is only an early consideration for (iv) methodologies for 
the defining and representing of NI models. Table 4 summarizes the main gaps, based on the detailed 
analysis presented in Section 10, Appendix B in D2.1 [8], and how the NIP contributes to fill such gaps. 

Table 4. Main gaps in SDOs and networking-related frameworks with respect to NI functionalities. 

Framework Methodology 
to define NI 

Mechanisms to manage 
the lifecycle of NI 

Mechanisms to 
coordinate NI across 
different network 
segments 

Decentralized 
and unified 
data 
management 
for NI 
instances 

ETSI MEC No No No No 

ETSI NFV No No No No 

ETSI ENI Yes No No No 

O-RAN Yes Partially No No 

Open Source 
MANO (OSM) 

No No No No 

3GPP No No No No 

ONAP No No No No 

Network 
Intelligence 

Plane 

Yes 
[Addressed 
in D2.2 [1], 

Section 3.1.2] 

Yes [Initially addressed in 
D2.2 [1], Sections 2.1, 
3.1.3 and 3.1.4, and 
extended in D2.3, 
Sections 2 and 3] 

Yes [Initially addressed 
in D2.2 [1], Sections 2.1, 

3.1.3 and 3.1.4, and 
extended in D2.3, 
Sections 2 and 3] 

Yes 
[Addressed in 
D2.1, Section 
5.1 and 6.2] 

To tackle the gaps mentioned above and remove the current barriers to fully support the aspects not 
necessarily covered by existing frameworks, DAEMON has outlined a clear set of functional and non-
functional requirements, targeting the coordination of NI instances in an end-to-end fashion (see D2.2 
[1], Section 2.2 and Section A in this document). This set of requirements includes developing synergies in 
terms of data management and handling the interaction with Machine Learning Operations (MLOps) 
platforms, managing the complete lifecycle of both complex NI instances and atomic NI functions, the 
maintenance of catalogs of NI models that ease de-composition and orchestration. Based on those 
requirements, The DAEMON project has proposed in D2.2 [1] a novel NI Framework for 6G networks and 
proposed the Network Intelligence Plane (NIP), a collection of modules and interfaces responsible for 
managing NI within the network, as shown in Figure 5. However, this document introduces a refined 
architecture that has been adopted by the 5G Infrastructure Public Private Partnership (5GPPP) 
Architecture Working Group as the Network Intelligence Stratum [10], [11]. This term has been embraced 
as part of the comprehensive architectural framework that has been developed by the WG, as illustrated 
in Figure 6 and reported in the whitepaper “6G Architecture Landscape – European perspective” [11], 
released by the 5G Architecture Working Group in the 5GPP.  
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Figure 5.  A NI framework for 6G network (left) and the NIP functional blocks (right). 

The motivation behind this terminology shift is to align with the established usage in 3GPP, where the term 
"stratum" typically denotes a collection of elements that span various network domains. For example, the 
term "network access stratum" encompasses all the elements involved in user registration and 
authentication across the RAN and the Core. Considering that network intelligence components are 
distributed across multiple domains such as access, core, infrastructure, management, and 
orchestration, it was only natural to adopt this terminology in line with 3GPP standards. Moreover, this 
approach also moves the NIP design from a purely separate plane to a more orthogonal approach where 
NIFs and NISs can effectively be integrated into the traditional planes (data, control and management) 
for easy adoption in the industry.  In order to maintain consistency and coherence with D2.2 [1], in this 
and future deliverables of the project, we will continue to use the term NIP. 
 

 
Figure 6. The architectural framework proposed by the 5GPPP Arch WG [11]. 

In the project effort to define the NIP organization and operations, we already introduced a reference 
representation of complex NI algorithms as a hierarchy of Network Intelligence Services (NISs) that can 
be broken down into one or more Network Intelligence Functions (NIFs), which, in turn, are composed of 
atomic NIF Components (NIF-Cs) [12], as represented in Figure 7. We also specified how NISs and NIFs 
can be managed by a Network Intelligence Orchestration (NIO) with a precise internal structure of 
fundamental building blocks. 
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Figure 7. The high-level hierarchical taxonomy of Network Intelligence algorithms. A NIF corresponds to 
an individual NI instance that assists a specific functionality: for example, it could capture the 
implementation of a capacity forecasting task, assisting an NI edge orchestration functionality. 

In addition, in a separate work, we defined a suitable reference representation to be adopted by the 
NIO to model any NI algorithm [13]. To that end, we adopted and adapted a popular model widely 
adopted for autonomous and self-adaptive systems, i.e., the Monitor-Analyze-Plan-Execute over a 
shared Knowledge (MAPE-K) feedback loop [14]. Building on top of the MAPE-K representation, we 
dissected NI algorithms into common elements that have different characteristics (e.g., a data-gathering 
probe or a Neural Network model) and introduced original training and closed control loops that a NIF 
may implement, which resulted in an extended Network MAPE-K (N-MAPE-K) model tailored to the NI 
environment, which is shown in Figure 8. The N-MAPE-K model allows capturing (i) the inference loop, (ii) 
a traditional supervised training loop, and (iii) a second training loop dedicated to online learning. 
Mapping NI algorithm components into the N-MAPE-K representation allows highlighting the following 
fundamental classes of atomic NIF-Cs.  

• Sensor NIF-Cs specify all the probes needed to gather the input measurement data. 
• Monitors NIF-Cs specify how each NIF interacts with the Sensor NIF-Cs and gathers raw data from 

them. 
• Analyze NIF-Cs include any pre-processing, summary, or data preparation for the specific NI 

algorithm implemented in the plan NIF-Cs. 
• Plan NIF-Cs constitute the specific NI algorithm implemented by the NIF.  
• Execute NIF-Cs specify how the algorithm is going to interact with the managed system and how 

to possibly change its configuration parameters. 
• Effector NIF-Cs specify the configuration parameters updated in the Network Function (NF), and 

the Application Programming Interfaces (APIs) to be used to that end. 

 
Figure 8. Extended N-MAPE-K abstractions for NI algorithms. 

DAEMON’s NIP is a unified framework that brings together our earlier proposals for (i) the operational 
hierarchy of NI components in the NIP and (ii) the N-MAPE-K representation of NIF-Cs. By doing so, we 
make a step forward toward the vision of a complete NIP anticipated above. An illustrative example of 
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the resulting integration is provided in Figure 9. There, each circle depicts a NIF-C and a double circle 
captures a NIF-C shared among multiple NI-assisted functionalities. For example, the circle in the O-Cloud 
rectangle captures the Forward Error Correction (FEC) decoder. Multiple united NIF-Cs constitute a NIF, 
e.g., Nuberu [15] or Henna [16], to mention two solutions developed in the project itself. Finally, by 
combining NIFs we get a NIS: as an example, the integration of different RAN-related algorithms can 
realize an overall reliable virtualized RAN (vRAN) service. Table 5 presents several examples of NIS and 
their respective NIF based on some NI-assisted functionalities developed in the DAEMON project [2], [3]. 

Table 5. Examples of several NISs, their NIFs, and their associated KPIs. 

NIS KPIs NIF 
Reliable 
Virtualized RAN 

 Reliable distributed unit (DU) for virtualized RAN [15] 
Orchestration of radio and computing resources in vRANs [17] 

Sustainable 
network 
operation 

VNF Energy 
Savings 

Cloud Acceleration for virtualized RAN[18], [19] 

Compute Aware scheduling analytics [20] 

AI-enhanced edge orchestration [21] 
Compute 
Resource Savings 

Data-driven resource orchestration [22] 

OPEX Savings Multi-timescale network slice reservation [23] 
Network 
capacity 
management 

Wireless Capacity 
Increase 

Reconfigurable Intelligent Surfaces Control [24] 
Accurate WLAN performance prediction in dense 
environments [25] 

Edge 
orchestration 

OPEX Savings Network Service Auto-scaling [26], [27] 

Capacity forecasting [28] 

The variety of NIF and NIS that can be deployed at the network generates new challenges in the way 
they should be managed that are not presented in current management frameworks. In the rest of 
Section 3, we will present the final DAEMON architecture. We will first identify and present in detail the 
specific needs that NI algorithms pose on the NIP and understand their specificity in terms of challenges 
in the procedures for NI management at the Network Intelligence Orchestrator (NIO) level. Then, we will 
devise and describe the functionalities that the NIO shall provide to support such requirements (Section 
3.1) and how they fit the whole architecture together (Section 3.2). The architectural design will be later 
complemented i) in Section 4 by presenting and discussing the interfaces that are required to allow 
communication between NIP components, and the NIP components with external entities such as the 
RAN controller, Core system, and local and end-to-end management systems, and ii) in Section 5 by 
designing the set of procedures that address the needs and challenges introduced in Section 3.1 and 
that motivate the functionalities presented in Section 3.2, together with some reference implementations 
as Proof of Concepts (PoC) in Section 5.3. 

3.1 The need for specific NIP Procedures 
The concurrent instantiation of many different NIFs/NISs raises challenges that the architecture we 
propose allows addressing. Next, we detail the management needs that such challenges create, and 
exemplify them with representative NI-assisted functionalities developed in the DAEMON project [2], [3]. 

3.1.1 Conflict resolution 
DAEMON’s NIO allows to efficiently re-use and combine different elements that can be shared across 
NIFs, by representing their split into atomic NIF-Cs that abide by the N-MAPE- K framework [14]. This 
eventually enables building in an effective way a NIS, analogously to the approach used by 3GPP SA5 
to build the Network Slicing data model –where a Network Slice is decomposed into Network Slice 
subnets. However, while composing NIFs to build a NIS, through the sharing of different NIF-Cs, possible 
conflicts on operations and/or resources may arise. It is hence a task of the NIO to arbitrate the operation 
of such components, guaranteeing that the overall goal of the NIS is met. 
Let us illustrate this issue by detailing the arrangement of Nuberu and Athena, two NIFs described in D3.2 
[2] (Sections 2.1 and 2.5, respectively), that aim at improving the resiliency of a virtualized radio access 
network (vRAN) system by acting on the Medium Access Control (MAC) scheduling decision at the 
Distributed Unit (DU) of base stations. Nuberu [15] proposed a re-design of the full stack to be cloud-
native and resilient, while Athena introduced a model that learns the limits of the infrastructure and takes 
scheduling decisions. Thus, both algorithms support the Radio MAC scheduler acquiring knowledge from 
similar input data (e.g., the information about the channel) and enforcing radio scheduling decisions, 
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optimizing the reliability of the system, at different timescales. This results in the sharing of two NIF-C, the 
sources and the sinks between these two NIFs, as also shown by the N-MAPE-K representation depicted 
in Figure 9. 
A similar consideration applies when dealing with mixed user and control intelligence, as in the case of 
the algorithms in Section 5.1 of D3.2 [2], whose goal is (i) performing in-switch inference at line rate 
[16]and (ii) achieving optimal configuration of circuit switching by using real-time traffic demands. The 
NIF implementing in-switch inference, i.e., NIF1 in Figure 9, acts almost entirely in the user plane, directly 
classifying IP traffic and directly enforcing decisions into the NF that is classifying the traffic, the switch 
controller in this case. NIF2 in the figure generates the circuit switching configuration in the control plane 
instead and enacts it in the user plane. The configuration decision is taken based on information about 
traffic volume, which is available at each switch. 
The previous two examples, in which different NIFs share sources and sinks, motivate the need for 
monitoring and coordination of policy enforcement. Here, different conflicts may arise, as follows. 

• Conflicts when monitoring data. Algorithms may need data from the same source but with 
different granularity. Hence, the NIF Manager shall guarantee that the required information 
arrives from the Sources to the specific Plan/Analyze modules with the necessary granularity 
(e.g., at subframe or packet level) in an automated manner to, e.g., avoid duplicating the 
monitoring over IP packets.  

• Conflicts in the policy enforcement. Different NI algorithms may act on the same network 
functions (in the proposed example, the DU MAC scheduler), configuring different parameters. 
Thus, the NIO shall deploy conflict resolution policies with the NIF-C of each NIF to guarantee 
that, e.g., the scheduled MAC frame never exceeds the available capacity or contrasting 
selected users. 

Therefore, the NIO shall oversee and amend any suboptimal decision taken by individual NIFs by closely 
monitoring the access to data sources and the policies determined by decision-making algorithms. 

 
Figure 9. NI-native architectural concept proposed by the DAEMON project for the NIP. The diagram 
portrays the interactions between many different NIFs that implement two NI-assisted functionalities, or 
NIS, also developed in the project. The NIF-Cs that compose each NIF are categorized using our original 
N-MAPE-K representation. The hierarchies of NISs, NIFs, and NIF-Cs are managed all at once by the NIO 
framework, by avoiding conflicts and leveraging synergies among them. 

3.1.2 Knowledge sharing among NIFs 
Figure 9 also illustrates the shared representation of two NIFs detailed in D4.2 [3] (Sections 2.3 and Sections 
2.1, respectively): energy-driven vRAN orchestration, i.e., NIF5, and energy-aware VNF placement, i.e., 
NIF6. In the case of these two NIFs, energy consumption measurements from an edge cloud platform are 
required and a source node component is shared. Moreover, NIF5 generates knowledge about high-
performing RAN control policies given a context and once virtualized instances of RAN components have 
been deployed. On the other hand, NIF6 is in charge of VNFs placement, which in this case, implements 
virtualized RAN functions. In this context, the NIO shall provide centralized coordination among multiple 
NIFs. Such centralized coordination would allow sharing of knowledge that fostered synergetic 
performance improvements between both NIFs. For instance, part of the knowledge learned by NIF6 can 
be used by NIF5 to make better placement decisions and, vice versa, NIF6 can use some knowledge 
learned by NIF5 to enforce informed (placement aware) RAN control policies.  
Knowledge-sharing aspects should also be available cross-domain. For instance, in Section 4.2 of D4.2 
[3], we describe an anomaly detection solution for IoT platforms. In that scenario, the user plane traverses 
multiple domains, bringing new challenges in running root-cause analysis of anomalies. Hence, the 
parties involved in building the user plane for the IoT devices suffering from anomalies should be 
integrated into the anomaly detection scheme, and such synchronization shall happen at the NI 
Orchestration. 
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3.1.3 Model selection, catalog, and re-training  
Although this is not a condition directly stemming from the NI algorithms' design, NISs may need to build 
on the knowledge of the underlying environment. This calls for awareness of the software/hardware 
environment (e.g., as the performance of a specific FEC implementation depends on the target 
hardware [17]) or of the location of the device where they are executed (e.g., as reconfigurable 
intelligent surfaces may have different behaviors according to their geographical position and 
surrounding environment [29]). When executed in the context of a pure ML environment, these tasks are 
natively tackled by several MLOps frameworks such as Kubeflow2 and MLflow3. In the context of an NI-
native architecture, however, this requires tight interaction with the underlying orchestration 
environment. To guarantee that the deployed NIF can operate in the right context, NI models must 
match the specific hardware-software-environmental characteristics of the network functions deployed 
in a network service. Thus, the NIO shall exchange execution context information with the sibling 
Management and Orchestration (MANO) operating in the network to select the proper model to be 
used for inference within a NIF. This incidentally calls for the need for a model catalog from which the 
NIO can select the most appropriate model depending on the specific infrastructural status operated by 
the network at a certain point in time. If no model is available for the specific execution environment, 
the NIO shall be able to invoke the training of a new model, fetching the required data as required by 
the target algorithm. 

3.2 NI Orchestrator functionalities to enable NI-Native architectures 
As described in the previous section, several considerations and challenges emerge while concurrently 
deploying multiple NIFs providing the same or different NISs. Building on the NIO organization and N-
MAPE-K representation of NIF-Cs, we next define processes that answer such needs. 

 
Figure 10.  The NIP and the functional blocks of the Network Intelligence Orchestrator and ML pipelines. 

3.2.1 Rationale 
When used outside the network domain, the set of solutions that deal with the lifecycle management of 
intelligent algorithms is usually referred to as MLOps [30]. Items such as Feature Engineering, Model 
Training, Model Engineering, as well as their integration in a Continuous Integration (CI)/Continuous 
Deployment (CD) system are usually encompassed in this definition. When transferring this view into the 
mobile network realm, however, these items cannot be transferred as is, mostly because of the very 
different timescales that are usually involved in network environments, which may go down to sub-ms 
levels. Therefore, we split the items into elements that are only related to pure ML tasks and are commonly 

                                                        
2 https://www.kubeflow.org/  
3 https://mlflow.org/  
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executed offline, either only once or very rarely. We mark them as Machine Learning Pipeline in Figure 
10. Instead, other elements need to directly interact with the NIFs in the network, continuously evaluating 
the quality of the NIS and performing fine-grained lifecycle management of the NIF-Cs, including their 
coordination. These are the most interesting in the context of the NIP, and we discuss them next. 

3.2.2 Overall description 
As mentioned in the previous section, the NIO should incorporate multiple functionalities to support the 
described challenges and beyond. Some key functionalities are shown in Figure 10. Their main purposes 
are as follows.  

• Data analytics. This block includes any pre-processing or preparation of the data (e.g., averages, 
autoencoders, filtering, or clustering algorithms).  

• Knowledge management. A critical component of the NIO, the knowledge management block 
provides all the mechanisms required to plan, organize, act, and control the knowledge across 
all the deployed NIS. 

• Monitoring. This block processes the NIS’s information. As NIS can be composed of both non-ML 
(e.g., traditional VNFs) and ML-based functionalities, the monitoring information can also be of 
both types: ML-related (e.g., model-specific metrics and detection of data drift for essential 
features), and non-ML-related (e.g., QoE, QoS, etc.). In addition, this block will monitor NIs in both 
training and inference deployments. 

• NIS lifecycle management. This functional block handles the deployment and maintenance of 
working ML models, aligned with MLOps practices. This includes the creation of new ML pipelines 
to re-train ML models. 

• NIS creation/selection, optimization, and instantiation. Before any deployment, the NIO has to 
select (e.g., based on hardware constraints), optimize (e.g., compress a Neural Network (NN)-
based NIS to achieve a given tradeoff between model size and performance), and instantiate 
the selected NIS. If a given NIS is unavailable in the catalog, the NIO should be able to create it 
based on the available data and execution context information. 

• Model explainability. This block provides the methods that help human experts understand NIS 
composed of black-box (e.g., deep neural network) ML algorithms. This is a fundamental 
capability to understand the cause of a decision from a NIS such that a human can consistently 
review/correct its results.  

• Policy interpreter and configuration. This functional block interprets high-level user intent 
objectives, e.g., high-level QoE targets and business KPIs, that are associated with different NIS. 
If needed, it also performs changes in the policy. 

• NIS workflow configuration. This block puts together data engineering, ML, and DevOps in a more 
straightforward, efficient, and effective fashion. In a general perspective, the NIO uses NIS 
workflow configuration to operationalize the deployment, monitoring, and lifecycle 
management in a modular and flexible way. 

• Network MANO framework. This functional block manages the lifecycle management of the 
traditional Virtual Network Functions (VNF) that communicate with a NIS/NIF. In addition, it 
provides the context execution information from the network. Notice that in Figure 10, there are 
two MANO functional blocks, one internal and one external. The main reason is to show that 
MANO functional block can be an external or internal block of the NIO, depending on its 
implementation. We will discuss more details about the interactions between NIO and MANO 
functional blocks in Section 3.2.3. 

• Conflict detection and resolution. This block provides a mechanism to solve trade-offs that may 
emerge from conflicting objectives in the control and user planes, e.g., in establishing policies 
(at small timescales) versus enforcing such policies (at large timescales). This functionality allows 
the NIO to compare policies among different NIS to detect conflicts and perform conflict 
resolution based on comparison and resolution rules. 

3.2.3 MANO and its interaction with the NIO 
The NIO is crucial in coordinating and managing network intelligence. To fulfill its responsibilities 
effectively, DAEMON must seamlessly interact with the MANO framework in key areas. 
Firstly, the NIO requires the synchronization of network slices and functions within the MANO framework. 
The NIO exchanges information with MANO components to track the state and health of network slices 
and the operational status of functions. This real-time synchronization enables the NIO to dynamically 
adapt decisions and optimize network operations. Secondly, the NIO relies on up-to-date information 
about available resources as available in the MANO framework, including computing power, storage, 
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and network characteristics (both in the wired and wireless parts). By maintaining a synchronized view of 
resource availability, the NIO can efficiently orchestrate the network resources that may allocate 
resources to network slices, functions, or specific vertical service requirements. This dynamic resource 
management optimizes resource utilization and enhances performance. 
Additionally, the NIO may interact with vertical service providers, who have unique requirements for the 
network infrastructure. Effective communication channels should be established to exchange 
information, feedback, and service-specific instructions. This ensures that NIO aligns the orchestrated 
network intelligence with the objectives and needs of vertical service domains, enhancing overall service 
delivery and user's QoE. 
In summary, the NIO collaborates with the MANO framework through various means. It can establish 
connections using an eastbound-westbound interface to enable seamless communication and 
integration. Alternatively, the NIO can directly extend modules within the MANO framework if applicable. 
For example, when paired with the ETSI Network Function Virtualization (NFV) MANO framework, specific 
mappings can be established between the NIO and corresponding MANO components. The NIO can 
align with the NFV Orchestrator (NFV-O) within the ETSI NFV MANO framework, ensuring coordination and 
cooperation between the two. Similarly, the NIF Manager of the NIO can be mapped with the Virtual 
Network Function Manager (VNFM) in the MANO framework, facilitating the management and control 
of virtual network functions. Additionally, the NIF-C Manager of the NIO can correspond to the Virtual 
Infrastructure Manager (VIM) within the MANO framework, enabling efficient management of the 
underlying virtualized infrastructure. 
In the following sections, we will describe the internal and external interfaces that must be defined to 
allow communication between internal and external components and how the combination of some 
functional blocks in the architecture can help to address the challenges described in Section 3.1. 
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4 NIP Interfaces 
As shown in Figure 10, the NIP is a composition of different functional blocks that aims for the native 
integration of NI in the network by providing the management and orchestration capabilities for NIF and 
NIS. Similar to other well-known frameworks for management and orchestration on specific domains, e.g., 
NFV-MANO [31] and O-RAN [32], the functional blocks of the NIP have their own set of internal interfaces. 
In the following sub-sections, we will provide a high-level definition of such interfaces and what is 
expected from them.  

4.1 Internal Interfaces 
To successfully orchestrate and manage NI, it is essential to establish seamless communication and 
coordination among the various functionalities of the NIP. In the subsequent section, we will outline and 
elaborate on the specific set of internal interfaces that are presented in Figure 11. These interfaces are 
the foundation for enabling effective communication and coordination among the different blocks 
within the NIP, ensuring a harmonized and cohesive NI management framework.  

 
Figure 11. Interfaces between functional block in the NIP. 

In the following, we present them according to their functional definition, although from an 
implementation perspective, they could be provided in a service-based fashion. 

• Nio-Nifm. This interface allows communication between the NIO and the NIF Manager to 
effectively manage and orchestrate NIF instances within the NIP framework. It promotes efficient 
utilization of network resources, optimized network service delivery, and enhanced scalability 
and flexibility of virtualized NIF. Among life-cycle management, the NIO relies on the NIF 
Manager to perform operations related to NIF instances, including instantiation, scaling, healing, 
and termination.  
Via this interface, the NIF Manager can also provide monitoring information about the 
performance (reporting metrics related to both the learning process, e.g., the loss function when 
trained, or network performance indicators) and health, and trigger healing actions in case of 
failures, degradations, or conflicts. Moreover, the NIO can gather information related to the 
status of the NIFs so it can derive analytics to proactively optimize the NIFs (e.g., by changing the 
learning model data feeding speed/timescale to mitigate limitation on available computing 
resources) or control it (e.g., by adding a new input representation of the data or ML model to 
couple it with other NIF when instantiating a new NIS). Finally, the NIO can also gather information 
from the NIFs related to explainable capabilities and use it to take better orchestration and 
coordination actions among NIFs. Finally, this interface will allow the NIO to perform ML workload 
management. 

• Nio-Nifcm. This interface allows the NIO to request the NIF-C for the allocation, placement, and 
lifecycle management of virtualized infrastructure resources. These resources include computing 
(GPU, FPGA, CPU, memory), storage, and networking components required to host and run NIF 
instances. It will also allow for gathering information about the utilization and performance of 
virtualized infrastructure resources. This includes monitoring the availability, capacity, and 
performance metrics of the allocated resources, providing visibility into resource usage and 
potential bottlenecks. In case of the need for infrastructure policy enforcement, this interface 
allows the NIO to enforce policies and constraints on the virtualized infrastructure resources such 
as security policies, learning and QoE/QoS requirements, or specific compliance regulations that 
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need to be applied to the infrastructure hosting the NIFs (e.g., data privacy, data anonymity, 
model isolation/federation, etc.).  

• Nifm-Nifnis. This interface enables the NIF Manager to manage the lifecycle of NIF instances. It 
allows the NIF manager to perform operations such as NIF instantiation, scaling, healing, 
termination, and update. In the case of configuration and monitoring, this interface allows the 
NIF Manager to provide configuration parameters and policies to the NIF through the interface. 
Additionally, it can collect monitoring data and performance metrics from the NIF instances to 
ensure their proper functioning and adherence to Service-Level Agreements (SLAs) in terms of 
both networking (e.g., QoS and QoE) and learning (e.g., accuracy). This NIF Manager can also 
perform fault and performance management. The NIF Manager receives fault notifications and 
performance data from the NIFs through the interface, allowing it to detect and handle any 
issues that may arise based on policies defined by the NIO. This includes fault localization, fault 
resolution, performance optimization, and ensuring the desired performance of the NIF. Finally, 
the NIF Manager can manage the state and context of the NIF instances. It allows the NIF 
Manager to retrieve and update the state information of the NIF Manager, including their 
operational status, configuration parameters, and runtime data. This information is crucial for 
maintaining the consistency and continuity of the NIF operations. 
This interface can also provide the capabilities to monitor, manage and orchestrate NIS based 
on abstract data information such as model knowledge (e.g., Neural Network weights, expert 
knowledge encapsulated in rule-based systems) and explainable model data.  Moreover, it will 
gather information about the NIF composition in NIS to detect possible conflicts in NIS before 
deployment, given its topological structure, or after re-orchestration of the NIS when NIF are 
added/removed/changed. Through this interface, the NIO can also configure the NIS (e.g., 
adding a new NIF in the NIS). In some implementations, the interaction between NIO and NIS 
can be done via a specific interface, e.g., a Nio-Nis interface.  

• Nifcm-Nivi. This interface allows the NIFs to interact with the NI virtualized infrastructure, which 
includes virtual machines, containers, storage resources, and networking components. This 
interface allows NIFs to utilize the underlying infrastructure to perform their designated functions 
efficiently. For example, allowing an ML model to switch among different computing hardware 
(e.g., CPU/GPU/TPU/FPGA) and modes (training vs. inference).  

• Nio-MLp. This interface enables the NIO to provide ML model (re-)training features.  
• MLo-Ncat. Via this interface, the ML pipeline framework in the NIP can access the model register, 

which serves as a critical connection point in managing and organizing ML models empowering 
NIF/NIS within the pipeline framework. This interface enables seamless integration and 
coordination between the pipeline framework and the model register, facilitating efficient 
model versioning, storage, retrieval, and tracking. This interface streamlines the integration of ML 
models within the pipeline, enabling seamless collaboration, reusability, and scalability of models 
across the ML workflow. 

• Nio-Ncat. This interface allows the NIO to access the catalog of NIF/NIS available to deploy in 
the network. By accessing the catalog, the NIO can effectively discover, select, compose, 
onboard, and manage the lifecycle of NIF/NIS within the NIP. The interface enhances the agility, 
flexibility, and automation capabilities of the NI orchestration system, enabling seamless 
deployment and efficient management of NIS/NIF within the NI virtual infrastructure. 

• Nio-Mano. When the MANO is deployed as an external functional block of the NIO, this interface 
provides the communication mechanism to exchange real-time information to track network 
slices, function states, and resource availability. This synchronization allows the NIO to 
dynamically adapt decisions and efficiently allocate resources based on the current network 
characteristics. By maintaining an up-to-date view of available resources, including computing 
power, storage, and network capabilities, the NIO can orchestrate network resources effectively 
and optimize resource utilization, thereby improving performance.  

• Nio-Ext. This interface provides communication between the NIO and external 
orchestrators/controllers in the network in the same or across multiple domains. This interface 
enables resource coordination, NIF/NIS orchestration/coordination, policy management, event 
handling, and information exchange. Firstly, it allows for efficient coordination of resources by 
exchanging information about available resources and their utilization across different domains. 
This promotes optimal resource allocation and utilization. Secondly, the interface enables 
collaboration in NIF/NIS deployments across multiple domains by facilitating the exchange of 
NIF/NIS-level information and dependencies between the NIO and external 
orchestrators/controllers. This enables the instantiation, management, and scaling of complex 
NIS across multi-domain and heterogeneous environments. Additionally, the interface supports 
policy management by facilitating the exchange of policy information between the NIO and 
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external orchestrators/controllers. This ensures consistent policy implementation and 
governance across different domain systems. Moreover, the interface enables the exchange of 
event and alarm information, allowing for proactive event handling, correlation, and 
remediation across domains. Finally, the interface facilitates information exchange and 
federation by enabling the sharing of network topologies, hardware capabilities, NIS/NIF 
catalogs, and other relevant data (e.g., monitoring information, model weighs, etc.), improving 
decision-making and coordination capabilities among different orchestration systems. 

In order to promote industry deployment, validation, and widespread adoption of standardized APIs, it is 
recommended that in the future, an OpenAPI4 representation in YAML5 and JSON6 is available (e.g., via 
ETSI or IEEE). An example of it is NFV-MANO core APIs7. Moreover, tools to navigate the specifications and 
report bugs should also be provided to enhance the usability and effectiveness of the OpenAPI 
representation.  

4.2 External Interfaces 
The NIO-Ext interface will allow the NIO to communicate with external orchestrators/controllers to 
achieve efficient collaboration, resource coordination, and NIF/NIS orchestration across heterogeneous 
network environments (far edge, edge, RAN, Transport, core, cloud, etc.). The interface enhances 
interoperability, scalability, and flexibility, allowing for the effective management and orchestration of 
resources and NIF/NIS in complex network ecosystem. In this section, we will describe two specific cases 
of such interfaces.  

4.2.1 O-RAN 
The O-RAN Alliance (Open Radio Access Network Alliance) is a global community of mobile network 
operators, vendors, and research institutions, established in February 2018. Its primary goal is to drive the 
development of open, intelligent, and interoperable RAN technologies. Founded by AT&T, Orange, 
Deutsche Telekom, Docomo, and China Mobile, O-RAN now has the support of over 300 organizations, 
including major operators and vendors. Analysts predict that open vRANs could surpass the conventional 
RAN market by 2028,8 generating revenues close to $20 billion.  
The O-RAN architecture is a new approach to building mobile networks that aims to increase flexibility, 
interoperability, and innovation. It is designed to enable multi-vendor deployments, reduce costs, and 
improve network performance. Key aspects of the O-RAN architecture are presented in D2.1 [8], Section 
10.4. A very important aspect of O-RAN is the integration of AI/ML workflows, i.e., Network Intelligence 
that may be managed by DAEMON’s NIP, with the following principles [33]: 

• Offline Learning: In O-RAN, even for reinforcement learning scenarios, some amount of offline 
learning (where a model is trained with offline data before deployment) is always 
recommended. 

• Pre-training and Testing: Any model deployed within the network needs to be trained and tested 
beforehand. No completely untrained model should be deployed in the network. 

• Modularity in ML Applications: As a best practice, ML applications should be designed in a 
modular fashion, with the capability to share data without knowledge of each other’s data 
requirements. They should not be bound by the location or nature of a data source. 

• Service Provider’s Deployment Choice: The criteria for determining where an ML application 
should be deployed (Non-RT RIC or Near-RT RIC) may vary between service providers. Therefore, 
it should be the service provider's choice to decide the deployment scenario for a given ML 
application. 

• Optimization of ML Model for Efficiency and Performance: To improve execution efficiency and 
inference performance, the ML model should be optimized and compiled considering the 
hardware capabilities of the inference host. There should be a balance between efficiency and 
inference accuracy, with acceptable accuracy loss as one of the optimization goals. The 
optimization parameters should be determined based on this threshold. 

Figure 12 illustrates the general framework of AI/ML procedures and interfaces and its integration into 
DAEMON’s NIP, including the potential mapping between ML components and O-RAN components. 

                                                        
4 https://www.openapis.org/  
5 https://yaml.org/  
6 https://www.json.org/json-en.html  
7 https://nfvwiki.etsi.org/index.php?title=API_specifications  
8 ABI Research. 2020. Open RAN. Market Data Report. 
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Figure 12. Integration of DAEMON NIP and O-RAN AI/ML Lifecycle Procedures and Interface Frameworks.  

Relevant to DAEMON’s NIP are the AI/ML deployment scenarios of O-RAN, summarized as follows: 
• Deployment Scenario 1.1: In this case, AI/ML Continuous Operation, AI/ML Model Management, 

Data Preparation, AI/ML Training, and AI/ML Inference all take place within the Non-RT RIC (Non-
Real-Time Radio Intelligent Controller). 

• Deployment Scenario 1.2: Here, AI/ML Continuous Operation, Data Preparation for training, and 
AI/ML Training are located in non-RT RIC. However, AI/ML Model Management is outside non-RT 
RIC (either within or outside the SMO, Service Management and Orchestration). Data Collection 
for inference, Data Preparation for inference, and AI/ML Inference are in the Near-RT RIC (Near-
Real-Time Radio Intelligent Controller). 

• Deployment Scenario 1.3: AI/ML Continuous Operation and AI/ML Inference are within non-RT 
RIC. Data Preparation, AI/ML Training, and AI/ML Model Management are located outside the 
non-RT RIC (either within or outside SMO). 

• Deployment Scenario 1.4: In this scenario, the non-RT RIC acts as the ML training host for offline 
model training, and the Near-RT RIC acts as the ML training host for online learning and also as 
the ML inference host. 

• Deployment Scenario 1.5: Continuous Operation, Model Management, Data Preparation, and 
ML Training Host are in non-RT RIC. However, the O-CU/O-DU (Open Central Unit/Open 
Distributed Unit) acts as the ML inference host. 

Please note that the deployment of "AI/ML Continuous Operation" outside of non-RT RIC is still under study. 

Table 6. O-RAN AI/ML deployment models. 
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4.2.2 5G Core 
The 5G Core (5GC) is one of the most important domains in a 3GPP mobile system, hence it is part of the 
DAEMON framework. 
The imperative of network automation drove the design of the 3GPP system in R15, marking a significant 
departure from previous releases. In earlier iterations, data generation and analytics in the network 
primarily relied on proprietary interfaces for exchanges between network elements and their respective 
managers. However, with R15 and subsequent consolidations, the architecture underwent a 
comprehensive overhaul to incorporate native support for collecting analytics. These analytics can be 
effectively utilized, as explained below, to establish feedback loops through standardized or proprietary 
solutions. At the heart of this system lies the Network Data Analytics Function (NWDAF), which performs 
three key functions: (i) aggregating data, encompassing metrics that reflect the current state of the 
network, sourced from other producer network functions (NFs); (ii) conducting analytics, involving the 
computation of refined statistics based on the gathered data; and (iii) sharing the computed analytics 
with other consumer functions across the network. 
The generated analytic reports serve as outputs that either present statistics based on historical data or 
provide predictions for specific metrics, depending on whether the requested timeframe is in the past or 
future, respectively. These outputs play a crucial role in optimizing the operation of NFs. Additionally, the 
output may include a confidence parameter, ranging from 0 to 100, which conveys information about 
the reliability of the prediction made. Factors determining this confidence parameter may include the 
volume of data utilized in generating the prediction, the age of the AI model employed, and other 
relevant considerations. 

 
Figure 13. The architectural framework proposed by the 5GPPP Arch WG [11]. 

In the context of this framework, the NIP is depicted in Figure 13 above. The Figure presents the 
interconnections among various components. The framework is divided into three distinct domains and 
shows where the DAEMON NIP takes a role. 
The first domain, referred to as 5GC, is where the Network Data Analytics Function (NWDAF) resides. Within 
this domain, other network functions (NFs) of the core act as the primary producers and consumers of 
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data and analytics. These NFs utilize the data and analytics to drive network operations in a data-driven 
manner. Thanks to the NWDAF, consumer NFs no longer need to directly communicate with every 
potential producer to compute analytics, as they can efficiently leverage the shared information. 
NWDAF is a specific (and very important) NIF, that can leverage on a number of NIF-C according to the 
analytics that are served. 
The second domain encompasses Operations, Administration, and Maintenance (OAM) activities, which 
involve modules such as Element Managers or Network Elements in pre-5G networks. Starting from R15, 
OAM effectively enforces network slicing through the service-based management architecture. The 
OAM domain can also supply the NWDAF with data from the RAN and 5G NFs, such as resource 
consumption. Unlike the pre-5G 3GPP RAN architecture, which lacks an analytics hub like the NWDAF, 
alternative architectures like O-RAN feature dedicated analytics modules. The Management Data 
Analytics Function (MDAF) serves as the module responsible for interacting with the NWDAF and provides 
Management Data Analytics Services (MDAS). As discussed, the MDAF collaborates with the NWDAF and 
other core NFs to generate management analytics information, which is subsequently consumed by 
other NFs or management procedures like the self-organizing network. For the DAEMON NIP, the MDAF is 
a NIF, that in turn, can be further split into a number of NIF-C which i) interact with the NWDAF, effectively 
closing the loop with the core and ii) allows the internal interaction within the management domain. 
The third domain encompasses the service domain, facilitated through the Application Function (AF). 
These functions, residing outside the 3GPP trust domain, play a crucial role in facilitating close interaction 
between service providers and network operators. This interaction is achieved through enriched service 
layers, which aid in commoditizing the network and enhancing the interplay between the service and 
network intelligence. Given the criticality of authorization and security, it becomes essential to verify 
whether AFs are appropriately authorized to interact with the NWDAF and engage in data exchange 
with third parties. Authentication can be managed in three different ways, such as basic user-password 
authentication, where the configuration of credentials is done via a configuration file. Support of 
Transport Layer Security (TLS) protocol where there is a server-side authentication or mutual TLS (mTLS) 
authentication, where both server-side and client-side authentication is required. In this case, the AF can 
be seen as a specific NIF-C (either Sink or Source, depending on the context). Overall, any NF deployed 
within the 5GC, the OAM system, or any AF can contribute input to the NWDAF and request analytic 
reports from it. This establishes a feedback loop where any NF, OAM component or AF can provide input 
data to the NWDAF and receive analytic reports generated from the collective data obtained by the 
NWDAF. Through these feedback loops, the majority of automated network operations can be 
executed, as exemplified by the ones already provided by the NWDAF in the standard and by the 
solutions proposed by DAEMON in WP3 and WP4. 
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5 NI Orchestration procedures 
In this section, we show how the architectural building blocks described in Section 3.2 will interact with 
the blocks external to the Network Intelligence Orchestrator (NIO) and with the blocks inside the NIO. We 
will explore how the different components work together to create a cohesive system that can effectively 
orchestrate intelligence across multiple domains. Through these interactions, the NIO will be able to 
address the challenges that can emerge when NISs are deployed across different network domains and 
operating in multiple timescales, as described in Section 3.1.  
Notice that all the procedures mentioned below are depicted using a process view. This view answers 
how the system behaves addressing concurrency and synchronization aspects. Unified Modeling 
Language sequence diagrams9 were selected as the most appropriate form. Next, we briefly describe 
how the combination of some functional blocks can help to address the challenges described in the 
previous section. 

5.1 Inter NIO Procedures 
One of the most essential management and orchestration capabilities is to handle the lifecycle of each 
of its entities. The NIO is not an exception. Regarding networking functionalities, NFV MANO [31] is the 
referent architectural framework to look up to. In general, lifecycle management is responsible for the 
following operations: creation, instantiation or deployment, management (e.g., model selection and 
optimization), and termination. However, given the intelligent nature of the functionalities proposed by 
DAEMON, there are several factors that must be considered while addressing their lifecycle 
management. In the following subsections, we will discuss the procedures required to perform lifecycle 
management with the NIO in detail.  

5.1.1 Creation 
When creating a new NIS, the Network Intelligence Orchestrator (NIO) should verify that all the NIFs from 
that NIS are available in the catalog. If a NIF is unavailable, new NIF training should be started, e.g., based 
on user-defined NIF/ NIS Descriptor (NIFD or NISD) as described in the next paragraph. This training is 
represented by triggering a new MLOps pipeline. The data ingestion for training this new NIF should be 
coordinated between the NIO and the MLOps pipeline. Notice that this procedure only contemplates 
the creation of the NIF and not its usage. 

 
Figure 14. NIS creation process flow. 

 
                                                        
9 https://developer.ibm.com/articles/the-sequence-diagram/  
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Figure 14 shows the required interactions to create a NIS/NIF. The main steps for NIS/NIF creation are:  
• Through its API, the NIO should process a NIS/NIF creation request. A sender can submit this 

request, which could be a human, an AI, or another process with administration rights to trigger 
orchestration operations in the NIO. The sender identifies that a new NIS/NIF is needed to perform 
a given network operation and submits this request to the NIO. As input for this process, the NIO 
should receive a NIF/ NIS Descriptor (NIFD or NISD) which includes, but is not limited to: 

o Learning mode, if the ML model supports online learning or if the training is made offline.  
o Data on which the model is trained (whether the learning is online or offline). This field 

also specifies the format in which the input data is expected.  
o Learning metrics. This typically includes accuracy, cross-entropy, or a known loss 

function, e.g., Mean Squared Error (MSE).  
o Model performance upper and lower thresholds. Values on which the training can be 

concluded (upper threshold). It is assumed that once the upper threshold is met, the ML 
model is ready to be deployed in production. On the contrary, if the lower threshold is 
met, the ML model deployed in production should be updated. The definition of these 
thresholds could be different for different NI functionalities and should reflect a good 
performance.  

o Output format. This field specifies in which format the ML will communicate its output. 
For instance, a classification problem can produce a vector with the probability of a 
given sample belonging to a class or the class itself.  

o Last modification time. This field will indicate the age of the ML model. Given the 
constant evolution of network state and data, having an up-to-date ML model is crucial 
for network operation.  

o Dependencies required for operation. ML models are created using specific libraries 
(e.g., NumPy, pandas, etc.). The right versions of such libraries must be available when 
instantiating the ML model in production.  

• NIO processes the NIFD/NISD, including but not limited to:   
o Checking for the existence of mandatory elements (network operation, data 

requirements, output format, accuracy).  
o Validating integrity and authenticity of the NIFD/NISD.  

• For every NIF in the NIS, NIO verifies if the NIF model exists in the catalog.   
o If the NIF model is not present in the catalog, NIO triggers a train operation from ML 

pipelines.   
§ ML pipeline model triggers a new pipeline (Data ingestion - Model training - 

Model Testing - Model packaging - Model registering) using the NIFD.  
§ Once the NIF model is trained, the model is registered in the NIF catalog.  

o If the model is trained, it should be registered in the catalog and can be used in 
inference.  

• NIO makes NIS/NIF images available to each applicable NIF Component Manager (NIF-C 
Manager).  

• The NIF-C Manager acknowledges the successful uploading of the image.  
• Finally, NIO acknowledges the NIS/NIF creation to the sender.  

5.1.2 Instantiation or Deployment 
Figure 15 shows the interactions required for instantiating or deploying a NIS/NIF. As in the previous step, 
NIO receives a request to instantiate a new NIS/NIF. Then, several variants might be possible:  

• None of the NIFs belonging to the NIS is instantiated or deployed. Then, the NIS instantiation will 
include the instantiation of all the needed NIF instances.  

• All the needed NIF instances have already been created. In this case, NIS instantiation would 
only deal with the interconnection of the corresponding NIF instances.  

• A combination of the above where some NIF instances might exist, some might need to be 
created, and instantiated, and some network connectivity between the NIFs may already exist.  

It is important to notice that if a NIF instance is already created, it can be shared between different NIS. 
In this case, the NIO should trigger the conflict resolution mechanism, because they may be deployed 
on the same node and/or accessing the same resources. If no conflict is produced, the same NIF can be 
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used to instantiate the current NIS. If a potential conflict is detected, the NIO should proactively address 
it by deploying specific policies implementing rules or priorities (c.f. Section 5.2.1) to effectively solve the 
aforementioned conflict. 

 
Figure 15. NIS instantiation process flow. 

The main steps for NIS/NIF instantiation are:  
• NIO receives a request to instantiate a new NIS/NIF.  
• NIO validates the request, both validity of the request (including validating that the sender is 

authorized to issue this request) and validation of the parameters passed for technical 
correctness and policy conformance.  

• For each NIF instance needed in the NIS, the NIO checks with the NIF Manager if an instance 
matching the requirements already exists. If such a NIF instance exists, it will be used as part of 
the NIS. If the NIF instance does not exist, the NIO triggers the Create NIF procedure. 

• NIO runs a feasibility check of the NIF interconnection setup.   
o NIO requests to the NIF-C Manager the availability of resources needed for the NIF 

Interconnection and reservation of those resources.  
o The NIF-C Manager checks the availability of resources needed for the NIF 

Interconnection and reserves them.  
o The NIF-C Manager returns the result of the reservation back to NIO.  
o If the resources are not available, the NIS might not be instantiated. The result is given 

back to the Sender.  
• Once the list of NIF instances to be provisioned is known, NIO requests the NIF-C Manager to 

allocate and interconnect the NIF instances.   
o The NIF-C Manager instantiates the connectivity network needed for the NIS.  
o The NIF-C Manager acknowledges completion.  

• Finally, the NIO acknowledges the completion of the NIS instantiation. 

5.1.3 Management 
Several operations can be considered as management procedures, such as NIS/NIF update, 
optimization, scaling or migrating. NI solutions stored in the NIS/NIF catalog are inherently trained on 
hardware and software platforms that may not match the ones available in the new environment where 
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they need to be deployed. In such cases, the NIS creation/selection, optimization, and instantiation block 
will obtain networking and execution context information from its MANO block operating in the network 
and select the proper model to be used in inference within a NIF. Suppose a mismatch between trained 
and targeted hardware/software appears. In that case, the same block should perform the 
optimization/adaptation (e.g., compression of a neural network, change of inference library from GPU 
to CPU) to match the new environment. In case no model is available for the specific execution 
environment, the NIS creation/selection, optimization, and instantiation block will create a new NIS and 
then notify the NIS workflow configuration block to trigger a new training phase. Here we depict the 
NIS/NIF update with model selection as the most relevant and generic procedure that may involve 
optimization, re-train or selection. 

 
Figure 16. NIS update process flow. 

Figure 16 shows the main steps for NIS/NIF updates. This procedure includes updating the parameters of 
the NIS/NIF. It is important to notice that the update process has similarities with the NIS/NIF creation:  

• A request for NIS/NIF update is submitted from the sender, which could be a human, an AI, 
another process in the architecture (e.g., Data Analytics detecting a mismatch between the 
statistics of the input data), or the monitoring block from the NIO (e.g., current accuracy is lower 
than expected, the model is old, etc.). The sender identifies that a new NIS/NIF needs to be 
updated and submits its request to the NIO through the NIO API.  

• NIO processes the NIFD/NISD, including, but not limited to:   

o Checking for the existence of mandatory elements (network operation, data 
requirements, output format, accuracy).  

o Validating the integrity and authenticity of the descriptor. 

• For every NIF in the NIS, NIO verifies that an updated NIF model exists in the catalog.   

o If an updated model is needed but not in the catalog, NIO triggers a re-train operation 
from ML pipelines.  

§ ML pipelines model triggers a new pipeline (Data ingestion - Model training - 
Model Testing - Model packaging - Model registering).  

§ Once the NIF model is re-trained, the model can be registered in the NIF 
catalog. Update NIFD with new version and requirements (data format, 
hardware, software dependencies, etc.)  
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o If a model (or more than one model) is available, then the NIO verifies that the available 
models satisfy the deployment requirements in terms of data (e.g., input rate and 
format), computation runtime (e.g., CPU, GPU, or FPGA), dependencies (e.g., 
TensorFlow, PyTorch), and performance level. This process might return an empty list, 
meaning that there is no model that satisfies the deployment requirement and the 
creation of a new NIF is needed. 

o In case the filtered list is not empty, and more than one model satisfies the deployment 
requirements, model selection should be carried out. In this phase, the component will 
compute an ML test score, and depending on arbitration policies, the best-performing 
model is selected to update the NIF image. The ML test score can contain learning-
related metrics (e.g., loss/reward function) and non-learning-related metrics (e.g., QoE, 
QoS, stability in deployment, etc.). The arbitration policies are decision factors that the 
NIO considers primordial for model deployment, for instance, if model precision is 
preferred over energy consumption. 

o If the model is updated, it should be registered in the catalog and can be used in 
inference.  

• NIO makes NIS/NIF images available to each applicable NIF-C Manager.  

• NIF-C Manager acknowledges the successful uploading of the image.  

• NIO acknowledges the NIS/NIF update to the sender.  
Other management operations include optimization, scaling in/out or migrating. The workflows are similar 
to those of NFV MANO, requiring an extra step to update the NIS/NIF, which was shown above.  

• NIO receives a Manage NIS/NIF request. This could come even from the same NIO (e.g., 
forecasting model -in Data Analytics module- to scale because it expects an increase of 
demand, or migration of a NIS because the associated requester is moving).  

• NIO validates this request, identifying if the management operation requires updating the 
NIS/NIF. If an update is needed (e.g., NIS/NIF optimization), NIO triggers the Update NIS/NIF 
procedure.  

• NIO runs a feasibility check of the NIF interconnection setup.  
o NIO requests the NIF-C Manager the availability of resources needed for the NIF 

interconnection and reservation of those resources.  
o NIF-C Manager checks the availability of resources needed for the NIF Interconnection 

and reserves them.  
o NIF-C Manager returns the result of the reservation back to NIO.  
o If resources are not available, the NIS might not be managed. The result is given back to 

the Sender.  
• Once the list of NIF instances to be provisioned is known, NIO requests the NIF-C Manager to 

allocate and interconnect the NIF instances. This can be done through:   
o Triggering the creation of a new NIS/NIF instance for scaling out the operation.  
o Triggering the deletion of a NIS/NIF for scaling in operation.  
o Triggering both the creation and the deletion of the NIS/NIF to migrate it.  

• NIO acknowledges the completion of the NIS/NIF management.  

5.1.4 Termination 
The NIO receives a request to terminate a NIS/NIF instance. This request might come from a human, an 
AI process, or another process in the architecture. When terminating a NIS/NIF instance, several variants 
might be possible:  

• All affected NIF instances contributing to the NIS that need to be terminated and were created 
when initiating the NIS. In this case, all these NIF instances need to be terminated, and the 
interconnectivity between these NIF instances must be removed.  

• Some NIF instances are contributing to other NIS instances. In this case, only those NIF instances 
that do not contribute to other NIS instances must be terminated. The interconnectivity between 
them must be removed, leaving the other NIF instances in place and the interconnectivity 
between them intact.  

The main steps for the termination of a NIS/NIF instance are:  
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• NIO receives a request to terminate a NIS/NIF instance using the NIS/NIF Lifecycle Management 
interface.  

