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A B S T R A C T

Industrial Robots (IR) are currently employed in several production areas as they enable flexible automation
and high productivity on a wide range of operations. The IR low positioning performance, however, has limited
their use in high precision applications, namely where positioning errors assume importance for the process
and directly affect the quality of the final products. Common approaches to increase the IR accuracy rely on
empirical relations which are valid for a single IR model. Also, existing works show no uniformity regarding
the experimental procedures followed during the IR performance assessment and identification phases. With
the aim to overcome these restrictions and further extend the IR usability, this paper presents a general method
for the evaluation of IR pose and path accuracy, primarily focusing on instrumentation and testing procedures.
After a detailed description of the experimental campaign carried out on a KUKA KR210 R2700 Prime robot
under different operating conditions (speed, payload