• NIO validates the request. It verifies the validity of the request (including the sender's 
authorization) and verifies that the NIS/NIF instance exists.  

• NIO requests NIF Manager to terminate any NIF instances that were instantiated along with the 
NIS instantiation, provided they are not used by another NIS. This is done by calling the 1.3 Delete 
NIS/NIF (pending) request.   

o NIF Manager terminates the required NIF and sends a confirmation to the NIO that the 
NIFs are terminated.  

• NIO requests the deletion (release) of resources for this NIS instance to the NIF-C Manager. 
o NIF-C Manager deletes (releases) the resources for this NIS instance.  
o NIF-C Manager acknowledges the completion of resource deletion back to NIO.  

• NIO acknowledges the completion of the NIS instance termination.   

5.1.5 Other operations 
In addition to the operations presented above, operations such as deleting, querying, enabling, or 
disabling a NIS/NIF are also considered within the architecture defined by DAEMON. However, such 
operations are not different than those proposed in NFV MANO as they do not involve or require any 
interaction with blocks that are related to Network Intelligence (NI) and the MANO block can perform it. 
The implementation of such procedures is shown in [31].  

5.2 Intra NIO Procedures 
As introduced above, a NIS is usually composed of different NIFs and hence, some of the NIS 
management functionalities take place only within the NIO itself. These Intra NIO functionalities address 
the challenges that may emerge when NISs are deployed across different network domains and 
operating in multiple timescales, including conflict resolution and knowledge sharing among NIS. 

5.2.1 Conflict Resolution 
We introduced two specific conflict cases in Section 3.1.1: (i) when conflicts emerge when monitoring 
data, e.g., algorithms may need data from the same source but with different granularity, and (ii) when 
conflicts in the policy enforcement of different NI algorithms may act on the same network functions but 
configuring different values for the target parameters. In such situations, the policy interpreter and 
configuration block will gather information about the policy guiding the different NIS and pass their 
interpretation to the conflict detection and resolution module. In both cases, a conflict will be detected, 
and the NIO will identify and apply the conflict resolution rules associated with (i) multi-timescale 
coordination and (ii) parameter constraints and execution priority. After applying the rules, the outcome 
should provide a plan that will trigger a configuration modification of the NIS policies. In the case of NIS 
empowered by black-box ML algorithms, the Model Explainability block will interpret policies associated 
with such algorithms. 

 
Figure 17. NIS Conflict Resolution process flow. 

Figure 17 shows the main steps for the case of NIS Conflict Resolution. This procedure includes checking 
the parameters of the NIS against the Policy Interpreter and Configuration (PolicyIC) to arbitrate the 
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deployment of the NIS (e.g., if the NIS has different monitoring granularity in a shared source with other 
NIS, or requires controlling a network function that another NIS is already controlling with a different AI 
algorithm):  

• A request for deploying a NIS is submitted from the sender (it could also be a NIS update), which 
could be a human, an AI, or another process in the architecture. The sender identifies that a new 
NIS needs to be deployed and submits its request to the NIO through the NIO API. It will be the 
NIS Creation Selection Optimization and Instantiation (CSOI) component that will receive the 
request and will validate the NIS internally, indicating if there is a conflict and updating and 
resolving in case any exists. Please note the validation command executed in the NIO for the 
creation, instantiation, and update processes described in Sections 5.1.1, 5.1.2, and 5.1.3 
respectively, includes this procedure internally.  

• NIO CSOI processes the NISD, including, but not limited to:   

o Checking for the existence of mandatory elements (network operation, data 
requirements, output format, accuracy).  

o Validating the integrity and authenticity of the descriptor. 

• If the NIS request is correct and sound, the NIO CSOI verifies through the PolicyIC if there is any 
conflict by gathering information about the policy guiding the different NIS and passing their 
interpretation to the Conflict Resolution module.   

• The Conflict Resolution component checks if the NIS to be deployed has any conflict with the 
existing NIS. 

• The Conflict Resolution component globally solves trade-offs that may emerge from conflicting 
objectives in the control and user planes, e.g., in establishing policies (at small timescales) versus 
enforcing such policies (at large timescales). For the case of this NIS: 

o The Conflict Resolution component compares policies among different NIS to detect 
conflicts that may appear with the new/updated NIS. 

o It performs conflict resolution based on comparison and resolution rules, providing a NIS 
configuration. This configuration will result from a trade-off or priority mechanism that the 
Conflict Resolution component will execute to harmonize the NIS's coexistence. The 
resolution will contain the last valid configuration if no feasible solution exists. 

• Once the PolicyIC receives the resolution, the new policy is built and applied to the specific NIS. 

• The PolicyIC returns the NIS descriptor to the NIO CSOI. Consequently, the NIO CSOI further 
proceeds with the required NIS operation (i.e., creation, deployment, update, etc.). 

• Eventually, the NIO acknowledges the NIS deployment to the sender.  

5.2.2 Knowledge Sharing 

 
Figure 18. NIS Knowledge Sharing process flow. 
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NISs deployed in the same or across different domains use their knowledge to derive their execution 
plans. The knowledge management block will allow the NIO to understand the knowledge of each NISs, 
via the interaction with the Model Explainability block and derive new policies that represent the shared 
knowledge among NISs, by interacting with the PolicyIC block. 

Figure 18 shows the main steps for the case of NIS Knowledge Sharing. This procedure includes checking 
the parameters of the NIS against the PolicyIC initially (and consequently also with the Conflict Resolution 
component internally). However, for the cases in which a NIS requires the use of knowledge coming from 
an external domain, the NIS CSOI will first translate such knowledge in the Model Explainability block 
before building and applying the shared knowledge policies: 

• A request for deploying a NIS is submitted from the sender (it could also be a NIS update), which 
could be a human, an AI, or another process in the architecture. The sender identifies that a new 
NIS needs to be deployed and submits its request to the NIO through the NIO API. It will be the 
NIO CSOI component that will receive the request and proceed with the Conflict Resolution and 
Knowledge Sharing phases. Please note the validation command executed in the NIO for the 
creation, instantiation, and update processes described in Sections 5.1.1, 5.1.2, and 5.1.3 
respectively includes this procedure internally. 

• NIO CSOI processes the NISD, including, but not limited to:   

o Checking for the existence of mandatory elements (network operation, data 
requirements, output format, accuracy).  

o Validating the integrity and authenticity of the descriptor. 

• If the NIS request is correct and sound, the NIO CSOI verifies against the PolicyIC if there is any 
conflict.   As previously described in Section 5.2.1, the PolicyIC itself internally requests the Conflict 
Resolution component to check if the NIS has any conflict with the existing NIS. 

• Once the PolicyIC receives the resolution, the new NIS domain-specific policies are built, and 
applied. 

• With the updated NIS descriptor, the NIS CSOI requests the translation of the external domain 
knowledge to the Model Explainability block. As a result, the NIS CSOI receives the additional 
Knowledge rules. 

• The NIS CSOI sends the NIS descriptor again to the PolicyIC but this time together with Knowledge 
rules in order to build and apply the shared knowledge policies: 

o The PolicyIC block builds the shared knowledge policies taking in account possible 
existing conflicts.  

o The PolicyIC block applies the shared knowledge policies and returns the NIS descriptor 
to the NIS CSOI. 

• Eventually, the NIO acknowledges the NIS deployment to the sender.  

5.2.3 Intra NIO Instantiation and deployment 
The previously described intra NIO Conflict Resolution and Knowledge Sharing mechanisms are inherent 
to the NIS CSOI and Life Cycle Management components interacting with external components such as 
the NIS Catalog, the NIF Manager, or the NIF-C Manager. In order to illustrate how the external processes 
would occur inside the NIO, Figure 19 details the deployment interactions between the NIS CSOI with 
both the internal and external components. 
As shown in Figure 19, the procedure includes the steps required to validate the NIS descriptor and 
identify and solve possible conflicts before deployment.  Also, domain-specific policies are built and 
applied, followed by training new models in case there are no instances of them already in the catalog. 
Finally, the NIS Workflow Configuration block combines them to build the NIS and starts the instantiation 
and deployment. The detailed sequence of steps is described below: 

• A request for deploying a NIS is submitted from the sender (it could also be a NIS update), which 
could be a human, an AI, or another process in the architecture. The sender identifies that a new 
NIS needs to be deployed and submits its request to the NIO through the NIO API. It will be the 
NIO CSOI component that will receive the request. 

• NIO CSOI processes the NISD, including, but not limited to:   
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o Checking for mandatory elements (network operation, data requirements, output 
format, accuracy).  

o Validating the integrity and authenticity of the descriptor. 
• If the NIS request is correct and sound, the NIO CSOI will proceed with the validation of the NIS.  

Please note the validation command executed in the NIO for the creation, instantiation and 
update processes described in Sections 5.1.1, 5.1.2, and 5.1.3 respectively includes the following 
procedures of Conflict Resolution and Knowledge Sharing. 

• First, the NIO CSOI verifies against the PolicyIC if there is any conflict.   As described in Section 
5.2.1, the PolicyIC internally requests the Conflict Resolution component to further check if the 
NIS has any conflict with the existing NIS. 

• Once the PolicyIC receives the resolution, the new NIS domain-specific policies are built, applied, 
and an updated NIS descriptor is returned to the NIO CSOI.  

• With the updated NIS descriptor, the NIS CSOI requests the translation of the external domain 
knowledge to the Model Explainability block. As a result, the NIS CSOI receives the additional 
Knowledge rules. 

• The NIS CSOI sends the NIS descriptor again to the PolicyIC but this time together with Knowledge 
rules. Hence, shared knowledge policies are built and applied as described in Section 5.2.2.  

• The NIS CSOI now iterates for every NIF in the NIS, and checks if an instance of the given NIF 
already exists in the NIF Manager, as described in more detail in Section 5.1.3. If no instance 
exists, a new model will be trained for that NIF in the MLOps Pipeline. 

• Next, the NIS CSOI proceeds with the interconnection of all NIFs in the NIS (nif_interconnection 
as described in Section 5.1.3). This mechanism involves requesting the NIS Workflow Configuration 
block (NIS WConf) to virtually link the NIFs and define their interactions. 

• Finally, the NIS CSOI starts the instantiation of every NIF in the NIS in the NIF Component. As 
previously described in Section 5.1.3, this involves: 

o Check the resource availability for that NIF in the NIF Component. 
o If resources are available, allocate the resources for that NIF and interconnect with the 

other NIFs instances through the NIF Component. 
o If resources are not available, notify accordingly to the entry point. 

• Eventually, the NIO acknowledges the NIS deployment to the sender.  

 
Figure 19. Intra NIO NIS instantiation and deployment process flow. 

The following table summarizes the functionalities proposed in Section 3.2.1 for the NIO and which 
procedures are using them. 
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Table 7. Summary of the procedures proposed to address the challenges described in Section 3.1 and 
the functionalities of the NIO that can be used to achieve it. 

Procedure Procedure type Functional blocks 

Creation Inter NIO 
Procedures NIO, NIS Catalog, ML Pipelines, NIF Manager 

Instantiation or 
Deployment 

Inter NIO 
Procedures NIO, ML Pipelines, NIF Manager, NIF-C Manager 

Management Inter NIO 
Procedures NIO, NIS Catalog, ML Pipelines, NIF Manager, MANO 

Termination. Inter NIO 
Procedures NIO, NIF Manager, NIF-C Manager 

Other operations Inter NIO 
Procedures As in NFV-MANO 

Conflict Resolution Intra NIO 
Procedures 

Policy Interpreter and Configuration, NIS Creation 
Selection Optimization and Instantiation, Conflict 

Detection and Resolution 

Knowledge Sharing Intra NIO 
Procedures 

Policy Interpreter and Configuration, Explainability, 
Knowledge management 

Intra NIO Instantiation 
and deployment 

Intra NIO 
Procedures 

Policy Interpreter and Configuration, Explainability, ML 
Pipelines, NIF Manager, NIF-C Manager 

Notice that the procedures described in the previous sections are based on the challenges described in 
Section 3.1. However, further procedures can be defined based on other use cases, e.g., orchestration 
of NI in federated domains or intelligent orchestration of NI, where the decisions of the NIO are 
empowered by AI-based decision-making models). We expect that these procedures can be further 
extended to more complex cases or used as a reference to define new ones.  

5.3 Reference Implementations 
The DAEMON project has developed two reference implementations as its architecture's Proof of 
Concepts (PoC). In the following sub-sections, we will describe them.  

5.3.1 DAEMON Orchestration of NIFs to build a NIS 
One of the key features of the DAEMON NIP is to allow the creation, management, and deployment of 
NISs. This first proof of concept combines two network intelligence functions (NIF) to create a Network 
Intelligence Service (NS). The first NIF utilizes a federated learning algorithm, enabling anomaly detection 
at the edge (c.f. Section 5.1 of D4.1[6]). This means that the AI model for detecting anomalies is trained 
locally on individual devices, preserving data privacy while still benefiting from a collaborative learning 
process. The second NIF employs a service reallocation algorithm that leverages monitoring information 
from the edge [21]. This algorithm, based on a multi-criteria decision-making algorithm, dynamically 
reallocates services based on real-time data, ensuring optimal resource utilization and performance. 

 
Figure 20. A federated learning powered anomaly detection and service relocation NIS. 
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Following the DAEMON’s framework based on the N-MAPE-K to define NIS, we effectively combined the 
federated learning-powered anomaly detection with service relocation capabilities to realize Network 
Intelligence Service (NS). Figure 20 shows the N-MAPE-K based diagram of the resulting NIS. By integrating 
the federated learning approach, the NS ensures that the detection of anomalies is performed securely 
and efficiently across the network's edge devices. The NS also leverages the monitoring information 
collected from the edge to make informed decisions about service reallocation, maximizing the 
network's overall performance and responsiveness. 

The proof of concept relies on the Eclipse Zenoh data communication framework, which provides a 
reliable and scalable solution for exchanging data between devices and components within the 
network. Additionally, the implementation utilizes Kubernetes functionalities to realize the NIF component 
manager and NIF manager. Kubernetes helps manage the deployment, scaling, and orchestration of 
the NIF components, ensuring smooth operation and efficient resource allocation. The Smart HighWay10 
testbed located on top of the E313 highway in Belgium served as the edge environment for testing and 
validating the effectiveness of the proposed NIS, providing a real-world scenario to assess its 
performance and potential benefits. Figure 21 shows a high-level representation of the deployment and 
how the components were deployed at the cloud11 (centralized server) and edge (road-side units at the 
Smart Highway).  

 
Figure 21. Cloud-to-edge deployment of the proposed NIS and its different components. 

5.3.2 DAEMON Orchestration of NIS with support of ML pipelines 
Our second implementation of NI-native architecture is presented above as a PoC using Kubernetes12 
as the main deployment environment. In addition, Kubeflow13 is used to perform MLOps and as the 
baseline for developing some of the NIO functionalities. Furthermore, selected functionalities of the NIO 
are developed from scratch. The Eclipse Zenoh framework14 is used for data flow programming among 
the NIF-Cs and for metric collection and aggregation, such as the ones coming from the sources NIF-Cs. 
A visual representation of the prototype implementation is in Figure 22. In the prototype, Kubernetes 
serves as the main deployment environment taking care of the MANO functionalities on top of a 
virtualized infrastructure. The Kubeflow deployment is realized as a Kubeflow cluster with one controller 
and 3 worker nodes, in which the NIF-C components are deployed as pods. The management of NIF-Cs 
is realized by the NIF component manager in Figure 10 through the Kubernetes API. As described in 
previous sections, a set of interconnected NIF-Cs following the N-MAPE-K representation compose a NIF. 
This is realized by a pipeline of pods managed by the NIF Manager utilizing the Kubeflow Pipelines 
Software Development Kit (SDK). The generated pipeline of NIF-Cs is defined in Python, translated in YAML 
and then deployed in Kubernetes (both pods and connectivity) using the developed service which 
utilizes the Kubeflow pipeline service. In the same fashion, the NI Orchestrator manages the NISs (using 
Kubeflow) at a higher hierarchical level. 
Following the described approach, we can provide a set of NIO functionalities including (i) NIS 
composition, (ii) NIS lifecycle management, (iii) NIS workflow configuration, (iv) NIS selection, and (v) 

                                                        
10 https://www.uantwerpen.be/en/research-groups/idlab/infrastructure/smart-highway/  
11 https://doc.ilabt.imec.be/ilabt/virtualwall/  
12 https://kubernetes.io/ 
13 https://www.kubeflow.org/ 
14 https://zenoh.io/ 



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

46 

Monitoring, which are realized by building on the functionality already available in the Kubeflow 
framework. The developed monitoring service of the NIO provides monitoring of (i) NIF-C/NIF/NIS 
deployment status, (ii) NIF/NIS pipeline progress, (iii) MLOps progress, (iv) resource utilization, and (v) 
performance KPIs. The MLOps operations responsible for the model retraining, at the top-left corner of 
Figure 22, are realized as ML pipelines in the Kubeflow environment, while the NIF/NIS catalog is created 
using a Docker repository linked to the Kubernetes environment. Finally, it is important to stress that the 
NIF-C taxonomy (i.e., Analyze, Plan), as well as the adopted communication paradigm (Eclipse Zenoh) 
were adopted in all components of the architecture including NIF/NIS Catalogs (Dockers with different 
prebuilt libraries per NIF-C type) and during the NIF/NIS creation process (different preconfigured 
attributes per NIF-C type). Notice also that this PoC is also a realization of (part of) the procedures 
described in Sections 5.1 and 5.2. 

 
Figure 22. Prototype demonstrating NIS/NIF/NIF-C pipeline generation, deployment and monitoring. 
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6 Updated state-of-the-art and final taxonomy of intelligent 
network management 

In Section 5 of D2.2 [1], we presented the initial results of the literature review carried out in DAEMON. This 
literature review was guided through a protocol explained in D2.2 [1]. Following the protocol, we 
identified major trends in current research work. Through the analysis of the state-of-the-art research, we 
were able to identify areas where the research done in DAEMON stands out from the rest. Here, we 
present a final report including the updated numbers and concluding results. 

6.1 Updated literature analysis 
In Section 5.2 of D2.2 [1], we proposed a methodology for surveying the current state of the art on the 
research topics we are interested. Following this approach, we were able to review 39 papers in total. 
The results of that analysis were presented in Section 5.3 of the same deliverable. However, for this 
deliverable, we made slight modifications to the methodology. We came to the realization that some of 
the tasks we accomplished in DAEMON represent the cutting-edge in various subjects, including meta-
learning, RAN virtualization, resource allocation, online learning, and more. Therefore, in this report we 
also include our own works and complement them with related works and in the cases that are 
applicable, works that improve our solutions and functionalities. The detailed results from the complete 
literature review can be found in the Annex B of this document.  
In total, we reviewed 78 papers, adding 39 new papers with respect to D2.2 [1], from which 12 belong to 
the research made in DAEMON. Table 8 shows that most of the reviewed papers focus on the area of 
network optimization and control. Naturally, there is a bias due to the modification of the methodology. 
Most of our own works focus on this area, which explains the increase in reviewed works in such an area. 
Also, the preferred location for such algorithms is in the control and orchestration plane, as per Table 9. 

Table 8. Count of publications per Network Micro-Domain and Application Areas. 
 Network Application Areas 

Network  
Micro-Domain 

Network Diagnostics 
and Security 

Network Optimization 
and Control 

Network 
Planning 

Network 
slicing 

Grand 
Total 

Transport 7 3 0 0 10 

Subscriber 1 0 1 0 2 

Edge/core 0 10 0 0 10 

Edge/Client 0 1 0 0 1 

Edge 1 15 0 0 16 

Cross-domain 1 13 1 4 19 

Core, Transport 0 2 0 0 2 

Core 1 5 0 0 6 

Access 2 9 1 0 12 

Grand Total 13 58 3 4 78 
 

Table 9. Algorithm Location. 

Algorithm Location NI Solutions 

Control Plane 40 

Control and 
Orchestration Plane 18 

Orchestration Plane 11 

Data Plane 9 

Grand Total 78 
 

 
Figure 23. Resource-awareness of reviewed works. 
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A NI solution tackling the resource optimization problem is a good example of a cross-domain approach. 
The solution can be applicable at the edge, at the core or at the network access. The same applies to 
anomaly detection. Therefore, classifying such papers in absence of explicit indication is complicated. 

However, unlike D2.2 [1], the most used ML method is Supervised Learning, followed by Reinforcement 
Learning, as shown in Figure 24. Supervised learning is powerful in predicting future network states and 
resource usage, which can be used later to take decisions, hence, its popularity. Nevertheless, most of 
the algorithms are not resource-aware, which hinders the applicability of such models, considering that 
most of them are deployed at the network access and edge (cf. Table 8). ML quantization and pruning 
are relatively new techniques; they are not often applied in published papers. However, recent efforts 
from Xilinx [34] are inspiring in achieving ML training and inference in resource-constrained devices. 
Exploiting this research line, DAEMON proposes the design of a standardized methodology to determine 
the correct level of quantization of Deep Learning (DL) models for each specific NI functionality, as it will 
be shown in Section 7.1.8.  

 
Figure 24. Most common ML methods in the literature review. 

Finally, real and synthetic datasets are equally used in the reviewed papers. As shown in Figure 25, most 
of the published papers use real and synthetic datasets. Alternatively, the authors are using a 
combination of both or do not provide enough information regarding the dataset they are using. 
However, the real dataset setup is limited to a few nodes, which might not be representative of the 
expected density of B5G networks. We are aware of the difficulties of obtaining a real dataset, though 
we emphasize the importance of training and testing ML models on real, high-quality, and large data 
since it will facilitate the adoption of ML models in the field. As an alternative, researchers should focus 
on the creation of ML models that are robust yet generalized so that they can be trained in synthetic 
data and perform well when deployed on production. 

 
Figure 25. Dataset generation of the reviewed works. 
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6.2 Concluding remarks literature review 
The previous section analyzed over 90 works that proposed ML and hybrid techniques to solve several 
known problems in network management. Given the approach we follow for surveying the current state 
of the art, we recognize that the surveyed papers are biased towards certain topics, such as resource 
management and network optimization and control. However, DAEMON functionalities cover several 
network microdomains, and therefore, the conclusions that we draw from the previous analysis are 
equally valuable.  
Something that we cannot deny is how the AI/ML hype has vastly penetrated the networking community. 
Proof of that, beyond the papers that we surveyed, is the creation of the brand-new IEEE Transactions on 
Machine Learning in Communications and Networking15 journal, focusing on high-quality manuscripts on 
advances in ML and AI methods and their application to problems across all areas of communications 
and networking. Another effort from IEEE is the first International Conference on Machine Learning for 
Communication and Networking16, aiming at promoting fundamental and applied research of ML for 
designing, analyzing and optimizing communication systems. These efforts mentioned above are the 
response to the ever-increasing interest of researchers in applying ML in networking and we are sure that 
they will foster more endeavors in the field. 
AI and ML bring benefits to the telecommunications industry in two dominant fields, namely, data 
processing and automation. Given the amount of information it is produced on current networks, ML 
excels at finding hidden patterns in such data and meaningful features. Those patterns can be leveraged 
later by controllers and orchestrators, optimizing other network processes, which emulate human 
intelligence. In this setup, ML models look for correlations in multi-dimensional data to gain insights into, 
e.g., resource utilization, to forecast future system states and adapt accordingly. Regarding adaptivity, 
thanks to the generalization properties of supervised learning methods, online learning, or adapting a 
model during runtime as in the case of reinforcement learning, ML will allow communication systems to 
change dynamically accordingly to the system dynamics. This is not possible with current methods since 
the operational parameters are valid for a given network configuration and traffic load. Once they 
change, the operational points must be calculated again, which implies an interruption of the service or 
manual configuration. 
During the literature review, we could find evidence of one of the statements we advocate in DAEMON, 
i.e., that most ML models for networking are designed to work in isolation. That is, they do not interact 
with other ML methods, and if they do, the solution is designed in such a way that the data pipeline and 
the interactions between the ML models are fixed to work in the conditions given. In principle, this goes 
against future workflows where: 1) the outputs of different ML models could be aggregated to take 
better-informed decisions and share knowledge among themselves; 2) the input data to such algorithms 
can come from different sources and in different formats; and 3) ML models belonging to different 
administrative domains can act over the same infrastructure which can cause conflicts.  
Undoubtedly, data is a big part of the ML workflow. However, data is often overlooked in the networking 
community. Most of the reviewed papers do not pay much attention to the data they are using for 
training and validation. Synthetic datasets are generated under some specific conditions that, if not 
shared, other scientists cannot reproduce. On the other hand, real datasets may be subject to privacy 
regulations, which make them hard to replicate. As a result, two models that solve the same networking 
problem, e.g., traffic classification, are not comparable because they were trained using different data 
or in different network conditions. This will obstruct, enormously, the adoption of ML in networking. Ideally, 
the networking community should push towards high-quality, large, open datasets, hopefully 
standardized, so ML models can be trained on the same data and the same network conditions, so a 
fair model comparison is possible. Think for instance how the computer vision community has several 
open-source datasets, e.g., ImageNet17, CIFAR18 and COCO19, and how that promoted the creation of 
powerful models [35], which were the stepping stones of computer vision as we know it today. Or in the 
reinforcement learning community where they have Gym20, a standard API with a diverse collection of 
reference environments. In gym, multiple RL algorithms can be trained and tested, solving the same 
environment. Having a common networking environment and common data generation would facilitate 
the comparison between intelligent and non-intelligent models, which is a weak point spotted during the 
literature review.  

                                                        
15 https://www.comsoc.org/publications/journals/ieee-tmlcn  
16 https://icmlcn2024.ieee-icmlcn.org/  
17 https://www.image-net.org/  
18 https://www.cs.toronto.edu/~kriz/cifar.html  
19 https://cocodataset.org/  
20 https://www.gymlibrary.dev/  
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Finally, we noticed that most of the proposed ML models are not tailored for networking. The loss and the 
reward function are defined in terms of known error functions, e.g., MSE, cross-entropy, or 
minimization/maximization functions. Notice that the loss and reward functions optimize the algorithm’s 
learning, e.g., minimizing the cross-entropy, according to the learning problem, e.g., classification. 
However, the learning problem is not necessarily related to the optimal solution of the networking 
problem, e.g., selecting the best modulation scheme to minimize interference. The same is valid for RL 
approaches, where two different models will produce different learning metrics, e.g., cumulated reward, 
but their behavior in terms of the network metrics, e.g., minimizing the latency, needs to be evaluated. 
Therefore, we need to better understand how a model will impact the network stability and reliability, 
not only by improving their learning metrics.  
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7 Final guidelines on the pragmatic design of Network 
Intelligence and Limits of AI 

We have presented the evolved architectural design of the project, which has been designed to support 
a native integration of NI in the network, and where DAEMON has focused on eight groups of such NI 
functionalities (see Section 2 of this document). In this section, we present an updated version of the 
guidelines proposed by DAEMON for incorporating machine-learning-based functions in the design and 
implementation of each of these NI functionalities. These guidelines are based on the experimental results 
and outcomes obtained from the project's research. We provide two sets of guidelines: The first focuses 
on the modifications required to adapt AI/ML solutions into specific networking applications (i.e., on 
Tailored AI), whereas the second set comprises insights on whether AI/ML solutions are the best choice 
for different network use cases (i.e., on Limits of AI). We build upon the preliminary guidelines provided in 
Section 4 of D2.2 [1]. For that, we recall the guidelines provided in [1], while adding new guidelines and 
additions to already existing guidelines generated from last year’s development. A comprehensive 
description of the evolution of each guideline is provided in Table 10, where we show, for each guideline, 
(i) the related functionalities, (ii) its evolution during the last year’s iteration of the project (stable, 
updated, or new), and (iii) its category (whether it relates to tailored AI or to the limits of AI). 

Table 10. Evolution of the DAEMON project’s guidelines from the previous deliverable. 

Guideline Related Functionality Evolution 
from D2.2 

Category 
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S 

M
TE

RM
 

IB
SS

I 

C
A

W
RS

 

EA
W

V
N

F 

SL
M

A
N

O
 

C
FO

RE
 

A
A

RE
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Incorporating prior knowledge 
in decision making schemes 

               Stable Tailored AI 
  

Avoiding the loss-metric 
mismatch 

               Updated 

Loss function meta-learning                Updated 

Self-learning models based on 
dataflow programming 

               Stable 

Adapting a known reward 
function to networking 

              Updated 

Low inference time and 
energy consumption 

             Updated 

Explainable NI               New 

No “one-size-fits-all” in Neural 
Network Quantization 

             New 

Traffic classification               Updated Limits of AI 
  Wireless Network performance 

inference 
              Stable 

Self-learning MANO               Stable 

Forecasting in mobile 
networks 

              Stable 

In-backhaul inference               Updated 

Federated learning powered 
NI functionalities 

             Stable 

Predictive HARQ               Stable 

Hard constraints               New 

Anticipatory decision-making 
in mobile networks 

            New 

After illustrating the evolution of the guidelines from previous documents, we describe in detail all newly 
added guidelines, as well as the new content for the ones that have been updated. We keep a brief 
description of the stable guidelines for the sake of completeness, while the detailed description can be 
found in Section 4 of D2.2 [1]. We separate the guidelines in two main categories, as previously 
mentioned, depending on whether they are related to tailoring AI design for NI or to the limits of AI.  
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For each of these guidelines (stable, updated, and new), we provide a critic view of the provided 
solutions by briefly describing the future challenges and the potential limitations of the proposed 
guidelines, so as to offer a complete picture of the State of the Art and the current NI situation for future 
research projects.  

7.1 Tailored AI design for NI 
One of the main goals of DAEMON is to define methodologies to adapt legacy modern deep-learning-
based AI models to the particularities of real-world NI problems. This objective is crucial because 
networking operation, optimization, and management conform to create a complex and singular 
framework that greatly differs from other fields. Because of that, top-level solutions with unmatched 
performance in other less constrained fields may fail to achieve a similar operability in networking 
applications.  
In light of these considerations, the DAEMON project challenges the current practice of addressing NI 
problems by directly adopting general-purpose AI models or models that have been successfully 
employed in other domains, without significant modifications. Instead, a sensible integration of AI models 
into NI calls for substantial customization and contextualization. In this section, we provide a detailed list 
of the research outcomes obtained within the DAEMON project and aimed at adapting and tailoring 
AI/ML solutions for network intelligence. We link these adaptations to the requirements of the target 
functionalities described in Section 2 of D2.2 [1] and in Section 2 of the current document. These 
guidelines are connected to those requirements in a twofold manner: on the one hand, the derived 
solutions build on the constraints and the goals set by those functional requirements; on the other hand, 
the developed solutions allow us to unveil the limitations of the requirements from the outcomes of the 
research work, thus triggering requirements updates. This last interconnection has been crucial to steer, 
improve and evolve each project year iteration. Table 11 summarizes all the guidelines related to tailoring 
AI for NI that have been produced by DAEMON. We indicate which requirements are related to each 
guideline, and we also describe the main take-away message for each guideline. The guidelines that 
were already presented in D2.2 [1] are briefly commented in the remainder of this section, 
complemented with a further detail or follow-up guideline formulated during the last project’s iteration, 
while fully new guidelines are described in detail. For all these guidelines, we provide the main current 
limitations and future challenges that have been identified during the project development, such that 
future research can extract meaningful guidelines for future steps and open problems.  Note that the 
focus there is on the extrapolation of the design guidelines of AI for NI, guidelines that arise from the 
activities carried out during the DAEMON project. Therefore, when applicable, we also link guidelines to 
their implementation for some specific NI-assisted functionality that are presented in other deliverables 
of the project. 

Table 11. Summary of the DAEMON project’s guidelines on tailoring AI for NI. 

Guideline Requirements Description DAEMON 
related 
work 

Incorporating prior 
knowledge in 
decision-making 
schemes 

FR-SLMANO-002 
FR-SLMANO-005 

AI models for NI shall incorporate prior 
knowledge about the network system by 
design, e.g., as restrictions on the 
coefficients of the neural network, or as 
simplifications to the training data. This 
reduces the amount of data needed for 
training without impairing AI performance. 

[36] 

Avoiding the loss-
metric mismatch 

FR-CFORE-002 
FR-CFORE-005 

AI models for NI shall be trained using 
customized loss functions that are carefully 
developed based on expert system 
knowledge. Unlike legacy loss functions 
that are designed to be generic enough to 
work well in a wide range of scenarios, 
task-tailored losses can capture the 
specific performance targets and 
dramatically improve results. 
Update: When it is not feasible to obtain or 
design a customized loss function, the 
DAEMON project advocates the use of loss 
function meta-learning, which enables the 
customization of loss functions for unknown 

[37] [38] 
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relationships between 
decisions/predictions and the system 
performance. 

Loss function 
meta-learning 

FR-CFORE-002 
FR-CFORE-005 
FR-CFORE-006 
FR-CFORE-007 

AI models for NI may adopt when relevant 
a design that meta-learns the loss function 
that best suits the network management 
objective at hand. This is the case, e.g., 
when the performance metric to be 
optimized by anticipatory MANO actions is 
not known a priori by the network 
operator. 
Update: Anticipatory MANO must take into 
account intertwined forecasts. The 
structure and configuration of the AI/ML 
methods designed for loss meta-learning 
and anticipatory MANO must incorporate 
the characteristics needed to handle such 
complex problems to facilitate scalability 
and modularity. 

[37] [38] 

Self-learning 
models based on 
dataflow 
programming 

FR-MTERM-004 
 

AI models for NI shall be informed by 
tailored data feeds. The input to AI models 
for NI requires decentralized and 
distributed data management, unification 
of data patterns, support for 
heterogeneous devices, support for 
eventual consistency models, or support 
for different timescales and real-time 
communications. In turn, these call for both 
decentralized data pipelines as well as the 
ability to declare deadlines for real-time 
operations and the reusability of 
components. 

[39]–[42] 

Adapting a known 
reward function to 
networking 

FR-SLMANO-003 
FR-MTERM-007.00 

AI models for NI that are based on RL may 
adapt known rewards instead of defining 
new ones. Contrary to most of the RL 
applications in networking, where the 
states, actions, and reward function are 
defined using a networking rationale, the 
DAEMON project commends that the 
many different reward expressions used in 
well-known applications of RL can be 
leveraged and adapted to suitable 
rewards that drive NI decisions in specific 
network functionalities. 
Update: The AI solutions for networking shall 
be integrated into control frameworks such 
as the MAPE-K. Furthermore, those general-
use frameworks shall be adapted to the 
particular structure of the network. We 
defined a new reward function that 
optimizes a multi-objective function 
regarding the number of replicas and a 
target delay. Additionally, we framed the 
solution into the N-MAPE-K framework, 
going beyond the state-of-the-art, where 
several scaling solutions can be swiftly 
integrated as NIFs in future network 
infrastructures. 

[26], [43] 

Low inference time 
and energy 
consumption 

NFR-RIS-001 
 

AI models of NI may be designed for 
extremely low inference latency and 
energy consumption. This requirement 

[17], [44], 
[45] 
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NFR-RIS-002 
NFR-EAWVNF-003 
NFR-EAWVNF-004 
NFR-CAWRS-000 
NFR-CAWRS-001 
NFR-CAWRS-003 

applies to a number of mobile network 
applications such as traffic classifiers or 
load balancers in multi-gigabit-per-second 
backhaul segments, or in baseband 
processing operations in the radio 
interfaces, where the processing latency 
budget for inference is well below 100 
microseconds. Techniques for AI design 
that meet such specifications include (i) 
distribution of complexity across simple 
and fast models, e.g., via multi-actor-critic 
RL, (ii) in-subsystem inference that avoids 
time-consuming communication with a 
GPU, e.g., by running AI directly in the 
network interface card (NIC), or (iii) use of 
low-complexity AI models, e.g., Binarized 
Neural Networks (BNN). 
Update: The usage of Digital Twins (DT) shall 
be fostered to obtain faster and more 
resilient models, while avoiding the need to 
deploy in real hardware and take real 
measurements. DTs can speed up the 
design phase and at the same time 
reduce design costs. 

Explainable NI 
(New guideline) 

NFR-CAWRS-000 
NFR-CAWRS-001 
NFR-CAWRS-003 
FR-CFORE-000 

Network management and orchestration 
require accountability and verification, but 
most of learning-based solutions are 
opaque blocks that are not designed with 
the objective of transparency. DAEMON 
advocates for the use of explainable AI for 
developing intelligent solutions in the 
network’s core, since this conflict may 
preclude the ubiquitous use of AI for 
networking. To generalize explainability for 
any network problem, DAEMON proposes 
the use of the classification of explanations 
developed by the Machine Reasoning 
community: attributive, contrastive, and 
actionable explanations. 
Furthermore, in order to extract the most 
from the system-independent standard 
explainable AI methods, DAEMON 
proposes the use of specific explainable 
blocks that provide a compact, human-
friendly, network-aware representation of 
the otherwise verbose complex 
explanations that Explainable AI (XAI) 
techniques provide. 

 [46] 

No “one-size-fits-
all” in Neural 
Network 
Quantization 
(New guideline) 

NFR-EAWVNF-004  
NFR-CAWRS-002 

Next-generation communication systems 
will face new challenges related to 
efficiently managing the available 
resources. DL is one of the optimization 
approaches to address and solve these 
challenges. However, there is a gap 
between research and industry. Most AI 
models that solve communication 
problems cannot be implemented in 
current communication devices due to 
their high computational capacity 
requirements. New approaches seek to 
reduce the size of DL models through 
quantization techniques, which provides 

[47] 



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

55 

the means to change the traditional 
method of using operations with 32 (or 64) 
floating-point representation to a fixed 
point (usually small) one. However, the 
recent works using quantization techniques 
apply the one-size-fits-all approach: all 
layers are quantized equally. DAEMON 
proposes a methodology to determine the 
level of quantification that is required to 
obtain the best trade-off between the 
reduction of computational costs and an 
acceptable accuracy in a specific 
problem. 

This set of guidelines, as a whole, addresses all the items related to the tailored design of AI for NI as 
presented in the Description of the Action (DoA) of the DAEMON project. We make these links explicit as 
follows. 

• The guidelines on (i) incorporating prior knowledge in decision-making schemes, (ii) avoiding the 
loss-metric mismatch, and (iii) adapting a known reward function to networking address the issue 
of “closing the loss-metric mismatch, by deriving general guidelines for the design of dedicated 
loss functions that are perfectly aligned with the actual performance metrics of interest”. 

• The guidelines on (i) loss function meta-learning and (ii) self-learning models based on dataflow 
programming address the problem of “designing a methodology for self-learning AI models that 
dynamically and automatically balance costs and efficiency, by learning the loss function 
indirectly from the feedback of the end-customers, without requiring them to explicitly identify 
their objectives”. 

• The guideline on (i) low inference time and energy consumption address the problem of 
“developing elastic NI models capable of adapting their own complexity to the context, trading 
off (computational) complexity for accuracy, responsiveness or energy efficiency as needed”. 

7.1.1 Incorporating prior knowledge in decision-making schemes  
The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 
presented in Section 4 of D2.1[8], updated in Section 2 of D2.2 [1], and which are reported in full in 
Appendix A of this same document: 

• FR-SLMANO-002, FR-SLMANO-005 for Self-learning MANO.  
In many networking problems tackled via ML, the probability of taking an action ! when a certain 
observation " is made, i.e., the policy #(",!), is modeled as a neural network. In such problems, there 
often exists some prior knowledge inherent to the problem that constrains the action space; for instance, 
it may be known a priori that, for two observations "',"( in different regions of the observation space, a 
certain action ! should be more likely for observation "' than for observation "(. The simplest example 
of this feature is a monotonicity constraint:  #("',!) > 	#("(, !) if "' > "(. Plain vanilla neural networks do 
not possess such a property; however, they can only learn this property after being trained on a 
sufficiently large set of data. Incorporating this prior knowledge in the neural network modeling can be 
achieved in various ways: (i) by putting adequate restrictions on the coefficients of the neural network; 
(ii) by preprocessing the training data such that pairs of data that do not expose the desired behavior 
are suitably altered or removed. In both cases, by incorporating prior knowledge, less data is needed to 
train the neural network to achieve a reasonable performance. In Section 4.1.1 of D2.2 [1] we have 
demonstrated how the inclusion of prior knowledge in a model, which estimates the acceptance 
probability of a network service, enhances the performance of the said model.  
Limitations and future challenges 
The incorporation of prior knowledge, in the form of unfeasible subspaces, structure of the data or the 
solution, etc., is a complex task that requires a lot of tailoring and must be tackled differently for each 
problem. The related techniques developed in the DAEMON project, which were described in D2.2 [1], 
all are restricted by the fact that the prior knowledge is under the form of monotonicity constraints. At 
the same time, the techniques can be readily used in all problems where such a (set of) monotonicity 
constraints can be identified. Some other ad hoc techniques will have to be developed to cope with 
problems where the prior knowledge is presented in a different form. 
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7.1.2 Avoiding the loss-metric mismatch in network intelligence 
The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 
presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 
A of this document:  

• FR-CFORE-002, FR-CFORE-005 for Capacity Forecasting NI. 
Loss functions drive the training process of supervised machine learning models. In most cases, loss 
functions are designed to be generic enough to work well in a wide range of scenarios. In regression 
problems, including forecasting tasks, Mean Absolute Error (MAE), Mean Square Error (MSE), or Mean 
Squared Logarithmic Error (MSLE) are common choices for expressing the loss. 
However, in many practical cases in network management, such traditional losses do not characterize 
well the target performance metric of forecasting tasks. For instance, in anticipatory resource allocation 
problems, the goal is anticipating a capacity that is sufficient to accommodate future traffic demand. 
Indeed, underprovisioning of capacity leads to the disruption of the offered service and violations of the 
Service-Level Agreements (SLAs) with the service providers. There, it is critical that the predictor learns to 
forecast a minimum quantity that is always above the demand. 
Using a traditional loss function to perform forecasts in cases such as those outlined above results in a so-
called loss-metric mismatch, where the regression objective (i.e., the loss to be minimized) does not 
correspond to the optimization of the actual performance metric. As a result, the AI model’s predictions 
are not aligned with the expected network management objective. 
As part of its guidelines for the tailored design of AI for networking, the DAEMON project supports the use 
of customized loss functions that are carefully developed based on expert system knowledge, i.e., a 
deep understanding of the network engineering or management task at hand, as well as of the variables 
that affect it and how they do so. Figure 26 illustrates how the tailored design of loss functions for NI shall 
occur. In the left plot (a), a pure traffic predictor is trained using a legacy loss, e.g., MAE or MSE for 
regression. The resulting forecast serves as an input to the actual decision block, which is manually 
designed by human experts. In the right plot (b), the novel approach proposed by the DAEMON project 
is outlined: expert knowledge is used to directly design a dedicated loss that encodes the relationship 
between the prediction and the performance objective. As a result, the predictor directly forecasts the 
management decision to drive the MANO actions. Importantly, the action decision is now aware of the 
unavoidable prediction error (e.g., lower accuracy in predicting small traffic volumes), and automatedly 
compensates for it. More details about the techniques that implement this guideline can be found in 
D2.2 [1]. 

Limitations and future challenges 
Tailoring the loss functions to the networking metric of interest will be crucial to achieve many of the 
envisioned applications of AI for networking and will be necessary to accomplish a general network 
intelligence. However, the sheer number of different problems with completely diverse characteristics 
that can be found in the network makes unfeasible a detailed tailoring of the loss functions for each task 
that we desire to implement by means of NI. It would require enormous resources of expert knowledge, 
and it would probably require a continuous adaptation. An alternative to solve this problem and being 
able to generalize NI for any network-related task is to substitute the human-designed, manually tailored 
implementation by autonomous learning that allows the network to self-adapt to new/unknown 
problems, as we will describe in the following guideline. 

              
(a)                                                                                          (b) 

Figure 26. Different approaches for solving the loss-metric mismatch. 

7.1.3 Enhanced Loss meta-learning for network intelligence 
The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 
presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 
A of this same document:  

• FR-CFORE-002, FR-CFORE-005, FR-CFORE-006, FR-CFORE-007 for Capacity Forecasting NI. 
The performance metric to be optimized by anticipatory MANO actions is not always known a priori by 
the network operator. This is the case, for instance, when the performance must be measured at the 



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

57 

application layer (i.e., in the service provider domain), or when it concerns end user satisfaction (e.g., if 
it relates to mean opinion scores or quality of experience). In these situations, designing tailored loss 
functions as presented in Section 7.1.2 is not possible, since the human expert (e.g., network manager or 
system engineer) does not know the exact relationship between the forecast and target performance. 
DAEMON sets forth innovative guidelines to deal with NI design in the complex situations described 
above. Specifically, instead of imposing a predefined expression of the loss function used to train the 
predictor, the DAEMON project advocates a design of forecasting models that is free to meta-learn the 
loss function that best suits the network management objective at hand. In practice, this is realized by 
combining a loss-learning block with the actual predictor, as shown in Figure 27. This block is responsible 
for learning the loss function or, equivalently, capturing the relationship between the forecast produced 
by the predictor and the target management objective. Once ready, the loss-learning block can 
operate as a tailored loss function: it receives the output of the predictor and determines its quality for 
the precise management task. Therefore, it can be employed to train the predictor so as to steer the 
optimization of its parameters toward minimizing the actual MANO objective. 

 
Figure 27. Loss meta-learning for NI. The network management objective is learned and encoded into a 
loss-learning block. This block then serves as the loss function to train the predictor, so that it directly 
outputs the anticipatory action. 

This model, coined Loss-Learning Predictor, solves a regression problem and outputs a continuous-valued 
action, but does so by learning from experience, similarly to Reinforcement Learning (RL) approaches. It 
is worth noting that such loss training can use performance measurements collected in the target system 
as a direct representation of the objective, without any need to formalize it as a mathematical function. 
Previous guidelines in D2.2 [1] advocated for an implementation based on two Deep Neural Networks 
(DNN), one for the decision-making in cascade with a second DNN that implements the loss learning 
block. However, such a structure is limited and cannot operate in scenarios with intertwined variables.  
Unfortunately, networking problems usually depend on intertwined variables that need all to be forecast 
in order to deliver the anticipatory MANO decision. Based on the knowledge and expertise acquired 
during the last year of the project, we propose a new structure, which is generic, can be applied to any 
general problem with multiple intertwined variables, is scalable, and modular. From this knowledge, 
DAEMON advocates the use of modular and scalable structures that are jointly trained but structurally 
independent, such that the neural network structure mimics the logical shape of the problem.  
This vision is realized in the DAEMON project through a specific and simple solution. The crucial aspect is 
to split the previously mentioned predictor/decision-making block (cf. Figure 27) into two different blocks. 
A first part is composed of separate parallel neural networks, each one receiving as input one of the 
variables. All these parallel blocks are fed into an Assembler block, which finally outputs the decision,  as 
shown in Figure 28. The main guideline and idea is to logically separate the learning of the temporal 
correlation of each variable (carried out by the first block) and the inter-variable relationship (carried out 
by the aggregator). This allows for much faster and stable training, and it facilitates transfer learning as 
each sub-block can be extracted and applied to different scenarios. 

 
Figure 28. Proposed architecture of the predictor for loss meta-learning model set forth by DAEMON.  
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This design has several key advantages: 

• The loss-learning DNN can learn the relationships between the prediction and the objective from 
measurement data, without the need for human intervention. 

• Without any need for prior knowledge of the system, the loss-learning DNN can model tangled 
non-linear and multivariate objectives that may characterize practical MANO decisions. 

Full details on the design and operation are available in [37] and [38], and a preliminary performance 
evaluation showing the advantages of loss meta-learning over legacy DNNs is presented in Section 4.6.2 
and Section 4.6.3 of D5.1[7] of the DAEMON project. Overall, this guideline paves the road to the design 
of more adapted and automated NI models for MANO operations. 
Limitations and future challenges 

The development of loss meta-learning solutions is still in its infancy, and there are many open questions 
with respect to its limitations. One of the main limits is the need to scale the complexity of the neural 
network depending on the complexity of the problem, which would be unknown for the problems here 
considered. This could be solved through some controlled iteration, with the inherent increase in the 
required time for correct training. Moreover, the fact that these solutions are intended for complex 
environments with unknown performances implies that it is difficult to verify the optimality or correction 
of the offered solutions. These approaches would require a strong and well-defined AI lifecycle 
management to correct and adapt the developed algorithms. 

7.1.4 Self-learning models based on dataflow programming. 
The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 
presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 
A of this same document: 

• FR-MTERM-004 on Multi-timescale edge resource management. 
Designing an NI-native architecture for B5G systems requires clear requirements and specifications, 
related to data-driven features such as: decentralized and distributed data management, unification of 
data patterns, support for heterogeneous devices, support for eventual consistency models, or support 
for different timescales and real-time communications. Based on these considerations, the DAEMON 
project advises that we need both decentralized data pipelines as well as the ability for declaring 
deadlines for real-time operations and the reusability of components. 
Eclipse Zenoh-Flow21 provides the mechanism for simplifying and structuring (i) the declaration, (ii) 
the deployment, and (iii) the writing of complex applications that can span from the Cloud to the Edge 
or beyond the edge, offering flexibility and extensibility for data flow programming structures. The main 
benefit of this approach is that it enables us to decorrelate applications from the underlying 
infrastructure: data are published and subscribed to without the need to know where they are actually 
located, e.g., cloud, edge, or beyond edge. 
We tackled the challenge of integrating NI algorithms into the overall DAEMON’s architecture presented 
in the previous sections. We adopted the mentioned N-MAPE-K feedback loop methodology (Network 
Monitor-Analyze-Plan-Execute over a shared Knowledge) to handle the fundamental point of 
understanding which are the needed interfaces. With N-MAPE-K, the algorithms that run at NI instances 
can be classified in a unified manner, according to how they interact with the other network elements. 
Based on these activities, DAEMON advocates the adaptation of standard methodologies to the specific 
characteristics of the network. More details are presented in the other deliverables of the project.  
Limitations and future challenges 

There exist several methodologies that are widely adopted or generally known to enact the feedback 
loop control. It is yet not analyzed the particular advantages that each of them may offer, or if some of 
them are equally valid for their application in network and NI lifecycle management. This study requires 
a detailed analysis that is expected to be done in the future.  

7.1.5 Adapting a known reward function to networking 
The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 
presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 
A of this same document: 

• FR-SLMANO-003 for Self-learning MANO, and FR-MTERM-007.00 for Multi-timescale resource 
allocation.  

                                                        
21 https://github.com/eclipse-zenoh/zenoh-flow  
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In D2.2 [1], the DAEMON project commended that the many different reward expressions used in known 
applications of Reinforcement Learning can be leveraged to identify suitable rewards that drive NI 
decisions in specific network functionalities, contrary to most of the RL applications in networking where 
the states, actions, and reward function are defined using a networking rationale. We exemplified this 
guideline for autonomous service scaling, which was mapped to the well-known Cart-pole environment, 
showing how adapting a reward function from one domain (e.g., Cart-Pole environment) to another 
(e.g., networking environment) can be leveraged to identify suitable rewards that drive NI decisions in 
specific network functionalities.  
Yet, the standard reward functions and environments cannot often be directly applied to networking 
problems, and they may require different levels of adaptation. In this regard, DAEMON commends the 
adaptation of standard reward functions and methods to networking and orchestration frameworks, such 
that the N-MAPE-K framework. In order to realize this guideline, in [43] we defined a new reward function 
that optimizes a multi-objective function regarding the number of replicas and a target delay. 
Additionally, we framed the solution into the N-MAPE-K framework, going beyond the state-of-the-art, 
where several scaling solutions can be swiftly integrated as NIFs in future network infrastructures.  
More specifically, in every time step, the agent pays an immediate cost depending on how good or bad 
the action it took is. The cost of taking action when the environment moves from one state to another 
can be defined as a weighted function, including the following contributions.  

• If the agent cannot fulfill the SLA, it incurs a performance cost, +,-./ with an associated 0,-./, 
which is paid every time the perceived peak latency (1) exceeds a predefined threshold (1234). 
The cost is zero otherwise. 

• If the agent must deploy a new replica, a resource cost +.-5	is paid, with an associated 0.-5; this 
can be seen as a rental cost in cloud environments or the consumed energy of the replica while 
it is running.  

These two contributions are combined into a weighted function, where the respective non-negative 
weights define an optimization profile, 0,-./ + 0.-5 = 1. The weights (0,-./and 0.-5) multiply an indicator 
function (9{⋅}) that varies between 1 and −1 depending on whether a condition is met. For instance, if 
the perceived peak latency is above a threshold, the indicator function is 1 or 0 otherwise; if a new 
replica is instantiated, the indicator function is 1, or −1 if the replica is removed. Finally, the reward 
function is defined as the negative cost function, since the main objective is to minimize the total cost. 

= = −+?@?3A = 	 +,-./ + +.-5 = 	0,-./ ⋅ 9BC=D +0.-5 ⋅ 9=CE	

9BC=D = F
1	GD		1 ≤ 1234
0						JKℎC=0GEC

 

9=CE = M				
−1							GD	=CNJOC	=CBPG+!
0				GD	N!GQK!GQ	=CBPG+!	
1														GD	!11	=CBPG+!	

 

With this reward function we trained a Proximal Policy Optimization (PPO) agent, which showed very 
different behavior depending on the optimization objective. When optimizing the resources over the 
performance, the average amount of replicas is always low; however, there is no guarantee of the 
achievement of the SLA. On the contrary, when the scaler is trained with a reward function that optimizes 
the performance over the resources the violations are reduced to their minimum at the expense of 
creating more replicas. For more details, please refer to [43].  
Limitations and future challenges 

RL-based algorithms in general are non-deterministic, meaning that different outputs can be obtained 
for the same parameter configuration due to the random initialization of the neural network’s weights 
used in the state-action approximation. Therefore, since the learning behavior of an RL-based scaler 
heavily depends on the reward function definition, the reward function must be carefully designed, and 
its effects on the stability of the RL algorithm and its impact on network reliability must be studied. The 
orchestration frameworks will play an important role in controlling such reliability. 

7.1.6 Low inference time and low energy-consuming NI 
The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 
presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 
A of this same document: 

• NFR-RIS-001 and NFR-RIS-002 for Reconfigurable Intelligent Surfaces Control NI; 
• NFR-EAWVNF-003 and NFR-EAWVNF-004 for Energy-aware VNF Orchestration NI; 
• NFR-CAWRS-000, NFR-CAWRS-001, and NFR-CAWRS-003 for Compute-aware Radio Scheduling 

NI. 
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Extremely low inference latency and energy consumption is a requirement for NI models in a number of 
mobile network applications such as traffic classifiers or load balancers in multi-gigabit-per-second 
backhaul segments, or in baseband processing operations in the radio interfaces, where the processing 
latency budget for inference is well below 100 microseconds. Most of the existing AI/ML solutions are 
resource-demanding and do not consider so stringent constraints for the inference task. In DAEMON, we 
advocate for the development of tailored highly efficient ML solutions that focus on the said limiting 
processing latency while minimizing the loss of performance.   
In D2.2 [1], we provided three different approaches to meet such tight requirements: Low complexity 
(also by means of distributed and multi-agent learning)[48]; In-subsystem inference (directly in the CPU 
or Network Interface Card (NIC) that collects the input data); and Binarized Neural Networks (BNN) (i.e., 
quantized weights and activations)[49].   
The design of solutions that fulfill these tight constraints are costly, since we need to evaluate the 
performance in the real hardware and obtain the results via measurements. In order to avoid long design 
processes, with difficult design loops, DAEMON advocates for the use of Digital Twins (DT) of the actual 
systems, which allows us to speed up the design and verification phases, reduce costs, and improve the 
transferability of the solutions.  
Limitations and future challenges 
The different approaches suggested above are not the ultimate solution for the problem of low inference 
time and low energy consumption, and each one suffers from different problems: “Low complexity” 
approach suffers from the loss in performance due to the reduced complexity, while distributed learning 
approaches require great efforts to avoid stability or fairness issues; “In-subsystem inference” leads to the 
need of simple models due to the reduced capabilities of NIC and CPU with respect to GPU, and 
“binarized neural networks” reduce precision and require special tools for training (since usual stochastic 
gradient descent does not generally work for them). However, there are very promising results for the 
three approaches, which motivates the research in these fields to advance in the achievement of the 
envisioned goals. For example, [48] has demonstrated an 18x increase in latency performance when 
using a common pipeline of NIC+CPU for data collection and ML inference, compared to performing 
both steps directly on the NIC; and, compared to an equivalent 8-bit quantized network, BNNs require 8 
times smaller memory size and 8 times fewer memory accesses, with drastic gains on optimized hardware, 
e.g., exploiting SIMD extensions on intel or AMD CPUs. 

7.1.7 Explainable NI 
The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 
presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 
A of this same document:  

• NFR-CAWRS-000, NFR-CAWRS-002, NFR-CAWRS-003, for Computation Aware RAN. 
• FR-SLMANO-004 for self-learning MANO. 

Network management and orchestration are based on reliability and fast response time. It is crucial for 
network operators and any involved stakeholder to be able to obtain a clear explanation and 
justification of any of the processes applied in the network. Unfortunately, most of the top-performing 
learning-based solutions (e.g., deep neural networks) are opaque blocks that offer little explainability 
and which are not designed with the objective of transparency. This conflict may preclude the ubiquitous 
use of AI for networking as stakeholders will not support losing accountability capabilities. Based on 
different activities within the project, DAEMON advocates for the use of explainable AI for developing 
intelligent solutions in the core functionalities of the network. This can be achieved by considering 
explainability as one of the objectives during the design phase.  
In order to ensure a comprehensive and transparent system, it is very important to incorporate 
interpretability and explainability features. Significant enhancements to address the issue of explainability 
within the model were explained in Section 2.5 of [2], drawing upon machine reasoning techniques from 
existing literature in the field, in a solution called ATHENA. Within ATHENA, Section 2.5 of D3.2 [2], the 
Machine Reasoning component comprises the second block, which plays a crucial role in interpreting 
the outputs of the machine learning (ML) module and generating actionable decisions for the network, 
albeit at a slower pace. To achieve this, our model needs to offer insights into its internal functionality and 
decision-making process, which we refer to as explanations. 
A relevant guideline for NI is the need for providing explanations falling into three distinct categories 
coming from the research in Machine Reasoning: attributive, contrastive, and actionable explanations, 
as defined by [50]. Attributive explanations aim to provide an understanding of the attributes and 
features that contribute to a particular decision. Contrastive explanations highlight the factors that 
differentiate one decision from another. Lastly, actionable explanations offer insights into the steps or 
actions that can be taken based on the model's output. These three types of explanations shall be 
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adapted according to the specific context of the model, in the case of ATHENA, to the neural network-
based actor-critic architecture. By doing so, the system not only produces accurate results but also 
provides meaningful explanations that enable the expert running the system to comprehend the 
reasoning behind its decisions and take appropriate actions based on those insights. 
Besides this, we also encountered that many of the well-known X-AI techniques natively provide a 
verbose explanation, which is not human-friendly and is based on the fields they are based on (usually 
an image or natural language processing). Based on this fact, DAEMON proposes the use of specific 
explainable blocks that provide a compact, human-friendly, network-aware representation of the 
otherwise verbose complex explanations that Explainable AI (XAI) techniques provide. The proposed 
architecture is shown in Figure 29. 
This guideline was implemented in a project activity that analyzed the explainability of anomaly 
detection for traffic forecasting [46]. Generally, the state-of-the-art only considers stealthy perturbation 
techniques applicable to all the input to assess model vulnerabilities. We contribute a new way of 
assessing vulnerabilities that is specific to the problem of spatio-temporal mobile traffic forecasting. We 
first pinpoint with Explainable AI the most relevant gNBs to the forecast from a spatial perspective at each 
point in time. Next, we show that traffic injected only in those gNBs (perturbation) causes the model to 
under-estimate the prediction while SotA techniques lead to overestimation. 

 
Figure 29. Proposed comprehensible explainable AI set forth by DAEMON. 

Limitations and future challenges 
Explainable AI methods have not yet been deployed and implemented in networks. These methods, 
although they provide some sort of explainable answer to the question of why the output of the algorithm 
has happened, they do not offer human-friendly outputs, neither network-related nor network-based 
outputs that understand the inherent structure and concept of the network. There are a lot of open 
problems in this topic, and the fundamental limits of explainability are still to be discovered. The project 
is still advancing this topic in different directions, i.e., defining a vulnerability score that is a combination 
of XAI scores and statistics, or quantify the damage to the predictor of newly defined traffic injection 
techniques based on the vulnerability score.  

7.1.8 No “one size fits all” in Neural Network Quantization 
The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 
presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 
A of this same document: 

• NFR-EAWVNF-004 for Energy-aware VNF Orchestration NI 
• NFR-CAWRS-002 for Compute-aware Radio Scheduling NI. 

As seen in several NI solutions, large Deep Learning (DL) models are typically used to solve complex 
problems. Nevertheless, due to the size/complexity of such models, the inference must be performed in 
machines with high computational power, which is not characteristic of the devices composing the radio 
access, edge, or far-edge networks. Neural Network Quantization [51] helps to reduce the 
computational cost of implementing and deploying such DL models. However, the recent works that 
apply quantization to reduce the complexity of the DL models apply the “one-size-fits-all” approach, 
where all the layers are quantized using the same value [52]–[54]. Although it may work in some cases, 
this approach does not allow for finding quantization configurations that provide a desired trade-off level 
between model learning performance, e.g., accuracy, and the model’s complexity. 
Based on the previous problem, DAEMON advocates for the design of a standardized methodology to 
determine the correct level of quantization of DL models for each specific NI functionality. The objective 
is to automate the selection of the models and quantization in a zero-touch manner, such that the system 
can select the appropriate quantization choice in an automated manner, which can be integrated into 
the generic NI lifecycle management presented in the previous sections.  
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To describe the proposed methodology, let us consider an experiment with three design factors, where 
each element has three possible levels. Then, using a complete factorial design, we would need to run 
the same experiment 33−1=26 times to determine which design factor impacts the response variable (i.e., 
the outcome) the most. Translating this small example to the field of DL model quantization, if we have 
three quantifiable parameters (e.g., the input, the activation layers, and the weights), each in the range 
of 1 to 32 bits, it gives 323−1=32,767 possible combinations. Evaluating the impact of each parameter’s 
quantization level regarding the accuracy and inference cost is prohibitively time- and resource-
consuming. 
Based on a fractional factorial design, our methodology allows for reducing the number of experiments 
concerning quantifiable parameters. We divide the methodology into four stages. After each stage, we 
measure the trade-off between the model’s performance metric (e.g., accuracy) and its inference cost 
(e.g., space in memory, number of operations) regarding the unquantized model. It is worth mentioning 
that it is possible to include a preprocessing of the input signals to reduce their size before applying this 
methodology, such as dimensionality-reduction methods or averaged filters. Figure 30 illustrates a 
detailed block diagram of the developed methodology. 

 
Figure 30. Proposed methodology based on fractional factorial design. 

This methodology is proposed in [47] and applied to the Automatic Modulation Classification and 
Recognition (AMR/AMC) problem, as an example. However, this approach can be applied to any other 
problem. During the first stage, we identify the dominant parameter in the quantization. To perform this, 
we select a subset of representative levels and evaluate all the possible combinations over that subset 
(i.e., screening). That evaluation is made regarding the model accuracy and the Normalized Inference 
Cost Score (NICS), i.e., the outputs. Accuracy is the ratio between the number of correct and the total 
number of predictions in all classes. The NICS calculation is obtained by comparing the weight bits, total 
activation bits, and Bits Operations (BOPS) against the reference model, as per the following equation. 

RSTU = 0.5 ∗ Y
ZJBE

ZJBE[35-A\]-
^ + 0.5 ∗ _

0[\?5
0[\?_[35-A\]-
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Where ZJBE and ZJBE[35-A\]- are BOPS of the evaluated (quantized) and the reference (non-quantized) 
model, respectively. Similarly, 0[\?5 and 0[\?5_[35-A\]- are the total bits used by the weights in the evaluated 
and the reference models, respectively. Note that previous information can help refine the selection of 
subsets. For instance, [55], [56] showed that an 8-bit quantized Convolutional Neural Network (CNN) 
model achieves an accuracy close to that of an unquantized model for AMR. Then, a reduced subset 
of quantization levels can be used (i.e., from 1-bit to 8-bit quantization). Once we obtain the 
performance and the inference cost for each combination of the subset, we apply Spearman’s 
correlation coefficient (see following equation) to identify which quantized parameter (i.e., input, 
activations, and weights) has the highest impact on the output, i.e., the dominant parameter. We use 
Spearman’s correlation, where n is the number of observations and D is the variable of interest, since it 
allows for correlation variables that bear a nonlinear relationship. If, during the screening, a combination 
that meets the expected trade-off is found, e.g., by creating the Pareto front using the resulting accuracy 
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and NICS metrics from the quantized models, then we can conclude our search. Otherwise, we can 
move to the second stage.  

b = 1 −
6∑ e(]

\f'

Q(Q( − 1)
 

Since modern DL models are composed of several layers, if the dominant parameters are activation or 
weights, we can evaluate in a layered way which layer has the highest effect on the trade-off (stage 2). 
Notice that the weights are more likely to significantly impact the accuracy and inference cost outputs 
than activations and inputs since there are more hidden units and connections among them than layers. 
During the second stage, we measure the degree of quantization per layer required to meet a given 
trade-off. In addition, notice that if the input is the parameter that most impacts the outputs, then the 
second stage is the same, but the only layer to alter is the input one. A good starting point is to take the 
same quantization subset as in stage one. In this stage, we vary the quantization level of a given layer 
while keeping the quantization level of the non-dominant parameters and the remaining layers the same. 
Our second stage differs from previous works such as [52]–[54] since they typically apply the same 
quantization level to all the model’s layers. Suppose the trade-off between the model performance 
metric and the inference cost is met, then we conclude our search by obtaining an architecture in which 
we have identified which layer of the model has the highest impact. Otherwise, we can continue with 
the third stage.  
So far, we have analyzed the impact of only one layer in the trade-off. However, we may obtain a better 
model configuration by quantizing different layers using different quantization levels. Using the results 
from the previous stage, we analyze the data dispersion using the mean, the median, and the main 
quartiles per layer per variable of interest (i.e., model performance metric and inference cost). At this 
point, the layer with higher dispersion is the layer that influences the trade-off the most. This allows us to 
analyze the behavior of each layer, but we still need to determine its quantization level. To answer this 
question, we must correlate the information using Spearman. Since Spearman’s correlation ranges from 
1 to −1, we can obtain an equivalent scale for the quantization level. During the search, we identify the 
quantization level that, in general terms, offers a better trade-off. This quantization level is regarded as 
the highest Spearman’s correlation coefficient. Then, it is possible to obtain the quantization level and 
the direction, e.g., a 1 as correlation coefficient means that the layer must be quantized at the highest 
quantization level possible. In contrast, a −1 correlation coefficient means the layer must be quantized 
with the lowest possible level. 
In the last stage (stage four), we can select the level of quantization that every model layer should have. 
Thus, having Spearman’s correlation results per layer, we map the correlation coefficient with the 
quantization level described above and apply the following equation, where M is the median and D is 
the variable of interest. Suppose there is more than one variable of interest. In that case, the equation 
should be applied per variable, and the quantization level of each model layer can be selected as a 
weighted sum of the quantization levels per variable of interest. In this way, the experimenter can choose 
which variable of interest to care for the most. 
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When validating with a concrete set of experiments on a well-known DNN architecture for AMR, the 
results demonstrate that our methodology finds quantized architectures (red dots in Figure 31) better 
than the “one-fit-all” approach.  The solutions obtained in phases 1 and 2 are also shown. Notice that by 
varying the weight of the two objective functions t1 (accuracy) and t2 (inference cost), different 
configurations can be obtained that were not found in the initial experimentation analyzed with the 
Pareto optimum. 
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Figure 31. Solutions that were obtained using the proposed methodology for a DL model solving the AMR 
problem.  

If we select the solution that balances the two objectives, Figure 32 shows the same accuracy as the 
models quantized with 10 and 8 bits while providing the lowest inference cost. 
 

  
Figure 32. Modulation classification accuracy of the original (unquantized) model and the quantized 
versions with different Signal-to-Noise Ratio(SNR) values (left) and the comparison of the quantized 
VGG10 1D-CNN model versus the non-quantized model in inference cost (right).  

Limitations and future challenges 
Although the proposed methodology is very generic, it has only been tested on one NI problem type of 
architecture. Therefore, applying this methodology to find the appropriate quantization level using other 
DNN architectures for AMR and extending it to other NI problems (e.g., traffic classification) is essential. 
In addition, quantization is not the only method to reduce the model size. Therefore, further 
experimentation with our methodology with other quantization techniques or in combination with 
pruning remains to be performed, which could provide an even more significant reduction in the 
inference cost and validation of the generality of the proposed approach. Finally, performance 
evaluations of some of the resulting models as a part of a wireless communication system running on an 
FPGA have to be done to provide further quantitative results of the trade-off between model accuracy 
and other metrics related to the model size, such as energy consumption and processing speed. 

7.2 Limits of AI for NI 
One of the cornerstones of the DAEMON project is its critical approach toward AI, intended as complex 
data-hungry black-box models based on deep learning and as a sliver bullet to solve any task in network 
management. Following this stance, the project is exploring the limits of AI in the case of the eight NI-
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assisted network functionalities targeted in the DoA, so as to identify potential limitations of AI in such 
practical tasks. At the same time, we are investigating alternative methods that allow to broaden the 
spectrum of learning and optimization tools that are best suited to concrete networking problems, 
including classical statistical models, simple ML techniques, optimization tools, or heuristics. Such tools 
can be employed in stand-alone approaches or jointly in hybrid approaches if the latter are found to 
work better for the functionality at hand. 
In this section, we summarize the results of the activities in the project that aim at responding to the 
question: “When should AI be preferred to (or combined with) other approaches in order to maximize 
the efficiency and performance of NI?” We therefore provide the insights and conclusions that outcome 
from the research derived in the context of DAEMON about whether/when AI is the most appropriate 
solution to network management problems. Next, we provide a list of the current outcomes of the 
research conducted within the DAEMON project and aimed at understanding the limitations of AI/ML 
solutions by demonstrating that other classes of models are better suited to empower the NI-assisted 
network functionalities we target. We link these adaptations to the requirements of the target 
functionalities proposed in DAEMON. As in the case of the guidelines for a tailored design of AI for NI, the 
connection between requirements and these new guidelines is bidirectional, as (i) the functional 
requirements set the constraints that the guidelines fulfill, and (ii) the evaluation of solutions built on the 
guidelines allows for revealing limitations of the requirements, which shall be updated accordingly. 
Table 12 summarizes the seven guidelines produced by the project to date, indicating the requirements 
they relate to and providing a brief description of their key message. Full details on each guideline are 
then presented in the remainder of this section. Note that the focus there is on the extrapolation of the 
design guidelines of AI for NI, which arises from the activities carried out during the first iteration of the 
DAEMON project. Therefore, when applicable, we also link guidelines to their implementation for some 
specific NI-assisted functionality that are presented in other deliverables of the project. 

Table 12. Summary of the DAEMON project’s guidelines on the limits of AI for NI. 

Guideline for Requirements Description DAEMON 
related 
work 

Models for Traffic 
classification 

FR-MTERM-006 
 

For unencrypted traffic, in DAEMON we propose 
the use of simple statistical algorithms for traffic 
classification of unencrypted data, as we have 
shown that they perform as well as complex AI/ML 
approaches. In such situations, the statistical 
approaches are preferred due to the huge 
difference in complexity. 
Update: When performing traffic classification at 
spectral-level packets (i.e., physical layer packets 
represented as a time series using IQ samples or 
any other spectrum-level representation), 
DAEMON proposes to use DL models over statistical 
ML models, as the former outperforms the latter. 
Moreover, CNN is more suitable than RNN in terms 
of input size (CNN can manage larger times-series 
sequences), accuracy, and faster inference time. 

[57], [58] 

Wireless Network 
performance 
inference 

FR-MTERM-006 
 

While ML approaches outperform classic 
mathematical approaches that rely on simplified 
assumptions, the former suffers from the limitations 
on the fixed size of input and scalability. It has 
been shown that hybrid approaches based on 
machine learning algorithms that make use of 
graph theory clearly improve the performance 
over both standard ML and mathematical 
solutions. 

 [25] 

Self-learning 
MANO 

FR-SLMANO-000 In auto-scaling of virtual resources, it has been 
proven that classical control theory approaches 
outperform RL-based controllers in terms of the 
trade-off between resource requirements and 
QoE. It turns out that the flexibility that the RL 
approach brings incurs the cost of having a lower 
performance. 

[26], [43] 



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

66 

Forecasting in 
mobile networks 

FR-CFORE-000 
 

While there has been extensive research on ML 
approaches for forecasting, showing that such 
approaches usually outperform more classical 
statistical solutions, in DAEMON we have proposed 
a truly hybrid approach that takes the best from 
both paradigms, and which improves the results of 
state-of-the-art predictors. The concept is simple: 
instead of applying a global normalization of the 
traffic time series before it is input to the DNN 
predictor, a dynamic normalization is performed at 
each time step; the level used for such a dynamic 
normalization is decided by a statistical model. 
Both the DNN and the statistical model’s 
parameters are trained through the same gradient 
descent mechanism. From this and the second 
point of this table, DAEMON advocates for the use 
of hybrid solutions that provide synergistic gains. 

[28] 
[59], [60] 
 
Not yet 
published 
results 
appearing 
in D4.3 

In-backhaul 
inference 

FR-IBSSI-002 
NFR-IBSSI-000 
NFR-IBSSI-001 

The feasibility of realizing inference in 
programmable user planes at line rate is a 
challenging network environment for NI, because 
of the strong limitations of the programmable 
switch’s hardware. 
In such applications, highly-elaborated, complex 
non-interpretable deep learning models for the 
user-plane tasks analyzed provide a similar 
performance as much simpler and interpretable 
tree-based approaches.  The DAEMON project 
advocates the use of Random Forest models 
instead of other approaches, including those 
based on deep learning, for in-backhaul inference. 
Indeed, apart from not achieving a better 
performance, neuron-based approaches are 
challenging to implement in resource-constrained 
programmable switches. 
Update: The DAEMON project advocates the use 
of hierarchical inference models for in-switch/in-
line classification, which is a resource-constrained 
scenario. Hierarchical inference leads to better 
accuracy while reducing the required resources. 

[16] 
 

Federated 
learning powered 
NI functionalities 

FR-SLMANO-000 
FR-SLMANO-003 
FR-AARES-000 
FR-AARES-001 

While the main question is whether ML should be 
preferred to non-ML-based approaches for some 
NI applications, another related question is which 
ML framework should be considered, which also 
falls within the questions about the best practices 
and limits of each of the AI frameworks. For 
example, in DAEMON we recommend the use of 
Federated Learning (FL) over centralized or 
distributed learning for applications that require 
several intelligent agents acting cooperatively, in 
cases where the decisions taken at distant parts of 
the network are intertangled and impact each 
other.  FL allows for a low response time due to the 
existence of the local module, and a high 
scalability due to the exchange of limited traffic 
between FL clients and the FL controller. 

[61] 

Predictive HARQ NFR-CAWRS-000 
NFR-CAWRS-001 
NFR-CAWRS-003 

Predictive HARQ is a network application that 
requires extremely low latency, while maintaining 
both ultra-high accuracy and low false positive 
rate. Complex ML-based algorithms fail to provide 
performance guarantees, and they consume 
excessive time in the inference task. In DAEMON, 

[15] 
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we have found clearly identifiable patterns that 
distinguish decodable and non-decodable code 
blocks, which can be detected through simple 
algorithms with minimum computation delay. 
Hence, in DAEMON we suggest the use of simple 
statistical or control-theory approaches to 
implement predictive HARQ and other ultra-low-
latency-inference applications. 

Hard constraints 
(New guideline) 

NFR-EAWVNF-005 
NFR-EAWVNF-006 

Conventional AI models based on neural networks 
struggle to satisfy hard constraints. The usual 
approach is to build solutions that guarantee 
constraint satisfaction only on average. DAEMON 
advocates the use of Bayesian learning and 
expansive safe sets to overcome this limitation. 

[18] 
[62]–[64] 
 

Anticipatory 
decision-making 
in mobile 
networks 
(New guideline) 

FR-SLMANO-000 
FR-CFORE-001 
FR-MTERM-000 

Taking anticipatory decisions in network 
management requires solutions that are able to 
operate at different time-scales and require the 
fulfillment of hard constraints. Based on these 
conditions and characteristics, DAEMON proposes 
the use of cascaded hybrid methods that include 
both ML-based elements and optimization-based 
block, and the use of replicated similar-but-not-
equal methods for different time-scales, which 
update and operate the same function at different 
timescale and with different accuracy 
requirements. 
Based on different activities within the project, 
DAEMON also advocates for the use of yield 
management strategies such as overbooking of 
services, which can be exploited thanks to the 
bursty and non-stable nature of mobile traffic. 

[65], [66] 
 
Not yet 
published 
results 
appearing 
in D4.3 

7.2.1 Traffic classification 
The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 
presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 
A of this same document: 

• FR-MTERM-006 for Multi-timescale resource allocation. 
Initial guidelines about NI for Traffic Classification (TC) have been presented in Section 4.2.1 of D2.2 [1], 
where we indicated that when dealing with encrypted traffic at packet-level (byte) representation [58], 
the automatic feature extraction procedure of DL models can help in the TC task, given that the features 
used in simple ML models based on statistical ML are not enough to properly identify among traffic 
classes. On the contrary, in unencrypted traffic, DL models behave as simple statistical IP/port-based 
architecture and can be replaced by simpler ML models.  
However, traffic classification is traditionally performed at packet-level (byte) representation. This is 
based on the assumption that the traffic flows on a wired network under the same network management 
domain. This assumption limits the capabilities of TC systems in wireless networks since users’ traffic on one 
network domain can be negatively impacted by undetected users’ traffic from other network domains 
or detected ones but with no traffic context in a shared spectrum. To solve this problem, we introduce a 
novel framework to achieve TC at any layer in the radio network stack [57], which uses a DL-based 
classifier that can process L1 (physical) layer packets as input, represented as a time series of In-Phase 
and Quadrature (IQ) samples, and provide as output a label representing the type of traffic that is 
transported by the L1 packet at a given layer. Therefore, DAEMON proposes to perform traffic 
classification at L1 using Deep Neural networks (DNN) architectures such as CNN and Recurrent Neural 
Network (RNN), where CNN are preferred as they can manage large time-series data (more than 3K IQ 
samples) with lower computational complexity compared to RNN. Moreover, it was demonstrated that 
statical ML models were not suitable for dealing with limited number of features due to the encrypted 
nature of wireless transmissions.  
Limitations and future challenges 

Traffic Classification (TC) systems allow inferring the application that is generating the traffic being 
analyzed. State-of-the-art TC algorithms are based on Deep Learning (DL) and have outperformed 
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traditional methods in complex and modern scenarios, even if traffic is encrypted. Nowadays, internet 
traffic that is generated by regular users is being encrypted for privacy and security reasons. In such 
cases, DL models are required to outperform the limitations of feature-based statistical ML models. 
However, other type of networks, e.g., industrial/sensor networks, can still take advantage of simpler 
models since its traffic can be encrypted in the access link (e.g., to avoid transmitting in plain text) but its 
gateway can decode it.   
With respect to TC at the spectrum level, the proposed models are complex and require a high-end 
hardware accelerator to run them, making their deployment unfeasible on constraint environments like 
the edge/far-edge. Further research on energy efficiency and reduction of the model complexity must 
be carried on allowing them to run in traditional wireless environments.  It is important to also recognize 
that there is a lack of understanding of what the models are learning when using DL models, which 
requires further research on representation learning and explainability for this kind of classification tasks. 
Finally, there is a big need for the creation of new datasets (synthetic but even more important with real 
data) and make them open and available for further benchmarking and validation of the research as 
done in this research22.  

7.2.2 Inferring wireless networks performance using Graph Neural Networks 
The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 
presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 
A of this same document: 

• FR-MTERM-006 for Multi-timescale resource allocation. 
The limits of ML models for wireless performance prediction were explored in Section 4.4.2 of D2.2 [1], 
where it was shown that traditional ML models face challenges when learning from structured data 
represented as graphs, as the relationships among nodes are not captured or must be represented 
differently. To overcome this limitation, DAEMON commends the use of Graph Neural Networks (GNNs). 
We refer to D2.2 [1] for further details. 
Limitations and future challenges 

GNNs are promising ML models for solving networking problems, especially because there is a 1:1 
mapping of the network infrastructure with the graph definition. However, as shown in [67], they lack 
generalization capabilities to operate with large graphs. Ideally, we should be able to produce ML 
models that can be trained in small-size testbeds and make sure that the ML model is able to operate 
with guarantees in real-size networks.  
Moreover, besides contextual and structural information, temporal information (e.g., dynamically 
changing parameters such as location or channel allocation) can increase the prediction performance 
of GNNs as shown in [68]. 

7.2.3 Self-learning MANO – reinforcement learning 
The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 
presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 
A of this same document: 

• FR-SLMANO-000 for Self-learning MANO. 
For autonomous service scaling (a key component of self-learning MANO), the number of VNFs needs to 
be scaled according to the work that is offered. The decision to add or remove a VNF often needs to be 
made based on the observed QoE, e.g., the latency incurred in processing the work. Scaling algorithms 
can rely on Reinforcement Learning (RL) or on Control Theory (CT). In contrast to the Deep Reinforcement 
Learning (DRL) approach, which has a neural network at its core with as many parameters as there are 
synapses, the CT approach has only a few parameters to tune.  
As explained in D2.2 [1], it turns out that the CT approach outperforms an RL-based controller in terms of 
the trade-off resource requirements versus QoE but needs to be tuned manually. In other words, the 
flexibility that the RL approach brings comes at the cost of having a lower performance. 
In the third project year, we have improved the CT controller in the following way: it reacts in a different 
way when the KPI is above an upper threshold than when the KPI is below a lower threshold. This doubles 
the number of parameters (which makes it more cumbersome to tune) but increases the performance 
drastically. The details of this new contribution, algorithm and results, will be presented in the deliverables 
D3.3-D4.3 and D5.3, respectively. 
   

                                                        
22 https://github.com/miguelhdo/tc_spectrum  



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

69 

Limitations and future challenges 

Automatic tuning of the CT algorithm remains challenging, while for tuning of the parameters of an RL 
algorithm, a well-known technique (relying on the theory of Markov decision processes) exists. If the 
statistics of the workloads do not change drastically over time, it is worth spending enough computation 
resources to tune a CT algorithm, while in case there are frequent statistical changes in the workloads 
one has the rely on the plasticity of an RL based approach.   

7.2.4 Forecasting in mobile networks 
The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 
presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 
A of this same document: 

• FR-CFORE-000 for Capacity Forecasting NI. 
In deliverable D2.2 [1], we introduced a guideline for forecasting in mobile networks. This guideline is 
related to the current trends in forecasting for anticipatory networking, which lean towards the 
systematic adoption of models that are purely based on deep learning approaches (see Section 4.2.4 in 
D2.2 [1] for a detailed description of the different approaches and the corresponding references). 
However, very recent results from the machine learning community suggest that hybrid engines 
integrating statistical modelling and DNN can, in fact, substantially outperform pure DNN approaches in 
time series forecasting tasks [69]. Based on the demonstrated superior performance over pure DNN 
solutions, in DAEMON, we advocate for a hybrid statistical-learning paradigm to the problem of 
forecasting for Network Intelligence (NI). This superiority is also demonstrated over state-of-the-art 
dedicated DNN-based predictors from the literature. The specific architecture proposed, named 
Thresholded Exponential Smoothing with Recurrent Neural Network (TES-RNN), is a general-purpose 
network traffic forecasting technique that can be tailored to perform predictions for different NI 
functions. The concept behind TES-RNN is simple: instead of applying a global normalization of the traffic 
time series before it is input to the DNN predictor, a dynamic normalization is performed at each time 
step; the level used for such a dynamic normalization is decided by a statistical model, whose parameters 
are optimized jointly with those of the DNN during training. The architecture incorporates Auto-ML 
mechanisms for the selection of hyperparameters. Further details on the proposed structure can be 
found in Section 4.2.4. in D2.2 [1]. Overall, by proposing this very first hybrid approach to forecasting for 
NI, DAEMON paves the way for a different strategy for the design of predictors for mobile network 
environments. This guideline motivated further studies that led to the guideline presented in Section 7.2.9 
for anticipatory decision-making. 
Limitations and future challenges 

Fully hybrid approaches, where the parameters of the statistical model are jointly trained with the weights 
of the neural networks, are a novel approach that still has many open questions and challenges. One of 
the main challenges is understanding the dependency of one model (statistical or learning-based) with 
the other since the performance one the first may be intertwined with the updates of the other. Achieving 
a correct convergence is key in such models. Integrating both approaches is expected to be the by-
default strategy for many complex problems, since in this way we can take advantage of the strengths 
of the two approaches. However, we need a better understanding of the fundamental limits of statistical 
and learning-based models in order to prevent us from suffering the disadvantages of both approaches.  

7.2.5 In-backhaul inference 
The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 
presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 
A of this same document: 

• FR-IBSSI-002, NFR-IBSSI-000, NFR-IBSSI-001 for In-backhaul Support for Service Intelligence NI. 
As part of the project activities, we investigate the feasibility of realizing inference in programmable user 
planes at line rate. This is a challenging network environment for NI, given the strong limitations of the 
programmable switch hardware, as detailed in Section 7.1 of D3.1 [5] of DAEMON. 
Based on the results of extensive tests with multiple real-world use cases for network traffic classification 
and anomaly detection, and as already mentioned in Section 4.2.5 of D2.2 [1], the DAEMON project 
advocates the use of Random Forest models instead of other approaches, including those based on 
deep learning, for in-backhaul inference. Indeed, we did not identify any significant advantage in relying 
on complex non-interpretable deep learning models for the user-plane tasks analyzed: simpler 
approaches based on multiple decision trees achieve an accuracy that is similar or even superior in such 
tasks. Instead, we found that deep learning models are much more challenging to implement in 
resource-constrained programmable switches, which dramatically limits their internal complexity (e.g., in 
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terms of layer depth or number of neurons per layer) and thus an inference potential that is classically 
largely dependent on their architectural complexity. 
Results supporting the guideline above are available in Section 4.7.1 of D5.2 [4] of the DAEMON project. 

 
Figure 33. Proposed framework for in-backhaul inference. 

Furthermore, the DAEMON project advocates the use of hierarchical paradigms for in-switch inference. 
In this scenario, the amount of available resources in the switch is one of the limiting dimensions for 
implementing inference algorithms in-line. Here is where hierarchical paradigms come to the rescue by 
splitting the overall target task into simpler ones that are themselves easier to handle; then, smaller 
classifiers can be trained to solve the sub-tasks, collectively yielding a better accuracy while being able 
to fit within the limited switch capabilities. In this manner, we are able to both improve performance in 
terms of accuracy but also in terms of resources. The results showcasing the benefit of applying this 
guideline will be reported in D3.3 and D5.3. The general hierarchical framework is illustrated in Figure 34. 

 
Figure 34. Proposed framework for hierarchical in-backhaul inference. 

Limitations and future challenges 

In-switch inference is a very demanding scenario, due to strongly limited capabilities of the hardware 
and the stringent delays to be satisfied to maintain line rates. The guidelines proposed by DAEMON prove 
that it is feasible to implement this approach while improving the performance of the functions and 
satisfying all the required constraints. Yet, these initial results are just a first step towards comprehending 
the full potential of in-backhaul inference. In the future, the community would need to extend the analysis 
to other applications, as well as measuring how the inclusion of inference in the switch impacts any other 
simultaneous task that is run in the switch. This functionality requires resource- and hardware-aware 
inference algorithms, and thus is very related to the fundamental limits of resource-limited AI; because of 
that we will require tailored algorithms that are able to extract the most from the few available resources.   
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7.2.6 Federated learning powered NI functionalities 
The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 
presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 
A of this same document: 

• FR-SLMANO-000 and FR-SLMANO-003 for Federated Learning powered Controller. 
• FR-AARES-000 and FR-AARES-001 for anomaly detection. 

Most of the advances in ML approaches are based on the idea of a single intelligent agent that 
computes and executes the learning process. When we consider multi-agent environments, we can 
consider (i) the distributed version of the single-agent approach, where each agent acts independently 
and attempts to learn a selfish (or common) goal at the same time as all the other agents, or (ii) 
Federated Learning (FL))[70];  the FL approach can be used for reasons of scalability and data protection. 
Scalability is crucial for many DAEMON functionalities and applications. In the FL approach, the 
distributed knowledge bases contain local information regarding the performance of the model. Certain 
information is communicated to a centralized controller of the FL model, and such controller will be 
tuning the algorithm in accordance with the FL paradigm. 
In general, FL is the recommended solution over RL and other centralized and distributed choices, since 
it provides the following advantages: 

• Low fault tolerance in anomaly detection process due to FL enhancement. 
• Low response time due to the existence of the local anomaly detection module. 
• High scalability due to the exchange of limited traffic between FL clients and FL controller. 
• Access to local database for the execution of anomaly detection process, while keeping a small 

central database in the FL controller. 
• Low network traffic exchanged between FL clients and FL controller. 

We refer to D2.2 [1] for a detailed explanation of the advantages of FL.  
Limitations and future challenges 

Federated learning is known to have several challenges that may prevent a fast development of FL-
based solutions. It is crucial to ensure reliability and synchronization, in the sense that each agent must 
be treated in a similar way, and the performance may be impacted by convergence issues. These 
challenges affect FL in general and solutions from other fields can be implemented to realize FL-based 
NI functionalities. 

7.2.7 Predictive HARQ 
The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 
presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 
A of this same document: 

• NFR-CAWRS-000, NFR-CAWRS-001, NFR-CAWRS-003 for Compute-aware Radio Scheduling NI. 
In D2.2 [1], we provided a detailed analysis of the guidelines for implementing Hybrid Automatic Repeat 
Query (HARQ), which is an essential operation at the physical layer of a 5G Distributed Unit. Predictive 
HARQ enables the inference of the decodability of Uplink data essentially using feedback from the 
decoder, minimizing situations where uplink subframes are discarded because they cannot be 
processed in time. The produced prediction allows the subsequent tasks to be performed without waiting 
for the decoding process to be finished. Due to the extremely fast-inference constraints of this task, 
complex data-driven models based on neural networks are not necessarily the best tool for HARQ 
operations. This was illustrated in D2.2 [1], where results evidenced clearly identifiable patterns between 
decodable and non-decodable code blocks, which could be detected via simple, non-ML approaches. 
Indeed, to effectively take advantage of the decodability forecasting, the inference time of the 
proposed solution must be extremely low as stated in the design constraint NFR-CAWRS-001. With the 
information observed in the previous results and the time requirements imposed by design, rule- or 
threshold-based algorithms will better fit the design of predictive HARQ mechanisms rather than ML-
based techniques. 
Limitations and future challenges 

While some tasks may take advantage of simple patterns of clear correlations, some others may lack 
such property, thus making impossible to obtain at the same time the required extremely high reliability 
and the equally exacting latency constraints. Further research is required on the fundamental limits of 
the trade-off between speed and accuracy for a plethora of diverse applications.  
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7.2.8 Satisfaction of hard constraints 
A number of NI problems require satisfying hard network constraints, e.g., minimizing energy consumption 
while ensuring minimum QoS metrics. Though these constraints may be relaxed, e.g., ensure them only 
on average, there are some other problems that cannot afford to violate such constraints even while 
learning. Problems of this type include, but are not limited to, reliability network problems or physical 
system limitations. 
To address this type of problems, DAEMON proposes using a non-parametric Bayesian learning approach 
that can address these scenarios with the concept of expansive safe action sets.  This approach models 
the cost to minimize and the hard constraints to satisfy as samples of Gaussian Processes (GPs) over the 
joint context-control space. This non-parametric estimator deals with the system non-linearities and 
correlations, and quantifies the function estimation uncertainty, effectively addressing the exploration vs. 
exploitation trade-off. In the following, we detail the key components of the approach, which can then 
be applied to many different problems that face the same hard constraints.  
Function approximator. In order to estimate the cost and constraint functions we propose using GPs, 
which consist of a collection of random variables that follow joint Gaussian distributions. Let i ∈ v = w ×y 
denote a context-control pair. We model each of the unknown functions as a sample from 
z{(|(i), }(i, i~)), where |(i) is its mean function and }(i, i~) denotes its kernel or covariance function. 
W.l.o.g., we assume |:= 0 and }(i, i~) < 1, which we refer to as the prior distribution, not conditioned on 
data. Given the prior distribution and a set of observations, the posterior distribution can be computed 
using closed-form formulas. 
The sets of observations of the cost and constraint functions at points ÅÇ = [i', … , iÇ] up to time period Ü 
are denoted by áÇ

(à) = [h',… , hÇ], áÇ
(') = [1',… , 1Ç], áÇ

(() = [b',… , bÇ], respectively, assuming i.i.d. Gaussian 
noise ∼ R(0, ä(\)( ). The posterior distribution of these functions follows a GP distribution with mean |Ç

(\)(i) 
and covariance }Ç

(\)(i, i~): 

|Ç
(\)(i) = }Ç

(\)(i)ã(åÇ
(\) + ä(\)

( SÇ)
ç'áÇ

(\) 

}Ç
(\)(i, i~) = }(\)(i, i~) − }Ç

(\)(i)ã(åÇ
(\) + ä(\)

( SÇ)
ç'}Ç

(\)(i~) 

where }Ç
(\)(i) = [}(\)(i', i), … , }

(\)(iÇ, i)]
ã, åÇ

(\)(i) is a kernel matrix defined as [}(\)(i, i~)]é,éè∈êë, SÇ is the Ü-
dimension identity matrix, and ä(\)(  the variance of noise in observations. Index G denotes the objective 
function, with G = 0 for the cost function, G = 1 for the delay, and G = 2 for the mAP. The distribution of 
unobserved values of i ∈ v for function G is computed from the prior distribution, vector ÅÇ and the 
observed values áÇ

(\). 

Kernel selection. The kernel function shapes the GP’s prior and posterior distributions having an impact 
on the learning rate. It encodes the correlation of the function values for every pair of context-control 
points. That is, the kernel characterizes the smoothness of the functions. 
The properties of the kernel function should be thoroughly selected for each specific application and 
the underlying functions that must be learned. Two common properties for these functions are stationarity 
and anisotropicity. This means that the kernel }(i, i~) is invariant to translations in v but not invariant to 
rotations in v. The smoothness of the kernel for each dimension of function G is encoded in the length-
scale vector ℒ(\) = [P'

(\),… , Pì
(\)], where R indicates the number of dimensions of v. The distance between 

two points based on the length-scale vector is given by: 

1(\)(i, i~) = î(i − i~)ã(ï(\))ç((i − i~), 

where ï(\) = diag(ℒ(\)) is a diagonal matrix of the length-scale vector. In order to satisfy the properties 
stated above, we propose a Matérn kernel on its anisotropic version. Moreover, following standard 
practice, we propose to particularize it with parameter ö = õ

(
, indicating that the function is at least once 

differentiable. Thus, the expression of the kernel can be particularized as follows: 

}(\)(i, i~) = (1 + √31(\)(i, i~))exp(−√31(\)(i, i~)). 
Note that although we propose using the same kernel for all the functions (cost and constraints), their 
hyperparameters will vary depending on its shape. In fact, the hyperparameters ℒ(\) and noise variance 
ä(\)
(  should be optimized for each function G before running the algorithm by maximizing the likelihood 

estimation over prior data. During execution, the hyperparameters shall remain constant. This is because 
when the hyperparameters are optimized using newly acquired data, it is not guaranteed that the GP’s 
confidence interval will cover the true function within, causing the optimization to fall into poor local 
optima. 
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Safe set. It is crucial to identify first which controls or actions satisfy the constraints, which, however, 
depends also on the context. We define the safe set as the set of policies that satisfy all the constraints 
for a given context +: 

U(+) = {° ∈ y  ∣  1(+, °) ≤ 1234 ∧ b(°) ≥ b2\]} 
Unfortunately, the computation of the safe set is very challenging for several reasons. Firstly, the 
observations of the performance indicators are noisy due to the stochastic nature of the system. And 
secondly, the number of available controls |y| is usually very large in practice, making it unfeasible to 
explore all controls for all possible contexts. For that reason, we use the GPs to compute an estimation of 
the safe set: 

U? = {° ∈ y | |?ç'
(') (+?, °) + ¶ß?ç'

(') (+?, °) ≤ 1234

∧ |?ç'
(() (+?, °) − ¶ß?ç'

(() (+?, °) ≥ b2\]}
 

where ®ß?
(\)(i)©

(
= }?

(\)(i, i) and ¶ is a weighting parameter. Note that at each time period K the point i? 
is observed and the vectors Å? and á?

(\)∀G are updated consequently. Due to their correlation, the 
posterior distribution of points near i? will vary having an impact on the controls that will be included in 
the safe set in K + 1. 
Acquisition function. It indicates, at each time period K, which control °? shall be used in the system given 
context +?. This task is crucial for the convergence of the algorithm and needs to interleave an exploration 
process in order to expand the safe set while seeking a safe control with high performance. Many 
previous works have proposed acquisition functions for constrained Bayesian optimization, but they do 
not consider contexts. We hence propose the contextual lower confidence bound as an acquisition 
function, but constrained to the safe set: 

°? = argmin
4∈ÆØ

 |?ç'
(à) (+?, °) − ∞¶ß?ç'

(à) (+?, °). 

Limitations and future challenges 
As previously mentioned, this approach requires a profound knowledge of the scenario that is being 
managed. In particular, kernel functions should be thoroughly selected for each specific application and 
the underlying functions that have to be learned. This aspect is a limitation in as much as it limits the 
generalization and applicability to a broad set of problems, and connect with the guidelines on tailored 
AI design presented in Section 7.1, and in particular with 7.1.2 and 7.1.3. One solution, as mentioned in 
Section 7.1.3, would be to include Auto-Machine Learning algorithms that are able to search on the 
space of kernel functions and learn the best one for each application (or group of applications). 
Another limitation is the inference time of Bayesian learning models, which is usually large. Although the 
learning rate of these models is extremely high, the rather high inference time incurred in computing 
Bayesian updates makes this approach unsuitable for very fast control loops (below second-level 
granularity.  

7.2.9 Anticipatory decision-making in mobile networks 
The NI design guidelines set forth next are relevant to the following requirements of DAEMON, which were 
presented in Section 4 of D2.1, updated in Section 2 of D2.2 [1], and which are reported in full in Appendix 
A of this same document: 

• FR-SLMANO-000 for self-learning MANO. 
• FR-CFORE-001 for capacity forecasting. 
• FR-MTERM-000 for Multi-timescale Edge Resource Management. 

One of the main purposes of the development of intelligence is to be able to take anticipatory decisions 
based on accurate future forecasts that allow the network operator to act before the change or 
problem appears. This decision-making often covers different time-scales, such that the orchestration, 
management, and coarse resource allocation can be updated with long interval periods, while the 
same decision is refined in a much smaller timescale to leverage fresher data and system updates. This 
requires of duplicated algorithms that act in a similar way but at different time-scales, with probably 
different parameters and complexity. Furthermore, these actions usually require the fulfillment of hard 
constraints, as stated in the previous Section 7.2.8.  Based on these conditions and characteristics, 
DAEMON proposes the use of cascaded hybrid methods that include both ML-based elements and 
optimization-based blocks, so as to better handle the hard constraints while exploiting all the 
advantages of ML methods for regression and forecasting, and the use of quasi-similar systems for 
different time-scales, which update and operate the same function at different timescale and with 
different accuracy requirements.  
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This guideline has been implemented for admission control and resource allocation for network slicing in 
a solution that will be fully described in deliverables D3.3 and D5.3. Motivated by this application, 
DAEMON also advocates for the use of yield management strategies such as the overbooking of services, 
which can be exploited thanks to the bursty and non-stable nature of mobile traffic. 
In this activity, we provide a first assessment of overbooking gains in the presence of real-world demands 
generated by multiple service providers, as measured in a metropolitan-scale production network. We 
investigate advantages for the mobile network operator in terms of net profit along diverse dimensions 
that include the resource orchestration flexibility, the cost of allocated resources to slices, or the over-
dimensioning strategy of the operator.   

 
Figure 35. Proposed framework for  hierarchical hybrid anticipatory MANO decisions. 

The proposed architecture is shown in Figure 35, where we can observe how there are operations at two 
different timescales: (i) First, on top, the Admission Control (AC) is performed in a long-term timescale; (ii) 
once the AC decision is decided for the whole long-term interval (i.e., which slices are accepted and 
which ones are rejected), the Resource Allocation (RA) block below is enacted at a much shorter 
timescale, and receives the AC decisions as part of the state of the system. Each one of the two block 
(AC and RA) are composed of a hybrid structure tailored to NI: (i) the input data is first introduced in a 
deep learning block that predicts the future capacity required to serve the traffic of each slice without 
violating the SLA (for that, it makes use of an expert-defined loss function, as recommended by the 
guideline in Section 7.1.2). Then, this capacity prediction is used as input for a knapsack-type optimization 
problem that decides the specific resources allocated to each slice. This architecture allows us to break 
the complex problem into smaller pieces, easing the operation and understanding of the proposed 
solution.  
Furthermore, the use of overbooking strategies for network slicing resource allocation is illustrated in Figure 
36, where we can see the intervals of time in which the overbooking strategy provides increased benefit 
for the operator due to a higher number of accepted slices in green, and the benefit from reducing the 
amount of resources reserved in blue.  

 
Figure 36. Illustration of the overbooking concept proposed for network slicing resource allocation. 
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Limitations and future challenges 

Dealing with anticipatory decisions always implies a certain level of uncertainty. However, this 
uncertainty and the corresponding risks and possible loss of performance can be compensated with the 
use of hybrid, well-defined algorithms and the joint operation at different timescales for coarser and finer 
decisions. Yet, the anticipatory decisions shall measure and control the confidence intervals required to 
satisfy the imposed conditions. For example, in Figure 36, we highlight red the interval of time in which an 
accepted slice cannot be served because the overbooking approach is too aggressive and there are 
not enough resources to serve all the accepted services. Thus, fully characterizing the accuracy and 
distribution of the forecast is crucial to leverage the maximum potential of the proposed architectures.  
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8 Conclusions 
This deliverable serves as a crucial link between the second and third iterations of the DAEMON project, 
providing the necessary groundwork for the final phase of the project. The document encompasses 
various key aspects of the project, starting with the final updates on the functional and non-functional 
requirements for the eight NI-assisted functionalities, includes the evaluation of the risks associated with 
meeting these requirements, and provides their current completion status. It also outlines specific actions 
required for the successful finalization of unresolved requirements, indicating the corresponding 
deliverable for presenting the results.  
Furthermore, the document presents the final updates of the Network Intelligence Plane (NIP), which has 
undergone significant development. The NIP now serves as a unified framework, incorporating the 
operational hierarchy and orchestration of NI components, as well as the N-MAPE-K representation. This 
progress aligns with the vision previously described in D2.2 [1]. Moreover, we motivated that the NIP has 
evolved towards a NI Stratum, which typically denotes a collection of elements that span various network 
domains. Considering that network intelligence components are distributed across multiple domains 
such as access, core, infrastructure, management, and orchestration, it was only natural to adopt this 
terminology in line with 3GPP standards. Moreover, this approach also moved the NIP design from a 
purely separate plane to a more orthogonal approach where NIFs and NISs can effectively be integrated 
into the traditional planes (data, control and management) for an easy adoption in the industry. 
The document thoroughly identifies and discusses the specific needs and challenges that NI algorithms 
pose to the NIP, particularly in terms of NI management procedures at the NIO level. It outlines the 
necessary functionalities that the NIO should provide to address these needs and highlights their 
integration within the overall architecture. Additionally, the document delves into the interfaces required 
for communication between NIP components and external entities, such as the RAN controller and the 
5G Core systems. These interfaces enable the design of procedures that address the introduced needs 
and challenges. 
A comprehensive literature review on integrating machine learning and NI in mobile network 
management is presented, showcasing the unique contributions of the DAEMON project and 
highlighting key trends in current research. The findings from this analysis further support the final updates 
to the project guidelines, which aim to achieve a pragmatic design of NI. These guidelines focus on two 
main directions: designing NI tailored to the needs of B5G network management, orchestration, and 
control, and emphasizing the utilization of more traditional, simpler, or interpretable models to avoid 
overburdening the system with data-heavy models. 
The content of this document successfully provides the final version of the DAEMON framework and 
toolset for NI, which continues to provide the foundation for the subsequent stages of the third and final 
iteration. It will guide the updated design implementation of NI-assisted functionalities, ensuring the 
fulfillment of all requirements, verifying performance against the project's Key Performance Indicators 
(KPIs), and delivering a final version of the NI functionalities that aligns with the detailed architecture, 
interfaces, and NIP procedures presented. By following this roadmap, the DAEMON project aims to 
achieve its objectives and contribute to the advancement of NI in mobile network management. 

  



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

77 

9 References 
 

[1] A. Bazco-Nogueras et al., “DAEMON Deliverable 2.2: Initial DAEMON Network  Intelligence 
framework and toolsets.” Zenodo, Aug. 2022. doi: 10.5281/zenodo.6970839. 

[2] A. Garcia-Saavedra et al., “DAEMON Deliverable 3.2: Refined design of real-  time control and 
VNF intelligence mechanisms.” Zenodo, Nov. 2022. doi: 10.5281/zenodo.7525876. 

[3] L. Fuentes et al., “DAEMON Deliverable 4.2: Refined design of  intelligent orchestration and 
management mechanisms.” Zenodo, Nov. 2022. doi: 10.5281/zenodo.7573188. 

[4] M. Fiore et al., “DAEMON Deliverable 5.2: Report on evaluation  results and initial proof-of-concept 
demonstrations.” Zenodo, Mar. 2023. doi: 10.5281/zenodo.7818319. 

[5] M. Gramaglia et al., “DAEMON Deliverable 3.1: Initial design of real-  time control and VNF 
intelligence mechanisms.” Zenodo, Nov. 2021. doi: 10.5281/zenodo.5745433. 

[6] G. Iosifidis et al., “DAEMON Deliverable 4.1: Initial design of  intelligent orchestration and 
management mechanisms.” Zenodo, Nov. 2021. doi: 10.5281/zenodo.5745456. 

[7] M. Gucciardo et al., “DAEMON Deliverable 5.1 Preliminary evaluation results and  plan for proof-
of-concept demonstrations.” Zenodo, Jul. 2022. doi: 10.5281/zenodo.6801832. 

[8] I. Paez et al., “DAEMON Deliverable 2.1: Initial report on  requirements analysis and state-of-the-
art frameworks and toolsets.” Zenodo, Jun. 2021. doi: 10.5281/zenodo.5060979. 

[9] D.-J. Munoz, M. Pinto, and L. Fuentes, “Detecting feature influences to quality attributes in large 
and partially measured spaces using smart sampling and dynamic learning,” Knowl Based Syst, 
vol. 270, p. 110558, 2023, doi: https://doi.org/10.1016/j.knosys.2023.110558. 

[10] L. E. Chatzieleftheriou et al., “Orchestration Procedures for the Network Intelligence Stratum in 6G 
Networks,” in Accepted for Publication at 2023 Joint European Conference on Networks and 
Communications & 6G Summit (EuCNC/6G Summit), 2023. 

[11] M. K. Bahare et al., “The 6G Architecture Landscape - European  perspective.” Zenodo, Feb. 2023. 
doi: 10.5281/zenodo.7313232. 

[12] M. Camelo et al., “DAEMON: A Network Intelligence Plane for 6G Networks,” in 2022 IEEE 
Globecom Workshops (GC Wkshps), 2022, pp. 1341–1346. 

[13] M. Gramaglia et al., “Network intelligence for virtualized ran orchestration: The daemon 
approach,” in 2022 Joint European Conference on Networks and Communications & 6G Summit 
(EuCNC/6G Summit), 2022, pp. 482–487. 

[14] IBM, “An architectural blueprint for autonomic computing,” IBM White Paper, vol. 31, no. 2006, 
pp. 1–6, 2006, [Online]. Available: https://www-
03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf 

[15] G. Garcia-Aviles, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez, P. Serrano, and A. Banchs, 
“Nuberu: Reliable RAN virtualization in shared platforms,” in Proceedings of the 27th Annual 
International Conference on Mobile Computing and Networking, 2021, pp. 749–761. 

[16] A. T.-J. Akem, B. Bütün, M. Gucciardo, and M. Fiore, “Henna: hierarchical machine learning 
inference in programmable switches,” in Proceedings of the 1st International Workshop on Native 
Network Intelligence, 2022, pp. 1–7. 

[17] J. A. Ayala-Romero, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez, A. Banchs, and J. J. 
Alcaraz, “vrain: Deep learning based orchestration for computing and radio resources in vrans,” 
IEEE Trans Mob Comput, vol. 21, no. 7, pp. 2652–2670, 2020. 

[18] J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Perez, and G. Iosifidis, “Orchestrating energy-
efficient vrans: Bayesian learning and experimental results,” IEEE Trans Mob Comput, 2021. 

[19] R. Singh, C. Hasan, X. Foukas, M. Fiore, M. K. Marina, and Y. Wang, “Energy-efficient orchestration 
of metro-scale 5g radio access networks,” in IEEE INFOCOM 2021-IEEE Conference on Computer 
Communications, 2021, pp. 1–10. 

[20] M. Kalntis and G. Iosifidis, “Energy-Aware Scheduling of Virtualized Base Stations in O-RAN with 
Online Learning,” in GLOBECOM 2022-2022 IEEE Global Communications Conference, 2022, pp. 
6048–6054. 

[21] N. Slamnik-Kriještorac, M. C. Botero, L. Cominardi, S. Latré, and J. M. Marquez-Barja, “An ML-driven 
framework for edge orchestration in a vehicular NFV MANO environment,” in 2023 IEEE 20th 
Consumer Communications & Networking Conference (CCNC), 2023, pp. 728–733. 



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

78 

[22] S. Tripathi, C. Puligheddu, S. Pramanik, A. Garcia-Saavedra, and C. F. Chiasserini, “VERA: Resource 
Orchestration for Virtualized Services at the Edge,” in ICC 2022-IEEE International Conference on 
Communications, 2022, pp. 1641–1646. 

[23] J.-B. Monteil, G. Iosifidis, and L. DaSilva, “No-regret slice reservation algorithms,” in ICC 2021-IEEE 
International Conference on Communications, 2021, pp. 1–7. 

[24] M. Rossanese, P. Mursia, A. Garcia-Saavedra, V. Sciancalepore, A. Asadi, and X. Costa-Perez, 
“Designing, building, and characterizing RF switch-based reconfigurable intelligent surfaces,” in 
Proceedings of the 16th ACM Workshop on Wireless Network Testbeds, Experimental evaluation 
& CHaracterization, 2022, pp. 69–76. 

[25] P. Soto et al., “ATARI: A graph convolutional neural network approach for performance prediction 
in next-generation WLANs,” Sensors, vol. 21, no. 13, p. 4321, 2021. 

[26] P. Soto et al., “Towards autonomous VNF auto-scaling using deep reinforcement learning,” in 2021 
Eighth International Conference on Software Defined Systems (SDS), 2021, pp. 1–8. 

[27] A. Cañete, K. Djemame, M. Amor, L. Fuentes, and A. Aljulayfi, “A proactive energy-aware auto-
scaling solution for edge-based infrastructures,” in 2022 IEEE/ACM 15th International Conference 
on Utility and Cloud Computing (UCC), 2022, pp. 240–247. 

[28] L. Lo Schiavo, M. Fiore, M. Gramaglia, A. Banchs, and X. Costa-Perez, “Forecasting for network 
management with joint statistical modelling and machine learning,” in 2022 IEEE 23rd International 
Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2022, pp. 60–
69. 

[29] W. Xia et al., “Generative neural network channel modeling for millimeter-wave UAV 
communication,” IEEE Trans Wirel Commun, vol. 21, no. 11, pp. 9417–9431, 2022. 

[30] D. Kreuzberger, N. Kühl, and S. Hirschl, “Machine learning operations (mlops): Overview, definition, 
and architecture,” IEEE Access, vol. 11, pp. 31866–31879, 2023, doi: 
10.1109/ACCESS.2023.3262138. 

[31] ETSI, “Network Functions Virtualisation (NFV); Management and Orchestration,” 2022. [Online]. 
Available: https://www.etsi.org 

[32] O-RAN Alliance, “O-RAN Working Group 1 Slicing Architecture,” 2023. 
[33] O-RAN Alliance, “O-RAN Working Group 2 AI/ML workflow description and requirements,” Oct. 

2020. Accessed: Jun. 09, 2023. [Online]. Available: 
https://wiki.lfaidata.foundation/download/attachments/24281098/O-RAN.WG2.AIML-
v01.02.02%20%282%29.docx?version=1&modificationDate=1609811670000&api=v2 

[34] F. Jentzsch, Y. Umuroglu, A. Pappalardo, M. Blott, and M. Platzner, “RadioML Meets FINN: Enabling 
Future RF Applications With FPGA Streaming Architectures,” IEEE Micro, vol. 42, no. 6, pp. 125–133, 
2022. 

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional 
neural networks,” Commun ACM, vol. 60, no. 6, pp. 84–90, 2017. 

[36] C. Shih-Huan Hsu, D. De Vleeschauwer, and C. Papagianni, “SLAs Decomposition for Network 
Slicing: A Deep  Neural Network Approach,” Zenodo, Jun. 2022. doi: 10.5281/zenodo.6685244. 

[37] A. Collet, A. Banchs, and M. Fiore, “Lossleap: Learning to predict for intent-based networking,” in 
IEEE INFOCOM 2022-IEEE Conference on Computer Communications, 2022, pp. 2138–2147. 

[38] A. Collet, A. Bazco-Nogueras, A. Banchs, M. Fiore, and others, “AutoManager: a Meta-Learning 
Model for Network Management from Intertwined Forecasts,” in IEEE International Conference on 
Computer Communications, 2023. 

[39] M. Camelo et al., “Requirements and Specifications for the Orchestration of Network Intelligence 
in 6G,” in 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), 
2022, pp. 1–9. 

[40] J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Perez, and G. Iosifidis, “Bayesian online 
learning for energy-aware resource orchestration in virtualized rans,” in IEEE INFOCOM 2021-IEEE 
Conference on Computer Communications, 2021, pp. 1–10. 

[41] G. Baldoni, J. Loudet, L. Cominardi, A. Corsaro, and Y. He, “Zenoh-based Dataflow Framework for 
Autonomous Vehicles,” in 2021 IEEE 21st International Conference on Software Quality, Reliability 
and Security Companion (QRS-C), 2021, pp. 555–560. 

[42] F. Giarré, L. Cominardi, and P. Casari, “Realizing Flat Multi-Zone Multi-Controller Software-Defined 
Networks using Zenoh,” in 2022 IEEE Conference on Network Function Virtualization and Software 
Defined Networks (NFV-SDN), 2022, pp. 45–51. 



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

79 

[43] P. Soto et al., “Network Intelligence for NFV Scaling in Closed-Loop Architectures,” IEEE 
Communications Magazine, vol. 61, no. 6, pp. 66–72, 2023, doi: 10.1109/MCOM.001.2200529. 

[44] N. Apostolakis, L. E. Chatzieleftheriou, D. Bega, M. Gramaglia, and A. Banchs, “Digital Twins for 
Next-Generation Mobile Networks: Applications and Solutions,” IEEE Communications Magazine, 
pp. 1–7, 2023, doi: 10.1109/MCOM.001.2200854. 

[45] V. Valls, G. Iosifidis, and L. Tassiulas, “Birkhoff’s decomposition revisited: Sparse scheduling for high-
speed circuit switches,” IEEE/ACM Transactions on Networking, vol. 29, no. 6, pp. 2399–2412, 2021. 

[46] S. Moghadas Gholian et al., “Spotting Deep Neural Network Vulnerabilities in Mobile Traffic 
Forecasting with an Explainable AI Lens,” in IEEE International Conference on Computer 
Communications, 2023. 

[47] D. Góez, P. Soto, S. Latré, N. Gaviria, and M. Camelo, “A Methodology to Design Quantized Deep 
Neural Networks for Automatic Modulation Recognition,” Algorithms, vol. 15, no. 12, p. 441, 2022. 

[48] L. Buşoniu, R. Babuška, and B. De Schutter, “Multi-agent reinforcement learning: An overview,” 
Innovations in multi-agent systems and applications-1, pp. 183–221, 2010. 

[49] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural networks,” Adv 
Neural Inf Process Syst, vol. 29, 2016. 

[50] K. Cyras et al., “Machine reasoning explainability,” arXiv preprint arXiv:2009.00418, 2020. 
[51] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional neural networks for 

mobile devices,” in Proceedings of the IEEE conference on computer vision and pattern 
recognition, 2016, pp. 4820–4828. 

[52] S. Budgett and P. de Waard, “Quantized neural networks for modulation recognition,” in Artificial 
Intelligence and Machine Learning for Multi-Domain Operations Applications IV, 2022, pp. 397–
412. 

[53] M. Blott et al., “FINN-R: An end-to-end deep-learning framework for fast exploration of quantized 
neural networks,” ACM Transactions on Reconfigurable Technology and Systems (TRETS), vol. 11, 
no. 3, pp. 1–23, 2018. 

[54] S. Kumar, R. Mahapatra, and A. Singh, “Automatic modulation recognition: An FPGA 
implementation,” IEEE Communications Letters, vol. 26, no. 9, pp. 2062–2066, 2022. 

[55] Q. Ducasse, P. Cotret, L. Lagadec, and R. Stewart, “Benchmarking Quantized Neural Networks on 
FPGAs with FINN,” arXiv preprint arXiv:2102.01341, 2021. 

[56] P. Bacchus, R. Stewart, and E. Komendantskaya, “Accuracy, training time and hardware 
efficiency trade-offs for quantized neural networks on FPGAs,” in International symposium on 
applied reconfigurable computing, 2020, pp. 121–135. 

[57] M. Camelo, P. Soto, and S. Latré, “A general approach for traffic classification in wireless networks 
using deep learning,” IEEE Transactions on Network and Service Management, 2021. 

[58] K. Ismailaj, M. Camelo, and S. Latré, “When deep learning may not be the right tool for traffic 
classification,” in 2021 IFIP/IEEE International Symposium on Integrated Network Management 
(IM), 2021, pp. 884–889. 

[59] J.-B. Monteil, G. Iosifidis, and L. A. DaSilva, “Learning-based Reservation of Virtualized Network 
Resources,” IEEE Transactions on Network and Service Management, vol. 19, no. 3, pp. 2001–2016, 
2022. 

[60] C. Fiandrino, G. Attanasio, M. Fiore, and J. Widmer, “Traffic-driven sounding reference signal 
resource allocation in (beyond) 5G networks,” in 2021 18th Annual IEEE International Conference 
on Sensing, Communication, and Networking (SECON), 2021, pp. 1–9. 

[61] A. Pentelas, D. De Vleeschauwer, C.-Y. Chang, K. De Schepper, and P. Papadimitriou, “Deep 
Multi-Agent Reinforcement Learning with Minimal Cross-Agent Communication for SFC 
Partitioning,” IEEE Access, 2023. 

[62] J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Pérez, and G. Iosifidis, “EdgeBOL: A Bayesian 
Learning Approach for the Joint Orchestration of vRANs and Mobile Edge AI,” IEEE/ACM 
Transactions on Networking, 2023. 

[63] J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Pérez, and G. Iosifidis, “EdgeBOL: Automating 
energy-savings for mobile edge AI,” in Proceedings of the 17th International Conference on 
emerging Networking EXperiments and Technologies, 2021, pp. 397–410. 

[64] A. Galanopoulos, J. A. Ayala-Romero, D. J. Leith, and G. Iosifidis, “AutoML for video analytics with 
edge computing,” in IEEE INFOCOM 2021-IEEE Conference on Computer Communications, 2021, 
pp. 1–10. 



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

80 

[65] N. Mhaisen, G. Iosifidis, and D. Leith, “Online Caching with Optimistic Learning,” in 2022 IFIP 
Networking Conference (IFIP Networking), 2022, pp. 1–9. 

[66] N. Mhaisen, A. Sinha, G. Paschos, and G. Iosifidis, “Optimistic No-regret Algorithms for Discrete 
Caching,” Proceedings of the ACM on Measurement and Analysis of Computing Systems, vol. 6, 
no. 3, pp. 1–28, 2022. 

[67] M. Ferriol-Galmés, J. Suárez-Varela, K. Rusek, P. Barlet-Ros, and A. Cabellos-Aparicio, “Scaling 
graph-based deep learning models to larger networks,” arXiv preprint arXiv:2110.01261, 2021. 

[68] H. Zhou, R. Kannan, A. Swami, and V. Prasanna, “HTNet: Dynamic WLAN Performance Prediction 
using Heterogenous Temporal GNN,” arXiv preprint arXiv:2304.10013, 2023. 

[69] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The M4 Competition: 100,000 time series and 61 
forecasting methods,” Int J Forecast, vol. 36, no. 1, pp. 54–74, 2020. 

[70] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and applications,” 
ACM Transactions on Intelligent Systems and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019. 

[71] P. Mursia, V. Sciancalepore, A. Garcia-Saavedra, L. Cottatellucci, X. C. Pérez, and D. Gesbert, 
“RISMA: Reconfigurable intelligent surfaces enabling beamforming for IoT massive access,” IEEE 
Journal on Selected Areas in Communications, vol. 39, no. 4, pp. 1072–1085, 2020. 

[72] D.-J. Munoz, M. Pinto, and L. Fuentes, “Detecting feature influences to quality attributes in large 
and partially measured spaces using smart sampling and dynamic learning,” Knowl Based Syst, 
vol. 270, p. 110558, 2023. 

[73] D.-J. Munoz, M. Pinto, and L. Fuentes, “Quality-aware analysis and optimisation of virtual network 
functions,” in Proceedings of the 26th ACM International Systems and Software Product Line 
Conference-Volume A, 2022, pp. 210–221. 

[74] W.-Y. Liang, Y. Yuan, and H.-J. Lin, “A performance study on the throughput and latency of zenoh, 
MQTT, Kafka, and DDS,” arXiv preprint arXiv:2303.09419, 2023. 

[75] 3GPP, “5G System; Network Data Analytics Services; Stage 3,” 2021. [Online]. Available: 
https://www.3gpp.org/DynaReport/29520.html 

[76] A. Kaloxylos, A. Gavras, D. Camps Mur, M. Ghoraishi, and H. Hrasnica, “AI and ML – Enablers for 
Beyond 5G Networks.” Zenodo, Dec. 2020. doi: 10.5281/zenodo.4299895. 

[77] A. T.-J. Akem, M. Gucciardo, and M. Fiore, “Flowrest: Practical Flow-Level Inference in 
Programmable Switches with Random Forests,” 2023. Accessed: Jun. 25, 2023. [Online]. Available: 
https://dspace.networks.imdea.org/handle/20.500.12761/1649 

[78] X. Zhu, Y. Luo, A. Liu, N. N. Xiong, M. Dong, and S. Zhang, “A Deep Reinforcement Learning-Based 
Resource Management Game in Vehicular Edge Computing,” IEEE Transactions on Intelligent 
Transportation Systems, pp. 1–12, 2021, doi: 10.1109/TITS.2021.3114295. 

[79] M. Nakanoya, Y. Sato, and H. Shimonishi, “Environment-adaptive sizing and placement of NFV 
service chains with accelerated reinforcement learning,” in 2019 IFIP/IEEE Symposium on 
Integrated Network and Service Management (IM), 2019, pp. 36–44. 

[80] Y. Xiao et al., “NFVdeep: Adaptive online service function chain deployment with deep 
reinforcement learning,” in Proceedings of the International Symposium on Quality of Service, 
2019, pp. 1–10. 

[81] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “A deep reinforcement learning approach for 
VNF forwarding graph embedding,” IEEE Transactions on Network and Service Management, vol. 
16, no. 4, pp. 1318–1331, 2019. 

[82] J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, “Optimal VNF placement via deep reinforcement 
learning in SDN/NFV-enabled networks,” IEEE Journal on Selected Areas in Communications, vol. 
38, no. 2, pp. 263–278, 2019. 

[83] J. Zheng et al., “Optimizing NFV chain deployment in software-defined cellular core,” IEEE Journal 
on Selected Areas in Communications, vol. 38, no. 2, pp. 248–262, 2019. 

[84] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and F. Liberal, “Virtual network 
function placement optimization with deep reinforcement learning,” IEEE Journal on Selected 
Areas in Communications, vol. 38, no. 2, pp. 292–303, 2019. 

[85] X. Foukas and B. Radunovic, “Concordia: teaching the 5G vRAN to share compute,” in 
Proceedings of the 2021 ACM SIGCOMM 2021 Conference, 2021, pp. 580–596. 

[86] N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, M. Wu, and Y. Jiang, “Deep reinforcement learning for user 
association and resource allocation in heterogeneous cellular networks,” IEEE Trans Wirel 
Commun, vol. 18, no. 11, pp. 5141–5152, 2019. 



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

81 

[87] S. Bakri, B. Brik, and A. Ksentini, “On using reinforcement learning for network slice admission 
control in 5G: Offline vs. online,” International Journal of Communication Systems, vol. 34, no. 7, 
pp. 1–12, 2021, doi: 10.1002/dac.4757. 

[88] S. Tripathi, C. Puligheddu, C. F. Chiasserini, and F. Mungari, “A Context-aware Radio Resource 
Management in Heterogeneous Virtual RANs,” IEEE Trans Cogn Commun Netw, 2021. 

[89] F. B. Mismar, J. Choi, and B. L. Evans, “A framework for automated cellular network tuning with 
reinforcement learning,” IEEE Transactions on Communications, vol. 67, no. 10, pp. 7152–7167, 
2019. 

[90] Z. Xiong and N. Zilberman, “Do switches dream of machine learning? toward in-network 
classification,” in Proceedings of the 18th ACM workshop on hot topics in networks, 2019, pp. 25–
33. 

[91] C. Gijón, M. Toril, S. Luna-Ramírez, M. L. Marí-Altozano, and J. M. Ruiz-Avilés, “Long-Term Data 
Traffic Forecasting for Network Dimensioning in LTE with Short Time Series,” Electronics (Basel), vol. 
10, no. 10, 2021, doi: 10.3390/electronics10101151. 

[92] C. Gutterman, E. Grinshpun, S. Sharma, and G. Zussman, “RAN resource usage prediction for a 
5G slice broker,” in Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc 
Networking and Computing, Catania, Italy, Jul. 2019, pp. 231–240. 

[93] B. Yang, X. Cao, O. Omotere, X. Li, Z. Han, and L. Qian, “Improving medium access efficiency with 
intelligent spectrum learning,” IEEE Access, vol. 8, pp. 94484–94498, 2020. 

[94] X. Liu, J. Yu, J. Wang, and Y. Gao, “Resource allocation with edge computing in IoT networks via 
machine learning,” IEEE Internet Things J, vol. 7, no. 4, pp. 3415–3426, 2020. 

[95] M. Camelo et al., “An ai-based incumbent protection system for collaborative intelligent radio 
networks,” IEEE Wirel Commun, vol. 27, no. 5, pp. 16–23, 2020. 

[96] Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, “Automatic virtual network embedding: A deep reinforcement 
learning approach with graph convolutional networks,” IEEE Journal on Selected Areas in 
Communications, vol. 38, no. 6, pp. 1040–1057, 2020. 

[97] L. Wang, W. Mao, J. Zhao, and Y. Xu, “DDQP: A double deep Q-learning approach to online fault-
tolerant SFC placement,” IEEE Transactions on Network and Service Management, vol. 18, no. 1, 
pp. 118–132, 2021. 

[98] J. Jia, L. Yang, and J. Cao, “Reliability-aware dynamic service chain scheduling in 5g networks 
based on reinforcement learning,” in IEEE INFOCOM 2021-IEEE Conference on Computer 
Communications, 2021, pp. 1–10. 

[99] K. Nakashima, S. Kamiya, K. Ohtsu, K. Yamamoto, T. Nishio, and M. Morikura, “Deep reinforcement 
learning-based channel allocation for wireless lans with graph convolutional networks,” IEEE 
Access, vol. 8, pp. 31823–31834, 2020. 

[100] Y. Xu, P. Cheng, Z. Chen, Y. Li, and B. Vucetic, “Mobile collaborative spectrum sensing for 
heterogeneous networks: A Bayesian machine learning approach,” IEEE Transactions on Signal 
Processing, vol. 66, no. 21, pp. 5634–5647, 2018. 

[101] A. Manousis, H. Shah, H. Milner, Y. Li, H. Zhang, and V. Sekar, “The Shape of View: An Alert System 
for Video Viewership Anomalies,” in Proceedings of the 21st ACM Internet Measurement 
Conference, in IMC ’21. New York, NY, USA: Association for Computing Machinery, 2021, pp. 245–
260. doi: 10.1145/3487552.3487819. 

[102] D. Perino, X. Yang, J. Serra, A. Lutu, and I. Leontiadis, “Experience: Advanced Network Operations 
in (Un)-Connected Remote Communities,” in Proceedings of the 26th Annual International 
Conference on Mobile Computing and Networking, in MobiCom ’20. New York, NY, USA: 
Association for Computing Machinery, 2020. doi: 10.1145/3372224.3380893. 

[103] A. Padmanabha Iyer, L. Erran Li, M. Chowdhury, and I. Stoica, “Mitigating the Latency-Accuracy 
Trade-off in Mobile Data Analytics Systems,” in Proceedings of the 24th Annual International 
Conference on Mobile Computing and Networking, in MobiCom ’18. New York, NY, USA: 
Association for Computing Machinery, 2018, pp. 513–528. doi: 10.1145/3241539.3241581. 

[104] J. M. Navarro, A. Huet, and D. Rossi, “Human readable network troubleshooting based on 
anomaly detection              and feature scoring,” CoRR, vol. abs/2108.11807, 2021, [Online]. 
Available: https://arxiv.org/abs/2108.11807 

[105] J. M. Navarro and D. Rossi, “HURRA! Human readable router anomaly detection,” International 
Teletraffic Congress (ITC32). Sep. 2020. 

[106] C. Kattadige, A. Raman, K. Thilakarathna, A. Lutu, and D. Perino, “360NorVic: 360-Degree Video 
Classification from Mobile Encrypted Video Traffic,” in Proceedings of the 31st ACM Workshop on 



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

82 

Network and Operating Systems Support for Digital Audio and Video, in NOSSDAV ’21. New York, 
NY, USA: Association for Computing Machinery, 2021, pp. 58–65. doi: 10.1145/3458306.3460998. 

[107] T. Mangla, E. Halepovic, E. Zegura, and M. Ammar, “Drop the Packets: Using Coarse-Grained 
Data to Detect Video Performance Issues,” in Proceedings of the 16th International Conference 
on Emerging Networking EXperiments and Technologies, in CoNEXT ’20. New York, NY, USA: 
Association for Computing Machinery, 2020, pp. 71–77. doi: 10.1145/3386367.3431294. 

[108] T. Subramanya and R. Riggio, “Centralized and federated learning for predictive VNF autoscaling 
in multi-domain 5G networks and beyond,” IEEE Transactions on Network and Service 
Management, vol. 18, no. 1, pp. 63–78, 2021. 

[109] S. Rahman, T. Ahmed, M. Huynh, M. Tornatore, and B. Mukherjee, “Auto-scaling VNFs using 
machine learning to improve QoS and reduce cost,” in 2018 IEEE International Conference on 
Communications (ICC), 2018, pp. 1–6. 

[110] H. Huang et al., “Scalable orchestration of service function chains in NFV-enabled networks: A 
federated reinforcement learning approach,” IEEE Journal on Selected Areas in 
Communications, vol. 39, no. 8, pp. 2558–2571, 2021. 

[111] C. Zhang, X. Costa-Pérez, and P. Patras, “Tiki-taka: Attacking and defending deep learning-based 
intrusion detection systems,” in Proceedings of the 2020 ACM SIGSAC Conference on Cloud 
Computing Security Workshop, 2020, pp. 27–39. 

[112] J. Prados-Garzon, T. Taleb, and M. Bagaa, “LEARNET: Reinforcement learning based flow 
scheduling for asynchronous deterministic networks,” in ICC 2020-2020 IEEE International 
Conference on Communications (ICC), 2020, pp. 1–6. 

[113] H. Zhu, V. Gupta, S. S. Ahuja, Y. Tian, Y. Zhang, and X. Jin, “Network planning with deep 
reinforcement learning,” in Proceedings of the 2021 ACM SIGCOMM 2021 Conference, 2021, pp. 
258–271. 

[114] S. Yan, X. Wang, X. Zheng, Y. Xia, D. Liu, and W. Deng, “ACC: Automatic ECN tuning for high-
speed datacenter networks,” in Proceedings of the 2021 ACM SIGCOMM 2021 Conference, 2021, 
pp. 384–397. 

[115] S. Wang, X. Zhang, H. Uchiyama, and H. Matsuda, “HiveMind: Towards cellular native machine 
learning model splitting,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 2, pp. 
626–640, 2021. 

[116] L. He, L. Li, and Y. Liu, “Towards chain-aware scaling detection in nfv with reinforcement learning,” 
in 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), 2021, pp. 1–10. 

[117] F. Rossi, M. Nardelli, and V. Cardellini, “Horizontal and vertical scaling of container-based 
applications using reinforcement learning,” in 2019 IEEE 12th International Conference on Cloud 
Computing (CLOUD), 2019, pp. 329–338. 

[118] A. A. Khaleq and I. Ra, “Intelligent autoscaling of microservices in the cloud for real-time 
applications,” IEEE Access, vol. 9, pp. 35464–35476, 2021. 

[119] V. Zalokostas-Diplas, N. Makris, V. Passas, and T. Korakis, “Experimental Evaluation of ML Models 
for Dynamic VNF Autoscaling,” in 2022 IEEE Conference on Standards for Communications and 
Networking (CSCN), 2022, pp. 157–162. 

[120] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-Air Deep Learning Based Radio Signal 
Classification,” IEEE J Sel Top Signal Process, vol. 12, no. 1, pp. 168–179, 2018, doi: 
10.1109/JSTSP.2018.2797022. 

[121] J. Rosa et al., “BacalhauNet: A tiny CNN for lightning-fast modulation classification,” ITU Journal 
on Future and Evolving Technologies, vol. 3, no. 2, pp. 252–260, 2022. 

[122] X. Fu, F. R. Yu, J. Wang, Q. Qi, and J. Liao, “Service Function Chain Embedding for NFV-Enabled 
IoT Based on Deep Reinforcement Learning,” IEEE Communications Magazine, vol. 57, no. 11, pp. 
102–108, Jun. 2019, doi: 10.1109/MCOM.001.1900097. 

[123] J. Koo, V. B. Mendiratta, M. R. Rahman, and A. Walid, “Deep Reinforcement Learning for Network 
Slicing with Heterogeneous Resource Requirements and Time Varying Traffic Dynamics.” 2019. 

[124] A. Dalgkitsis et al., “SCHE2MA: Scalable, Energy-Aware, Multidomain Orchestration for Beyond-
5G URLLC Services,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–11, 2022, doi: 
10.1109/TITS.2022.3202312. 

[125] G. L. Santos, T. Lynn, J. Kelner, and P. T. Endo, “Availability-aware and energy-aware dynamic SFC 
placement using reinforcement learning,” J Supercomput, pp. 1–30, 2021, doi: 
https://doi.org/10.1007/s11227-021-03784-7. 



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

83 

[126] M. A. Khan, R. Hamila, N. A. Al-Emadi, S. Kiranyaz, and M. Gabbouj, “Real-time throughput 
prediction for cognitive Wi-Fi networks,” Journal of Network and Computer Applications, vol. 150, 
p. 102499, 2020. 

[127] D. Minovski, N. Ogren, C. Ahlund, and K. Mitra, “Throughput prediction using machine learning in 
lte and 5g networks,” IEEE Trans Mob Comput, 2021. 

[128] D. Teixeira, R. Meireles, and A. Aguiar, “Wi-fi throughput estimation for vehicle-to-network 
communication in heterogeneous wireless environments,” in 2023 18th Wireless On-Demand 
Network Systems and Services Conference (WONS), 2023, pp. 24–31. 

[129] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Vanbever, “pForest: In-Network Inference 
with Random Forests,” CoRR, vol. abs/1909.05680. 2019. [Online]. Available: 
http://arxiv.org/abs/1909.05680 

[130] G. Xie, Q. Li, Y. Dong, G. Duan, Y. Jiang, and J. Duan, “Mousika: Enable General In-Network 
Intelligence in Programmable Switches by Knowledge Distillation,” in IEEE INFOCOM 2022 - IEEE 
Conference on Computer Communications, 2022, pp. 1938–1947. doi: 
https://doi.org/10.1007/s11227-021-03784-7. 

[131] C. Zheng et al., “Automating In-Network Machine Learning,” arXiv preprint arXiv:2205.08824, 2022. 
[132] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, “DeepCog: Cognitive Network 

Management in Sliced 5G Networks with Deep Learning,” in IEEE INFOCOM 2019 - IEEE 
Conference on Computer Communications, 2019, pp. 280–288. doi: 
10.1109/INFOCOM.2019.8737488. 

[133] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, “Aztec: Anticipatory capacity 
allocation for zero-touch network slicing,” in IEEE INFOCOM 2020 - IEEE Conference on Computer 
Communications, 2020, pp. 794–803. doi: 10.1109/INFOCOM41043.2020.9155299. 

[134] C. Zhang and P. Patras, “Long-Term Mobile Traffic Forecasting Using Deep Spatio-Temporal Neural 
Networks.,” in Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking 
and Computing (Mobihoc ’18). , 2018, pp. 231–240. doi: https://doi.org/10.1145/3209582.3209606. 

[135] C. Zhang, M. Fiore, and P. Patras, “Multi-Service Mobile Traffic Forecasting via Convolutional Long 
Short-Term Memories,” in Proceedings of 2019 IEEE International Symposium on Measurements & 
Networking (M&N)., 2019, pp. 1–6. doi: 10.1109/IWMN.2019.8804984. 

[136] L. G. H. D. Trinh and P. Dini, “Mobile Traffic Prediction from Raw Data Using LSTM Networks,” in 
Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile 
Radio Communications (PIMRC), 2018, pp. 1827–1832. doi: 10.1109/PIMRC.2018.8581000. 

[137] T. J. O’Shea, S. Hitefield, and J. Corgan, “End-to-end radio traffic sequence recognition with 
recurrent neural networks,” in 2016 IEEE Global Conference on Signal and Information Processing 
(GlobalSIP), 2016, pp. 277–281. doi: 10.1109/GlobalSIP.2016.7905847. 

[138] M. Camelo et al., “A semi-supervised learning approach towards automatic wireless technology 
recognition,” in 2019 IEEE International Symposium on Dynamic Spectrum Access Networks 
(DySPAN), 2019, pp. 1–10. doi: 10.1109/DySPAN.2019.8935690. 

[139] M. Camelo, T. De Schepper, P. Soto, J. Marquez-Barja, J. Famaey, and S. Latré, “Detection of 
traffic patterns in the radio spectrum for cognitive wireless network management,” in ICC 2020 - 
2020 IEEE International Conference on Communications (ICC), 2020, pp. 1–6. doi: 
10.1109/ICC40277.2020.9149077. 

[140] A. Dalgkitsis, P.-V. Mekikis, A. Antonopoulos, and C. Verikoukis, “Data Driven Service Orchestration 
for Vehicular Networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 7, pp. 
4100–4109, 2021, doi: 10.1109/TITS.2020.3011264. 

[141] H. Ma, Z. Zhou, and X. Chen, “Leveraging the Power of Prediction: Predictive Service Placement 
for Latency-Sensitive Mobile Edge Computing,” IEEE Trans Wirel Commun, vol. 19, no. 10, pp. 6454–
6468, 2020, doi: 10.1109/TWC.2020.3003459. 

[142] C. Grasso, R. Raftopoulos, and G. Schembra, “Smart Zero-Touch Management of UAV-Based 
Edge Network,” IEEE Transactions on Network and Service Management, vol. 19, no. 4, pp. 4350–
4368, 2022, doi: 10.1109/TNSM.2022.3160858. 

  

  



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

84 

A Appendix: NI Use Cases Functional Requirements 
In the following figure, the top-level requirements of DAEMON are represented tree shaped. Each 
requirement is colored considering the risk assessment, and the KPIs addressed by each requirement are 
shown at the bottom of each box. We represent either the functional and non-functional requirements, 
which can be visually distinguished using a dotted or continuous line. The percent complete and the risk 
management are represented on the left side of each cluster. 
 

 
 
Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
  

  FR-RIS-000  
DAEMON shall integrate Reconfigurable Intelligent Surfaces technology into 
mobile networks. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

   

  FR-MTERM-000 
DAEMON’s Multi-timescale Edge Resource Management (MTERM) shall 
perform automated management and orchestration of resources and 
services in distributed edges and different timescales. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

   

  FR-IBSSI-000 
DAEMON’s IBSSI shall learn network policies using the user plane itself. 
 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

   

  FR-CAWRS-000 
DAEMON shall integrate NI solution in vRAN systems. 
 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

DAEMON 
 Functionalities 
Requirements 

  

  FR-EAWVNF-000 
DAEMON Energy-aware VNF placement (EAWVNF) shall profile the energy 
footprint of those network tasks that influence the network global power 
consumption. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

   

  FR-SLMANO-000 
DAEMON shall design autonomous and self-learning orchestrators and 
controllers that can operate with minimal human intervention. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

   

  FR-CFORE-000 
DAEMON shall design capacity forecast models that can support Network 
Intelligence (NI) algorithms across the mobile network architecture 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

   

  FR-AARES-000 
DAEMON shall automatically detect, analyze, and act against anomalous 
behaviors. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial   100%-0% 

75% 

 90% 

100% 

100% 

 90% 

 80% 

 90% 

  90% 
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A.1 RIS control  
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
 
 
 
 
 
 
 
 
 
  

FR-RIS-001 
RIS controller shall interact with the 
system orchestrator and radio 
controllers 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-RIS-002 
RIS controller shall receive 
feedback about the wireless 
channel 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-RIS-000 
DAEMON shall integrate 
Reconfigurable Intelligent Surfaces 
technology into mobile networks 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-RIS-003 
RIS units shall support more than 
one user concurrently 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-RIS-004 
RIS should be modular and enable 
a variable amount of reflective 
cells. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-RIS-000 
RIS should aid to increase wireless 
capacity (bits/m2) by 100% 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-RIS-001 
Re-configuring all the components 
in a RIS must be achieved within 
100 ms. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-RIS-002 
The (non-RF) electronic equipment 
required to control a RIS must 
consume less than 100 mW 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-RIS-003 
RIS must provide beamforming 
gains passively, without energy-
consuming (active) RF chains 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial   100%-0% 

75% 

50% 

  50% 

  50% 

  50% 

  50% 

  50% 

 100% 

  50% 
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FR-RIS-000 
Description DAEMON shall integrate Reconfigurable Intelligent Surfaces (RIS) technology into 

mobile networks. 
Version 001M1 
Owner NEC 
Priority High 
Risk 2 
Risk Description There is a mild risk that the project will not be able to build a RIS prototype. Should 

this happen, the project will rely on simulations and mathematical models. 
Rationale RIS technologies will play a key role in increasing the wireless network capacity of 

next-generation networks, reducing energy consumption, and creating new 
privacy and security applications. However, optimal RIS operation can only be 
achieved in coordination with the radio access network controller. To this end, 
native support by DAEMON platform and open interfaces that integrate RIS 
controllers into the rest of the mobile network control ecosystem is required. 

K1  K2  K3  K4  K5  K6 X K7  K8  K9  
Parents None 

Current Status 
Percent complete 75% 
Risk 
management 

Successful  
 

Rationale Risks were low. There was an initial risk that a RIS prototype may not have been 
available for experimentation, in such a case, analytical data would have been 
used. But the risk has not materialized. The initial design of a RIS control NI was 
presented in D3.2 [2], Section 4, and the final design will be presented in D3.3. The 
detailed design has been presented in [71]. Moreover, the initial design of an 
experimental prototype was presented in D5.2 [4], Section 4.6, and the final 
prototype will be presented in D5.3.  

 
FR-RIS-001 

Description RIS controller shall interact with the system orchestrator and radio controllers 
Version 002M5 
Owner NEC 
Priority High 
Risk 1 
Risk Description No risk 
Rationale An interface between the mobile network orchestrator, the gNB controllers, and 

the RIS controller shall enable joint optimization of gNBs, UEs and surfaces. 

K1  K2  K3  K4  K5  K6 X K7  K8  K9  
Parents FR-RIS-000-001M1 

Current Status 
Percent complete 50% 
Risk 
management 

Successful  

Rationale A RIS prototype is being built along with an interface to interact with an external 
controller. The initial prototype design was presented in D5.2 [4], Section 4.6, and 
the final design will be presented in D5.3. 

 
FR-RIS-002 

Description RIS controller shall receive feedback about the wireless channel 
Version 002M4 
Owner NEC 
Priority Medium 
Risk 3 
Risk Description Channel feedback may not be received in a timely manner or with the required 

accuracy so as to be useful information. 
Rationale Reconfigurable Intelligent Surfaces modify the propagation properties of 

impinging wireless signals in a controllable manner. To this end, good estimations 
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about the wireless environment based upon feedback from users and gNBs, i.e., 
channel information, are required to perform optimal RIS operation.  

K1  K2  K3  K4  K5  K6 X K7  K8  K9  
Parents FR-RIS-001-002M5 

Current Status 
Percent complete 50% 
Risk 
management 

Successful  

Rationale A RIS prototype is being built along with an interface to receive feedback from 
an external controller. The initial prototype design was presented in D5.2 [4], 
Section 4.6, and the final design will be presented in D5.3. 

 
FR-RIS-003 

Description RIS units shall support more than one user concurrently 
Version 003M17 
Owner NEC 
Priority Medium 
Risk 4 
Risk Description Tight and timely coordination between gNB MAC schedulers may be required 
Rationale This enables increasing the system capacity for multiple users. 

K1  K2  K3  K4  K5  K6 X K7  K8  K9  
Parents FR-RIS-000-001M1 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale There was a risk that optimizing the RIS configuration for multiple concurrent 
users would be overly hard to achieve. We solved this complicated problem as 
will be explained in D3.3. The details can be found in [71]. 

 

FR-RIS-004 
Description RIS should be modular and enable a variable amount of reflective cells. 
Version 002M17 
Owner NEC 
Priority Low 
Risk 4 
Risk Description Modularity may be overly hard to achieve when designing a RIS. 
Rationale The ability to change the amount of reflective surface would enable a RIS to 

adapt itself to the surface, which may be highly irregular. 
K1  K2  K3  K4  K5  K6 X K7  K8  K9  
Parents FR-RIS-000-001M1 

Current Status 
Percent complete 50% 
Risk 
management 

Successful 

Rationale Though initially was believed that modularity would be overly hard to achieve, 
we have solved this problem as will be reported in D5.3. 
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A.2 Functional requirements: Multi-timescale Edge resource management 
 

 

 

 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
 
 
Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
 
  

FR-MTERM-004.01 
DAEMON’s MTERM shall continuously 
perform multi-timescale monitoring of 
data traffic, mobility pattern of users, 
and spectrum bands of radio access 
networks. The monitoring could be 
aided by AI/ML, e.g., by providing data 
dimensionality reduction. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-004 
DAEMON's MTERM shall continuously 
perform multi-timescale monitoring of 
resources (e.g., computing, network, 
spectrum), data traffic and mobility 
pattern of users, as well as the energy 
consumption of network services and 
edge platforms. The monitoring could 
be aided by AI/ML, e.g., by providing 
data dimensionality reduction. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-020 
DAEMON’s MTERM shall coordinate the 
decisions between different edges 
domains and timescales. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-021 
DAEMON’s MTERM shall expose 
information of their NIFs (e.g., CPU/GPU 
consumption, accuracy, timescale, 
input data format) to the Network 
Intelligence Plane to facilitate their 
management. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-007.00 
DAEMON’s MTERM shall provide 
automated on-the-fly VNF scaling. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-000 
DAEMON’s Multi-timescale Edge 
Resource Management (MTERM) 
shall perform automated 
management and orchestration of 
resources and services in 
distributed edges and different 
timescales. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-004.02 
DAEMON’s MTERM shall continuously 
perform multi-timescale monitoring of 
energy consumption of deployed 
network services and edge platforms. 
The monitoring is aided by AI/ML, 
providing data dimensionality 
reduction.   
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-MTERM-002 
DAEMON’s MTERM shall provide 
compliance with standardized 
frameworks (e.g., ETSI NFV MEC, 
ETSI NFV MANO, and O-RAN) 
running at the network edge.   
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-MTERM-003 
DAEMON’s MTERM shall provide NIF 
modularity and reusability among 
different players (e.g., network 
operators/vendors, service 
providers, etc.) 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-007.01 
DAEMON’s MTERM shall provide 
automated on-the-fly updates of VNFs. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-006 
DAEMON’s MTERM shall use NIFs and 
NISs to support orchestration of edge 
resources. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-007 
DAEMON’s MTERM shall provide 
automated on-the-fly reconfiguration 
of VNFs. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-MTERM-001 
DAEMON’s MTERM shall provide an 
exhaustive list of orchestration 
operations. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-MTERM-004.00 
DAEMON's MTERM shall continuously 
perform multi-timescale monitoring of 
computing, network, and spectrum 
resources in all edges The monitoring 
could be aided by AI/ML, e.g., by 
providing data dimensionality 
reduction. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial   100%-0% 

100% 

100% 

100% 

100% 

100% 

90% 

85% 

90% 

75% 

85% 

95% 

90% 

90% 

90% 
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FR-MTERM-000 
Description DAEMON’s Multi-timescale Edge Resource Management (MTERM) shall perform 

automated management and orchestration of resources and services in 
distributed edges and different timescales.  

Version 003M18 
Owner IMEC 
Priority High 
Risk 3 
Risk Description The decisions made by Network Intelligent Functions (NIFs) and network Intelligent 

Services (NIS) distributed across the edge networks might be out of sync, since 
they can make decisions in different timescales. We might need to assign the level 
of priority to decision-making entities in different tiers and have a control loop that 
will track the effect of these decisions on the service KPIs.   

Rationale Services are deployed in a distributed fashion, due to the high mobility of users, 
and an uneven distribution of resources across the edge networks. Thus, proper 
management and orchestration of these distributed services need to be 
achieved. The network intelligence in the form of AI-based NIFs and NISs needs to 
be distributed to different edges in the management and orchestration 
architecture in order to treat different service dynamics in coarse/fine granular 
timescale. This should be done in an automated way. Unfortunately, current 
management frameworks do not provide automation in the form of flexible and 
dynamic NFV management and orchestration and therefore, this gap should be 
addressed. Moreover, management frameworks should be able to coordinate 
intelligence or resources across different network segments and timescales.  
Services: MEC application services (specific to use cases, i.e., vertical services), 
Value-added services (e.g., location services, Radio Network Information 
Service), NISs and NIFs (e.g., traffic classifiers), energy consumption analyzers, etc. 
Resources: CPU, memory, spectrum, storage, and network 

K1 X K2 X K3  K4 X K5 X K6  K7  K8 X K9 X 
Parents None 

Current Status 
Percent complete 90% 
Risk 
management 

Effective  

Rationale Since this requirement is the root, by fulfilling the child requirements, DAEMON can 
effectively perform automated management and orchestration of resources and 
services in distributed edges and different timescales. All the risks were low and 
effectively or successfully managed. 

 

FR-MTERM-004 
Description  DAEMON's MTERM shall continuously perform multi-timescale monitoring of 

resources (e.g., computing, network, spectrum), data traffic and mobility pattern 
of users, as well as the energy consumption of network services and edge 
platforms. The monitoring could be aided by AI/ML, e.g., by providing data 
dimensionality reduction. 

Version  002M18  

Owner  IMEC  

Priority  High  
Risk  1  

Risk Description  The amount of data that is being collected might burden the resource-
constrained edge nodes. Thus, we need to assess the resource requirements of 
monitoring services that will be running along with other services on the edge 
platforms, and to perform a corresponding management of these services in 
order to produce meaningful and credible results.   

Rationale  Monitoring is one of the main pillars of any automated and adaptative system. 
By monitoring, any system can verify that its decisions were correctly applied, 
achieving closed-loop control. However, given the diversity of network 
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operators/vendors/infrastructure/providers/service providers, monitored data 
stems from multiple sources. In that sense, AI/ML techniques could help to pre-
process and reduce such data's dimensionality. However, current frameworks do 
not incorporate real-time data analytics, making difficult the monitoring of data. 

K1   X K2  X  K3    K4    K5    K6    K7    K8  X K9    
Parents  FR-MTERM-000 

Current Status 
Percent complete 95% 
Risk 
management 

Successful 

Rationale Several NI solutions implemented a monitoring method. For instance, in the AI-
enhanced edge orchestration (Section 3.1 of D3.2 [2]), NIFs are constantly 
collecting data from various nodes. This data is composed of computing 
resources, network metrics (latency, bandwidth) and application services. 
Similarly, the model in Section 3.2 of D3.2 [2] continuously consumes the monitored 
spectrum usage. Moreover, the model in Section 3.4 of D3.2 [2], leverages big 
data to collect information about different devices. Despite the energy footprint 
was not measured in any of the activities mentioning this requirement, the solution 
presented in FR-EAWVNF-001 can be used for this purpose.  

 

FR-MTERM-004.00 
Description  DAEMON's MTERM shall continuously perform multi-timescale monitoring of 

computing, network, and spectrum resources in all edges. The monitoring could 
be aided by AI/ML, e.g., by providing data dimensionality reduction. 

Version  001M18 

Owner  IMEC  

Priority  High  

Risk  1  
Risk Description  Risk FR-MTERM-004 

Rationale  The constant monitoring input of computing, network and spectrum resources will 
feed the orchestration entities that perform orchestration operations, to control 
and provide an on-the-fly reconfiguration of deployed virtualized network 
functions, to migrate them, and to identify anomalies in service and/or framework 
operation. These metrics shall be monitored at different timescales, depending 
on the granularity required by the service consuming the data and the available 
resources at the edge.  

K1    K2  X K3    K4    K5    K6    K7    K8   K9    
Parents  FR-MTERM-004 

Current Status 
Percent complete 90% 
Risk 
management 

Effective 

Rationale Same as parent. Detailed in Sections 3.1 and 3.4 of D3.2 [2]. 
 

FR-MTERM-004.01 
Description  DAEMON’s MTERM shall continuously perform multi-timescale monitoring of data 

traffic, mobility patterns of users, and spectrum bands of radio access networks. 
The monitoring could be aided by AI/ML, e.g., by providing data dimensionality 
reduction. 

Version  002M18 

Owner  IMEC  

Priority  Low  

Risk  2 
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Risk Description  The value-added services that collect and parse data from the network traffic, 
the UE mobility, and the spectrum bands impose additional burdens on the 
resource-constrained edge nodes. Thus, we need to assess the resource 
requirements of those services that will be running along with other services on 
the edge platforms, and to perform a corresponding management of these 
services in order to produce meaningful and credible results.  

Rationale  The constant monitoring input of data traffic, mobility patterns and spectrum 
bands will provide input about the UEs to the orchestration entities that perform 
orchestration operations, to proactively deploy additional VNFs when and where 
needed, to migrate them, and to reconfigure existing VNFs to meet demands of 
all UEs in the system. These metrics shall be monitored at different timescales, 
depending on the granularity required by the service consuming the data and 
the available resources at the edge.  

K1   K2   K3    K4    K5    K6    K7    K8  X K9    

Parents  FR-MTERM-004 
Current Status 

Percent complete 100% 
Risk 
management 

Successful 

Rationale Same as parent. Detailed in Section 3.2 of D3.2 [2].  

 

FR-MTERM-004.02  
Description  DAEMON’s MTERM shall continuously perform multi-timescale monitoring of 

energy consumption of deployed network services and edge platforms. The 
monitoring is aided by AI/ML, providing data dimensionality reduction.   

Version  002M18  

Owner  IMEC  
Priority  Low  

Risk  3 

Risk Description  The energy consumption calculation of isolated services might be a complex 
task, while at the same time, an aggregated energy consumption per edge 
platform might severely affect the accuracy of energy-aware NIFs. Furthermore, 
although those NIFs that manage energy consumption in the whole system run in 
cloud, they still need to have probes installed on the edges, and a proper 
assessment of their energy consumption and resource requirements needs to be 
obtained.  

Rationale  The constant monitoring of energy consumption per service/per edge platform is 
needed to make an optimal decision on VNF placement and VNF migration from 
one edge to another. With such an energy consumption footprint in the whole 
system, the cloud orchestrator can perform load balancing between edge 
platforms, and accordingly turn off certain NIFs and deployed services if energy 
consumption needs to be decreased.  

K1   X K2   K3    K4    K5    K6    K7    K8    K9    

Parents  FR-MTERM-004 
Current Status 

Percent complete 100% 
Risk 
management 

Successful 

Rationale Same rationale as FR-EAWVNF-001.  

 

FR-MTERM-020 
Description  DAEMON’s MTERM shall coordinate the decisions between different edge 

domains and timescales. 

Version  001M18 
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Owner  IMEC 
Priority  Low 

Risk  4 

Risk Description  Depending on the number of decision-making engines, the coordination can be 
cumbersome.  

Rationale  Several management and orchestration operations are based on the decisions 
of different decision-making engines. Such engines can be based on AI/ML. To 
guarantee service continuity, coordination between distributed orchestrators in 
different edge domains is almost mandatory. However, current frameworks do 
not coordinate intelligence or resources across different network segments and 
timescales. 

K1    K2   K3    K4   X K5    K6    K7    K8    K9    

Parents  FR-MTERM-000 
Current Status 

Percent complete 85% 
Risk 
management 

Effective 

Rationale The solutions presented in Sections 3.1 and 3.5 of D3.2 [2] coordinate the decisions 
between different edges (§3.1) and timescales (§3.2). The risks were mitigated by 
considering two levels of priorities. When taking decisions among multiple edges, 
decisions at the edge affect only the local resources, while cloud decisions affect 
the global resources and, therefore, have higher priority. Regarding the 
timescales, decisions made at longer timescales (e.g., placement) are performed 
less frequently than decisions made at shorter timescales (e.g., adjustments to 
respond to the evolution of the data).  

 
FR-MTERM-021 

Description  DAEMON’s MTERM shall expose information of their NIFs (e.g., CPU/GPU 
consumption, accuracy, timescale, input data format) to the Network 
Intelligence Plane to facilitate their management. 

Version  001M18 

Owner  IMEC 
Priority  Low 

Risk  4 

Risk Description  The huge amounts of collected data from surrounding infrastructure might 
represent a risk, since that data might be incomplete or inconsistent. This lack of 
sufficient and consistent input data leads to inefficiencies in decision-making, 
e.g., when to replace a NIF. 

Rationale  Information about NIFs, like CPU/GPU consumption, accuracy, timescale, and 
input data format, should be exposed to the Network Intelligence Plane. Based 
on this information, the intelligent orchestrator(s) should take a decision (e.g., 
change NIFs because of their poor performance). This would facilitate the 
lifecycle management of AI/ML-based functions, which current frameworks do 
not support. 

K1   X K2   K3    K4    K5    K6    K7    K8    K9   X 

Parents  FR-MTERM-000 
Current Status 

Percent complete 90% 
Risk 
management 

Effective 

Rationale The solution presented in Section 3.4 of D3.2 [2] performs a classification, then, 
based on that, a resource allocation decision is made in the orchestrator. The 
results from the NIF, a classification model in this case, are exposed through open 
APIs as mentioned in Section 3.3 of D2.3.  
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FR-MTERM-006  
Description  DAEMON’s MTERM shall use NIFs and NISs to support orchestration of edge 

resources. 

Version  002M28  

Owner  IMEC  

Priority  Low  
Risk  2 

Risk Description  The interfaces created to support the instantiation of NIFs and NISs could be 
tightly coupled which difficult their integration with existing management and 
orchestration frameworks. 

Rationale  Current research has shown that management and orchestration operations can 
be improved by using Network Intelligence Functions (ML-based solutions). 
However, existing management and orchestration frameworks that operate at 
the network edge (e.g., NFV MANO, OSM, ETSI MEC) do not fully integrate and 
support the instantiation of such intelligent functions. These frameworks do not 
provide the necessary interfaces to enable services and applications to be data-
driven.   

K1    K2   K3    K4    K5    K6    K7    K8   X K9    

Parents  FR-MTERM-000 
Current Status 

Percent complete 90% 
Risk 
management 

Effective 

Rationale The solutions in Sections 3.1, 3.2 of D3.2 [2] and 5.2 of D4.2 [3] use a model which 
improves the quality of the decisions made by orchestrators. For instance, the 
solution proposed in Section 4.1 of D4.2 [3] (Federated Anomaly Detection) can 
be used by the orchestrator in Section 3.1 of D3.2 [2] to receive the indication that 
the current node has an abnormal behavior, so the service can be migrated to 
a healthy node (Synergic Integration of Network Intelligences Demo).  

 

FR-MTERM-007 
Description  DAEMON’s MTERM shall provide automated on-the-fly reconfiguration of VNFs  

Version  003M18 

Owner  IMEC  

Priority  High  
Risk  2  

Risk Description  The reconfiguration of VNFs in the service function chain might impose a risk of 
service unavailability during the reconfiguration.   

Rationale  Following the cloud-native service design, the service function chains consist of 
loosely-coupled VNFs that can be replaced and separately configured. 
Orchestration entities can make decisions to scale up/down/out/in any of these 
VNFs, and to replace the faulty ones, while maintaining service continuity.   

K1    K2  X  K3    K4   X K5   X K6    K7    K8   K9    

Parents  FR-MTERM-000 

Current Status 
Percent complete 85% 
Risk 
management 

Effective 

Rationale The solutions in Section 3.1 of D3.2 [2] and 5.2 of D4.2 [3] perform on-the-fly 
reconfiguration of VNFs. For example, the model proposed in §5.2 od D4.2 [3] 
changes the number of replicas of a service whose processing is subject to a 
delay constraint. Then, scaling is performed accordingly with the workload 
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changes. Similarly, the orchestrator in §3.1 of D3.2 [2] performs scaling and service 
relocation, which are considered as methods to perform VNF updating.  

 
FR-MTERM-007.00 

Description  DAEMON’s MTERM shall provide automated on-the-fly VNF scaling. 

Version  002M18  

Owner  IMEC  
Priority  High  

Risk  2 

Risk Description  The VNF scaling in the service function chain might impose a risk of service 
unavailability during the reconfiguration.   

Rationale  Rationale FR-MTERM-007 
K1    K2   K3    K4   X K5    K6    K7    K8    K9    

Parents  FR-MTERM-007 
Current Status 

Percent complete 75% 
Risk 
management 

Effective 

Rationale Same as parent. The solution described in Section 5.2 of D4.2 [3] performs 
autonomous VNF scaling.  

 

FR-MTERM-007.01 
Description  DAEMON’s MTERM shall provide automated on-the-fly update of VNFs  

Version  002M18  

Owner  IMEC  

Priority  Low  
Risk  2 

Risk Description  The update of VNFs (e.g., change of VNF image, VNF descriptor, IP address, etc.) 
in the service function chain might impose a risk of service unavailability during 
the reconfiguration.   

Rationale  Following the cloud-native service design, the service function chains consist of 
loosely-coupled VNFs that can be replaced and separately configured. 
Orchestration entities can make decisions to update VNFs, e.g., if an updated 
image or descriptor is needed. 

K1    K2  X  K3    K4   X K5   X K6    K7    K8    K9    

Parents  FR-MTERM-007 
Current Status 

Percent complete 90% 
Risk 
management 

Effective 

Rationale Same as parent. The solution proposed in Section 3.1 of D3.2 [2] performs 
relocation of services deployed as VNFs from one edge to the other, to avoid 
service quality degradation (e.g., because the users are driving away from a 
given RSU).   
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A.3 Functional requirements: In-backhaul support for service intelligence 
 
 
 

 

 

 

 

 

 
 
Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
  

FR-IBSSI-002.01 
DAEMON’s IBSSI shall handle both 
packet-level and flow-level 
inference. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-IBSSI-001 
DAEMON’s IBSSI provides 
Intelligence-as-a-Service to vertical 
3rd parties. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-IBSSI-000 
DAEMON’s IBSSI shall learn network 
policies using the user plane itself. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-IBSSI-000 
Network Intelligence algorithms 
should be adapted to the PISA 
architecture. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-IBSSI-002 
DAEMON’s IBSSI shall integrate 
Network Intelligence within 
programmable switches. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-IBSSI-001 
Network Intelligence algorithms 
should be resource-prudent. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial   100%-0% 

95% 
100% 

95% 

75% 

100% 

75% 
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FR-IBSSI-000 
Description DAEMON’s IBSSI shall learn network policies using the user plane itself. 
Version 003M18    
Owner UC3M 
Priority Low 
Risk 3 
Risk Description To ensure fast reaction times for orchestration mechanisms upon network 

changes, the network shall learn directly from data-plane network functions, 
providing triggers for the required re-orchestrations or re-configurations of the 
network functions. 

Rationale Besides monitoring of KPIs, the network shall already understand and detect 
malfunctioning already from the analysis of specific traffic patterns or control-
plane interactions. This is especially important for operations such as anomaly 
detection. 

K1  K2  K3 X K4  K5  K6  K7  K8 X K9  
Parents None 

Current Status 
Percent complete 95% 
Risk 
management 

Successful 
  

Rationale The procedures described in Section 5 of this document allow the online 
monitoring of the traffic to support the online learning of policies. 

 

FR-IBSSI-001 
Description DAEMON’s IBSSI shall provide Intelligence-as-a-Service to vertical 3rd parties 
Version 003M17 
Owner UC3M 
Priority High 
Risk 4 
Risk Description Third parties will be allowed to be included in the network operation through 

specific APIs that are used to i) manage the kind of provided intelligence and ii) 
ensure that the resources are provided to them. Also, these interfaces shall 
accommodate different intelligence instances running in the third-party premises 
and in the network domain. 

Rationale DAEMON will provide algorithms for the execution of network intelligence directly 
related to the vertical service (e.g., video analytics directly in the u-plane) and 
allow efficient and secure resource provisioning through the usage of solutions 
based on, e.g., distributed ledger platform. 

K1  K2  K3 X K4  K5  K6  K7  K8 X K9  
Parents FR-IBSSI-000-003M18 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale The work performed and discussed in Section 4.2.2 defined the interfaces 
towards the management and orchestration and other core functions such as 
the AF, which can be used to interact with 3rd parties. 
 

 

FR-IBSSI-002 
Description DAEMON’s IBSSI shall integrate Network Intelligence within programmable 

switches. 
Version 002M17 
Owner IMDEA 
Priority Medium 
Risk 3 
Risk Description Programmable switches have extremely limited computational capabilities and 

memory, which substantially constrains what they can do in terms of learning. 
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Rationale Programmable user planes are starting to be leveraged for network telemetry 
functionalities. However, these are limited to data collection and pre-processing, 
which are then fed to NI located in the control plane to take network 
management decisions. DAEMON will investigate what portion of the decision 
process can be moved to the switches directly, at line rate and avoiding the 
delay of interacting with the control plane.    

K1  K2  K3 X K4  K5  K6  K7  K8  K9  
Parents FR-IBSSI-000-003M18 

Current Status 
Percent complete 95% 
Risk 
management 

Successful. 

Rationale DAEMON has developed Random Forest (RF) models that are tailored to the 
hardware of programmable switch ASICs, where they can extract flow-level 
features and use them for inference, as described in Section 5.1 of D3.2 [2]. The 
models have been evaluated in a real-world experimental platform with 
production-grade hardware, where they could achieve high accuracy (up to 
99%) at line rate with ultra-low (~100 ns) latency, as per Section 4.7.1 of D5.2 [4]. 
Risks were estimated as intermediate at the start of the activity, due to the 
limitation of the computing environment offered by programmable switch ASICs; 
such risks were avoided by using models that are relatively simple and mappings 
of such models that are tailored to the target hardware. 

 
FR-IBSSI-002.01 

Description DAEMON’s IBSSI shall handle both packet-level and flow-level inference 
Version 001M18 
Owner IMDEA 
Priority Medium 
Risk 3 
Risk Description Programmable switches have extremely limited storage and memory capabilities 

that constrain the possibility of computing and preserving features about the 
many individual packets or flows traversing the switch. 

Rationale Inference in programmable user planes can largely benefit from the availability 
of both packet-level (e.g., header fields) and flow-level (e.g., inter-arrival times, 
counters, etc.) input features. Indeed, these features offer different correlations 
with prediction variables (e.g., for classification, anomaly detection, intrusion 
detection, etc.). It is thus desirable that both types of features are available to a 
machine learning model deployed in the switch. 

K1  K2  K3 X K4  K5  K6  K7  K8  K9  
Parents FR-IBSSI-002-002M17 

Current Status 
Percent complete 75% 
Risk 
management 

Effective.  

Rationale The solutions developed by DAEMON, as indicated in the parent requirement, 
can gather and use both packet-level and flow-level features. The last remaining 
step toward meeting this requirement in a fully successful way is designing RF 
models that can operate on packet-level features for the first very few packets of 
each flow, i.e., before flow-level features can be reliably computed. Risks were 
estimated as intermediate at the start of the activity, due to the added 
complexity of computing and storing flow-level features in resource-constrained 
switch architectures; these risks were avoided by designing novel approaches to 
feature representation that suited the target hardware. 
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A.4 Functional requirements: Compute-aware radio scheduling 
 
 
 

 

 

 

 

 

 

 

 

 
 
Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
  

NFR-CAWRS-003 
Predictive HARQ inference 
mechanisms shall have a minimum 
accuracy of 99% and a false 
positive rate below 0.1%. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CAWRS-001 
DAEMON NI solutions for vRAN 
systems shall integrate predictive 
HARQ. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-CAWRS-001 
NI control solutions for vRAN shall 
have reaction times below 100ms. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CAWRS-000 
DAEMON shall integrate NI solution 
in vRAN systems. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CAWRS-002 
DAEMON NI solutions for vRAN 
systems shall integrate intelligent 
algorithms to allocate radio and 
computing resources in real time. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-CAWRS-002 
NI solutions for vRAN shall achieve 
a bounded wireless performance 
wrt the optimal. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-CAWRS-000 
NI orchestration solutions for vRAN 
shall have reaction times below 
10s. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial   

100% 

100% 

100% 

100%-0% 

100% 

100% 

100% 

100% 
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FR-CAWRS-000 
Description DAEMON shall integrate NI solution in vRAN systems 
Version 001M3 
Owner UC3M 
Priority High 
Risk 1 
Risk Description There is a low risk that DAEMON will not integrate NI solutions into vRAN systems, 

as DAEMON partners were already capable of integrating such kinds of solutions 
in Open Source vRAN environments. 

Rationale The mobile network industry is moving towards virtual network function solutions, 
and RAN Functions are not an exception. Being among the most resource-
consuming functions (in terms of computation), thus allowing the re-design of 
such function by taking into account the computing resource optimization as 
further objective will improve the overall spending (both CAPEX and OPEX, for the 
resource provisioning) for the network operation. 
 

K1 X K2 X K3  K4 X K5 X K6  K7  K8  K9  
Parents None 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale Several solutions have been provided already in D3.2 [2] (Section 3) and will be 
extended in D3.3 

 
FR-CAWRS-001 

Description DAEMON NI solutions for vRAN systems shall integrate predictive HARQ. 
Version 001M17 
Owner i2CAT 
Priority High 
Risk 1 
Risk Description There is a low risk that DAEMON will not integrate predictive HARQ solutions, 

because they have been widely studied in other contexts before. 
Rationale Predictive HARQ mechanisms collect data from the subframe decoding process 

and make a prediction about the decodability of the corresponding transport 
blocks. This enables the usage of transport blocks that otherwise would have been 
dropped because they were not decoded on time. 

K1 X K2 X K3  K4 X K5 X K6  K7  K8  K9  
Parents FR-CAWRS-000-001M3 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale The requirement has been fulfilled as already demonstrated in D5.2 [4], Section 
4.1.1.2 

 
FR-CAWRS-002 

Description DAEMON NI solutions for vRAN systems shall integrate intelligent algorithms to 
allocate radio and computing resources in real-time. 

Version 001M17 
Owner i2CAT 
Priority High 
Risk 3 
Risk Description There is a medium risk in integrating intelligent algorithms for radio and computing 

resource allocation in real time because of the reduced operation timescale. 
Rationale Intelligent radio and computing allocation algorithms provide mechanisms to 

efficiently distribute the available radio and computing resources, being at the 
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same time crucial for providing latency guarantees and for maximizing the 
performance of the overall system. 

K1  K2 X K3  K4  K5  K6  K7  K8  K9  
Parents FR-CAWRS-000-001M3 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale The risk described above was mitigated by implementing light rule-based NI 
rather than complex neural network-based solutions. 
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A.5 Functional requirements: Energy-aware VNF placement 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
  

FR-EAWVNF-001.01 
DAEMON’s EAWVNF shall measure 
the energy footprint of VNFs in 
terms of data transmission.  
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-EAWVNF-001 
DAEMON’s EAWVNF energy-aware 
solution, will scale well when 
considering a heterogenous set of 
devices and network  
infrastructure. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-001.00 
DAEMON’s EAWVNF shall measure 
the energy footprint of VNFs in 
terms of CPU usage. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-EAWVNF-002 
DAEMON’s EAWVNF expects to 
save 50% of the energy cost thanks 
to applying NI solutions to find out 
the energy-aware optimal 
placement of VNFs of FR-EAWFN-
000. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-001 
DAEMON’s EAWVNF shall measure 
the energy footprint of VNFs in 
terms of CPU usage and 
communication traffic. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-EAWVNF-003 
The cost in terms of energy 
footprint of the NI solution for VNFs 
placing shall be less than the 
global energy saving. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-002 
DAEMON’s EAWVNF shall measure 
the impact of hardware resource 
usage by VNFs in the calculation of 
the energy footprint. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-000 
DAEMON Energy-aware VNF 
placement (EAWVNF) shall profile 
the energy footprint of those 
network tasks that influence the 
network global power 
consumption. 
K
1 

K
2 

K
3 

K
4 

K
5 

K
6 

K
7 

K
8 

K
9 

FR-EAWVNF-003.00 
DAEMON’s EAWVNF shall measure 
the energy footprint of VNF 
migration due to virtualization cost. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-003.01 
DAEMON’s EAWVNF shall measure 
the energy footprint of VNF 
migration due to transmission cost. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-003 
DAEMON’s EAWVNF shall measure 
the energy footprint of VNFs 
migration. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial   100%-0% 

95% 

75% 

100% 

100% 

100% 

100% 

100% 

60% 

60% 

75% 

75% 
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Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
  

FR-EAWVNF-000 
DAEMON Energy-aware VNF 
placement (EAWVNF) shall profile 
the energy footprint of those 
network tasks that influence the 
network global power 
consumption. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-004.00 
DAEMON’s EAWVNF should define 
an energy profile with the 
dependency relationships of the 
different possible locations of VNFs. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-004 
DAEMON’s EAWVNF shall consider 
how the context of the location of 
VNFs affects the energy footprint 
of VNFs. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-004.01 
DAEMON’s EAWVNF should 
characterize the different variants 
of VNFs regarding the context of 
the location where the VNF will be 
running. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-EAWVNF-004 
Energy-efficient NI shall balance 
throughput and energy 
consumption in vRANs. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-005 
DAEMON’s EAWVNF shall configure 
virtualized radio access networks 
to increase their energy efficiency. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-EAWVNF-005 
NI orchestrating resources in vRANs 
shall maximize networking 
throughput given power 
consumption constraints. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-EAWVNF-006 
Energy savings shall be achieved 
in virtualized RANs without 
compromising given service 
performance constraints. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-006 
DAEMON’s EAWVNF shall measure 
the energy footprint of VNFs 
scaling. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-006.00 
DAEMON’s EAWVNF shall measure 
the energy footprint of VNFs 
vertical scaling. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-EAWVNF-006.01 
DAEMON’s EAWVNF shall measure 
the energy footprint of VNFs 
horizontal scaling. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial   100%-0% 

95% 

95% 

100% 

100% 

90% 

100% 

100% 

50% 

25% 

100% 

 70% 
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FR-EAWVNF-000 
Description DAEMON Energy-aware VNF placement (EAWVNF) shall profile the energy 

footprint of those network tasks that influence the network global power 
consumption. 

Version 001M1 
Owner UMA 
Priority High 
Risk 2 
Risk Description The reliability of the measurement depends on a complete identification of the 

external factors that affect the energy footprint (e.g., temperature, processor, or 
noisy neighbor problem), the accuracy of the energy measurement methods 
used, and the dependency on specific hardware. We should be able to estimate 
the energy consumption of VNFs both in simulated and real environments, 
obtaining possibly similar results. 

Rationale  

K1 X K2  K3  K4  K5  K6  K7  K8  K9  
Parents None 

Current Status 
Percent complete 90% 
Risk 
management 

Effective  

Rationale In order to meet the goal of energy efficiency we have to identify the list of 
elements that strongly affect the energy consumption in the edge context. We 
have implemented the SAVRUS algorithm that works with unknown-domain (in this 
case, VNFs foredge-based mobile networks) to identify and rank the main 
network features and their interactions by how much they affect the final energy 
consumption (D3.1 [5], Section 5.3.2.1, D3.2 [2], Section 3.3.3, and journal [72]). 
We evaluated the SAVRUS strategy with experiments that provide completely 
measured models, by properly degrading the completely measured spaces to 
represent incomplete measures space, which are the measures spaces under 
SAVRUS works. Regarding the construct validity of the data set, the degradation 
procedure was automatic and random and was independently applied to the 
original spaces several times. Consequently, we analyzed the same space many 
times but degraded it differently to minimize the collateral effects that the 
degradation procedure could have on the results. There is a risk to the internal 
validity, since the selected sampling and learning methods may not be the best 
choice for all systems. To mitigate this risk, we did not only validate SAVRUS outputs 
but individually reviewed each strategy component to avoid hidden errors. We 
repeated the analysis and presented average metrics to reduce a possible bias. 
Also, SAVRUS comprises a normality test within the process with a 95% confidence. 

 
FR-EAWVNF-001 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNFs in terms of CPU 
usage and communication traffic. 

Version 001M2 
Owner UMA 
Priority High 
Risk 2 
Risk Description The reliability of the measurement depends on the ability to identify and quantify 

the influence of external factors in the energy consumption calculation (e.g., 
noisy neighbor problem or distance to base station).  Calculating the cost of 
executing code and transmitting and receiving information on specific hardware 
accurately is a complex task. It is possible to mitigate this risk by going through 
calculating an upper bound of its energy footprint. 

Rationale The main factors that influence energy consumption are CPU usage and the data 
sent and received by a given VNF. We need to identify what are the factors that 
should be considered in the formula that calculates the total energy footprint of 
the network, in terms of computation and communication. We should consider 
not only the internal factors, as we said, computation and communication, but 
also the external ones, such as the neighboring traffic. Since our main goal is not 
to report absolute energy footprint values, but relative ones, we need to find a 
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sound method to quantify the revenue of placing a VNF in one or another 
location in terms of power saving.  

K1 X K2  K3  K4  K5  K6  K7  K8  K9  
Parents FR-EAWVNF-000 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale In the placement solution presented in D4.2 [3] the energy model used to 
estimate energy consumption includes both CPU and data transmission. 

 
FR-EAWVNF-001.00 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNFs in terms of CPU 
usage. 

Version 001M2 
Owner UMA 
Priority High 
Risk 2 
Risk Description Calculating the cost of executing any kind of code, on specific hardware 

accurately is a complex task, since there are several factors that we need to 
quantify in order to calculate the energy footprint. The theoretical values given 
by CPU providers usually do not coincide with the real ones.  

Rationale We need to identify what are the factors that should be considered in the formula 
that calculates the global energy footprint of the VNFs instantiated for each 
application, in terms of computation. We know that the processor type of the 
device where a VNFs is running influences the energy footprint, but there are also 
other parameters that make the software provoke the hardware to consume 
more energy, like the size of VNF input. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  
Parents FR-EAWVNF-001 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale In the placement solution presented in D4.2 [3] the energy model used to 
estimate energy consumption includes explicitly the energy cost of computation 
calculated from the CPU cycles and the CPU frequency along with other factors. 
In the placement and autoscaling solution presented in D4.2 [3] the energy 
consumption model calculates the energy footprint of VNFs in terms of CPU usage 
according to the node in which VNFs are going to be deployed. 

 
FR-EAWVNF-001.01 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNFs in terms of data 
transmission.   

Version 001M2 
Owner UMA 
Priority High 
Risk 2 
Risk Description Calculating the cost of data transmission over different types of network links, 

accurately is a complex task, since there are several factors that we need to 
quantify in order to calculate the energy footprint. The network throughput is 
something that varies a lot and depends on some external factors like the current 
traffic or transmitting neighboring devices.  

Rationale In the energy footprint calculation, we need to consider that some VNFs will 
produce some data that might need to be transmitted to other devices. We know 
that the transmission power, the payload and the transmission rate should be 
considered, along with other terms. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  
Parents FR-EAWVNF-001 
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Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale In the energy-aware placement solution presented in D4.2 [3] the energy model 
includes explicitly the energy cost of data communication calculated in the 
amount of bytes sent and received along with other terms. In the autoscaling and 
placement solution in D4.2 [3] the energy consumption model calculates the 
energy footprint of VNFs in terms of the amount of data transmitted (sent and 
received) according to the node in which VNFs are deployed. 

 
FR-EAWVNF-002 

Description DAEMON’s EAWVNF shall measure the impact of hardware resource usage by 
VNFs in the calculation of the energy footprint. 

Version 001M2 
Owner UMA 
Priority Low 
Risk 4 
Risk Description The accuracy of the energy consumption measurement depends on specific 

hardware, including not only the computing device processor. Other hardware, 
such as memory use or access to HDD, could also influence the total energy 
footprint, but it is difficult to assess in which percentage. So, it is not easy to 
estimate it accurately. 

Rationale Measuring the hardware resources usage of VNFs and their energy footprint 
provides extra information to accurately estimate the overall energy footprint of 
a VNF. We are seeking to find additional factors to the energy consumption 
formula, to calculate more precisely the network energy footprint. Although the 
DAEMON approach does not need absolute values of energy consumption, we 
need to find out if there are certain situations where the excessive use of 
additional resources by a certain VNF strongly impacts the decision of, for 
example, migrating it to another location.  

K1 X K2  K3  K4  K5  K6  K7  K8  K9  
Parents FR-EAWVNF-000 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale The solution presented in D4.2 [3] monitors the impact of hardware resources of 
VNFs in the estimation of the energy consumption. The solution also considers the 
computation, communication, and storage resources as part of placement 
algorithm. 

 
FR-EAWVNF-003 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNFs migration. 
Version 001M2 
Owner UMA 
Priority High 
Risk 4 
Risk Description The cost in terms of energy consumption of code migration in general, and in 

particular considering VNFs, depends on several factors that we need to identify. 
Also, there are different mechanisms to perform code migration and each of 
them requires a different formula for energy footprint calculation, affecting the 
accuracy of the final result.  

Rationale The migration of a certain VNF has an energy cost that should be analyzed. It is 
essential to understand this energy cost to prioritize migrations to other systems if 
needed. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  
Parents FR-EAWVNF-000 

Current Status 
Percent complete 75% 
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Risk 
management 

Partial 

Rationale The energy consumption model used in the proactive autoscaling solution and 
VNF placement presented in D4.2 [3] can be used to calculate the energy 
footprint of VNF migration due to virtualization costs and data transmission cost 
as virtualization scaling cost is considered in this solution. 

 
FR-EAWVNF-003.00 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNF migration due to 
virtualization cost. 

Version 001M2 
Owner UMA 
Priority High 
Risk 3 
Risk Description The main risk is that we do not consider all the factors relative to virtualization that 

affect the energy consumption of migrating a certain VNF. Another risk is that 
even when we find a formula to calculate this energy footprint for a certain 
virtualization technology (or a few of them), later new technologies may appear. 

Rationale Virtualization has an energy cost and should be analyzed. We should find out if 
this cost depends on the device (mainly Edge devices and Cloud), and how we 
can calculate it for both simulated and real environments. It is essential to 
understand this energy cost to prioritize migrations to other systems if needed. 
Also, we need to choose the list of virtual machines we are going to consider in 
this requirement. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  
Parents FR-EAWVNF-003 

Current Status 
Percent complete 75% 
Risk 
management 

Partial 

Rationale The energy consumption model used in the proactive autoscaling solution and 
VNF placement presented in D4.2 [3] can be used to calculate the energy 
footprint of VNF migration due to virtualization costs as virtualization scaling cost 
is considered in this solution. 

 
FR-EAWVNF-003.01 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNF migration due to 
transmission cost. 

Version 001M2 
Owner UMA 
Priority High 
Risk 4 
Risk Description The main risk is that we do not consider all the factors relative to virtualization that 

affect the energy consumption of migrating a certain VNF. Another risk is that 
even when we find out a formula to calculate this energy footprint for a certain 
virtualization technology (or a few of them), later new technologies appear. 

Rationale The main factors that affect the energy footprint of VNF migration are the code 
and data transmission. There are different mechanisms to move a VNF to a 
different location and each one implies transferring more or less data. So, the 
code migration mechanism strongly influences the energy footprint since it varies 
the amount of information to be transmitted. We should find out how we can 
calculate it for both simulated and real environments. It is essential to understand 
this energy cost to prioritize migrations to other systems if needed. Also, we need 
to decide on a single migration mechanism, if possible, to be able to calculate its 
energy footprint.  

K1 X K2  K3  K4  K5  K6  K7  K8  K9  
Parents FR-EAWVNF-003 

Current Status 
Percent complete 75% 
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Risk 
management 

Partial 

Rationale The energy consumption model used in the proactive autoscaling solution and 
VNF placement presented in D4.2 [3] can be used to calculate the energy 
footprint of VNF migration due to data transmission costs as data transmission cost 
is considered in this solution and can be used to calculate transfer cost in terms 
of data sent and receive. 

 
FR-EAWVNF-004 

Description DAEMON’s EAWVNF shall consider how the context of the location of VNFs affects 
the energy footprint of VNFs. 

Version 001M3 
Owner UMA 
Priority High 
Risk 4 
Risk Description The main risk is not modeling the context properly due to external and non-

measurable artifacts. Moreover, DAEMON could not capture all the possible 
scenarios related within the location context to model the data's location to feed 

Rationale The VNF placement cost in terms of energy footprint should consider the 
execution context where a VNF will be running, and the location of the data that 
will feed this function. The goal is to adapt the energy footprint of the needed 
VNFs to the context of the location where they are running. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  
Parents FR-EAWVNF-000 

Current Status 
Percent complete 95% 
Risk 
management 

Effective 

Rationale D4.2 [3] presents an energy-aware placement solution for VNFs, considering the 
execution location context. This solution selects nodes based on an energy profile 
considering available RAM, storage, and hardware configurations. It aims to 
reduce energy consumption while meeting infrastructure needs. The solution 
includes an energy-aware orchestrator that assigns VNFs to the most energy-
efficient nodes. It also considers the energy cost of computing VNF placement as 
part of the overall energy footprint, placing VNFs in an energy-efficient manner 
throughout the infrastructure. 

 
FR-EAWVNF-004.00 

Description DAEMON’s EAWVNF should define an energy profile with the dependency 
relationships of the different possible locations of VNFs. 

Version 001M3 
Owner UMA 
Priority High 
Risk 4 
Risk Description One possible risk is that we cannot capture all the possible scenarios related to 

the location context. The variability of execution location contexts and their 
relationship with the energy footprint could be so high that it is not possible to 
consider all the cases in the AI algorithms that compute the best solution to 
deploy a set of VNFs. 

Rationale To compute the energy footprint of a VNF we need to consider the energy cost 
depending on the location of the input data, and also the context of the 
execution location.  One possible context could be the quality of the energy 
consumed, if it is green and renewable energy or polluting energy.  

K1 X K2  K3  K4  K5  K6  K7  K8  K9  
Parents FR-EAWVNF-004 

Current Status 
Percent complete 100% 
Risk 
management 

Effective 
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Rationale The energy-aware placement solution in D4.2 [3] has the specificity of an energy 
profile considering requirements that are related to the execution location 
context, such as the available Random Access Memory (RAM), storage, or 
specific hardware/server configurations. Based on the different constraints 
above, the solution allows selecting the nodes where VNFs can be run to reduce 
energy consumption while meeting the needs of the infrastructure. 
In addition, one of the modules that are part of the proactive auto-scaling 
solution and VNF placement is the energy-aware orchestrator, which calculates 
the energy consumption according to the location of the VNFs and assigns the 
applications/VNFs to the most energy-efficient node. 

 
FR-EAWVNF-004.01 

Description DAEMON’s EAWVNF should characterize the different variants of VNFs regarding 
the context of the location where the VNF will be running. 

Version 001M3 
Owner UMA 
Priority High 
Risk 5 
Risk Description Sometimes the proposed solutions for energy saving cost about the same or 

sometimes even more than applying a non-energy aware policy. So, we need to 
assess the cost of computing NI solutions in terms of energy, by adding this cost to 
the global energy footprint of the solution proposed by DAEMON.  

Rationale The energy footprint of a VNF could depend on the energy cost of getting the 
input information depending on the location of the input data. Sometimes, the 
best solution could be to migrate the VNFs, but other times DAEMON could 
propose to adapt VNFs so that we can instantiate the most energy-efficient 
version. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  
Parents FR-EAWVNF-004 

Current Status 
Percent complete 90% 
Risk 
management 

Effective 

Rationale A solution in D4.2 [3] considers the energy cost of computing VNF placement, 
which is considered part of the global energy footprint of the solution. The 
placement decision considers the computational and communication energy 
consumption of VNFs based on their location in the infrastructure to place them 
in an energy-efficient manner. 

 
FR-EAWVNF-005 

Description DAEMON’s EAWVNF shall configure virtualized radio access networks to increase 
their energy efficiency 

Version 001M17 
Owner NEC 
Priority High 
Risk 1 
Risk Description There is a risk that DAEMON will be unable to configure virtualized radio access 

networks. This risk is low because O-RAN specification shall permit this. 
Rationale RAN virtualization promises high flexibility and lower costs but current virtualization 

techniques render higher energy consumption in the RAN. Hence, it is of 
paramount importance to configure virtualized base stations with their energy 
consumption in mind 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  
Parents FR-EAWVNF-000 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale The risk was low. The design of NI to configure virtualized radio access networks 
with energy-driven goals was presented in D4.2 [3], Section 2.3, and additional NI 
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will be presented in D4.3, with an NI that jointly controls virtualized radio access 
networks and edge services. Details can be found in [18], [40], [63]. 

 
FR-EAWVNF-006 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNFs scaling. 
Version 001M18 
Owner UMA 
Priority Medium 
Risk 2 
Risk Description The cost in terms of energy consumption of VNFs scaling, depends on several 

factors that we need to identify. Depending on the approach used to calculate 
or estimate energy footprint the accuracy of the final result will be more or less 
adjusted to reality. 

Rationale there are different proposals to perform VNF scaling and each of them needs to 
incorporate an energy profile to calculate or estimate the energy footprint. 
Scaling up or down a certain VNF frequently according to a dynamic demand 
has an energy cost that should be analyzed. It is essential to understand this 
energy cost to prioritize if scaling up and down is needed. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  
Parents FR-EAWVNF-000 

Current Status 
Percent complete 70% 
Risk 
management 

Effective 

Rationale In D4.2 [3], a proactive autoscaling solution and VNF placement consider the 
energy consumption of horizontal scaling explicitly to optimize VNF placement. 
Also, it will be extended to consider vertical scaling. 

 
FR-EAWVNF-006.00 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNFs vertical scaling. 
Version 001M18 
Owner UMA 
Priority Low 
Risk 5 
Risk Description The cost of VNF vertical (up/down) scaling to augment (i.e., scale up) the 

provision of VNF resources depends on several factors that we need to identify. 
Also, there are different approaches to perform VNF resource allocation and 
each of them requires a different formula for energy footprint calculation, 
affecting the accuracy of the final result. 

Rationale The cost of VNF vertical scaling to augment (i.e., scale up) the provision of VNF 
resources has an energy cost that should be analyzed.  It is essential to understand 
the energy cost of resource provision to decide when VNF vertical scaling is 
needed, while taking into account the cost of resource provision actions. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  
Parents FR-EAWVNF-006 

Current Status 
Percent complete 25% 
Risk 
management 

Partial 

Rationale Our proactive energy consumption model presented in D4.2 [3] will be 
extended to calculate the energy footprint of VNFs' vertical scaling, but it has 
not been tested nor validated yet. 

 
FR-EAWVNF-006.01 

Description DAEMON’s EAWVNF shall measure the energy footprint of VNFs horizontal scaling. 
Version 001M18 
Owner UMA 
Priority Low 
Risk 2 
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Risk Description The main risk is that we do not consider all the factors relative to VNFs horizontal 
scaling due to virtualization that affects the energy consumption of scaling a 
certain VNF. Another risk is that, even when we find a formula to calculate this 
energy footprint for a certain virtualization technology (or a few of them), later 
new technologies may appear.  

Rationale The horizontal scaling (I.e., in/out) of a VNF has an energy cost due to the 
virtualization process, which should be analyzed. DAEMON should propose 
mechanisms to find out the elements that influence this energy cost, such as the 
HW of target devices (mainly Edge devices and Cloud). Also, DAEMON will 
propose mechanisms to estimate the energy footprint for both simulated and real 
environments. It is essential to understand this energy cost to prioritize horizontal 
scaling if needed.  

K1 X K2  K3  K4  K5  K6  K7  K8  K9  
Parents FR-EAWVNF-006 

Current Status 
Percent complete 100% 
Risk 
management 

Effective 

Rationale The proactive autoscaling solution and VNF placement presented in D4.2 [3] 
explicitly consider the energy consumption of horizontal scaling to optimize VNF 
placement. This solution considers both the base (idle) and dynamic (due to 
application execution) energy consumption of the nodes, as well as the energy 
consumption of node scaling. 
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A.6 Functional requirements: Self-learning MANO 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
 
Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 

FR-SLMANO-002 
DAEMON controllers and orchestrators 
shall support diverse intent based 
objective combinations provided by 
application developers, in terms of 
high-level application properties 
(possibly unknown at design time). 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-SLMANO-000 
DAEMON controllers and orchestrators 
shall be steered by high-level QoE 
targets and business KPIs (high level 
intents), rather than strict QoS goals 
and technical KPIs. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-SLMANO-003 
DAEMON controllers and orchestrators 
shall self-converge to stable control 
loops. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-SLMANO-002.00 
DAEMON controllers and 
orchestrators should support 
diverse intent based objective 
combinations of energy footprint 
and latency provided by 
application developers, in terms of 
high-level application properties. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-SLMANO-004 
DAEMON controllers and orchestrators 
shall be trustworthy and explainable, 
where decisions can be traced back to 
the key intents that have driven a 
specific action. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-SLMANO-005 
DAEMON controllers and orchestrators 
shall be able to report that the systems 
they control behave unexpectedly, 
indicating a possible need for retraining 
to cope with unseen or changed 
dynamics. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-SLMANO-000 
DAEMON shall design autonomous 
and self-learning orchestrators and 
controllers that can operate with 
minimal human intervention. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-SLMANO-001 
DAEMON shall define metrics to 
check the stability of a control 
algorithm. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-SLMANO-006 
DAEMON shall implement mechanisms 
to detect when learned information 
becomes stale. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-SLMANO-007 
The autonomous and self-learning 
orchestrators and controllers of 
DAEMON shall be able to gradually 
adapt to changing environments. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial   100%-0% 

80% 

90% 

60% 

90% 

30% 

80% 

30% 

100% 

80% 

80% 
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FR-SLMANO-000 

Description DAEMON shall design autonomous and self-learning orchestrators and controllers 
that can operate with minimal human intervention. 

Version 002M17 
Owner NBL 
Priority High 
Risk 2 
Risk Description Only regularly repeating patterns can be learned. Stochastic fluctuation on top 

of these regular patterns hamper learning and need to be filtered out.  The 
learning rate, number of epochs (the number of times that is run through the data) 
and exploitation versus exploration balance need to be carefully chosen. 
Moreover, the behavior of the system can change either slowly (as the system 
evolves) or suddenly (when, e.g., new software is installed on some of the 
components. Both need to be handled.   

Rationale Any decision that the orchestration and control functions can be envisioned to 
be automized in the following way. First, the software agent taking the decisions 
needs to be provided (in a timely way) with the data necessary to take its 
decisions. The agent relies on the policy currently in force to take the appropriate 
action. With each action taken (given the provided data) the agent is provided 
with feedback that expresses how good that action was given the current data. 
Based on this feedback, the agent can change its policy to steer the system in 
the desired direction.    

K1  K2  K3  K4  K5  K6  K7  K8  K9 X 
Parents None. 

Current Status 
Percent complete 80% 
Risk 
management 

Effective 
  

Rationale We have studied the SLMANO components, i.e., placement/routing of requests 
for new network services and scaling/life-cycle management of existing network 
services under various traffic loads, as reported in Section 6.1.4 of D4.1 [6] and 
Section 4.4.7 of D5.1 [7]), respectively.  Random noise was added to the regular 
patterns and flash crowds were introduced (see the talk on DAEMON’s 1st 
industrial workshop). Under all circumstances the components behaved 
robustly.  
All these loads were artificially generated because, as far as we know, no real 
loads are available yet. Once real data becomes available an additional round 
of robustness checks with these real loads will be needed.  
We also studied the essential building block of an application-aware RAN (in 
D3.1 [5], D3.2 [2]), which classifies traffic in a finite number of classes (data, 
video, web, podcast, …), based on a labeled data captured in a testbed. The 
classifier, which is the essential component in the Application Aware RAN (AAR), 
operates without any human intervention (once the labeled data is captured): 
it is trained via a supervised learning technique (and interrupts automatically 
before it is overtrained), while the interference is operated without any human 
interaction. 

 
FR-SLMANO-002 

Description DAEMON controllers and orchestrators should support diverse intent based 
objective combinations provided by application developers, in terms of high-
level application properties (possibly unknown at design time). 

Version 002M17 
Owner NBL 
Priority High 
Risk 2 
Risk Description Can a single algorithm fulfill this requirement for all use cases (e.g., URLLC (ultra-

low latency reliable communication), EMBB (enhanced mobile broadband), and 
MMTC (massive machine type communication) defined in 5G)? Will it be too 
complex? Is it better to train multiple competing algorithms for each specific use 
case and select the best performing? 
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Rationale Business KPIs will change frequently due to highly varying markets. The algorithms 
provided by DAEMON need to be flexible enough to self-learn and converge to 
sufficiently optimized behavior to avoid human intervention for retuning or 
redesigning the algorithms and mechanisms. If a classical algorithm still has 
parameters to tune a procedure, to tune (i.e., learn) these parameters need to 
be designed and investigated.  

K1  K2  K3  K4  K5  K6  K7  K8  K9 X 
Parents FR-SLMANO-000 

Current Status 
Percent complete 70% 
Risk 
management 

Partial 

Rationale We have tested the placement/routing and scaling algorithms with a variety of 
workloads (see FR-SLMANO-000) and under differentiated latency bounds (to be 
reported in D5.3) and noticed that the proposed algorithms perform well.  
Unfortunately, there was no real data available to us pertaining to ULLRC, eMMB 
and MMTC slices, so that beyond the test on a wide variety of artificially 
generated traces, tests with real traffic were not possible.  
We have also trained and (cross-)tested the classifier, which plays a central role 
in the application-aware RAN, on two different datasets, i.e., one captured with 
tail-drop buffers, and one captured with L4S activated (see D3.3 and D5.3), the 
former of which aims at maximizing throughput, while the latter of which respects 
a strict latency bound.    
Ideally, the AAR classifier allows fine-tuning the traffic differentiation based on 
class-specific intents, e.g., low latency for XR, high throughput for bulk downloads. 
Beyond latency and throughput, we did not consider high-level application 
properties. 

 
FR-SLMANO-002.00 

Description DAEMON controllers and orchestrators should support diverse intent based 
objective combinations of energy footprint and latency provided by application 
developers, in terms of high-level application properties. 

Version 002M17 
Owner UMA 
Priority High 
Risk 2 
Risk Description The energy consumption calculation of placement decision should take into 

consideration also the requirements in terms of the latency/time 
response/timescale needs of service function chains. The algorithm should find 
the best tradeoff between the most fitting timescale and the energy-saving 
requirements for the VNF placement. 

Rationale Following the cloud-native service design, the service function chains consist of 
loosely coupled VNFs that can be separately placed. Orchestration managers 
can make the VNFs placement decisions, while maintaining the service provision. 
The algorithms provided by DAEMON that make orchestration decisions should 
consider latency/time response/timescale needs of service function chains and 
at the same time the energy footprint. So, to make a tradeoff between time and 
energy footprint is desired.  

K1 X K2  K3  K4  K5  K6  K7  K8  K9 X 
Parents FR-SLMANO-002 

Current Status 
Percent complete 85% 
Risk 
management 

Effective 

Rationale The CQL framework [73] supports advanced optimization by supporting multi-
objective combinations of quality attributes, such as latency and energy 
consumption.  In the evaluation of the CQL framework and to control randomness 
we repeated the experiments 97 times and averaged the results for a confidence 
level of 95% with a 10% margin of error. External validity is that not all the evaluated 
systems are NFVs, but well-known models with registered complex quality 
measurements are rare in the SDN literature. Consequently, by choosing the real-
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world systems selected in the evaluation we pretended to cover a variety of 
properties, quality attributes and functions commonly found in VNF cases. 
Nonetheless, we are aware that they do not cover every possible casuistic 
individually. Moreover, while one could claim that larger systems should be tested, 
we should mention that larger spaces are very rare for VNF orchestrators. The 
problem in SDN systems is the complexity of the reasoning and not the size of it. 
Testing our algorithms with only one Category Theory reasoner could be another 
threat. The problem is that Category Theory tools are rare due to the intrinsic 
abstraction and knowledge requirement. 

 
FR-SLMANO-003 

Description DAEMON controllers and orchestrators should self-converge to stable control 
loops. 

Version 002M17 
Owner NBL 
Priority High 
Risk 3 
Risk Description Can we capture realistic dynamic behavior in the systems, emulators or simulators 

that we will use? How can stability be verified? 
Rationale Different parts of the system will have different dynamics, potentially changing 

over time due to SW and HW upgrades. The algorithms provided by DAEMON 
need to be intelligent enough to self-learn and converge to a stable though 
responsive behavior without human intervention for retuning or redesigning the 
algorithms and mechanisms.    
In general, a system operating in a steady state is stable if after an infinitesimally 
short, small enough perturbation applied to it dies out exponentially fast so that it 
returns to that steady state working point. The perturbation needs to be short 
compared to the reaction time inherent to the system and small so that it does 
not jump to another working point.   

K1  K2  K3  K4  K5  K6  K7  K8  K9 X 
Parents FR-SLMANO-000 

Current Status 
Percent complete 90% 
Risk 
management 

Successful 

Rationale We used a practical definition of stability: as long as small perturbations on the 
input, did not lead to growing fluctuations at the output, we called the system 
stable.  
For the closed-loop scalers we noticed that in all cases we considered there was 
a setting of the parameters that yielded stable operation (see Section 4.4.7 of 
D5.2 [4]). However, during training of the reinforcement learning scaler and the 
tuning of the parameters of the proportional integral scalers, some parameter 
settings lead to unstable operation. Whenever such a situation occurred, we 
interrupted the learning process and restarted with new initial parameters. This 
procedure turned out to be sufficient to end up with a stable scaler.   

 
FR-SLMANO-004 

Description DAEMON controllers and orchestrators should be trustworthy and explainable, 
where decisions can be traced back to the key intents that have driven a specific 
action. 

Version 003M17 
Owner NBL 
Priority Low 
Risk 5 
Risk Description Often ML tools are black boxes that after training work well but do not give any 

indication of why they work. Human network operators might distrust such tools 
and hence, be reluctant to use them. Moreover, when decisions are taken at 
multiple layers at different timescales, conflicts may arise amongst agents 
operating at different timescales (possibly due to a human error when setting the 
goals).  
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Rationale In a complex composition of multi-layer controllers, conflicts between different 
levels of intents need to be visualized, such that unexpected unwanted behavior 
can be analyzed and revised in terms of the active and potentially erroneously 
specified intents (due to human errors).    

K1  K2  K3  K4  K5  K6  K7  K8  K9 X 
Parents FR-SLMANO-000 

Current Status 
Percent complete 30% 
Risk 
management 

Partial 

Rationale We started this work in the 3rd year, and we are still working on it. If there is 
progress, we will update this later.  

 
FR-SLMANO-005 

Description DAEMON controllers and orchestrators should be able to report that the systems 
they control behave unexpectedly, indicating a possible need for retraining to 
cope with unseen or changed dynamics. 

Version 001M2 
Owner NBL 
Priority High 
Risk 3 
Risk Description There is a risk that spurious changes are seen by the system as changes in the 

environment, causing the system to retrain (doing a lot of exploration and making 
the associated wrong decisions) where it is not needed.  

Rationale If online retraining is prohibited, or if the algorithms are incapable of self-
converging to a sufficient solution, the need for human intervention needs to be 
reported. 

K1  K2  K3  K4  K5  K6  K7  K8  K9 X 
Parents FR-SLMANO-000 

Current Status 
Percent complete 80% 
Risk 
management 

Successful 

Rationale The classifier associated with the application-aware RAN was trained on two 
different datasets (describing the evolution of the RLC buffer under various types 
of traffic), i.e., one dataset in which the RLC buffer was governed by tail drop 
and another dataset in which the RLC buffer was governed by L4S active queue 
management to keep the RLC buffer (and hence. The latency incurred over 
that buffer) small.  
It was shown that training the classifier on one data set and testing on another 
yielded a low performance (will be updated in D5.3), indicating that detecting 
a change in buffer acceptance mechanism can be easily detected when 
observing the performance of the traffic classifier.    

 
FR-SLMANO-006 

Description DAEMON shall implement mechanisms to detect when learned information 
becomes stale. 

Version 002M17 
Owner NBL 
Priority Medium 
Risk 3 
Risk Description The behavior of the system can change suddenly (when, e.g., a flash crowd 

arrives generating a lot of traffic, when new software is installed on some of the 
components, when there is an outage of part of the infrastructure), which makes 
that the policy learned on past system behavior is no longer applicable. 
Therefore, a system is needed to detect when learned information becomes stale 
indicating when retraining is required.   

Rationale In the framework defined under FR-SLMANO-000-001M2, where the software 
agent taking the decisions is provided (in a timely way) with the data necessary 
to take its decisions and where with each action taken (given the provided data), 
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the agent is provided with quantitative feedback that expresses how good that 
action was, a change in behavior can be detected by observing the evolution 
of the feedback. If there is a drastic change, the balance between exploration 
and exploitation needs to be tilted in favor of exploration so that the system can 
be retrained to work properly in the new environment.     

K1  K2  K3  K4  K5  K6  K7  K8  K9 X 
Parents FR-SLMANO-000 

Current Status 
Percent complete 30% 
Risk 
management 

Partial 

Rationale In the study of how to segment a service function chain (SFC), in which the 
segments are assigned to various datacenters, based on a distributed multi-
agent reinforcement learning (DMARL) technique we gradually decreased the 
balance between exploitation and exploration (see Section 4.2.6 of D5.2 [4] and 
[61]). We chose the decrease in such a way that the system was able to learn 
the desired behavior. This turned out to be trickier than we initially expected, so 
not enough time remained in the scope of the project to investigate how this 
balance should be reinstated when the traffic load would drastically change.  

 
FR-SLMANO-007 

Description The autonomous and self-learning orchestrators and controllers of DAEMON shall 
be able to gradually adapt to changing environments. 

Version 001M17 
Owner NBL 
Priority Medium 
Risk 2 
Risk Description The behavior of the system can change slowly together with the usage patterns. 

DAEMON self-learning MANO needs to follow these changes otherwise the 
decisions it takes will gradually become worse. This can be achieved by setting a 
good balance between exploration and exploitation.  

Rationale A learning system that relies on feedback to improve its policy, can gradually 
learn by taking from time-to-time exploratory actions (i.e., random actions which 
are deemed not to be optimal by the current policy). Usually, the fraction of 
exploration actions is large (close to 100%) at the start of the learning process, 
and gradually reduces to 0 as the system learns. In order to be able to adapt to 
a changing environment, the exploration fraction is kept at, say, 10%.     

K1  K2  K3  K4  K5  K6  K7  K8  K9 X 
Parents FR-SLMANO-000 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale In the study of how to segment a service function chain (SFC), in which the 
segments are assigned to various datacenters, based on a distributed multi-
agent reinforcement learning (DMARL) technique we determined how to 
decrease the balance between exploitation and exploration (see Section 4.2.6 
of D5.2 [4] and [61]). We have spent a lot of time investigating what the optimal 
decrease is, avoiding, on the one hand, that the system gets stuck in a 
suboptimal policy and, on the other hand, that it takes random decisions for too 
long a time.   
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A.7 Functional requirements: Capacity forecasting 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
  

FR-CFORE-001 
DAEMON capacity forecast 
models shall operate at very 
different timescales. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CFORE-002 
DAEMON capacity forecast 
models shall account for monetary 
costs in order to produce a 
practical prediction. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CFORE-003 
DAEMON capacity forecast 
models shall operate over 
streaming data. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CFORE-000 
DAEMON shall design capacity 
forecast models that can support 
Network Intelligence (NI) 
algorithms across the mobile 
network architecture. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CFORE-004 
DAEMON capacity forecast 
models shall provide information 
about their level of accuracy. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CFORE-006 
Loss meta-learning should occur 
with minimum training time. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CFORE-005 
DAEMON capacity forecast 
models shall be able to learn their 
objective/loss function 
autonomously. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-CFORE-007 
Loss meta-learning shall support 
losses that combine multiple 
predictions. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial   100%-0% 

90% 

95% 

100% 

75% 

100% 

95% 

75% 

50% 
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FR-CFORE-000 
Description DAEMON Capacity Forecasting (CFORE) shall design models capable of 

anticipating the amount of resources needed to accommodate future mobile 
service demands, so as to support Network Intelligence (NI) algorithms across the 
mobile network architecture. 

Version 001M2 
Owner IMDEA 
Priority High 
Risk 3 
Risk Description The main risk is that the forecasting models do not achieve the accuracy needed 

to support efficient decision-making, hence limiting the effectiveness of NI. 
Rationale Many decisions to be taken by orchestrators and controllers deployed across 

different micro-domains of the mobile network must be taken in an anticipatory 
manner, i.e., proactively, with respect to the actual demand or requirements. 
Such decisions concern the capacity that orchestrators and controllers shall 
allocate in their micro-domain of competence. Predicting such capacity is thus 
a key enabler for the NI operating across the whole network.  

K1  K2  K3  K4 X K5  K6  K7  K8  K9 X 
Parents None 

Current Status 
Percent complete 90% 
Risk 
management 

Effective 

Rationale DAEMON has developed models for capacity forecasting that can follow 
original design guidelines and allow effectively allocating resources in an 
anticipatory fashion. Extensive performance evaluations have demonstrated 
the accuracy of the models. Details on the design and evaluation are provided 
in D2.2 [1], D4.2 [3] and D5.2 [4], in addition to refinements that are developed 
in the last iteration of the project, as presented in Section 7.1.1 of the present 
document and later complemented in D4.3 and D5.3. Additional details are 
reported in the lower-level requirements, where we discuss how the developed 
solutions meet the requirements and what additional steps must be taken to 
meet them fully if not yet successfully completed. Risks were estimated as 
intermediate at the start of the activity, due to the limited amount of prior work 
on the topic of capacity forecasting; yet, all risks have been avoided or largely 
mitigated, as detailed in the children requirements, and the expectation is to 
reach a 100% completion of nearly all requirements by the end of the project, 
based on evaluations carried out in the last iteration and presented in D5.3. 

 
FR-CFORE-001 

Description DAEMON capacity forecast models shall operate at very different timescales 
Version 001M2 
Owner IMDEA 
Priority Medium 
Risk 3 
Risk Description The risk of insufficient accuracy in the prediction is exacerbated as timescales 

become faster, as traffic demands are increasingly bursty, and the changes in 
requirements become more and more rapid. 

Rationale Orchestrators and controllers operate at very different timescales across the 
diverse network domains and take decisions over intervals that range from hours 
to seconds or less depending on the nature of the concerned resources (e.g., 
computing resources, transport capacity, spectrum, etc.). Capacity forecasting 
models must be adapted to such diverse settings. 

K1  K2  K3  K4 X K5  K6  K7  K8  K9 X 
Parents FR-CFORE-000 

Current Status 
Percent complete 95% 
Risk 
management 

Successful 

Rationale The capacity forecasting models developed by DAEMON have been applied to 
very different use cases with heterogeneous timescales, as outlined in Section 3 
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of D4.2 [3]. The models proved effective in addressing those different settings. In 
order to fully meet the requirement in a successful way, further tests at even 
more diverse timescales (e.g., seconds to days) may be needed. Risks were 
estimated as intermediate at the start of the activity, due to the inherent 
uncertainty of the flexibility of the models to different timescales; the 
experimental results obtained by the project across a variety of capacity 
forecasting use cases prove that such risks have been avoided. 

 
FR-CFORE-002 

Description DAEMON capacity forecast models shall account for monetary costs in order to 
produce a practical prediction 

Version 001M2 
Owner IMDEA 
Priority High 
Risk 4 
Risk Description Considering a high number of cost sources makes the forecasting problem more 

involved and identifying the correct capacity prediction becomes harder in 
general. 

Rationale Predicting the sheer capacity needed to accommodate the traffic demand is 
not sufficient in many practical applications of capacity forecasting to network 
orchestration and control. Often, decisions on the allocation of resources and 
Virtual Network Functions (VNFs) must consider the costs incurred by the network 
operator (e.g., unnecessarily assigned resources that go unused, Service Level 
Agreement violations, VNF reconfiguration delays that determine subscriber 
churn, energy consumption generated by running VNFs at different network 
elements, etc.). Designing models that can capture such costs, and output a 
capacity that jointly reduces them, is critical to the economic sustainability of the 
network management process. 

K1  K2  K3  K4 X K5  K6  K7  K8  K9 X 
Parents FR-CFORE-000 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale The capacity forecasting models developed by DAEMON were tested in settings 
that involved, in several cases, monetary costs. Specifically, the models were 
employed to solve tasks in anticipatory capacity allocation, as per Section 3.1 
of D4.2 [3], or minimization of video streaming slice OPEX, as per Section 3.3 of 
D4.2 [3]: these are problems that inherently include economic costs in their 
formulation. As shown in Section 4.5 of D5.2 [4], the models proved effective in 
such tasks. Risks were estimated as high at the start of the activity, due to the 
absence of prior work on the topic; yet, the project was able to demonstrate 
how the developed capacity forecasting models can successfully operate in 
settings where the performance (hence the loss design or loss meta-learning 
process) depend on monetary costs incurred by the operator. 

 
FR-CFORE-003 

Description DAEMON capacity forecast models shall operate over streaming data 
Version 001M5 
Owner IMDEA 
Priority High 
Risk 4 
Risk Description Adapting capacity forecasting to support a streaming model adds complexity 

and challenges to the design of the solution, which may reduce its efficiency. 
Rationale While many traffic forecasting models are trained offline and tested on historical 

data, the operation of such models in production calls for training and operation 
on traffic data as it is measured in the network. This implicitly means that capacity 
forecasting models must be adapted to work on streaming data. 

K1  K2  K3  K4 X K5  K6  K7  K8  K9 X 
Parents FR-CFORE-000 
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Current Status 
Percent complete 75% 
Risk 
management 

Effective 

Rationale The models for capacity forecasting proposed by DAEMON can operate over 
streaming data, as proven by the performance evaluations carried out in 
Section 4.5 of D5.2 [4], which employed measurement data from production 
networks as input to the models. In order to meet the requirement in a way that 
is fully successful, additional testing over very long time periods (e.g., months) is 
needed, so as to verify the capability of the models to generalize and adapt to 
varying traffic conditions that may be very different from those observed during 
the training period. Risks were estimated as high at the start of the activity, due 
to the lack of prior testing of capacity forecasting models over streaming data; 
the results of the proposed models with a number of use cases involving 
streaming mobile network traffic data collected from real-world production 
systems demonstrate that the risk has been effectively mitigated. 

 
FR-CFORE-004 

Description DAEMON capacity forecast models shall provide information about their level of 
accuracy 

Version 001M17 
Owner IMDEA 
Priority Low 
Risk 4 
Risk Description Anticipating not only the target variable but also the uncertainty of its estimate 

makes the prediction task sensibly more complex. 
Rationale Having information on the uncertainty of the prediction can help fine-tuning 

resource allocation, e.g., by including safety margins dimensioned on the level of 
expected accuracy of the forecasting model. 

K1  K2  K3  K4 X K5  K6  K7  K8  K9 X 
Parents FR-CFORE-000 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale The capacity forecasting models developed by DAEMON can be naturally 
extended to leverage dropout layers during the inference phase so as to emulate 
the behavior of computationally complex Bayesian models. This strategy is 
adopted for instance in the models presented in Section 4.3 of D4.2 [3]. Risks were 
estimated as high at the start of the activity, due to the computational complexity 
of obtaining accurate information during inference via traditional Bayesian 
approaches; we avoided the risk by adopting computationally efficient 
approximations that make the operation possible at low cost, hence supporting 
the viability of the model in practical settings. 

 
FR-CFORE-005 

Description DAEMON capacity forecast models shall be able to learn their objective/loss 
function autonomously 

Version 001M17 
Owner IMDEA 
Priority High 
Risk 3 
Risk Description Meta-learning the correct loss from scratches is a challenging task, for which no 

solution exists in the machine learning community. 
Rationale Many network management tasks involve situations where the relationship 

between the prediction (e.g., of resources to be allocated) and the performance 
(e.g., quality of experience of users) is unknown a-priori. In these settings, 
designing a correct loss function for machine learning is not possible, and meta-
learning the loss is the only viable option. 

K1  K2  K3  K4 X K5  K6  K7  K8  K9 X 
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Parents FR-CFORE-000 
Current Status 

Percent complete 95% 
Risk 
management 

Successful 

Rationale DAEMON has designed loss-meta learning models as presented in Section 4.1.3 
of D2.2 [1], which are also enhanced in Section 7.1.3 of the present document. 
These models can autonomously learn losses that are tailored to the network 
management task at hand. They have been applied to different practical use 
cases in Section 3.2 and Section 3.3 of D4.2 [3], and their effectiveness has been 
proven with real demands in Section 4.5.2 and Section 4.5.3 of D5.2 [4]. In order 
to achieve 100% success, we will need to evaluate the solutions for combined 
predictors, which will be done in D5.3 of the project. Risks were estimated as 
intermediate at the start of the activity, due to the extreme novelty of the 
approach, and to the lack of loss meta-learning solutions for forecasting; the risks 
were avoided by the introduction of a fully novel design that operates very well 
in a variety of practical use cases. 

 
FR-CFORE-006 

Description Loss meta-learning should occur with minimum training time 
Version 001M17 
Owner IMDEA 
Priority Medium 
Risk 3 
Risk Description Meta-learning the loss inherently increases the time to convergence of a machine 

learning model, and reducing that time is challenging. 
Rationale In meta-learning models, the loss is learned (along with the model parameters) at 

runtime in the production system. Therefore, the initial lack of accuracy of the loss 
representation determines substantial errors in the predictions, hence significant 
costs for the operator. It is thus key to minimize the training time and the economic 
penalty for the operator of training the whole model from a cold start situation. 

K1  K2  K3  K4 X K5  K6  K7  K8  K9 X 
Parents FR-CFORE-005 

Current Status 
Percent complete 75% 
Risk 
management 

Efficient 

Rationale The models developed by DAEMON have been trained on limited amount of real-
world measurement data, i.e., 4-8 weeks, showing good performance in all cases, 
as demonstrated in the experiments described in D5.2 [4]. Meeting the 
requirement fully needs additional testing, e.g., with even shorter training 
datasets. Risks were estimated as intermediate at the start of the activity, due to 
the well-known needs for massive training data of deep neural network models; 
the risk was strongly mitigated thanks to a compute-prudent approach that 
traded off model complexity (e.g., depth) for a better (e.g., hybrid or meta-
learning) design, which ultimately resulted in a reduced need for training data. 

 
FR-CFORE-007 

Description Loss meta-learning shall support losses that combine multiple predictions 
Version 001M17 
Owner IMDEA 
Priority Medium 
Risk 3 
Risk Description Having multiple forecasting models depend on the same loss implies correlations 

in the predictions, which are typically very complex to learn, making the problem 
more involved than single-input loss meta-learning. 

Rationale In many network management tasks, the performance does not depend on a 
single prediction but on a composition of multiple forecasting tasks. This is the 
case, for instance, in admission control problems over many predicted traffic 
flows, or in network slice brokering. Learning the correct loss function in those 
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situations implies capturing the correlations among the different predictions and 
the performance metric, which calls for even more complex meta-learning tools. 

K1  K2  K3  K4 X K5  K6  K7  K8  K9 X 
Parents FR-CFORE-005 

Current Status 
Percent complete 50% 
Risk 
management 

Partial 

Rationale Support for intertwined predictions in meta-learned loss is introduced by the 
original architecture described in Section 7.1.3 of the present document. The 
design allows handling loss meta-learning in the presence of multiple decisions 
that have a reciprocal influence on each other. The requirement is only partially 
met at the time of writing, as the effectiveness of the solution needs to be assessed 
in practical use cases. Such use cases will be defined in D4.3, and the 
performance of the proposed solution will be evaluated in D5.3 of the project. 
Risks were estimated as intermediate at the start of the activity, due to the high 
complexity of achieving accurate capacity forecasting in the presence of 
mutually dependent predictions; the risks were mitigated by introducing an 
appropriate neural network design that can manage intertwined predictions 
associated with a single loss function. 
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A.8 Functional requirements: Automated anomaly response 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
  

FR-AARES-001 
DAEMON anomaly detection shall 
operate at different timescales, 
depending on the input from the 
system DAEMON is monitoring. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-AARES-002 
DAEMON anomaly detection 
models have specific data 
requirements, including a sizable 
amount of historical data to 
establish normal behavior and 
ground truth occurrences of 
anomalies to develop a feasible 
solution. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

NFR-AARES-000 
NI solutions anomaly detection 
and response should have a high 
detection performance 
(specifically, DAEMON will target a 
0.9 precision-recall AUC with at 
least 85% scoring in both precision 
and recall.). 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-AARES-003 
DAEMON shall take into 
consideration the cost of system 
monitoring, developing and 
deploying the anomaly detection 
models in order to produce a 
feasible anomaly detection 
solution.   
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-AARES-000 
DAEMON shall automatically 
detect, analyze, and act against 
anomalous behaviors. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

FR-AARES-004 
DAEMON anomaly detection 
models need to account for a 
possible temporal distribution shift 
in unseen data. 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial   100%-0% 

 90% 

 90% 

 90% 

 90% 

 90% 

 100% 
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FR-AARES-000 
Description DAEMON shall automatically detect, analyze, and act against anomalous 

behaviors. 
Version 003M35 
Owner TID 
Priority High 
Risk 3 
Risk Description Anomaly detection tasks might not correctly capture new previously unseen 

anomalies. 
Rationale Most communication platforms use a reactive approach to deal with 

communication issues (i.e., operation teams react when incidents are severe 
only, and the service is often compromised already). DAEMON requires a 
proactive approach to anomaly detection that can detect both malicious and 
benign anomalies in the different systems it integrates.  

K1  K2  K3  K4  K5  K6  K7 X K8  K9  
Parents None 

Current Status 
Percent 
complete 

90% 

Risk 
management 

Successful  

Rationale DAEMON implements three different activities for real-time anomaly detection 
and automated anomaly response, namely, A9, A19 and A25 as reported in D5.2 
[4]. We provide details on the solution and its implementation in D4.2 [3] and D3.2 
[2], which we will complement with their final status in D4.3 and D3.3, respectively. 
The reported status in D5.2 [4] shows an average completion of approximately 
70% towards collecting the corresponding KPIs, which we will further update in 
D5.3. 

 
FR-AARES-001 

Description DAEMON anomaly detection shall operate at different timescales, depending on 
the input from the system DAEMON is monitoring.  

Version 002M5 
Owner TID 
Priority Medium 
Risk 2 
Risk Description Each anomaly detection task should take into consideration the requirements in 

terms of the timescale it needs to generate anomaly warnings. For finer 
granularities, the performance of the models might implicitly decrease, as the 
time available for the model to produce results also decreases. We will work to 
find the best tradeoff between the most fitting timescale and the performance 
requirements for the DAEMON anomaly detection tasks.  

Rationale Anomalies can become easier to spot depending on the timescale that fits to the 
particular system with which DAEMON interacts. 

K1  K2  K3  K4  K5  K6  K7 X K8  K9  
Parents FR-AARES-000 

Current Status 
Percent 
complete 

90% 

Risk 
management 

Effective 

Rationale The DAEMON anomaly detection NI functionality (e.g., A9, A19 in D5.2 [4]) adapts 
the local anomaly detection process frequency, based on the incoming data 
volumes, as well as the needs of the engineers managing the systems we monitor.   

 
FR-AARES-002 

Description DAEMON anomaly detection models have specific data requirements, including 
a sizable amount of historical data to establish normal behavior and ground truth 
occurrences of anomalies to develop a feasible solution.  

Version 002M5 
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Owner TID 
Priority High 
Risk 4 
Risk Description The lack of high-quality historical data to establish the baseline behavior of the 

system (i.e., anomaly-free state for training) poses a high risk to developing 
anomaly detection approaches for DAEMON. Similarly, the lack of ground truth 
anomalies that have been detected in the system will make the validation of any 
anomaly detection approach challenging. Finally, the lack of expert knowledge 
brings an extra risk when building data features to train the anomaly detection 
tools for DAEMON. 

Rationale The data quality is of paramount importance for the anomaly detection 
approaches we aim to integrate in DAEMON. Specifically, we aim to build on high 
quality ground truth for establishing the normal baseline for the system DAEMON 
monitors. Similarly, in order to validate the performance of our DAEMON anomaly 
detection solutions, we require a diverse set of ground-truth anomalies that 
operators previously captured in the systems DAEMON integrates. Furthermore, in 
order to craft data features that respond to the purpose of each system, we 
require expert knowledge and the operators’ support in this process.  

K1  K2  K3  K4  K5  K6  K7 X K8  K9  
Parents FR-AARES-000 

Current Status 
Percent 
complete 

90% 

Risk 
management 

Successful 

Rationale The solutions DAEMON proposes for anomaly detection rely on vast datasets of 
ground-truth anomalies that we collect from real-world systems (e.g., see the 
datasets supporting the evaluation of A19 in D5.2 [4]). DAEMON relies on the 
ticketing systems of the operational teams who manage the systems we monitor, 
which require continual updates.  

 
FR-AARES-003 

Description DAEMON shall take into consideration the cost of system monitoring, developing 
and deploying the anomaly detection models in order to produce a feasible 
anomaly detection solution.   

Version 003M5 
Owner TID 
Priority Low 
Risk 1 
Risk Description The high cost of training and running DAEMON anomaly detection tools might 

suppose a high expenditure for the operators’ of the system in question.  
Rationale DAEMON anomaly detection tools must run in real-world production systems, 

where we must also consider the actual monetary cost of running a state-of-the-
art system for ML/DL tasks. We will work to produce solutions that adapt to 
different tiers of existing resources.  

K1  K2  K3  K4  K5  K6  K7 X K8  K9  
Parents FR-AARES-000 

Current Status 
Percent 
complete 

90% 

Risk 
management 

Effective 

Rationale DAEMON’s anomaly detection solutions have been developed in collaboration 
with engineering teams of real-world systems, enabling us to take into 
consideration their requirements in terms of monitoring, data transformation, 
model training and anomaly inference. For example, DAEMON solutions are in 
some cases to integrated in the cloud-based big data platform that 
engineering teams use internally.  
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FR-AARES-004 

Description DAEMON anomaly detection models need to account for a possible temporal 
distribution shift in unseen data. 

Version 004M17 
Owner TID 
Priority High 
Risk 4 
Risk Description The data captured in a network environment is indeed a temporal series that can 

have seasonal patterns or data can even be non-stationary. This issue poses a 
high risk for any anomaly detection approach that learns some normal behavior 
or statistics from the data. A possible distribution shift where features extracted 
from the captured data diverge too much over time will make the detection of 
anomalies in unseen data challenging. 

Rationale The data used for anomaly detection should cover historical data for an analysis 
of seasonal shifts and temporal distribution shifts. The features extracted from the 
features should be tested against stationarity and temporal covariance shift. 
Feature selection should select features that show high stability over time to avoid 
this issue. Nevertheless, anomaly detection models can age over time and new 
data should be captured regularly to update such models. 

K1  K2  K3  K4  K5  K6  K7 X K8  K9  
Parents FR-AARES-000 

Current Status 
Percent complete 90% 
Risk 
management 

Effective 

Rationale DAEMON’s solutions for anomaly detection are designed to be periodically re-
trained to adapt to the shifts in the distributions of data.  We tested this, for 
example, this is the solution we described in Section 4.2 in D4.2 [3], showing that 
a monthly time window is likely adequate.  
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A.9 Functional requirements: Network Intelligence Plane 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

  

 

 

  

 

 

 

 

 
 

Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
 

 

 

FR-NIP-001 
DAEMON’s NIP shall offer end-to-end 
orchestration of network intelligence 
with closed control-loop to meet 
service KPIs in different micro-
domains. 

FR-NIP-001.00 
DAEMON’s NIP shall support the 
composition of Network intelligence 
Services (NISs) by selecting Network 
Intelligence Functions (NIFs) to pursue 
a given network KPI. 

FR-NIP-003.00 
DAEMON’s NIP shall support the 
lifecycle management of NISs. FR-NIP-003 

DAEMON’s NIP shall manage 
network intelligence with closed 
control loop to meet service KPIs in 
different micro-domains. 

FR-NIP-003.01 
DAEMON’s NIP shall support the 
lifecycle management of NIFs. 

FR-NIP-004 
DAEMON’s NIP shall coordinate 
network intelligence with closed 
control loop to meet service KPIs in 
different micro-domains. 

FR-NIP-004.00 
DAEMON’s NIP shall be able to 
perform policy/action/decision 
conflict resolution of different NIFs to 
guarantee the stability of the system. 

FR-NIP-000 
DAEMON’s Network Intelligence 
Plane (NIP) shall manage, 
coordinate, and orchestrate 
network intelligence with closed 
control loop to meet service KPIs in 
different micro-domains. 

FR-NIP-005 
DAEMON’s NIP shall provide a NIS 
and a NIF catalog. 

NFR-NIP-003 
NIP shall provide support for multiple 
virtualization environments for 
deploying services/applications in 
distributed domains 

 

         

NFR-NIP-004 
NIP shall provide support for 
federated multi-domain 
management and orchestration.   

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial   100%-0% 

95% 
95% 

 100% 

 80% 

 100% 
 100% 

 100% 

 80% 

 80% 

 80% 

 100% 

 100% 
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Risk Level:                     Requirement Type:                   Risk Management:                      Percent Complete:    

 
 

 

FR-NIP-002.00 
DAEMON’s NIP shall provide an interface 
to trigger the execution of ML pipelines. 
FR-NIP-002.01 
DAEMON’s NIP shall provide an interface 
with the network intelligence functions to 
communicate its decisions and to 
consume information (e.g., CPU/GPU 
consumption, accuracy, timescale, input 
data format) of NIF performance or 
conflicting policies to facilitate their 
management. 

FR-NIP-000 
DAEMON’s Network Intelligence 
Orchestrator (NIO) shall manage 
and orchestrate network 
intelligence with closed control 
loop to meet service KPIs in 
different micro-domains. 

NFR-NIP-008 
The system constraints for NIF 
selection at the edge are energy, 
computation, network, and KPIs. 

FR-NIP-002.02 
DAEMON’s NIP shall provide an interface 
to support end-to-end, decentralized, 
and unified data management for 
network intelligence. 

FR-NIP-002.03 
DAEMON’s NIP shall provide an interface 
with the network management and 
orchestration system. 

NFR-NIP-001 
DAEMON’s NIP shall make an optimal 
decision on using the communication 
framework for sharing information 
between monitoring systems and the 
management and orchestration 
framework.   

FR-NIP-002 
DAEMON’s NIP shall provide the 
appropriate interfaces to 
communicate with different 
functional blocks (referenced in 
section 3 of D2.2). 

NFR-NIP-002 
NIP shall provide openness of interfaces 
between orchestration/control tiers and 
NIFs/NISs to mitigate the dependence on 
specific network 
operators/vendors/infrastructure 
providers/service providers. 

NFR-NIP-005 
DAEMON’s NIP shall interact with the 
Network Orchestration Framework 
aligned with ETSI-NFV-MANO. 

NFR-NIP-006 
DAEMON’s NIP shall interact with the 
3GPP Network Analytics System. 

NFR-NIP-007 
DAEMON’s NIP shall interact with the O-
RAN on non-RT RIC and near-RT RIC. 

NFR-NIP-009 
DAEMON’s NIP shall provide native NI 
procedures to be used by the project 
developed NIFs. 

1  2  3  4  5  Functional  Non-Functional        Successful       Effective      Partial   

95% 
95% 

 100% 

 100% 

 100% 

100%-0% 

 100% 

 100% 

 100% 

 100% 

 100% 

 100% 

 100% 

 100% 

 100% 
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FR-NIP-000 
Description DAEMON’s Network Intelligence Plane (NIP) shall manage, coordinate, and 

orchestrate network intelligence with a closed control loop to meet service KPIs 
in different micro-domains. 

Version 002M18 
Owner IMEC  
Priority Low 
Risk 1 
Risk Description Given the wide range of NI solutions we need a common framework to map the 

most common features of NI algorithms, integrate them into a defined 
architecture, and design the necessary interfaces that algorithms use to interact 
with their environment.  

Rationale Network Intelligence (NI) is proposed to replace or assist network operators in their 
diverse set of network management tasks. However, current management 
frameworks (e.g., O-RAN, MANO) are not flexible enough or do not support the 
integration of NI instances. The DAEMON architectural framework enables the 
penetration of intelligence into both the user and control planes, thereby 
creating a hierarchical NI architecture that consists of distributed NI instances for 
network management, which altogether collaborate to improve their individual 
learning and decision-making processes. 

Parents None 
Current Status 

Percent complete 95% 
Risk 
management 

Successful 

Rationale D2.3 presents the final updates of the architectural model for native orchestration 
in Beyond 5G (B5G) networks that was envisioned in Section 1 of D2.1. These 
updates contemplate the feedback from WP3 and WP4 during the second report 
period, plus the requirements defined in Section 2 of D2.2 [1]. Moreover, as shown 
in Sections 3, 4, and 5 of D2.3, the architectural model is able to fulfill the 
requirements imposed by the child, and consequently, is able to manage, 
coordinate and orchestrate network intelligence. The full competition of this 
requirement will be achieved once specific performance metrics related to 
orchestration and lifecycle management of NIF/NIS are measured and provided 
as reference values for NIP implementations.  

 
FR-NIP-001 

Description DAEMON’s NIP shall offer end-to-end orchestration of network intelligence with 
closed control loop to meet service KPIs in different micro-domains. 

Version 001M18 
Owner IMEC 
Priority Low 
Risk 1 
Risk Description One of the main challenges in the orchestration of NI is to translate network 

requirements or KPIs to meet business needs. 
Rationale The NI Plane integrates the functions related to network intelligence. In several 

cases, these functions can be orchestrated to create end-to-end Network 
Intelligence Services. The creation of such services can be done in an automatic 
way, similarly as in network orchestrators.   

Parents FR-NIP-000 
Current Status 

Percent complete 100% 
Risk 
management 

Successful 

Rationale The architectural design finalized in D2.3 takes care of the end-to-end 
orchestration of intelligence with closed control-loop in different micro-domains.   
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FR-NIP-001.00 

Description DAEMON’s NIP shall support the composition of Network intelligence Services 
(NISs) by selecting Network Intelligence Functions (NIFs) to pursue a given network 
KPI.  

Version 002M18 
Owner IMEC 
Priority Low 
Risk 1 
Risk Description It is possible that the available NIFs do not address the system constraints. In this 

case, NIFs that try to fulfill system constraints as close as possible will be selected. 
Rationale Network Intelligence Functions (NIFs) are functional blocks that implement a 

decision-making functionality to be deployed in a controller. Similar to the 
information model specified for network management by, e.g., 3GPP, NIFs can 
be arranged to compose a Network Intelligence Service (NIS).  
 
Depending on the available resources and the business goals or SLAs, NIP will 
select the best NIF model that suits the system constraints. For example, in some 
cases it might be feasible to sacrifice accuracy at the expenses of a lower 
computational complexity.    

Parents  FR-NIP-001 
Current Status 

Percent complete 100% 
Risk 
management 

Successful 

Rationale The composition of Network Intelligence Services can be achieved in a similar 
way as presented in [31]. Moreover, model selection was included in the NI Plane 
procedures in Section 5 of D2.3.   

 

FR-NIP-002  
Description  DAEMON’s NIP shall provide the appropriate interfaces to communicate with 

different functional blocks (referenced in section 3 of D2.2 [1]) 
Version  001M18 

Owner  IMEC  

Priority  Low  

Risk  1 
Risk Description  There are common communication patterns (e.g., pub/sub) that could be 

replicated here. However, we must select the most suitable communication 
system, considering that the decisions taken by the NIP might impact network 
behavior. 

Rationale  Once a NIS is created/composed, training such models (NIFs) will be performed 
via the creation and deployment of MLOps frameworks. Once the models are 
trained, they will be registered in the NIF/NIS catalogue and will be ready to be 
deployed in a test/production environment. Currently there are several 
commercial frameworks that already do that for ML applications. The idea is not 
to reinvent the wheel, but to adapt such frameworks to the network domain.  
Once the NISs are deployed, the appropriate interfaces to manage the lifecycle 
management of their NIFs shall be used. Moreover, NIFs should be able to infer 
the network state/context as input. For that reason, the NIP should enable an 
interface with the corresponding management framework.  

Parents  FR-NIP-000 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 
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Rationale The results of this activity are reported in Section 4 of D2.3, where the interfaces 
(internal and external) with the main functional blocks of the architecture are 
defined.   

 
FR-NIP-002.00 

Description  DAEMON’s NIP shall provide an interface to trigger the execution of ML pipelines 

Version  002M18 

Owner  IMEC  
Priority  Low  

Risk  1 

Risk Description  From the architectural point of view, we need to identify or to create the 
interaction points between the NIP and the MLOps framework.  

Rationale  MLOps is a methodology that combines Machine Learning (ML) with software 
development operations (DevOps) and data engineering with the goal of 
building, training, deploying, and maintaining ML systems in productions with high 
reliability and efficiency guarantees. DAEMON architecture explicitly indicates 
that building ML models functionality (i.e., the ML pipelines) is delegated to an 
external platform, and MLOps frameworks are the de-facto platform to do this 
task. Currently there are several commercial frameworks that already do that for 
ML applications. The idea is not to reinvent the wheel, but to adapt such 
frameworks to the network domain. 

Parents  FR-NIP-002 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale Same as parent.  

 

FR-NIP-002.01 
Description  DAEMON’s NIP shall provide an interface with the network intelligence functions 

to communicate its decisions and to consume information (e.g., CPU/GPU 
consumption, accuracy, timescale, input data format) of NIF performance or 
conflicting policies to facilitate their management 

Version  001M18 

Owner  IMEC 

Priority  Low  
Risk  1  

Risk Description  Functionalities and NIFs can be very diverse. To ease the implementation of a NIP, 
information should be standardized (e.g., format) which can be cumbersome 
given the wide application domains of DAEMON functionalities. 

Rationale  NIP decisions (replacement, retraining, execution, and termination) should be 
made based on the information coming from the Network Intelligence Functions 
(NIFs). This information should be enough to take a good decision. Furthermore, 
this decision must be communicated using the same channel, guaranteeing the 
stability of the system. 

Parents  FR-NIP-002 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale Same as parent. 
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FR-NIP-002.02 
Description DAEMON’s NIP shall provide an interface to support end-to-end, decentralized, 

and unified data management for network intelligence. 
Version 001M8 
Owner ZSC 
Priority High 
Risk 1 
Risk Description Besides managing the lifecycle of different NISs, the burden of managing data 

can be too big as it involves a multiplicity of data sources and data types.  
Rationale The NI Multi-timescale Closed-loop AI Framework should provide end-to-end 

decentralized and unified data management to ease the development, 
operation, and management of any NI model. Such data is gathered with the 
purpose of training NI algorithms. The main characteristics are previously defined 
in FR-MTERM-001 in D2.1. 

Parents FR-NIP-002 
Current Status 

Percent complete 100% 
Risk 
management 

Successful 

Rationale Same as parent.  

 

FR-NIP-002.03 
Description  DAEMON’s NIP shall provide an interface with the network management and 

orchestration system. 

Version  001M18 

Owner  IMEC 

Priority  Low  
Risk  1 

Risk Description  In some cases, the interaction point with network management and 
orchestration systems is evident (e.g., O-RAN architecture) but in other domains it 
can be hard to define (e.g., NFV MANO) since they are not developed to natively 
support NI.  

Rationale  The NIP manages the connection towards the network management and 
orchestration to gather important information such as the expected network KPIs 
for the managed slice and service, as well as the information of the underlying 
network infrastructure. 

Parents  FR-NIP-002 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale Same as parent. 
 

FR-NIP-003 
Description  DAEMON’s NIP shall manage network intelligence with closed control-loop to 

meet service KPIs in different micro-domains. 

Version  001M18 
Owner  IMEC  

Priority  Low  

Risk  1  
Risk Description  Overall system stability should be achieved. However, it can be that some NISs 

span several domains which require extra coordination.  
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Rationale  Once a NIS is released for production, the NIP shall support its lifecycle 
management. By lifecycle management we refer to onboarding, instantiation, 
termination, scaling, and state retrieval.  The same should happen with different 
NIFs that compose the NIS 

Parents  FR-NIP-000 

Current Status 
Percent complete 80%  
Risk 
management 

Successful 

Rationale The results of this activity are reported in Section 5 of D2.3, more specifically, 
subsection 5.1.3 described the procedures needed for managing NIFs and NISs.  
To complete this requirement, the measurement of performance metrics related 
to NIS/NIF/NIF-C composition and deployment will be provided as reference 
values to evaluate the performance of the lifecycle management capabilities 
provided by the NIP.    

 

FR-NIP-003.00 
Description  DAEMON’s NIP shall support the lifecycle management of NISs 
Version  002M18 

Owner  IMEC  

Priority  Low  

Risk  1  
Risk Description  The metrics that measure the impact of a NIF in the overall performance of a NIS 

could be difficult to define.  

Rationale  NISs are composed of one or more NIFs with a specific target, usually related with 
a specific set of targeted KPIs. They possibly span several network domains. 
Therefore, it is required to not only monitor the performance of a given NIF from 
the NIS, but also the impact of this NIF in the performance of the NIS.  

Parents  FR-NIP-003   

Current Status 
Percent complete 80% 
Risk 
management 

Successful 

Rationale The results of this activity are reported in Section 5 of D2.3, where the procedures 
for each step of the NIS lifecycle are defined using the building blocks proposed 
by the architectural design. To complete this requirement, the measurement of 
performance metrics related to NIS composition and its deployment will be 
provided as reference values to evaluate the performance of the lifecycle 
management capabilities provided by the NIP.    

 
FR-NIP-003.01 

Description  DAEMON’s NIP shall support the lifecycle management of NIFs  

Version  001M18 
Owner  IMEC  

Priority  Low  

Risk  1  

Risk Description  NIFs themselves could be of different kinds: They could be learning models, based 
on, e.g., Deep Neural Networks or Engineered Models, or they could be built upon 
specific optimization algorithms such as the ones based on control theory or 
Mixed-Integer Linear Programming (MILP). Thus, it’s necessary to define common 
strategies to proper manage both types of NIFs. 

Rationale  According to the DAEMON architecture, the NIF manager is responsible for the 
lifecycle management of NIFs and monitoring the health of the intelligence 
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functions. This includes typical diagnostic information, if the NIF is being used in 
inference or it is an online learning solution, or other metrics such as the loss and 
the training loops if the NIF is currently being trained.  Moreover, the NIP needs to 
provide feedback on the NIFs performance so higher-level decisions can be 
made (e.g., that the model can be updated or replaced). 

Parents  FR-NIP-003  

Current Status 
Percent complete 80% 
Risk 
management 

Successful 

Rationale The procedures defined in Section 5 of D2.3 are valid for NISs as well as for NIFs. To 
complete this requirement, the measurement of performance metrics related to 
NIF and NIF-C composition and their deployment will be provided as reference 
values to evaluate the performance of the lifecycle management capabilities 
provided by the NIP.    

 
FR-NIP-004 

Description  DAEMON’s NIP shall coordinate network intelligence with closed control-loop to 
meet service KPIs in different micro-domains. 

Version  001M18 
Owner  IMEC  

Priority  Low  

Risk  1 

Risk Description  To determine which action/policy/decision has priority on optimizing a given 
function is not trivial and it depends on multiple factors that need to be 
evaluated. Therefore, the initial selection of policies/actions/decisions is highly 
coupled with the use case.    

Rationale  Coordination of NI can include, but is not limited to: 
• Sharing NIF-C among different NIFs (e.g., two NIFs that require the same 

input) 
• Arbitration policies in case of two NIFs that share the same sink, that is, 

the configuration APIs. 
• Guarantee system stability among conflicting policies/actions/decisions.  

Parents  FR-NIP-000 
Current Status 

Percent complete 100% 
Risk 
management 

Successful 

Rationale The results of this activity are reported in Section 5 of D2.3, where the procedures 
for coordinating NIs is described. In particular, we’ve shown procedures for 
conflict resolution (§5.2.1) and knowledge sharing (§5.2.2) which are two of the 
main concerns of this requirement.   

 

FR-NIP-004.00 
Description  DAEMON’s NIP shall be able to perform policy/action/decision conflict resolution 

of different NIFs to guarantee the stability of the system.  

Version  003M18 

Owner  IMEC  
Priority  Low  

Risk  1 

Risk Description  When a NIF/NIS performs an action that conflicts with the action of other NIF/NIS, 
it is required to solve the conflict in a coordinate manner. However, designing the 
conflict resolution mechanism may be a very hard problem as it will depend on 
the multiple factors tailored to specific use cases (e.g., centralized vs. 
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decentralized vs. federate network domains, flat vs. hierarchical decision making, 
etc.).  

Rationale  Optimizations will take place in different domains of the assisted system. Therefore, 
the decisions/policies/actions that are taken to optimize a certain objective 
function (e.g., business goal, SLAs) can be counterproductive to other 
policies/decisions/actions. Thus, a conflict resolution system is needed that can 
guarantee that the system is evolving towards a stable state.   

Parents  FR-NIP-004 
Current Status 

Percent complete 100% 
Risk 
management 

Successful 

Rationale The results of this activity are reported in Section 5 of D2.3, specifically §5.2.1 show 
the steps necessary to perform conflict detection and resolution.  

 

FR-NIP-005 
Description  DAEMON’s NIP shall provide a NIS and a NIF catalog 

Version  001M18 
Owner  IMEC 

Priority  Low  

Risk  1 
Risk Description  There must be some commonalities between NIFs and NISs, so they could be 

advertised in a general framework.  

Rationale  The NIP has catalogs of already onboarded NIS and NIFs. In particular, NIFs may 
need to be (re)-trained to cope with changing or different conditions, or on a 
periodical basis. 
When a NIS is composed of NIF empowered by ML models, training such models 
will be performed via the creation and deployment of ML pipelines. Once the 
models are trained, they will be registered in the NIF/NIS catalog and will be ready 
to be deployed in a test/production environment. 

Parents  FR-NIP-000 

Current Status 
Percent complete 80% 
Risk 
management 

Successful 

Rationale The results of this activity are reported in Section 3 of D2.3, where the NIS/NIF 
catalog is included in the proposed architecture. The packaging of the diverse 
NIFs could be done as in [31]. However, the descriptor should include, beside the 
elements mentioned in the previous reference, the additional information 
mentioned in §5.1.1 of D2.3. To complete this requirement, the measurement of 
performance metrics related to NIS/NIF/NIF-C upload latency will be provided as 
reference values to evaluate the performance of the NIS/NIF/NIF-C register 
provided by the NIP.    
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A.10 Performance requirements 
Specify both the static and the dynamic numerical requirements placed on the software or on human 
interaction with the software. 
 

NFR-RIS-000 
Description RIS should aid to increase wireless capacity (bits/m2) by 100% 

Version 001M1g 
Owner NEC 

Priority High 

Risk 3 

Risk Description There is a risk that the performance attained in realistic environments fall below 
100% 

Rationale This will allow surfaces to adapt in a timely manner, following the channel 
dynamics. 

K1  K2  K3  K4  K5  K6 X K7  K8  K9  

Parents FR-RIS-000-001M1 
Current Status 

Percent complete 50% 
Risk 
management 

Successful  

Rationale An experimental RIS prototype is being built and measurements will be collected 
in an anechoic chamber. The initial design steps were presented in D5.2 [4], 
Section 4.6, and the final design and results will be presented in D5.3. 
 

 

NFR-RIS-001 
Description Re-configuring all the components in a RIS must be achieved within 100 ms.  

Version 003M17 

Owner NEC 
Priority High 

Risk 3 

Risk Description There is a risk that the electronic equipment required can only be re-configured 
in more than 100ms. For instance, nowadays shortages in electronic components 
may force us to resort to less performing designs. 

Rationale 100 ms is the timescale of O-RAN near-real-time RAN Intelligent controller and a 
good trade-off between tracking fast wireless channel dynamics and high 
overhead. 

K1  K2  K3  K4  K5  K6  K7  K8 X K9  

Parents FR-RIS-000-001M1 
Current Status 

Percent complete 50% 
Risk 
management 

Successful 

Rationale An experimental RIS prototype is being built and measurements will be collected 
in an anechoic chamber. The initial design steps were presented in D5.2 [4], 
Section 4.6, and the final design and results will be presented in D5.3. 
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NFR-RIS-002 
Description The (non RF) electronic equipment required to control a RIS must consume less 

than 100 mW. 

Version 001M17 

Owner NEC 

Priority High 
Risk 3 

Risk Description There is a risk that the electronic equipment required to control a RIS consumes 
more than 100 mW. For instance, nowadays shortages in electronic components 
may force us to resort to more energy-consuming solutions. 

Rationale Provide smart RF reflectors that are very efficient in terms of energy consumption 
hence reducing OPEX. 

K1 X K2  K3  K4 X K5  K6  K7  K8  K9  

Parents FR-RIS-000-001M1 
Current Status 

Percent complete 50% 
Risk 
management 

Successful 

Rationale An experimental RIS prototype is being built and measurements will be collected 
in an anechoic chamber. The initial design steps were presented in D5.2 [4], 
Section 4.6, and the final design and results will be presented in D5.3. 

 
NFR-CAWRS-000 

Description NI orchestration solutions for vRAN shall have reaction times below 10s 
Version 002M17 
Owner UC3M 
Priority High 
Risk 1 
Risk Description There is a low risk that DAEMON will not integrate and succeed in providing such 

timings for the NI-based network orchestration. In preliminary works, DAEMON 
partners were able to achieve computing resources orchestration within a 10s 
constraint. This constraint may be lowered with the usage of more complex 
orchestration solutions. 

Rationale In [62], DAEMON authors were able to orchestrate computing resources for vRAN 
by using the Docker API, with a 10 seconds granularity. This value is already 
enough to bring down the computing resource usage by more than 30% in some 
scenario. By using directly the cgroups API offered by the Linux system, we may 
achieve even lower values. 
 

K1  K2 X K3  K4  K5  K6  K7  K8  K9  
Parents FR-CAWRS-000-001M3 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale As reported in [17] this requirement has been achieved. 
 

NFR-CAWRS-001 
Description NI control solutions to schedule computing and radio resources in real time for 

vRAN shall have an inference time below 500us 
Version 002M17 
Owner UC3M 
Priority High 
Risk 2 
Risk Description There is a mild risk that NI cannot achieve sub-second timings for the vRAN control 

algorithms such as the radio scheduling (which needs 1ms timings). If these timings 
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cannot be achieved, DAEMON partners will use solutions such as slower 
scheduling patterns, enforced every 50-100 TTIs 

Rationale Ideally, scheduling decisions are taken every TTIs, thus in the ms range scale. This 
requirement is quite stringent and may require specialized hardware such as GPUs 
deployed at the edge if deep learning solutions shall be put in place. Alternatives 
could be the usage of mixed models between machine learning and traditional 
optimization 
 

K1  K2 X K3  K4  K5  K6  K7  K8  K9  
Parents FR-CAWRS-002-001M17 

Current Status 
Percent complete 90% 
Risk 
management 

Successful 

Rationale Validation results for this activity will be reported in D3.3 and D5.3 
 

NFR-CAWRS-002 
Description NI solutions for vRAN shall maximize spectral efficiency given computing capacity 

constraints. 
Version 002M17 
Owner UC3M 
Priority High 
Risk 2 
Risk Description There is a mild risk that NI cannot achieve bounded performance for the wireless 

performance (i.e., spectrum efficiency, leading to bandwidth and latency 
figures). In this case, specific boundaries to the achievable computing resource 
saving will be defined. 

Rationale With unbounded computing resource savings, the spectral efficiency may be 
unacceptably low. In [17], DAEMON partners were capable of achieving very 
good tradeoffs between achievable savings and pure performance, by correctly 
understanding the traffic patterns. Other solutions may have to be designed to 
guarantee that this tradeoff (the ratio between the best possible performance 
without computing resource optimization and the one obtained by DAEMON 
solutions never falls below certain thresholds) maximizing hence spectral 
efficiency given computing capacity constraints. 

K1  K2 X K3  K4  K5  K6  K7  K8  K9  
Parents FR-CAWRS-002-001M17 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale As reported in [62] this requirement has been achieved. 

 
NFR-CAWRS-003 

Description Predictive HARQ inference mechanisms shall have a minimum accuracy of 99% 
and a false positive rate below 0.1% 

Version 001M17 
Owner UC3M 
Priority High 
Risk 1 
Risk Description There is a low risk that NI cannot integrate inference mechanisms whose 

accuracy is at least 99% and the false positive rate below 0.1%. There are multiple 
previous works applying this technique in other fields. 

Rationale It is critical that the inference mechanisms have a very high accuracy and a very 
low rate of false positives, because a wrong prediction (due to a prediction fail 
or a false positive result of the prediction) incurs substantially higher cost because 
the transport block has to be recovered by others. 

K1  K2 X K3  K4  K5  K6  K7  K8  K9  
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Parents FR-CAWRS-001-001M17 
Current Status 

Percent complete 100% 
Risk 
management 

Successful 

Rationale Validation results for this activity were reported in D5.2 [4] (Section 4.1). 
 

NFR-EAWVNF-002 
Description DEAMON expects to save 50% of the energy cost, thanks to applying NI solutions 

to find out the energy-aware optimal placement of VNFs of FR-EAWFN-000. 
Version 001M2 
Owner UMA 
Priority High 
Risk 3 
Risk Description We cannot achieve the 50% of energy saving in all cases, only in some of them, 

or simply DAEMON solutions save an inferior percentage of energy. 
Rationale The performance in terms of energy consumption of the DAEMON solution should 

improve the current solutions by a 50%.  

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-001-001M1 
Current Status 

Percent complete 60% 
Risk 
management 

Effective 

Rationale The energy-aware placement solution reduces up to 51% of the energy 
consumption compared with the default deployment proposed by the existing 
MANO standard solutions, which follow non-energy-aware policies. 
In addition, the proactive autoscaling solution and VNF placement have a 92.5% 
decrease in energy consumption (a failed request rate of up to 0% and 
reasonable execution times of the auto-scaling process for different problem 
sizes). 

 
NFR-EAWVNF-003 

Description The cost in terms of energy footprint of the NI solution for VNFs placing shall be less 
than the global energy saving  

Version 001M2 
Owner UMA 
Priority High 
Risk 2 
Risk Description The cost of the NI-assisted VNF placement could be not much less or even higher 

than the energy consumption savings of the proposed solutions.  
Rationale The energy saving obtained by applying energy profiling to the NI algorithms for 

the VNFs placement should be less than the global energy saving, to be worthy. 
So, the cost of the energy-awareness mechanism should be a lot less than 50% of 
the energy saving proposed in NRF-EAWVNF-002. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-001-001M1 
Current Status 

Percent complete 60% 
Risk 
management 

Effective 

Rationale Section 4.4.9 in D5.2 [4] presents the results in measuring the improvements in the 
Edge, and the energy cost reduction goes above 15% and, in some scenarios, up 
to 92%. 
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NFR-EAWVNF-004 
Description Energy-efficient NI shall balance throughput and energy consumption in vRANs  
Version 001M17 
Owner NEC 
Priority High 
Risk 1 
Risk Description There is no risk 
Rationale Tethered virtualized base stations may be interested in trade-off radio spectrum 

capacity for energy savings 
K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-005-001M17 
Current Status 

Percent complete 100% 
Risk 
management 

Successful 

Rationale The risks were low. The design of the NI was presented in D4.2 [3], Section 2.3, and 
an empirical evaluation was presented in D5.2 [4], Section 4.2.1. The details can 
be found in [18], [40]. More specifically, a data-driven approach based on 
Bayesian Learning was designed to control different configuration parameters of 
virtualized base stations to balance throughput and power consumption. 

 
NFR-EAWVNF-005 

Description NI orchestrating resources in vRANs shall maximize networking throughput given 
power consumption constraints 

Version 001M17 
Owner NEC 
Priority High 
Risk 3 
Risk Description There may be cases where power constraints cannot be satisfied. 
Rationale Respecting power consumption constraints, even while learning, it is of 

paramount importance for battery-powered small cells, solar-powered small cells 
or other types of power-constrained small cells. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-005-001M17 
Current Status 

Percent complete 100% 
Risk 
management 

Successful 

Rationale The design of the NI was presented in D4.2 [3], Section 2.3, and an empirical 
evaluation was presented in D5.2 [4], Section 4.2.1. The details can be found in 
[18], [40]. More specifically, a data-driven approach based on Bayesian Learning 
was designed to control different configuration parameters of virtualized base 
stations to maximize network throughput given hard power consumption 
constraints.  

 
NFR-EAWVNF-006 

Description Energy savings shall be achieved in virtualized RANs without compromising given 
service performance constraints  

Version 001M17 
Owner NEC 
Priority High 
Risk 3 
Risk Description It may be possible that energy savings can only be achieved when service 

performance constraints are not satisfied. 
Rationale Satisfying service-level agreements is the top priority of a mobile network. Hence, 

NI solutions should strive to meet service performance constraints with a minimum 
energy consumption toll. 



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

141 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  

Parents FR-EAWVNF-005-001M17 
Current Status 

Percent complete 50% 
Risk 
management 

Successful 

Rationale The design of NI is currently ongoing and will be presented in D4.3 (design) and in 
D5.3 (empirical results).  

 
NFR-AARES-000 

Description NI solutions anomaly detection and response should have a high detection 
performance (specifically, DAEMON will target a 0.9 precision-recall AUC with at 
least 85% scoring in both precision and recall.). 

Version 001M5 
Owner TID 
Priority High 
Risk 2 
Risk Description There is a mild risk that NI for anomaly detection cannot achieve its target 

performance. This highly depends on the quality and availability of ground-truth 
datasets from the systems DAEMON will monitor.  

Rationale It is important that NI solutions for anomaly detection in the different systems that 
DAEMON will monitor detect real (and important) anomalies, and do not flood 
the operators with false alarms for their systems.  

K1  K2  K3  K4  K5  K6  K7 X K8  K9  
Parents FR-AARES-002-002M5 

Current Status 
Percent 
complete 

100% 

Risk 
management 

Effective 

Rationale We reported the performance results of A19 in D5.2 [4], showing that we were 
able to achieve the performance of the anomaly detection in DAEMON.  

 

A.11 Design constraints 
Specify constraints on the system design imposed by external standards, regulatory requirements, or 
project limitations. 
 

NFR-RIS-003 
Description RIS must provide beamforming gains passively, without energy-consuming 

(active) RF chains 
Version 001M17 
Owner NEC 
Priority High 
Risk 1 
Risk Description There is a small risk that beamforming gains can only be achieved with active RF 

chains that integrate RF amplifiers. 
Rationale Smart RF reflectors with active RF chains already exist and are called “relays”. The 

main motivation for RIS is the possibility of attaining beamforming gains with 
minimal energy consumption and costly electronic equipment. Hence, a RIS must 
necessarily be passive. 

K1  K2  K3  K4  K5  K6 x K7  K8  K9  

Parents FR-RIS-000-001M1 
Current Status 

Percent complete 50% 
Risk 
management 

Successful 
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Rationale Risks are low. The initial design steps, consisting of a patch antenna array without 
active RF chains, were presented in D5.2 [4], Section 4.6. 

 

NFR-EAWVNF-001 
Description DAEMON energy-aware solution will scale well when considering a heterogenous 

set of devices and network infrastructure FR-EAWVFN-001.  
Version 001M2 
Owner UMA 
Priority High 
Risk 4 
Risk Description The variety of devices  
Rationale DAEMON should be able to consider the global footprint of VNFs placement 

solutions for a large number of different IoT and Edge devices with variable 
resources and networking infrastructure. The upper values of the devices’ 
resources considered in DAEMON will be taken from the software and hardware 
network or device specifications of the underlying infrastructure. 

K1 X K2  K3  K4  K5  K6  K7  K8  K9  
Parents FR-EAWVNF-001-001M1 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale The auto-scaling solution includes an energy-aware orchestrator, which 
calculates the energy consumption according to the location of the VNFs and 
assigns the applications/VNFs to the most energy-efficient node. The energy-
aware orchestrator, as well as the Essential Node Identifier module, includes the 
expected performance as a constraint, to reduce energy consumption without 
compromising throughput. 

 
 

NFR-MTERM-001 
Description  DAEMON’s MTERM shall provide an exhaustive list of orchestration operations  
Version  002M18  

Owner  IMEC  

Priority  Low   
Risk  1  

Risk Description  The list of orchestration operations might involve subgroups of operations, 
depending on the policies defined for specific types of applications (e.g., value-
added services require different orchestration operations than services that are 
directly consumed by users).  

Rationale  The NI-assisted management and orchestration framework needs to provide 
support for at least a basic set of orchestration operations, such as onboarding 
(I.e., preparation of application descriptors and images on all required edge 
platforms), instantiation (on all required edge platforms), scaling 
up/down/out/in depending on the resource (computing and network) 
requirements and current resource consumption, termination (i.e., releasing the 
allocated resources so they can be consumed by other applications, or save 
energy), and state/context migration (I.e., migrating the state/context of the 
application from one edge to another due to the UE mobility, resource 
availability, or energy saving purposes).  

K1    K2  X  K3    K4    K5    K6    K7    K8    K9    

Parents  FR-MTERM-000 
Current Status 

Percent complete 100% 
Risk 
management 

Successful 
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Rationale The solution in Section 3.1, D3.2 [2] uses OSM on top of Kubernetes, which covers 
the most basic orchestration operations. 

 

NFR-MTERM-002  
Description  DAEMON’s MTERM shall provide compliance with standardized frameworks (e.g., 

ETSI NFV MEC, ETSI NFV MANO, and O-RAN) running at the network edge.   

Version  002M18 
Owner  IMEC  

Priority  Low  

Risk  1  

Risk Description  The insufficient level of compatibility between different standardization tracks 
(ETSI MEC/ETSI NFV MANO & O-RAN) can potentially lead to complex and 
application-specific orchestration platforms, limiting their exploitability among 
research tracks.   

Rationale  As the standardization plays a key role in ensuring that a software tool meets 
certain requirements that guarantee proper work in various conditions, and 
expanding the exploitability of such solution, NI-assisted management and 
orchestration framework needs to be designed and developed in accordance 
with the existing standardization efforts.   

K1    K2  X  K3    K4    K5    K6    K7    K8    K9    

Parents  FR-MTERM-000 
Current Status 

Percent complete 100% 
Risk 
management 

Successful 

Rationale All the solutions tackling the MTERM functionality use standardized frameworks.  
 

NFR-MTERM-003 
Description  DAEMON’s MTERM shall provide NIF modularity and reusability among different 

players (e.g., network operators/vendors, service providers, etc.)  

Version  002M18 
Owner  IMEC  

Priority  Low  

Risk  1  

Risk Description  The lack of NIF complexity and an increased level of openness of I/O interfaces 
might decrease the accuracy of decision-making processes performed by those 
NIFs.  

Rationale  Due to the heterogeneity in resource and service deployments across edge 
networks, the NIFs running in both framework tiers need to be application/service-
agnostic, thus, no application-specific data should be considered apart from the 
resource requirements and KPIs stated in SLAs. With such a configuration, NIFs can 
be maintained and used by different stakeholders.   

K1    K2  X  K3    K4    K5    K6    K7    K8    K9    

Parents  FR-MTERM-000 
Current Status 

Percent complete 100% 
Risk 
management 

Successful 

Rationale All the solutions tackling the MTERM functionality are developed as containers 
following a cloud-based approach, facilitating modularity and reusability.  

 
NFR-SLMANO-000 
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Description DAEMON controllers and orchestrators should be steered by high-level QoE 
targets and business KPIs (high-level intents), rather than strict QoS goals and 
technical KPIs. 

Version 002M4 
Owner NBL 
Priority Medium 
Risk 2 
Risk Description The problem may be that it may be difficult to describe expected behavior in a 

concise way.  
Rationale Application developers should have an easy way of specifying intended 

behavior based on their application-level knowledge and requirements to 
guarantee QoE for their users.    

K1  K2  K3  K4  K5  K6  K7  K8  K9 X 
Parents FR-SLMANO-000-002M17 

Current Status 
Percent complete 90% 
Risk 
management 

Successful 

Rationale In the scaling work we have set a target latency and defined a reward function 
that penalizes latency violations and the (excessive) use of resources (Section 
4.4.7 of D5.1 [7]), showing that high-level QoE targets can be used for MANO 
life-cycle management.  

 

NFR-SLMANO-001 
Description  DAEMON shall define metrics to check the stability of a control algorithm.  

Version  001M5 
Owner  NBL  

Priority  High 

Risk  2  
Risk Description  Although a rough definition of a stable control system is easy to understand, i.e., 

if after exciting the system with a short, small perturbation, it returns fast enough 
to the original equilibrium, it is hard to make that definition precise for nonlinear 
systems.    

Rationale  It is well-known that closing the control loop may lead to unstable systems. In 
linear systems, instability stems from the fact that the closed loop transfer function 
has poles in the positive half plane, leading to an impulse response that 
exponentially increases. Although some ideas some chaos engineering may be 
applied, in non-linear systems there is no rigorous equivalent.    

K1    K2    K3    K4    K5    K6    K7    K8    K9   X 
Parents  FR-SLMANO-003-002M17 

Current Status 
Percent complete 80% 
Risk 
management 

Successful 

Rationale We used a practical definition of stability: as long as small perturbations on the 
input, did not lead to growing fluctuations at the output, we called the system 
stable (see FR-SLMANO-003). 

 
NFR-IBSSI-000 

Description Network Intelligence algorithms should be adapted to the PISA architecture 
Version 001M17 
Owner IMDEA 
Priority Medium 
Risk 3 
Risk Description Programmable switches have specific internal architectural models that make 

some machine learning models more suitable than others for deployment. 
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Rationale Modern programmable switches are compliant with the Protocol Independent 
Switch Architecture (PISA) model. The solutions for machine-learning-based 
inference implemented in such devices must thus be aligned with the internal 
organization into Match-Action Units (MAUs) of such a model. 

K1  K2  K3 X K4  K5  K6  K7  K8  K9  
Parents FR-IBSSI-002-003M18 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale The RF models proposed by DAEMON are tailored to the PISA architecture by 
design, as detailed in Section 5.1 of D3.2 [2], hence are guaranteed to be fully 
compatible with the target programmable hardware in the user plane. Indeed, 
they have been implemented in real-world production-grade switches for the 
performance evaluation presented in Section 4.7.1 in D5.2 [4]. 

 

NFR-IBSSI-001 
Description Network Intelligence algorithms should be resource-prudent 
Version 001M17 
Owner IMDEA 
Priority Low 
Risk 4 
Risk Description Programmable switches have extremely limited computational capabilities that 

are primarily intended to support forwarding-related policies. 
Rationale Decision-making is not a legacy or priority task in programmable user planes. 

Therefore, NI solutions deployed in programmable switches must consume as little 
resources as possible, in a way not to hinder the regular operation of the devices 
and the whole network. Ideally, NI models for programmable switches should not 
consume more than 1% of the different memory types available in these devices. 

K1  K2  K3 X K4  K5  K6  K7  K8  K9  
Parents FR-IBSSI-002-003M18 

Current Status 
Percent complete 75% 
Risk 
management 

Effective 

Rationale The performance evaluations carried out as described in Section 4.7.1 of D5.2 [4] 
show how the proposed solution for integration of NI in programmable user planes 
consumes a limited amount of resources in a production-grade switch. 
Depending on the use case, an RF model uses between 3% and 29% of the total 
memory resources in the switch and is thus compatible with other functionalities 
that the programmable switch must perform. In order to meet the requirement in 
a fully successful way, more resource-prudent mappings than the one adopted 
in the current implementation need to be devised and tested. 

  

NFR-NIP-001 
Description  NIP shall make an optimal decision on using the communication framework for 

sharing information between monitoring systems and the management and 
orchestration framework   

Version  002M18  

Owner  IMEC  

Priority  Low  
Risk  1  

Risk Description  Additional benchmarking of communication systems (e.g., message broker) that 
will be used for sharing information between framework entities is needed, and 
different systems might be suitable for different types of applications.   
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Rationale  As communication systems/platforms enable either synchronous or asynchronous 
communication between different orchestration components and NIFs, it is 
important to consider the complexity of using and managing the communication 
system (e.g., RabbitMQ is a simple and often used in most of the existing MANO 
solutions) for pub/sub purposes, but also the additional latency this entity involves 
in the communication (e.g., RabbitMQ inevitably generates additional latency 
because of message queuing on a central node, comparing to ZeroMQ).   

Parents  FR-NIP-002 
Current Status 

Percent complete 100% 
Risk 
management 

Successful 

Rationale The prototype of the implementation of the NI Orchestrator given in Section 5.3 
of D2.3, uses a pub/sub/query protocol implemented in Zenoh23 as a 
communication system. In the context of messages communication protocols, a 
team from the National Taiwan University (NTU) completed a Performance Study 
on the Throughput and Latency of Zenoh, MQTT, Kafka, and DDS. The results 
showed that Zenoh outperforms the other communication protocols with 
impressive performance numbers [74].  

 

NFR-NIP-002 
Description  NIP shall provide openness of interfaces between orchestration/control tiers and 

NIFs/NISs to mitigate the dependence on specific network 
operators/vendors/infrastructure providers/service providers 

Version  001M18 

Owner  IMEC  

Priority  Low  
Risk  3  

Risk Description  The vulnerability of open interfaces between management and orchestration 
tiers, and between NIFs, might impose certain security risks that need to be 
properly handled.   

Rationale  Distributed edge networks and cloud can be deployed by different 
vendors/infrastructure providers, belonging to different Mobile Network Operator 
(MNO) domains. Thus, it is of utmost importance to provide open interfaces 
between NIFs and management and orchestration tiers (i.e., edge and cloud) in 
order to facilitate orchestration operations, and to mitigate the dependence on 
the vendor-specific configuration of NIFs.   

Parents  FR-NIP-002 
Current Status 

Percent complete 100% 
Risk 
management 

Successful 

Rationale All the interfaces defined in Section 4 of D2.3 are open and follow the standards.  

 

NFR-NIP-003 
Description  NIP shall provide support for multiple virtualization environments for deploying 

services/applications in distributed domains 
Version  002M18 

Owner  IMEC  

Priority  Low  
Risk  1  

                                                        
23 https://zenoh.io/     
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Risk Description  The diversity in virtualization environments needs specific maintenance, and 
virtualization-specific policies for orchestration operations, which significantly 
increases the complexity of orchestration operations in both tiers within NI-assisted 
management and orchestration framework.   

Rationale  With regards to the limited resource availability within the edge platforms, 
comparing to the large and resourceful data-center, the lightweight 
virtualization, and orchestration solutions for small-size programmable devices are 
required. Thus, containerization proves to be a suitable candidate to deliver a 
lightweight deployment of services and applications suitable for network edge 
deployments. 

Parents  FR-NIP-000 
Current Status 

Percent complete 100% 
Risk 
management 

Successful 

Rationale The results of this activity are reported in Sections 3.2.3 and 4.2 of D2.3, where we 
define the interactions between external entities such as O-RAN and MANO and 
the NI Orchestrator. External entities can be associated with different domains 
and use different virtualization environments.   

 
NFR-NIP-004 

Description  NIP shall provide support for federated multi-domain management and 
orchestration. 

Version  003M18 

Owner  IMEC  
Priority  Low  

Risk  3 

Risk Description  Management-level agreements are necessary for establishing collaboration 
between orchestration and management entities, and NIFs in different edge 
domains.   

Rationale  Due to the high mobility of users in 5G and beyond 5G ecosystems, applications 
are deployed in distributed ways across different edge platforms. Thus, NI-assisted 
management and orchestration framework needs to support cross-
domain/cross-edge service orchestration for achieving seamless service 
operation. 

Parents  FR-NIP-000 
Current Status 

Percent complete 100% 
Risk 
management 

Successful 

Rationale The results of this activity are reported in Sections 3.2.3 and 4.2 of D2.3, where we 
define the interactions between external entities such as O-RAN and MANO and 
the NI Orchestrator. Thanks to the NI Orchestrator and its conflict resolution 
mechanism, the interaction with such external entities allows a federated 
approach in which each entity remains in control of its assets while allowing other 
NI to be implemented and achieving seamless service operation. 

 
NFR-NIP-005 

Description  DAEMON’s NIP shall interact with the Network Orchestration Framework aligned 
with ETSI-NFV-MANO 

Version  002M18 

Owner  UC3M  
Priority  High  
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Risk  1  
Risk Description  The NIP needs to understand what are the Network Services that are currently 

running in the system, in order to match the network intelligence to them.  

Rationale  The Network Orchestrator (either based on an ETSI-NFV-MANO platform or an 
implementation using ONAP) is the element in the network architecture that 
keeps track of all the network services (and the network slices implementing 
them). Therefore, the NIO shall interact with the Network Orchestrator to (we use 
in the following the ETSI NFV MANO terminology): 

• The number and type of network slices/ services that are running 
(available at the NFV-O) 

• The number and extent of subnetwork slices that are running (available 
at the NFV-O) 

• The number and extent of VNFs that are running (available at the NFV-O 
and VNFM) 

• The network topology (available at the NFV-O and VIM) 
This information is required by the NIO to understand, e.g., where to run the NI 
and to match the already running network services (e.g., an eMBB Network Slice). 

Parents  FR-NIP-002 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale The results of this activity are reported in Section 3.2.3 of this deliverable, where 
we define the interactions between the MANO and the NI Orchestrator. 

 
NFR-NIP-006 

Description  DAEMON’s NIP shall interact with the 3GPP Network Analytics System 

Version  002M18 
Owner  UC3M  

Priority  High  

Risk  1  

Risk Description  The NIP needs to interact with the 3GPP Network Data Analytics System, as the 
network analytics defined by the standard are NIFs.  

Rationale  The network analytics services, as defined by the 3GPP system in [75] are NIFs that 
need to be orchestrated and managed as the other NIF defined in the project. 
The producer/consumer NFs in the analytics systems are NIF-C in the DAEMON 
view. The NWDAF is a particular kind of NIF-C, that implements the model. 

Parents  FR-NIP-002 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale The results of this activity are reported in Section 4.2.2 of this deliverable, where 
we define the interactions between the 5GC analytics and the NI Orchestrator. 

 

NFR-NIP-007 
Description  DAEMON’s NIP shall interact with the O-RAN on non-RT RIC and near-RT RIC 
Version  002M18 

Owner  NEC  

Priority  High  

Risk  1  
Risk Description  The NIP needs to interact with the O-RAN RIC entities, namely non-RT RIC and 

near-RT RIC, through standard interfaces defined by O-RAN, e.g., via A1, E2, O2 
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or O1.  The interfaces may need to be extended or new interfaces need to be 
defined to communicate and interact with DAEMON NIFs.  

Rationale  The Non-RT RIC entities (such as rApps) or Near-RT RIC entities (such as xApps), 
defined in the O-RAN reference architecture, can be provided by the NIFs in the 
project. The O-RAN RICs can be considered as the consumer of the NIFs for 
managing open RAN configuration and RAN related functionalities and 
resources.  

Parents  FR-NIP-002 

Current Status 
Percent complete 100% 
Risk 
management 

Successful 

Rationale The results of this activity are reported in Section 4.2.1 of D2.3, where we define 
the interactions between the O-RAN RIC Controllers and the NI Orchestrator. 

 
NFR-NIP-008 

Description  The system constraint for NIF selection at the edge are energy, computation, 
network, and KPIs 

Version  002M18 

Owner  IMEC  
Priority  Low  

Risk  1  

Risk Description    
Rationale  Depending on the available resources and the business goals or SLAs, DAEMON 

will select the best NIF model that suits the assisted system. For example, in some 
cases it might be feasible to sacrifice accuracy at the expenses of a lower 
computational complexity.    

Parents FR-NIP-000 
Current Status 

Percent complete 100% 
Risk 
management 

Successful 

Rationale In Section 5.1 of D2.3, we defined the parameters that compose a NIS/NIF 
Descriptor. Among them, parameters in learning metrics, data-related topics, 
such as data types, age and output format, and computation were defined. 
These parameters allow the NI Orchestrator to perform NIF selection, as indicated 
in Section 5.1.3 of the same deliverable. 

 

NFR-NIP-009 
Description  DAEMON’s NIP shall provide native NI procedures to be used by the project 

developed NIFs 

Version  002M18 

Owner  UC3M  

Priority  High  
Risk  1  

Risk Description  The NIFs may require some advanced functionality that is provided by the NI 
Orchestrator, especially for their coordination and execution. 

Rationale  As discussed in Section 7 of D3.2 [2], after the N-MAPE-K analysis of the different 
NIFs designed by the project, some additional features of the NIO are required: 
namely Knowledge Sharing, Conflict Resolution, and model deployment and re-
training. 

Parents  FR-NIP-002 

Current Status 
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Percent complete 100% 
Risk 
management 

Successful 

Rationale The results of this activity are reported in Section 5 of this deliverable, where we 
show the orchestration procedures that will be used by the project developed 
NIFs. 
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B Appendix: Literature Review − Final status 
In this appendix, we present the final status of the literature review. We include all the reviewed papers 
and their data that support the findings listed in Section 6. We incorporate such information in this 
deliverable for completeness in a tabular format to improve readability.  
We remind the reader that some of the research questions have a limited set of possible questions, which 
we detail in the following. Regarding the operation timescale, we distinguish the following cases: 

• Very short timescale (us-ms) 
• Short timescale (ms-s) 
• Medium timescale (s-min) 
• Long timescale (min-h) 
• Very long timescale (h-days) 

For algorithm location, we distinguish between 
• Orchestration Plane 
• Control plane 
• Data plane 

For the micro-domain of operation, we have: 
• Subscriber 
• Access 
• Beyond Edge 
• Far Edge 
• Edge 
• Transport 
• Core 
• Cross domain (“Cross”) 

With respect to the Application Area, we follow the latest 5GPPP white paper [76] where three major 
application areas were identified, namely i) Network Planning, ii) Network Diagnostics, and iii) Network 
Optimization and Control. We include Network Security inside the Network Diagnostics category, as they 
are correlated. 
Like in D2.2 [1], we included two subsections, one dedicated to the questions regarding the network and 
dataset, and the second dedicated to the machine learning questions. We motivate this split mainly due 
to the size of the content. Each column shows the information of a given paper, while every row identifies 
the information related to one of the questions.  
 



B.1 Research questions related to the network and data 

 

 Bib key sotocamelo2021atari [25] ayalagarcia2021 [40] sotocamelo2021[26] sotocamelo2023 [43] goez2022quantizedm
odclass [47] 

akembutun2023 [16] akemgucciardo2023 
[77] 

N
et

w
or

k 
Re

la
te

d 

Networking 
problem 

Link Evaluation, Throughput 
Prediction 

Energy consumption 
and performance 

optimization in vRAN 

Resource 
management 

Resource 
management 

Radio Resource 
Management 

Traffic classification Traffic classification 

Application 
Area 

Network Optimization and 
Control 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and control 

Network Diagnostics 
and Security 

Network Diagnostics 
and Security 

Micro-
domain 

Edge Edge Cross-domain Cross-domain Access Transport Transport 

Algorithm 
Location 

Control Plane Control plane Control and 
Orchestration Plane 

Control and 
Orchestration Plane 

Control Plane Data Plane Data Plane 

Operation 
Timescale 

Short timescale (ms-s) Medium timescale (s-
min) 

Medium timescale (s-
min) 

Medium timescale (s-
min) 

Short timescale (ms-s) Very short timescale 
(us-ms) 

Very short timescale 
(us-ms) 

Da
ta

se
t R

el
at

ed
 

Dataset 
Generation 

Synthetic Real Synthetic Synthetic Synthetic Real Real 

Dataset 
Generation 

Setup 

600 deployments with random 
number of APs and STAs (78078 
devices in total). APs are fixed 
at the center of the cell while 

STAs are randomly placed 
around the AP’s coverage area 

(10m) 

2 nodes acting 
as UE and eNB 

Analytically 
generated 

Analytically 
generated 

GNU radio was used 
to generate the 

waveforms 

data collected from 
28 IoT devices during 
a period of 6 months 

Multiple datasets 

Dataset 
Availability 

Open Open Open Open Public Open Open 

Data 
Velocity 

End-to-end: around KB/seconds 
Only prediction: around 

KB/milliseconds 

Second 1 sample per second 1 sample per second Not provided Velocity of the data 
through the switch in 

the order of 
MB/seconds 

Variable 

Data Variety Structured Data Structured Data Structured Data Structured Data Structured Data Structured Data Structured Data 

Data Volume A deployment is given in a csv 
file with approximately 20 KB per 

file 

3 floating numbers Not provided Not provided 20GB 652MB Not provided 

Data 
Veracity 

The Distributed Coordination 
Function operation and 

Dynamic Channel Bonding in 
Komondor, were validated 

against ns-3 and the well-known 
Bianchi and Markov models. 

However, there is no validation 
using real data. 

Accurate Accurate Accurate Accurate Accurate Accurate 
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Bib key loschiavofiore2022 [28] colletbanchs2022  [37] colletbazco2023 [38] NinaSK2023CCNC [21] Zhu2021[78] ayalagarcia2020 [17] nakanoyasato2019 

[79] 
N

et
w

or
k 

Re
la

te
d 

Networking 
problem 

Resource 
management 

Resource 
management 

Resource 
management 

Resource 
management, 
Resource forecasting 

Resource 
management 

Radio and computing  
resource control 

Resource 
management 

Application 
Area 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and control 

Network Optimization 
and control 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and Control 

Micro-
domain 

Transport Cross-domain Edge/core Edge/core Edge and Client Edge Cross-domain 

Algorithm 
Location 

Control Plane Control Plane Control and 
Orchestration Plane 

Control and 
Orchestration Plane 

Control Plane Control plane Orchestration Plane 

Operation 
Timescale 

Predictor: Short 
timescale (ms-s) 

Predictor: Short 
timescale (ms-s) 

Long timescale (min-h) Short timescale (ms-s) N/A Very short timescale 
(us-ms); Short timescale 
(ms-s) 

N/A 

Da
ta

se
t R

el
at

ed
 

Dataset 
Generation 

Real dataset obtained 
from operator 

Real dataset obtained 
from operator 
 
Synthetic dataset 
generated through 
network-simulation 
pipeline 

Real dataset obtained 
from operator 
 
Synthetic dataset 
generated through 
network-simulation 
pipeline  

Data generated on the 
testbed 

Synthetic Real Real 

Dataset 
Generation 

Setup 

Not provided QoE pipeline simulated Multiple datasets Real data from 
Kubernetes clusters 
deployed on the 
Roadside units 
(Kubernetes metrics 
API) 

Number of vehicles: 6, 
Computation power of 
VEC server: 6.3GHz, 
Computation power of 
vehicle: 1GHz, The 
data amount per task: 
[50, 600] kB, Initial price 
of VEC server: 0.3, 
Prices of VEC servers: 
[0, 1], Cost of vehicle: 1 

2 nodes acting 
as UE and eNB 

SFC1: Proxy - FW - IDS, 
SFC2: FW - IDS, SFC3: 
IDS - FW 

Dataset 
Availability 

Private Private Private and public, 
depending on the 
evaluation 

Yes Not provided Open Not provided 

Data 
Velocity 

GB/seconds GB/seconds GB/seconds Not provided Not provided Second Not provided 

Data Variety Structured Data Structured Data Structured Data Not provided Not provided Structured Data Structured Data 

Data Volume 

N/A ~10GBs ~10GBs Not provided Not provided 3xBxT floating numbers  
(B = number 
of Base Stations, T =  
nof monitoring samples 
per interval (100 in their 
case)) 

Not provided 

Data 
Veracity 

Accurate Accurate Accurate Not provided Not provided Accurate Not provided 
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Bib key xiaozhang2019 [80] quanghadjadj-
aoul2019 [81] 

peihong2019 [82] zhengtian2019 [83] solozabalceberio2019 
[84] 

foukasradunovic2021 
[85] 

zhaoliang2019 [86] 
N

et
w

or
k 

Re
la

te
d 

Networking 
problem 

Resource 
management 

Resource 
management 

Resource 
management 

Resource 
management 

Resource 
management 

Execution times 
prediction 

User association and 
 resource allocation 
on heterogeneous  
cellular networks 

Application 
Area 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Diagnostics 
and Security 

Network Planning 

Micro-
domain 

Cross-domain Cross-domain Cross-domain Core Cross-domain Edge UE 

Algorithm 
Location 

Orchestration Plane Orchestration Plane Orchestration Plane Orchestration Plane Orchestration Plane Control Plane Control Plane 

Operation 
Timescale 

Short timescale (ms-s) Short timescale (ms-s) Short timescale (ms-s) Not provided Not provided Short timescale (ms-s) Not provided 

Da
ta

se
t R

el
at

ed
 

Dataset 
Generation 

Synthetic Synthetic Real Synthetic Synthetic Real Not provided 

Dataset 
Generation 

Setup 

Not provided Not provided Not provided Not provided Not provided Probes at the 
network deployment 

Not provided 

Dataset 
Availability 

Open N/A Open Not provided Not provided Not provided Not provided 

Data 
Velocity 

Not provided Not provided Not provided Not provided Not provided Not provided Not provided 

Data 
Variety 

Structured Data Structured Data Structured Data Structured Data Structured Data Not provided Not provided 

Data 
Volume 

Not provided Not provided Not provided Not provided Not provided Not provided Not provided 

Data 
Veracity 

Not provided Not provided Not provided Not provided Not provided Not provided Not provided 
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Bib key Bakri2021 [87] tripathipuligheddu2021 

[88] 
mismarchoi2019 [89] xiongZilberman2019  

[90] 
gijon21_longterm [91] gutterman19 [92] yangcao2020 [93] 

N
et

w
or

k 
Re

la
te

d 

Networking 
problem 

Network Slice 
Admission Control 

Dynamic radio 
resource  
allocation in 
heterogeneous  
vRANs 

Downlink SINR 
maximization  
problem given the 
worst  
case distribution of 
network  
fault predictability both  
indoors and outdoors 

Traffic classification Traffic Forecasting Resource Forecasting Spectrum Access 

Applicatio
n Area 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Diagnostics 
and Security 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and Control 

Micro-
domain 

Core Edge Edge Transport Edge/core Edge/core Edge 

Algorithm 
Location 

Control Plane Control Plane Control Plane Data Plane Control and 
Orchestration Plane 

Control and 
Orchestration Plane 

Control Plane 

Operation 
Timescale 

Short timescale (ms-s; 
Medium timescale (s-
min) 

Short timescale (ms-s) Short timescale (ms-s) Very short timescale 
(us-ms) 

Very long timescale (h-
days)  

Very long timescale (h-
days)  

Short timescale (ms-s) 

Da
ta

se
t R

el
at

ed
 

Dataset 
Generation 

Not provided Not provided Not provided Real Real Synthetic Synthetic 

Dataset 
Generation 

Setup 

Not provided Not provided Not provided Testbed with 28 
different IoT devices 
(e.g., cameras, sensors, 
etc.) 

Data collected from 
January 2015 to June 
2017 (i.e., 30 months) in 
a large live LTE network 
serving an entire 
country 

 LTE eNB configured 
with a 
10 MHz bandwidth 
using 700 MHz wireless 
spectrum 

Two USRP2 connected 
to respective PCs to 
generate and collect 
the RF traces. 
Authors varied the 
window size, the SNR 
levels and data 
payload size. 
All the experiments 
were perform in a 4-
node star topology.  

Dataset 
Availability 

Private Not provided Not provided Open Not provided Not provided Private 

Data 
Velocity 

Not provided Not provided Not provided Velocity of the data 
through the switch in 
the order of 
MB/seconds 

Not provided Not provided Not provided 

Data 
Variety 

Not provided Not provided Not provided Unstructured Data Not provided Not provided Unstructured Data 

Data 
Volume 

Not provided Not provided Not provided PCAP file Not provided Not provided Not provided 

Data 
Veracity 

Not provided Not provided Not provided Accurate Not provided Not provided RF traces are from real 
devices but might be 
limited to the ones used 
during training.  
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Bib key liuyu2020 [94] camelomennes2020 
[95] 

yange2020 [96] wangmao2021 [97] jiayang2021[98] nakashimakamiya2020 
[99] 

xucheng2018 [100] 
N

et
w

or
k 

Re
la

te
d 

Networking 
problem 

Resource 
management 

Spectrum Sharing Resource 
management 

Resource 
management 

Resource 
management 

Channel Allocation Spectrum Sensing 

Application 
Area 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Planning 

Micro-
domain 

Edge Edge Cross-domain Cross-domain Edge Access Access 

Algorithm 
Location 

Orchestration Plane Control and 
Orchestration Plane 

Orchestration Plane Orchestration Plane Orchestration Plane Control Plane Control Plane 

Operation 
Timescale 

Not provided Short timescale (ms-s) Short timescale (ms-s) Short timescale (ms-s) Not provided Not provided Not provided 

Da
ta

se
t R

el
at

ed
 

Dataset 
Generation 

Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic 

Dataset 
Generation 

Setup 

Task generation is 
modeled as a Poisson 
process; the distribution 
of the IoT devices is 
modeled by a Poisson 
cluster process.  

5 Collaborative 
Intelligent Radios were 
sharing the spectrum; 
the incumbent was a 
doppler weather radar; 
radios were sharing 
10MHz of bandwidth; 
the radios were 
connected to a 
collaboration network 
in Colosseum.  

Not provided Not provided Not provided Multiple APs were 
simulated using back-
of-the-envelope (BoE) 
technique, this assumes 
each AP has a STA and 
the wireless link is 
saturated 

Multiple PUs (2, 3) and 
multiple SUs (6, 9) were 
simulated; the 
transmission power of 
each PU is set to 50 mW; 
transmission signals are 
assumed to attenuate 
according to a free-
space propagation 
model with pathloss 
exponent equal to 4. 

Dataset 
Availability 

Private Private Not provided Not provided Not provided Private Private 

Data 
Velocity 

Not provided Sample rate of 
23.04Mb/s; each 
scatter voxel contains 
35 32-FFT samples 

Not provided Not provided Not provided Not provided Not provided 

Data 
Variety 

Structured Data Unstructured Data Structured Data Structured Data Structured Data Structured Data Structured Data 

Data 
Volume 

Not provided Not provided Not provided Not provided Not provided Not provided Not provided 

Data 
Veracity 

Good amount of 
considered parameters 
allowing to obtain a 
rich dataset 

Not provided Not provided Not provided Not provided BoE is an easy 
computation method 
that produces very 
accurate results in 
modest-size networks, 
however it presents 
limitations in large-scale 
networks 

The assumptions made 
might not hold in 
realistic scenarios (e.g., 
the coverage area of 
the PU is a perfect 
circle) 
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Bib key manousis2021 

[101] 
perinoyang2020 [102] iyerli2018 [103] navarrohuet2021arxiv, 

navarrorossi2020 [104], [105] 
kattadigeraman2021 
[106] 

manglahalepovic2020 
[107] 

subramanya2021ce
ntralized [108] 

N
et

w
or

k 
Re

la
te

d 

Networking 
problem 

Anomaly 
Detection 

Network Failure 
Management 

RAN Performance 
Analysis 

Anomaly Detection Traffic classification Quality of Experience 
Prediction 

Resource 
management 

Application 
Area 

Network 
Diagnostics and 
Security 

Network Diagnostics 
and Security 

Network Diagnostics 
and Security 

Network Diagnostics and 
Security 

Network Optimization 
and Control 

Network Diagnostics 
and Security 

Network 
Optimization 
and Control 

Micro-
domain 

Subscriber Access Access Core Transport Transport Edge/core 

Algorithm 
Location 

Data Plane Control Plane Control Plane Control Plane Control Plane Control Plane Control Plane 

Operation 
Timescale 

Short timescale 
(ms-s) 
Millisecond 

Long timescale (min-h) Long timescale (min-h) Long timescale (min-h) Long timescale (min-h) Long timescale (min-h) Not provided 

Da
ta

se
t R

el
at

ed
 

Dataset 
Generation 

Private Private Private Private Public Private Private 

Dataset 
Generation 

Setup 

Not provided Not provided 6TB traffic per hour. minute time scale 70K KPIs 
per router 

Hours Not provided GB/seconds 

Dataset 
Availability 

Not provided Structured Data Structured Data Structured Data Structured data Structured Data Structured Data 

Data 
Velocity 

Not provided Not provided 6TB traffic per hour. Minute time scale 70K KPIs 
per router 

Not provided Not provided Not provided 

Data Variety Not provided Not provided Not provided Not provided Not provided Not provided Accurate 

Data Volume Not provided Not provided Not provided Not provided Not provided Not provided Not provided 

Data 
Veracity 

Not provided Not provided Not provided Not provided Not provided Not provided Not provided 
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Bib key rahman2018auto [109] huang2021scalable 

[110] 
zhang2020tiki [111] prados2020learnet 

[112] 
zhu2021network [113] yan2021acc [114] wang2022Hive [115] 

N
et

w
or

k 
Re

la
te

d 

Networking 
problem 

Resource 
management 

Resource Allocation Anomaly Detection Flow Allocation and 
Admission Control 

Planning ECN Tuning ML Splitting 

Application 
Area 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Diagnostics 
and Security 

Network Optimization 
and Control 

Network Planning Network Optimization 
and Control 

Network Optimization 
and Control 

Micro-
domain 

Transport Core Cross-domain Core, Transport Cross-domain Core, Transport Cross-domain 

Algorithm 
Location 

Control Plane Control and 
Orchestration Plane 

Data Plane Control Plane Orchestration Plane Data Plane Control Plane 

Operation 
Timescale 

Long timescale (min-h) N/A Medium timescale (s-
min) 

Short timescale (ms-s) Very long timescale (h-
days) 

Short timescale (ms-s) Long timescale (min-h) 

Da
ta

se
t R

el
at

ed
 

Dataset 
Generation 

Private Public Public Private Public Private Private 

Dataset 
Generation 

Setup 

Sample data in bits 
collected every 5-min 
interval for 1.5 month 

10 epochs (~ Not provided Not provided Not provided 48KB/s bandwidth for 
one port for data 
collection 

Not provided 

Dataset 
Availability 

Structured Data Structured Data Structured Data Not provided Structured Data Structured Data Not provided 

Data 
Velocity 

Not provided Not provided Not provided Not provided Not provided Not provided Not provided 

Data 
Variety 

Accurate Inaccurate Not provided Not provided Not provided Not provided Not provided 

Data 
Volume 

Not provided Not provided Not provided Not provided Not provided Not provided Not provided 

Data 
Veracity 

Not provided Not provided Not provided Not provided Not provided Not provided Not provided 
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Bib key he2021towards [116] rossi2019horizontal 
[117] 

khaleq2021intelligent 
[118] 

zalokostas2022experi
mental [119] 

oshea2018modulation
class [120] 

Jentzsch2022quantized
modclass [34] 

rosa2022bacalhaunet 
[121] 

N
et

w
or

k 
Re

la
te

d 

Networking 
problem 

Resource 
management 

Resource 
management 

Resource 
management 

Resource 
management 

Radio Resource 
Management 

Radio Resource 
Management 

Radio Resource 
Management 

Application 
Area 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and control 

Network Optimization 
and control 

Network Optimization 
and control 

Micro-
domain 

Core Cross-domain Core Cross-domain Access Access Access 

Algorithm 
Location 

Control Plane Control and 
Orchestration Plane 

Control Plane Control and 
Orchestration Plane 

Control Plane Control Plane Control Plane 

Operation 
Timescale 

Short timescale (ms-s) Not provided Not provided Long timescale (min-h) Short timescale (ms-s) Short timescale (ms-s) Short timescale (ms-s) 

Da
ta

se
t R

el
at

ed
 

Dataset 
Generation 

Synthetic Real Synthetic Real Synthetic Synthetic Synthetic 

Dataset 
Generation 

Setup 

They use MoonGen, a 
DPDK based packet 
generator 

event-based system to 
process geo-spatial 
data of the taxi trips in 
New York city. 

The traffic represents 
the amount of tweets 
that contain words 
related to disasters.  

multi-source dataset of 
urban life in the city of 
Milan and the province 
of Trentino 

GNU radio was used to 
generate the 
waveforms 

GNU radio was used to 
generate the 
waveforms 

GNU radio was used to 
generate the 
waveforms 

Dataset 
Availability 

Private Open Private Open Public Public Public 

Data 
Velocity 

MB/sec 2000 events per 
second  

Not provided ~1200 events per day Not provided Not provided Not provided 

Data Variety Structured Data Structured Data Unstructured Data Structured Data Structured Data Structured Data Structured Data 

Data Volume Not provided 130MB Not provided Not provided 20GB 20GB 20GB 

Data 
Veracity 

Accurate Accurate Inaccurate Accurate Accurate Accurate Accurate 
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Bib key fu2019 [122] koo2019deep [123] DalgkitsisGarrido2022 
[124] 

SantosLynn2021 [125] khan2020real [126] minovski2021throughp
ut [127] 

teixeira2023wi [128] 
N

et
w

or
k 

Re
la

te
d 

Networking 
problem 

Service function chain 
embedding 

Service function chain 
embedding 

Service Function Chain 
(SFC) orchestration for 
multi-domain networks 

Service Function Chain 
placement considering 
availability and energy 
consumption 

Link Evaluation, 
Throughput Prediction 

Link Evaluation, 
Throughput Prediction 

Link Evaluation, 
Throughput Prediction 

Application 
Area 

Network slicing Network slicing Network slicing Network slicing Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and Control 

Micro-
domain 

Not provided Not provided Not provided Not provided Edge Edge Edge 

Algorithm 
Location 

Control Plane Control Plane Control Plane Control Plane Control plane Control plane Control Plane 

Operation 
Timescale 

Long timescale (s-min) Long timescale (s-min) Short timescale (ms-s) Long timescale (s-min) Short timescale (ms-s) Short timescale (ms-s) Short timescale (ms-s) 

Da
ta

se
t R

el
at

ed
 

Dataset 
Generation 

Two typical SFCs to be 
embedded 

Artificial and real 
traces 

Synthetic Synthetic Synthetic and Real Real Real 

Dataset 
Generation 

Setup 

Not provided Not provided Not provided Not provided Real: Network traces 
obtained through 
Wireshark. 6 Wi-Fi 
stations and an access 
point. 
Synthetic: Using Mininet 
Wi-Fi. 10 Wi-Fi stations 
and an access point 

Only one mobile 
phone is connected to 
the 5G network. They 
used active testing for 
labeling the dataset. 
The transmission 
alternates between UL 
and DL with intervals of 
500ms being idle.  

only one vehicle 
connected to one 
stationary access point  

Dataset 
Availability 

Private Not provided Not provided Not provided Private Private Open 

Data 
Velocity 

Not provided Not provided Not provided Not provided 54Mbps Not provided 1 sample per second 

Data Variety Not provided Not provided Not provided Not provided Structured Data Structured Data Structured Data 

Data Volume Not provided Not provided Not provided Not provided Not provided Not provided Not provided 

Data 
Veracity 

Not provided Not provided Not provided Not provided Accurate Accurate Accurate 
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Bib key busseGrawitz2019 [129] Xieli2022 [130] Zhengzang2022 [131] begagramaglia2019 

[132] 
begagramaglia2020 
[133] 

Zhangpatras2018 [134] Zhangfiore2019 [135] 
N

et
w

or
k 

Re
la

te
d 

Networking 
problem 

Traffic classification Traffic classification Traffic classification Capacity prediction Capacity prediction Traffic Prediction Traffic Prediction 

Applicatio
n Area 

Network Diagnostics 
and Security 

Network Diagnostics 
and Security 

Network Diagnostics 
and Security 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and Control 

Network Optimization 
and Control 

Micro-
domain 

Transport Transport Transport Edge/core Edge/core Edge/core Edge/core 

Algorithm 
Location 

Data Plane Data Plane Data Plane Control and 
Orchestration Plane 

Control and 
Orchestration Plane 

Control and 
Orchestration Plane 

Control and 
Orchestration Plane 

Operation 
Timescale 

Very short timescale 
(us-ms) 

Very short timescale 
(us-ms) 

Very short timescale 
(us-ms) 

Long timescale (min-h) Long timescale (min-h) Long timescale (min-h) Not provided 

Da
ta

se
t R

el
at

ed
 

Dataset 
Generation 

Real  Real  Real Real Real Real Real 

Dataset 
Generation 

Setup 

Testbed network with 
12 hosts attacked by 2 
hosts 

Multiple datasets  Multiple datasets Real data from 470 4G 
eNBs of a mobile 
network deployed in a 
large metropolitan 
region of around 100 
km^2 and collected at 
the gateway of an 
operational mobile 
network by monitoring 
the GPRS Tunneling 
Protocol (GTP). 

Real data from 470 4G 
eNBs of a mobile 
network deployed in a 
large metropolitan 
region of around 100 
km^2 and collected at 
the gateway of an 
operational mobile 
network by monitoring 
the GPRS Tunneling 
Protocol (GTP). 

Real Data from 
Telecom Italia Dataset 
for Milan 

large-scale mobile 
traffic dataset 
collected by a major 
operator in a large 
European metropolitan 
area during 85 
consecutive days.  
24,482 traffic snapshots 
for individual service. 
Each mobile traffic 
snapshot comprises the 
traffic demand 
accommodated by 
792 antennas 
aggregated every 5 
minutes.  

Dataset 
Availability 

Open  Open  Open Private Private Private Private 

Data 
Velocity 

MB/seconds  Variable  Variable Each 5 minutes Each 5 minutes Not provided Traffic aggregated 
every 5 minutes 

Data 
Variety 

Unstructured Data  Structured  Structured Structured Data Structured Data Structured Data Structured Data 

Data 
Volume 

PCAP file of about 8 GB Not provided Not provided Not provided Not provided Not provided 36 services x 24,482 
traffic snapshots x 792 
antennas x 24*60/5 
measurements x 85 
days 

Data 
Veracity 

Accurate  Accurate  Accurate Accurate (but used for 
forecasting, future may 
not be known from 
current samples) 

Accurate (but used for 
forecasting, future may 
not be known from 
current samples) 

Accurate (but used for 
forecasting, future may 
not be known from 
current samples) 

Accurate 
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Bib key Trinhgiupponi2018 
[136] 

camelo2022TrafficC
lassSpect [57] 

oshea2016TraffClas
sSpec [137] 

camelo2019TechCl
assSpect [138] 

camelo2020TraffCla
ssSpec [139] 

Dalgkitsis2021Trans
actionsITS  [140] 

Ma2020Transaction
sWC [141] 

Grasso2022Transact
ionsNSM [142] 

N
et

w
or

k 
Re

la
te

d 

Networking 
problem 

Traffic Prediction Radio Resource 
Management 

Radio Resource 
Management 

Radio Resource 
Management 

Radio Resource 
Management 

Resource 
management 

Resource 
management 

Resource 
management 

Application 
Area 

Network 
Optimization and 
Control 

Network 
Optimization 
and control 

Network 
Optimization 
and control 

Network 
Optimization 
and control 

Network 
Optimization 
and control 

Network 
Optimization 
and control 

Network 
Optimization 
and control 

Network 
Optimization 
and control 

Micro-
domain 

Edge/core Access Access Access Access Edge Edge Edge 

Algorithm 
Location 

Control and 
Orchestration Plane 

Control Plane Control Plane Control Plane Control Plane Control and 
Orchestration Plane 

Control and 
Orchestration Plane 

Control and 
Orchestration Plane 

Operation 
Timescale 

Not provided Short timescale (ms-
s) 

Short timescale (ms-
s) 

Short timescale (ms-
s) 

Short timescale (ms-
s) 

Short timescale (ms-
s) 

Short timescale (ms-
s) 

Short timescale (ms-
s) 

Da
ta

se
t R

el
at

ed
 

Dataset 
Generation 

Real Real traces of L2 
were used to 
generated 
synthetic L1 Wi-Fi-
compliance 
packets in an 
emulator 

Real traces of L2 
were used to 
generated 
synthetic L1 packets 

Emulated Synthetic Online dataset (taxi 
traffic in San 
Francisco Bay Area) 

Online dataset ( 
real-world trace of 
mobile users 
using Twidere, an 
open-source 
Android Twitter) 

Online dataset 
(CIFAR-10 dataset) 

Dataset 
Generation 
Setup 

one-month of 
scheduling 
information 
gathered by 
monitoring different 
eNBs located in the 
city of Barcelona, 
Spain 

A Wi-Fi access point 
and one client for 
generating real L2 
and Matlab for L1 

GNU radio was used 
to generate the 
waveforms 

DARPA Colosseum ns3+Matlab Online dataset Online dataset Online dataset 

Dataset 
Availability 

Private Public Private Private Private Yes Yes Yes 

Data Velocity 1 ms 20 Mega samples 
per second (Msps) 

1Mbps at L2 20 Msps 20 Msps Not provided Not provided Not provided 

Data Variety Structured Data Structured Data Structured Data Structured Data Structured Data Not provided Not provided Not provided 

Data Volume Not provided 20GB Not provided Not provided Not provided Not provided Not provided Not provided 

Data Veracity Accurate Accurate Accurate Accurate Accurate Not provided Not provided Not provided 
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B.2 Research question related to Machine Learning algorithms 
 

Bib Key sotocamelo2021atari [25] ayalagarcia2021 [40] sotocamelo2021 [26] sotocamelo2023 [43] goez2022quantizedmodclass [47] 

ML Method Supervised Learning (SL) Reinforcement Learning (RL) Reinforcement Learning (RL) Reinforcement Learning (RL) Deep Learning 

ML Problem Prediction Control Decision Making Decision Making Classification and regression 

Algorithm Graph Neural Networks Deep deterministic policy gradient Deep Q-Learning Proximal Policy Optimization CNN 

Resource 
Awareness 

No Yes No No Yes 

Model 
Description 

Input: Node Type, Node 
positioning, Channel 
Configurations, RSSI, SINR, Airtime, 
Interference among BSSs, Distance 
between Nodes, Bandwidth per 
deployment 
Output: Throughput per Node per 
deployment 

input: UL and DL channel  
quality indicator and the  
"new" bit presence 
output: configuration  
policies 

State: Number of VNF Replicas, avg 
CPU usage, peak latency  
Actions: increase, decrease 
number of VNFs.  

State: Number of VNF Replicas, avg 
CPU usage, peak latency  
Actions: increase, decrease 
number of VNFs. 

Input: In-phase and Quadrature 
(IQ) samples of a modulated RF 
signal, Output: Modulation, Model: 
VGG10 CNN with different level of 
quantization at each layer., 
running platform: FPGA 

Loss / Reward 
Function 

Root Mean-Squared Error (RMSE) Balance performance 
and cost in one case, being 
performance maximization 
the alternative 

adapted from cartpole 
environment. 

minimize the weighted sum of the 
performance and resource cost 

Categorical Cross-entropy 

Baseline 
Comparison 

CNN, FNN and GB 
Heuristic: Truncated Normal 
Distribution 

Only evaluation available Threshold-based algorithm; PID 
controller 

PI controller VGG10 CNN with 32-bits floating 
point; VGG10 CNN with equal 
quantization value across all layers 
(2 to 8 bits) 

Limitations of 
ML vs. 
benchmark 

GNNs require more research when 
operating with edge features. 
Regularization and normalization 
do not work out-of-the-box.  

Compute intensive  
inference 

Slightly increased tradeoff 
between number of created VNFs 
and delay 

slightly increased tradeoff between 
number of created VNFs and delay 

Same quantization level is applied 
to all the layers, limiting the trade-
off between model size and model 
performance. 

Advantages 
of ML vs 
benchmark 

GNNs exploit the graphs’ 
topological information, 
independently of how many nodes 
the graph has. 

Data efficient. Algorithm  
converges with a  
small number of samples 

adaptability in defining the 
thresholds 

adaptability in defining the 
thresholds 

Lower energy consumption with 
higher accuracy since tailor-made 
selection of the quantization level 
finds solutions that are not possible 
with the traditional approach.  

Optimality 
Gap 

No optimal results. GNN 
outperformed ML methods and the 
Random guesser by 55% and 64%, 
respectively.   

Not provided No optimal results are available No optimal results are available No optimal results are available 

Tradeoff ML 
vs. 
Benchmark 

Not provided Not provided The ML method keeps the delay 
under control at expenses of 
creating more VNFs than the 
baseline methods. The SLA 
violations are reduced 

The behavior of the RL algorithm 
can be tuned depending on the 
weights of the reward function. The 
PI controller turned out to be 
insensitive to those weights. 

Selecting the best quantization 
level per layer obtains higher 
accuracy with the highest level of 
quantization possible. 
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Bib Key akembutun2023 [16] akemgucciardo2023 [77] loschiavofiore2022 [28] colletbanchs2022 [37] colletbazco2023 [38] 

ML Method Supervised Learning (SL) Supervised Learning (SL) Joint Deep Learning and Statistical 
Modelling 

Forecasting/Regression 
Supervised Learning 

Supervised Learning (SL) 

ML Problem Classification Classification Control Loss-Metric Mismatch Forecasting / Prediction 

Algorithm Random Forest Random Forest Recurrent Neural Networks with 
LSTM 

Deep Neural Networks Deep Neural Network 

Resource 
Awareness 

Yes   Yes   No No No 

Model 
Description 

Input: packet-level features (data 
extracted from ethernet, ip, 
tcp/udp headers). Output: 
classification of packets 

Input: packet-level features (data 
extracted from ethernet, ip, 
tcp/udp headers) and flow-level 
features (mean, max, min values 
computed over interarrival time 
and packet length). Output: 
classification of flows of packets 

Input: Past traffic 
Output:  Traffic / Capacity / 
resources forecast 

Input: Past states and decisions 
Output: Next action 

Input: Past samples from several 
time series and/or other variables 
Output: Directly the MANO 
decision to realize in order to 
optimize a certain MANO objective 

Loss / Reward 
Function 

Precision, Recall, F1 score  Precision, Recall, F1 score MSE of forecasted traffic 
or 
SLA violations 

Self-learned Self-learned 

Baseline 
Comparison 

Monolithic Random Forest classifier State-of-the-art packet-level 
classifier (Zhengzang2022) 

Not provided MAE, MSE and  
ML with Expert-defined loss function 

MAE, MSE and 
ML with Expert-defined loss function 

Limitations of 
ML vs. 
benchmark 

A two-stage hierarchical classifier 
consumes more switch resources 
than a monolithic classifier 

A flow-level classifier consumes 
more switch resources than a 
packet-level classifier 

Not provided Slightly more complexity Slightly more complexity 

Advantages 
of ML vs 
benchmark 

The classification performance in 
terms of F1-score, Precision and 
Recall of the hierarchical classifier is 
better than the monolithic classifier 

The classification performance in 
terms of F1-score, Precision and 
Recall of the flow-level classifier is 
better than the packet-level 
classifier 

Adapts to data with high variation 
and close-to-zero values 
 
Stability 

It is able to characterize a complex 
or even unknown loss function 
during training. This knowledge can 
be transferred to other cases and 
allows explainability. 

It is able to characterize a complex 
or even unknown loss function 
during training. This knowledge can 
be transferred to other cases and 
allows explainability. 

Optimality 
Gap 

3% more resources are used by the 
solution 

from 12% to 18% more resources are 
used by the solution 

Not provided No optimal. It performs better than 
the "trainer" for standard loss 
functions. 

No optimal. It performs better than 
the "trainer" for standard loss 
functions. 

Tradeoff ML 
vs. 
Benchmark 

7%, 21%, 27% better Precision, 
Recall, F1-score 

From 2% to 39% better F1-score, 
Precision and Recall in four 
different use cases 

Not provided For complex or unknown loss 
functions, a small increase of 
complexity provides significant 
gains 

An internal structure designed with 
the generic problem in mind 
(anticipatory decision making) 
improves considerably the 
performance and allows to learn 
how to behave in cases where the 
optimal solution is not known 
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Bib Key NinaSK2023CCNC [21] Zhu2021[78] ayalagarcia2020 [17] nakanoyasato2019 [79] xiaozhang2019 [80] 

ML Method Supervised Learning (SL) Reinforcement Learning (RL) Reinforcement Learning (RL) Reinforcement Learning (RL) Reinforcement Learning (RL) 

ML Problem Regression Learning resource management 
policy (pricing policy with DDPG, 
and offloading policy with 
MADDPG) 

Control Control Control 

Algorithm Support Vector Regression and The 
Technique for Order of Preference 
(TOPSIS)  

Deep Deterministic Policy Gradient 
(DDPG), and Multi-Agent DDPG 
(MADDPG) 

Neural networks (DDPG) Gradient Boosting Decision-Tree - 
Monte Carlo Value Iteration 

Deep Policy Gradient  

Resource 
Awareness 

No Yes Yes No No 

Model 
Description 

Input: CPU, RAM, storage, and end-
to-end latency.  

Output: Predicted end-to-end 
latency that will be experienced by 
users 

Deep Reinforcement Learning 
Resource Management (DRLRM) 

input: Encoded representation of 
the  
scheduler context 
output: scheduling policy 

State: VNF presence at PoPs, 
allocated CPU and memory per 
VNF. Action: VNF scaling and 
migration 

State: resource utilization across all 
servers, links, resource demands of 
VNs Action: server to host the VNF 

Loss / Reward 
Function 

R-squared Reward of client/server Minimize operational cost when 
CPU capacity is sufficient or meet  
performance target when there is  
computing deficit 

Step1: throughput/latency, Step2: 
utility/cost 

minimize OPEX, maximize 
throughput 

Baseline 
Comparison 

No forecasting Not provided 1. CVrain-Rlegacy: Proposed CPU 
orchestrator and legacy scheduler 
2. R-Optimal: knows the required 
CPU and scheduling policies that  
maximizes the reward 
3. T-Optimal: similar to R-Optimal 
but maximizing throughput 
4. Heuristic: lineal model between 
MCS and CPU load 

Conventional RL (without 
performance profile) 

greedy algorithms and a Bayesian 
learning method 

Limitations of 
ML vs. 
benchmark 

Limited number of edge nodes, 
possibility to obtain conflicting 
decisions made at edge and cloud 
levels 

sample efficiency and stability No optimality guarantees Additional effort to profile SFCs in 
terms of performance 

neural networks inherently reduce 
the explainability capacity 
compared to, e.g., a heuristic 
method, parameter tuning, training 

Advantages 
of ML vs 
benchmark 

Awareness of quality perceived by 
the end clients (vehicle), improved 
end-to-end latency 

unstable training of DDPG Supports non-linear contextual  
traffic and mobility patterns 

Faster convergence and 
adaptability  

adaptability to varying network 
environment, fast decision-making  

Optimality 
Gap 

Increase service reliability to 
99.999%, decrease service latency 
for 105ms 

Not provided 2% below  
optimal 

Not provided Not provided 

Tradeoff ML 
vs. 
Benchmark 

Increase service reliability to 
99.999%, decrease service latency 
for 105ms 

Not provided Not provided Not provided Not provided 
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Bib Key quanghadjadj-aoul2019 [81] peihong2019 [82] zhengtian2019 [83] solozabalceberio2019 [84] foukasradunovic2021 [85] 

ML Method Reinforcement Learning (RL) Reinforcement Learning (RL) Reinforcement Learning (RL) Reinforcement Learning (RL) Supervised Learning (SL) 

ML Problem Control Control Control Control Prediction 

Algorithm Deep Deterministic Policy Gradient 
based on the Actor-Multiple Critics 
paradigm 

Double deep Q-network (DDQN) Q-learning (e-greedy) Neural combinatorial optimization Decision Tree (quantile decision 
tree) 

Resource 
Awareness 

No No No No Yes 

Model 
Description 

State: resource requirements 
across all VNFs, Vlinks, Action: 
ranking of node-to-node and link-
to-link pairs.  

State: average available 
bandwidth, memory, CPU and 
#cores on links, nodes, VNFIs across 
each region. Action: region 
combination 

State: SFC type to be deployed, 
Action: server to place the SFC 

State: sequence of VNFs (SFC), 
Action: mapping of VNFs to servers 

input: Set of features describing the 
state 
of the base station (number of 
scheduled  
UEs and their transport 
block sizes, number of layers) 

Loss / Reward 
Function 

acceptance rate weighted cost  weighted cost  minimize energy consumption with 
constraint violation penalization 

N/A 

Baseline 
Comparison 

DDPG  MGSAS (primarily introduced to 
accelerate embedding solvers by 
limiting the solution space), Eigen-
decomposition (operations on 
adjacency matrices)  

ILP, Bicriteria approximation 
algorithm, greedy  

MILP, First-Fit heuristic Benchmark for the prediction 
model: 
1. linear regression  
2. (non-linear) gradient boosting 
model 

Limitations of 
ML vs. 
benchmark 

computational complexity (MCN), 
incorporation of tailored heuristic 

repetitive re-training, region 
selection (not PoP selection) is a 
strong simplification  

optimality gap, memory 
consumption (conventional Q-
learning) 

benchmark performs better on 
small sized problems; constraint 
satisfaction is not guaranteed - but 
the probability of occurrence is 
reduced 

Not provided 

Advantages 
of ML vs 
benchmark 

improved performance improved performance no need for a-priory knowledge of 
resource requirements  

informative guidance to heuristic 
for improved performance on large 
scale networks 

Ability to predict task 
execution times 

Optimality 
Gap 

Not provided Not provided 32% worse than the optimal within 10% Not provided 

Tradeoff ML 
vs. 
Benchmark 

Not provided Not provided Not provided Not provided Not provided 
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Bib Key zhaoliang2019 [86] Bakri2021 [87] tripathipuligheddu2021 [88] mismarchoi2019 [89] xiongZilberman2019 [90] 

ML Method Reinforcement Learning (RL) Reinforcement Learning (RL) Reinforcement Learning (RL) Reinforcement Learning (RL) Supervised Learning (SL) 

ML Problem Prediction Classification /Control Prediction Prediction Classification 

Algorithm Dueling Double DQN Deep Q-Learning / Regret 
Matching 

SARSA Deep neural networks / Deep Q-
learning 

Decision Tree, SVM, Naive Bayes, K-
means 

Resource 
Awareness 

no No Yes No No 

Model 
Description 

input: List of allowed actions to be  
taken by all UEs 
output: Optimal sequence of 
actions to achieve QoS 
requirements 
of all UEs 

Input: Slices input: SNR, buffer state, and  
the status of aggregate traffic load 
already hosted on the available 
links 
output: policy to select the best  
available link and transmission  
parameters for packet transfer 

Input: Initial downlink SINR and 
target  
SINR for the voLTE downlink  
closed loop power control and a 
set of  
handling actions in a network for 
the Fault  
management solution 

input: 11 flow features (e.g., size of 
the packet, source and destination 
ports, etc);  
output: classification of the type of 
device (e.g., sensor, video, etc) 

Loss / Reward 
Function 

The reward function focus on  
guaranteeing the quality of service  
(QoS) requirement of UEs. 

Not provided The reward function focus on  
accomplish the packet loss and 
latency requirements, being as  
close as possible to the optimal  
value 

VoLTE PC: the reward function 
ensures base station’s radio link 
power is constantly tuned to meet 
the target SINR. 
Fault management: solves the 
impact of impairments on DL 
throughput as experienced by UEs 

F1 score, where F1 = 
2(precision*recall)/(precision+recal
l) 

Baseline 
Comparison 

Optimal policy QL- DQL-RM 1. Modified version of the proposed 
solution where the reward 
 is evaluated by averaging the 
reward over all the RL agents 

1. Fixed power allocation 
2. Maximum SINR 

DT model with tree depth equal to 
11, is implemented in a bmv2 
software switch and compared 
against: 1) the same 
implementation with a smaller tree 
depth; 2) an hardware 
implementation in a NetFPGA with 
only 5 levels.  

Limitations of 
ML vs. 
benchmark 

Not provided Not provided No optimality guarantees Not provided Loss of accuracy due to a reduced 
three depth in both cases 

Advantages 
of ML vs 
benchmark 

near-optimal solution with a  
small number of iterations 

Not provided Effectively addresses the need for 
a solution that can swiftly adapt to 
the underlying channel network  
dynamics for context-aware radio  
resource allocation 
in heterogeneous vRANs 

Effectively tunes downlink SINR 
and number of active faults  
through exploration and 
exploitation 
without the interaction of the UE 

Better accuracy  

Optimality 
Gap 

Near-optimal  
results 

Not provided Not provided Not provided Loss of accuracy of: 1) 1-2% per 
each level of the tree; 2) about 9%. 

Tradeoff ML 
vs. 
Benchmark 

Not provided Not provided Not provided Not provided Not provided 



Deliverable 2.3 

                                                                                                                                                                           H2020 – 101017109 

168 

 
Bib Key gijon21_longterm [91] gutterman19 [92] yangcao2020 [93] liuyu2020 [94] camelomennes2020 [95] 

ML Method Supervised Learning (SL) Supervised Learning (SL) Supervised Learning (SL) Unsupervised Learning (UL); 
Reinforcement Learning (RL) 

Semi-Supervised Learning (SSL); 
Supervised Learning (SL) 

ML Problem Forecasting Forecasting Classification Clustering; Decision Making Recognition; Forecasting 

Algorithm DT, SARIMA, AHW, RF, ANN, ANN–
LSTM, SVR. 

Hybrid (X_LSTM: ARIMA+LSTM) Convolutional Neural Network 
(CNN) 

K-Means; DQN CNN and Context Tree Weighting 
(CTW) 

Resource 
Awareness 

No No No No No 

Model 
Description 

Input: Past Traffic volume 

Output: Predicted Traffic Volume 

Input: Past Traffic volume 

Output: Predicted Traffic Volume 

Master-CNN 
Input: IQ samples of RF traces 
Output: Number of colliding STAs 
 
Slave-CNN 
Input: IQ samples of RF traces 
Output: ID of the colliding STAs 

K-Means 
Input: User Priority  
Output: Which devices must 
perform local task computation. 
DRL 
Actions: transmission power of the 
device 
States: channel gain, task queue, 
remaining computation capacity 
of each device. 

Technology Recognition 
Input: RF traces of different radio 
technologies and idle noise 
Output: technology presence in a 
given spectrum voxel 
Spectrum Usage Pattern Predictor 
Input: The transmission pattern of 
an incumbent 
Output: Forecast the pattern of 
future incumbent transmission 

Loss / Reward 
Function 

MAE REVA: combining the amount of 
average Physical Resource Blocks 
with individual channel bearer 
conditions 

Cross-entropy K-Means: Silhouette Coefficient 
and the sum of squared error (SSE) 
for selecting the number of clusters. 
DRL: weighted sum of energy 
consumption and task execution 
latency of computing the tasks 
locally or at the edge  

Technology Recognition 
Binary Cross-Entropy 
Spectrum Usage Pattern Predictor 
N/A 

Baseline 
Comparison 

Among themselves simple LSTMs IEEE802.11 DCF implemented in ns-
2 

Heuristics Not provided 

Limitations of 
ML vs. 
benchmark 

longer to converge/train Not provided Trade-off between the 
performance gain and the 
inference accuracy. 

No optimality guaranteed Not provided 

Advantages 
of ML vs 
benchmark 

Better MAE/MAPE degree of prediction accuracy 
with a MAPE 

The colliding transmissions can be 
rescheduled, improving the overall 
throughput (performance gain 
w.r.t. standard IEEE802.11 DCF) 

adaptability to varying network 
environment; independent 
decision-making 

Fast Fourier Transform (FFT) 
representation instead of raw IQ 
samples reduces the amount of 
samples to be processed in the TR. 
The CTW has low time and space 
complexities with theoretical 
performance guarantees; the 
algorithm does not require offline 
training 

Optimality 
Gap 

Not provided Not provided Not provided Not provided Not provided 

Tradeoff ML 
vs. 
Benchmark 

Not provided Not provided Not provided the DRL optimizes the system cost 
but does not outperform baselines.  

The execution time of the two-step 
approach can be easily 
implemented in a RIC.  
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Bib Key yange2020 [96] wangmao2021 [97] jiayang2021 [98] nakashimakamiya2020 [99] xucheng2018 [100] 

ML Method Reinforcement Learning (RL) Reinforcement Learning (RL) Reinforcement Learning (RL) Reinforcement Learning (RL) Unsupervised Learning (UL) 

ML Problem Control Control Control Decision Making Clustering 

Algorithm A3C and GCN Double Deep Q-network A3C Deep Q-Learning; Graph 
Convolutional Neural Network 

Non-parametric Bayesian Model 

Resource 
Awareness 

No No No No No 

Model 
Description 

State: max CPU and BW on each 
node, residual CPU and BW on 
each node, virtual node CPU and 
BW requirements, remaining virtual 
nodes to be placed 

Action: physical node to embed 
current virtual node 

State: initial, occupied, reserved 
resources of each DC, similar state 
of each link, features of current 
SFC.                                                     

Action: (a,b) pair where a is the DC 
for actual deployment and b is the 
DC for the standby SFC instance 

State: VNF type, number of VNFs 
remaining in the chain, length of 
SFC chain, VNF computation load, 
remaining length of the chain, 
remaining time to deadline.  
Action: defer rate, i.e., the 
probability that a VNF scheduling 
will be deferred for the next 
scheduling event. 

State: adjacency matrix and 
current channel allocation 
Actions: new channel allocation  

Input: Timeseries of spectrum 
sensing data of different 
Secondary Users (SUs) 
Output: Number of spectrum states  

Loss / Reward 
Function 

Shaped reward that combines 
acceptance ratio, revenue, cost, 
load balancing, and eligibility 
traces 

{1, if SFC is placed, -1 otherwise} based on whether the SFC 
execution occurred prior to its 
deadline  

The reward function is the average 
throughput of the lower 40% APs 

Not provided 

Baseline 
Comparison 

MCTS (MCVNE), relaxed MILPs (R-
Vine, D-Vine), NodeRank, GRC 

Random greedy, best-fit greedy, 
near optimal sorting greedy, deep 
q network 

Earliest Finish First, Earliest Start First, 
DQN 

1. Random Allocation 
2. DQN + CNN 
3. Potential game-based 

1. Energy Detection 
2. Gaussian Mixture Model - 
Expectation Maximization 
3. Gaussian Mixture Model - 
Bayesian Information Criterion 
4. Mean Shift 

Limitations of 
ML vs. 
benchmark 

The proposed algorithm requires 
lots of computational resources for 
its parallel implementation.  

offline training, neural networks 
reduce explainability 

A3C typically trains multiple agent 
workers to improve stability, which 
requires many computational 
resources. 

Not provided The spectrum sensing performance 
degrades when more Primary Users 
(PUs) are present for all proposed 
methods  

Advantages 
of ML vs 
benchmark 

Improved performance and 
adaptability w.r.t. varying VN 
request types  

fast decision making faster convergence compared to 
the DQN, improved acceptance 
rate 

Using GCN instead of CNN the 
learning performance improves. 

The proposed method is more 
robust since it takes advantages of 
the spatial-temporal 
characteristics of the timeseries 
data. 

Optimality 
Gap 

Not provided slightly worse than a near-optimal 
method 

in terms of reliability (which is the 
scope of the paper), at least 5% 
better 

No optimal results are available Not provided 

Tradeoff ML 
vs. 
Benchmark 

Not provided Not provided Not provided The proposed method achieves 
better reward. 

Not provided 
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Bib Key manousis2021 [101] perinoyang2020 [102] iyerli2018 [103] navarrohuet2021arxiv, 
navarrorossi2020 [104], [105] 

kattadigeraman2021 [106] 

ML Method Unsupervised Learning (UL) Supervised Learning (SL) Likely supervised (not clearly 
indicated) 

Unsupervised Learning (UL) Supervised Learning (SL) 

ML Problem Prediction Classification Classification and regression Classification Classification 

Algorithm Gaussian Processes XGBOOST Multi-task learning with ensembles 10 anomaly detection algorithms 
(based on distance, density, 
clustering, subspace) for batching 
and stream and feature scoring 
algorithms. 

XGBOOST 

Resource 
Awareness 

No No No No No 

Model 
Description 

Not provided Input: features built on alarms from 
cell site and additional information 
(e.g., weather, location, power 
supply type)  

Output: failure permanent or 
temporal. 

Input: features built on bearer 
records, signaling records, TCP flow 
level statistics, network elements 
records. PCA is then used for 
grouping of datasets across 
different cells.  
Output: cell drop rate classification 
or throughput prediction. 

Input: router KPIs 
Output: tickets for anomalies 

Input: features derived from packet 
level traces or TCP flow level 
information and video session level. 
Output: is the flow a 360 video 
streaming or regular streaming 

Loss / Reward 
Function 

Not provided Not provided weighted sum of the component of 
a given base station and the 
component of the group of base 
stations (defined by the PCA) 

Not provided Not provided 

Baseline 
Comparison 

Not provided 1. Original policy 
2. LSTM 
3. Experience-based threshold 
4.  probability -based threshold 

1. per base station modelling 
2. different spatial grouping 
methods for cells 
3. grouping only 

The paper compares the 10 AD 
algorithms and the 10 FS algorithms.  

1. Heuristics based on threshold on 
input fields 
2. Different ML models as CNN, 
Multi-layer Perceptron, KNN, naive 
bayes 

Limitations of 
ML vs. 
benchmark 

Not provided The ML approach is more 
expensive than heuristics 

It requires a more complex design 
than the benchmarks 

Not provided The ML approach is more 
expensive than heuristics based on 
thresholds 

Advantages 
of ML vs 
benchmark 

Not provided The approach is simpler and less 
computational expensive than 
LSTM while providing the same 
benefits. 

Superior performance with limited 
data available. Best 
delay/performance tradeoffs 

Not provided XGBOOST performs the best 
among different other models 
tested.  

Optimality 
Gap 

Not provided Not provided Not provided Not provided Not provided 

Tradeoff ML 
vs. 
Benchmark 

Not provided Not provided Not provided Not provided Not provided 
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Bib Key manglahalepovic2020 [107] subramanya2021centralized [108] rahman2018auto [109] huang2021scalable [110] zhang2020tiki [111] 

ML Method Supervised Learning (SL) Supervised Learning, Federated 
Learning 

Supervised Learning (SL) Reinforcement Learning; 
Federated Learning 

Joint Deep Learning and Statistical 
Modelling 

ML Problem Classification Forecasting Classification Control Classification 

Algorithm SVM, k-NN, XGBoost, RF and MLP FNN; LSTM; CNN-LSTM DT; RF; MLP and Bayesian Networks Deep Q-Learning DNN, CNN, C-LSTM, DSE 

Resource 
Awareness 

No No No No No 

Model 
Description 

Input: features derived from TLS 
flow level information and video 
session level. Output: target QoE 
metric (i.e., video quality, rebufferig 
ratio, combined QoE) 

input: avg traffic load per second 
or number of VNF in a given time. 
Output: expected avg traffic load 
in next prediction window or the 
number of VNFs in the next 
prediction window 

Input: traffic load and traffic load 
change between time intervals.  
Output: instances in the next time 
interval.   

State: information of all network 
resources and configurations 
(remaining and demanded 
capacity of nodes and links) 
Actions: VNF deployment and 
perception and allocation 

Input: flow features   

Output: one-to-all classification: 
binary (attack vs no attack) and 
one-to-one classification (which 
attack type of 14 available) 

Loss / Reward 
Function 

Not provided Huber and MSE Not Provided, probably cross-
entropy.  

Minimize the total weighted cost of 
deploying an SFC. The cost is 
composed of the communication, 
setup and operation of SFC.  

cross-entropy 

Baseline 
Comparison 

1. the different ML methods 
2.  packet level traces (still based 
on ML techniques) 

Naïve approach: the expected 
avg traffic load in the next 
prediction window is the same as 
the previous one.  

Moving Average Neural Combinatorial Optimization 
and Branch and Bound 

DNN, CNN and C-LSTM 

Limitations of 
ML vs. 
benchmark 

The approach based on packet 
level is 5-7% superior. But it is also 
based on ML. 

CNN-LSTM model outperforms 
purely LSTM since the use of the 
CNN provides extra information 
and learn internal representation of 
the time-series data 

No optimality guaranteed The utilization margin of the ML 
method compared to the baseline 
reduces as the SFC length and 
number increases. 

The new method requires 
implementing a voting scheme, re-
train the NNs and implement a new 
DSE neural network 

Advantages 
of ML vs 
benchmark 

The approach based on flow level 
information is amenable to actual 
usage, while packet level traces 
one do not scale. 

All the ML algorithms outperform 
the baseline 

All the ML algorithms outperform 
the baseline 

The ML method achieves maximal 
utilization ratio. The  

The new approach fully prevents 
five mainstream black-box 
adversarial attacks 
from compromising deep learning-
based NIDS 

Optimality 
Gap 

Not provided Not provided Not provided Regarding network cost, the BandB 
method perform the best, but the 
ML method closely follows. The 
deviation is not big  

No optimal results are available 

Tradeoff ML 
vs. 
Benchmark 

Not provided The FL approach does not perform 
better than the centralized. The 
model average does not provide 
better results than not averaging 
the weights but to using them for 
the next node.  

Random Forest provides higher 
precision highest ROC area and 
lowest false positives. The pattern of 
data and feature set favors 
decision tree algorithms. More 
features do not imply better 
accuracy due to repetitive 
patterns in the input data.  

The ML method exhibits better 
convergence performance, higher 
average reward, and smaller 
average resource consumption 
than the baseline policies over a 
variety of network scenarios 

Not provided 
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Bib Key zhu2021network [113] yan2021acc [114] wang2022Hive [115] he2021towards [116] rossi2019horizontal [117] 

ML Method Deep Reinforcement Learning Multi-agent Deep RL Split graph transformation (actually 
not ML) 

Reinforcement Learning (RL) Reinforcement Learning (RL) 

ML Problem Decision Making Decision Making multi-split ML problem Control Decision Making 

Algorithm Actor-Critic 
algorithm 

Deep Q-learning, four-layer NN distributed min-cost graph 
algorithm (actually not ML) 

GNN + A3C Modified Q-Learning 

Resource 
Awareness 

No No No No No 

Model 
Description 

states: work topology and the node 
features, actions: action 
representation indicates which 
link to select to add capacity and 
how much capacity to add 

states: collectible statistics, actions: 
ECN setting (i.e., high marking 
threshold, low marking threshold, 
and marking probability) 

Input: nodes and ML layers, Output: 
mapping of layers to be executed 
in which node, Actions: deploy the 
layers in the nodes 

Input: VNF's status (input and 
output traffic rate, latency, 
memory and CPU utilization), NS 
chain. 
Output: scaling decisions (scale up, 
down or not) 
Model: A3C 
Actions: Scaling in/out or do 
nothing  

State: number of containers, CPU 
utilization, CPU share 
Action: Vertical (increase or 
decrease the CPU share) or 
horizontal scaling (increase or 
decrease the number of replicas) 

Loss / Reward 
Function 

the goal is to minimize the cost of 
the network, the ultimate reward is 
the cost of a network plan 

trade-off between high link 
utilization and low queue buildup 
for each switch 

Not provided reward based on minimizing the 
overall system cost (packet loss 
and VNF instance cost) 

minimize the weighted sum of the 
performance, adaptation and 
resource cost 

Baseline 
Comparison 

ILP vanilla and ILP + heuristic static ECN settings in the switches non-splitable ML models Other ML approaches including a 
NN and a decision tree 

Deep Q-Learning, Model-based RL 

Limitations of 
ML vs. 
benchmark 

NeuroPlan requires training, 
optimality is not guaranteed 

ACC requires offline training, and 
requires specific DRL agents in the 
switches 

the ML splitting is not done through 
ML itself, but using graph theory 

The baseline was compared 
against the GNN. The method for 
control in the proposed method 
and the baseline is the same (an RL 
algorithm) 

This set of experiments has shown 
the importance of providing system 
knowledge to improve the learning 
task. This is exploited by the Model-
based RL, which shows better 
performance above the others 

Advantages 
of ML vs 
benchmark 

NeuroPlan overcomes the 
scalability issues existing in ILPs 

Dynamic ECN settings that improve 
application performance 

lower latency, lower energy 
consumption 

The GNN is able to capture the 
interdependencies between VNFs 
(in the form of graphs) while the 
other methods not.  

Not provided 

Optimality 
Gap 

ILP fails to scale to large topologies. 
NeuroPlan outperforms ILP + 
heuristic on large topologies and 
avoids human efforts to tune the 
heuristics 

Not provided Not provided Not provided Not provided 

Tradeoff ML 
vs. 
Benchmark 

the relax factor provides a 
convenient and tunable knob for 
the trade-off between optimality 
and tractability 

Not provided Not provided From the figures of the results, the 
proposed method reduces around 
30% the overall cost compared to 
baselines 

Increasing the action space size 
(considering more actions) difficult 
the learning convergence of the 
agent.  
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Bib Key khaleq2021intelligent [118] zalokostas2022experimental 
[119] 

oshea2018modulationclass 
[120] 

Jentzsch2022quantizedmodcla
ss [34] 

rosa2022bacalhaunet [121] 

ML Method Reinforcement Learning Supervised Learning (SL) Deep Learning Deep Learning Deep Learning 

ML Problem Control Prediction Classification and regression Classification and regression Classification and regression 

Algorithm Several RL algorithms including SARSA, DQN, PPO 
and Actor Critic 

ARIMA, XGBoost, LSTM CNN CNN CNN 

Resource 
Awareness 

No No No Yes Yes 

Model 
Description 

State: min/max/current num of replicas, current 
resource utilization (e.g., CPU utilization) and 
current response time. 
Actions: Scaling in/out or do nothing 

Input: incoming requests to a 
web server 
Output: number of requests to 
the web server in a future time 
interval 

Input: In-phase and 
Quadrature (IQ) samples of a 
modulated RF signal, Output: 
Modulation, Model: VGG10 
and ResNet. Running platform: 
GPU/CPU 

Input: In-phase and 
Quadrature (IQ) samples of a 
modulated RF signal, Output: 
Modulation, Model: VGG10 
CNN with equal quantization 
value on all layers., running 
platform: FPGA 

Input: In-phase and 
Quadrature (IQ) samples of a 
modulated RF signal, Output: 
Modulation, Model: CNN using 
Depth-wise Separable 
Convolutions with quantization 
+ pruning, running platform: 
FPGA 

Loss / Reward 
Function 

Reward if response time is below a target, 
otherwise penalize 

MAE Categorical Cross-entropy Categorical Cross-entropy Categorical Cross-entropy 

Baseline 
Comparison 

Generic auto-scaler module (HPA) from 
Kubernetes 

Kubernetes off-the-shelf 
horizontal pod auto-scaler 
based on a custom specific 
metric 

XGBoost with features 
extracted from higher order 
moments 

Same model but using 32-bits 
floating point, or quantized and 
compiled to run on GPU 

Same model but using 32-bits 
floating point 

Limitations of 
ML vs. 
benchmark 

Not provided ARIMA uses raw data, while for 
the other models, data must be 
prepared accordingly 

DNN is more computational 
expensive and requires 
accelerated hardware.  

Models quantized to run on 
FPGA are more energy efficient 
than the ones on GPU. 

Models quantized and pruned 
are more energy-efficient. In 
addition, Depth-wise Separable 
Convolutions help to reduce 
the size of the network with 
lower impact on accuracy 
compared to traditional CNN 

Advantages 
of ML vs 
benchmark 

The RL auto-scalers can autonomously identify the 
autoscaling values or thresholds. The default HPA 
auto-scaler cannot determine such thresholds 
autonomously, since they are determined by 
expert knowledge. 

As the scaling is based on 
forecasting, the scaling 
decisions happen earlier,  
achieving better CPU utilization 

No need of expert knowledge 
and it achieves higher 
accuracy 

Not provided Not provided 

Optimality 
Gap 

The response time was improved 20% regarding 
the baseline 

Not provided No optimal results are available No optimal results are available No optimal results are available 

Tradeoff ML 
vs. 
Benchmark 

Not provided The HPA is reactive but simpler.  DNN provides higher accuracy 
but computational are more 
expensive.  

Contrary to expectations, the 
model quantized at 8 bits 
outperform the one with 32 bits 
floating point representation in 
accuracy. This may be an 
indication that the baseline is 
overparametrized or the 
representation is robust to 
support quantization.  

Minimal impact in accuracy 
while reducing up to 63x the 
model size.  
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Bib Key fu2019 [122] koo2019deep [123] DalgkitsisGarrido2022 [124] SantosLynn2021 [125] khan2020real [126] 

ML Method Reinforcement learning Reinforcement learning Reinforcement learning Reinforcement learning Supervised Learning (SL) 

ML Problem decision making decision making decision making decision making Prediction 

Algorithm DRL RL (Policy Gradient) RL RL Multi-Layer Perceptrons; Support 
Vector Regressor; Decision Trees; 
Random Forest 

Resource 
Awareness 

yes yes Yes (energy consumption) Yes (energy consumption) No 

Model 
Description 

Input: the current state of the 
substrate network  

Output: the allocated server for a 
given VNF 

The resource allocation problem is 
formulated as an MDP. They model 
a network service as a set of 
compute and transport resources 
without additional structure. 

Multiple RL agents instantiated in 
each domain that perform VNF 
orchestration. Distributed decision 
engine with auction mechanism to 
decide the intra-domain offloading 
of VNFs  

The input is the available resources 
(set of servers, etc.) and the output 
is a SFC placement composed of 
several VNFs. 

Input: number of 
transmitting/receiving stations, RSSI, 
MCS, Data rate, Interarrival time, 
Channel Bandwidth 
Output: predicted throughput per 
station 

Loss / Reward 
Function 

reward for successful embedding 
of the SFC 

reward on successful embedding Maximal sum of rewards in each 
domain, considering energy 
consumption and latency 

Reward on fulfilling the SFC 
requirements, successful 
placements, and reduced 
consume of energy 

Mean Absolute Error, Mean 
Squared Error, R-squared 

Baseline 
Comparison 

Not provided Not provided Not provided Not provided Actual throughput values from the 
synthetic and the real dataset 

Limitations of 
ML vs. 
benchmark 

embeds one VNF at the time and 
rolls back if there is a failure 

models a network slice as one 
workload 

Only considers VNF deployments 
on servers (not edge or IoT Devices) 

Limitations in the resource 
modeling (not consider link 
bandwidth, memory or storage). 
The 
energy consumption model is very 
simple 

Different models must be defined 
depending on the number of 
stations and number of features. 

Advantages 
of ML vs 
benchmark 

Not provided Not provided Considers multi-domain SFC 
deployments using an Auction 
mechanism to allow inter-domain 
VNF migration 

The RL agents learn to place VNFs 
in those nodes with more available 
resources and minimizing the 
energy consumption 

ML learns and adapts to the 
varying environment and network 
conditions. 

Optimality 
Gap 

Not provided Not provided reduce average service latency by 
103.4% and energy consumption 
by 17.1%compared to a 
centralized RL solution 

Not provided Not provided 

Tradeoff ML 
vs. 
Benchmark 

Not provided Not provided reduce average service latency by 
103.4% and energy consumption 
by 17.1%compared to a 
centralized RL solution 

Compare the acceptance rate of 
SFCs with PPO, A2C and greedy 

Highly accurate prediction of 
transmission throughput in real-
time. However, the results showed 
that the models were 
overestimating the throughput.  
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Bib Key minovski2021throughput [127] teixeira2023wi [128] busseGrawitz2019 [129] Xieli2022 [130] Zhengzang2022 [131] 

ML Method Supervised Learning (SL) Not provided Supervised Learning (SL) Supervised Learning (SL) Supervised Learning (SL) 

ML Problem Prediction Not provided Classification Classification Classification 

Algorithm MLPs; Support Vector Regressor; 
XGBoost; Random Forest 

Symbolic Regression + Unscented 
Kalman Filter 

Random Forest Random Forest Random Forest 

Resource 
Awareness 

No Yes Yes    Yes  Yes 

Model 
Description 

Input: RSSI, RSRP, RSRQ, SINR, Band, 
Num of carriers, RSPath loss, cell 
load, CQI, CRI, etc. 
Output: available throughput per 
UE in UL and DL 

Input: mean throughput, RSSI, 
speed, location, transmission data 
rate 
Output: predicted throughput 

Input: more than 80 flow features 
(e.g., size of the packet, inter-arrival 
time, etc); Output: classification as 
malware or benign flow 

 Input: packet-level features (data 
extracted from ethernet, ip, 
tcp/udp headers). Output: 
classification of packets 

Input: packet-level features (data 
extracted from ethernet, ip, 
tcp/udp headers). Output: 
classification of packets 

Loss / Reward 
Function 

Mean Squared Error, R-squared Root-Mean-Squared Error F1 score   Classification accuracy  Classification accuracy 

Baseline 
Comparison 

Not provided Multiple Linear Regression (MLR); 
Support Vector Regression (SVR); 
Decision Tree (DT); Random Forest 
(RF); and Shallow Neural Network 
(SNN) 

1) the same model in a floating-
point-operation system and 2) an 
offline system (running on a server) 
that operates over the full flow 

Offline model that does not 
perform any "knowledge 
distillation"; packet-level classifier 

 The in-switch classifier is compared 
with the same classifier running on 
a server 

Limitations of 
ML vs. 
benchmark 

No optimality guarantees The best performing model must be 
chosen manually, while for the 
other ML models, Bayesian 
optimization can be used for 
hyperparameter tunning. 

Loss of accuracy due to 
compression techniques for 
memory optimization; no floating 
point 

 Loss of accuracy due to the 
distillation process 

The in-switch classifier has almost 
the same accuracy than the 
benchmark 

Advantages 
of ML vs 
benchmark 

Two of the models were deployed 
on real devices to perform 
throughput prediction 

Given their simplicity, the proposed 
model is especially suited for 
embedded systems, such as those 
that, due to CPU and memory 
limitations, are unable to leverage 
more advanced machine learning 
algorithms. 

The classification is performed at 
line-rate (directly at the switch) 

 The distilled model consumes less 
resources than the benchmark 

The classification is performed at 
line-rate (directly at the switch) 

Optimality 
Gap 

Not provided Not provided 2% below optimal (in accuracy)  1% less accuracy in some use 
cases with respect to the 
performance benchmark 

 Almost no gap 

Tradeoff ML 
vs. 
Benchmark 

The predictions are made during 
the idle period and not during the 
connected period, also the 
patterns seen during these two 
periods are very different which 
hinders the prediction accuracy.  

Throughput measurement via 
active probes might introduce 
unwanted congestion. The 
proposed model passively 
observes the variables to produce 
an outcome 

 The in-switch classifier performs 
slightly worse than the offline 
classifier, but it classifies at line-rate 

Up to 60% memory saving with 
respect to the resource benchmark 

There is a trade-off memory vs 
performance 
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Bib Key begagramaglia2019 [132] begagramaglia2020 [133] Zhangpatras2018 [134] Zhangfiore2019 [135] 

ML Method Supervised Learning (SL) Supervised Learning (SL) Supervised Learning (SL) Supervised Learning (SL) 

ML Problem Forecasting / Prediction Forecasting / Prediction Forecasting / Prediction Forecasting / Prediction 

Algorithm Deep Neural Network Deep Neural Network Deep Neural Network LSTM 

Resource 
Awareness 

No No No No 

Model 
Description 

Input: Previous traffic measurements (But it 
allows other inputs, e.g., signal quality, 
occupied resource blocks, computational 
load of VNF) 
 
Output: forecast of the capacity required to 
accommodate the future demands for a 
specific network slice 

Input: traffic generated by each slice during 
the preceding N re-orchestration 
opportunities. Data structured as a 3D matrix, 
where base stations represent different 
"pixels" and different slices represent different 
"color channels". 
Output: Allocated resources for each slice. 
Two-timescales: long-term resources, short-
term readaptation. 

Input: Traffic volume   

Output: Traffic Volume 

Input: traffic measurements per 5 minutes 
over many antennas for different services 
Output: Forecast of those same time series 

Loss / Reward 
Function 

Tailored loss function for capacity forecasting 
(asymmetric cost between overprovisioning 
and under provisioning, because the latter = 
SLA violation) 

The loss functions are tailored to capacity 
forecasting with different hyperparameters 
for each of the cases (e.g., one to avoid 
under provisioning, other restricting 
overprovisioning, etc.) 

Least Square error (L2 Loss function) MSE 

Baseline 
Comparison 

- Same ML architecture without tailored loss 
function (just Mean Absolute Error) 
- Naïve (Replicate last week value) 
- Infocom17 (first DL approach for mobile 
traffic prediction) 
- MobiHoc18 (SoA Network demand 
prediction) 
- Previous cases with overprovisioning 

- wangtang2017: Custom-built DNN, 
traditional demand predictor, agnostic of all 
resource management costs 
- begagramaglia2019: Custom-built DNN, it 
takes anticipatory decisions on capacity 
allocation that aim exclusively at minimizing 
the trade-off of overprovisioning and non-
serviced demands 

Machine Learning, ARIMA HW-ExpS  Other NN configurations: MLP, CNN, LSTM 

Limitations of 
ML vs. 
benchmark 

Loss function (single) parameter needs to be 
tuned (also advantage) 

 - More hyperparameter configuration Not provided None (benchmarks are simpler ML models) 

Advantages 
of ML vs 
benchmark 

- Tailored Loss function allows to obtain much 
better performance because it adapts to the 
problem (of capacity allocation) 

 - Considers and optimizes instantiation costs, 
re-configuration costs, and two different 
hierarchical time-scales 

More accuracy than with other 
methodologies 

 Much higher accuracy 

Optimality 
Gap 

Not provided Not provided Near optimal results Mean absolute error w.r.t. real future traffic is 
only 13KBps 

Tradeoff ML 
vs. 
Benchmark 

Not provided Solution cuts management costs down to 35-
41% vs. an optimal static provisioning of 
resources. 
Solution reduces SLA violations due to 
insufficient available resources by 80% (0.7-
1.21% of the re-orchestration opportunities 
versus at least 5.80% 

Not provided Not provided 
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Bib Key Trinhgiupponi2018 [136] camelo2022TrafficClassSpect [57] oshea2016TraffClassSpec [137] camelo2019TechClassSpect [138] 

ML Method Supervised Learning (SL) Supervised Learning (SL) Supervised Learning (SL) Semi-Supervised Learning (SSL) 

ML Problem Forecasting / Prediction Classification Classification Classification 

Algorithm LSTM Deep Neural Network Deep Neural Network Deep Neural Network 

Resource 
Awareness 

No No No No 

Model 
Description 

 Input: aggregated cell traffic measurement 
over several TTI 
Output: Multiple timesteps forecast of such 
traffic per cell 

Input: In-phase and Quadrature (IQ) samples 
of a modulated RF signal, Output: Type of 
traffic at different layers (L1 up to L7), Model: 
a CNN and a RNN, running platform: GPU 

Input: In-phase and Quadrature (IQ) samples 
of a modulated RF signal, Output: Type of 
traffic at different layers (L1 up to L7), Model: 
a RNN, running platform: GPU 

Input: In-phase and Quadrature (IQ) samples 
of different radio technologies, Output: 
Radio Technologies, running platform: GPU 

Loss / Reward 
Function 

Normalized Root Mean Square Error (NRMSE) Categorical Cross-entropy Categorical Cross-entropy Categorical Cross-entropy 

Baseline 
Comparison 

- Ground truth 

- ARIMA 

- Deep Feedforward Neural Network 
(FFNN) 

CNN classifying byte-based packets Not provided CNN trained using SL 

Limitations of 
ML vs. 
benchmark 

Not provided ML models are mainly based on DNN, so they 
act as black boxes and are computational 
expensive.  

ML models are mainly based on DNN, so they 
act as black boxes and are computational 
expensive.  

The SSL approach depends on finding 
models that can accurately extract features 
(unsupervised step) that later on will be used 
for the classification part.  

Advantages 
of ML vs 
benchmark 

Much higher accuracy They can classify traffic using raw L1 packets 
(IQ samples), which can be modulated and 
encrypted.  

They can classify traffic using raw L1 packets 
(IQ samples), which can be modulated and 
encrypted.  

SSL allows using large amount of unlabeled 
data to reduce the need of labeled data 
and get high accuracy 

Optimality 
Gap 

Below 0.05 of NRMSE >90% accuracy in the hardest classification 
task 

>84% overall Almost zero since SSL provides solutions with 
accuracy closed to the SL approach 

Tradeoff ML 
vs. 
Benchmark 

 Error increases as the predictive step 
increases 

The more higher layer protocol and 
granularity, the hardest to classify correctly.  

The performance of RNN is good using short 
sequences of IQ samples. However, RNN 
consumed more resources that a CNN.  

Two steps training but It reduces the size of 
the labeled data set to achieve high 
accuracy.  
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Bib Key camelo2020TraffClassSpec [139] Dalgkitsis2021TransactionsITS [140] Ma2020TransactionsWC [141] Grasso2022TransactionsNSM [142] 

ML Method Supervised Learning (SL) Supervised Learning (SL) N/A Reinforcement learning 

ML Problem Classification Decision making Prediction Decision making 

Algorithm Deep Neural Network Deep Learning Two-timescale Lyapunov optimization Deep Reinforcement Learning, Neural 
network 

Resource 
Awareness 

No No No No 

Model 
Description 

Input: In-phase and Quadrature (IQ) samples 
of a modulated RF signal, Output: Type of 
traffic (TCP vs UDP) and traffic pattern, 
Model: a CNN, running platform: GPU 

Input: Resource consumption at the edge, 
Output: Average service delay in mobility 
scenarios with or without AI-assisted 
orchestration 

Input: Long term migration cost, Output: 
Average user perceived latency, Average 
queue backlog 

Input: Initial/Final exploration ratio, Number 
of hidden layers, minibatch size, discount 
factor, replay memory size; Output: Average 
processing delay and delay jitter (task 
execution at UAV level) 

Loss / Reward 
Function 

Categorical Cross-entropy Not provided Not provided Mean Squared Error 

Baseline 
Comparison 

CNN classifying byte-based packets Mobility + orchestration scenarios compared 
against Mobility only and Without mobility 
and orchestration 

Always Migration Algorithm (AM), No 
Migration (NM), Lazy Migration (LM), 
Predictive Lazy Migraton (PLM) 

Probabilistic Computation Offloading (PCO): 
each MEC server making independently 
online offloading decisions, and heuristics: 
Local Drone Only (LDO), and Uniform 
Selection (US) 

Limitations of 
ML vs. 
benchmark 

ML models are mainly based on DNN, so they 
act as black boxes and are computational 
expensive. It assumes L1 packets can be 
separated per user stream, which in reality is 
very hard at spectral level (user 
identification)  

Simulation study, decreasing orchestration 
time not taken into account 

Increased complexity Management of energy of UAVs not 
considered resource-awareness not 
included 

Advantages 
of ML vs 
benchmark 

They can classify traffic using images 
representing the spectrum (IQ, FTT, short time 
FFT), which can be modulated and 
encrypted.  

Measuring impact of service orchestration of 
challenging mobile services 

Service quality improvements based on real-
life datasets 

Significant improvements in task execution 
time on the MEC level (UAV) 

Optimality 
Gap 

>96% overall Average rejection rate of 
critical services reduced from 20.2% to 3.9% 

Latency reduction ratio of 30.4%, reduction 
of average queue backlog 19.3% 

Proposed solution meets requirements of 
various 6G applications 

Tradeoff ML 
vs. 
Benchmark 

Not provided Average rejection rate of 
critical services reduced from 20.2% to 3.9% 

Latency reduction ratio of 30.4%, reduction 
of average queue backlog 19.3% 

Proposed solution meets requirements of 
various 6G applications 

 
 
 


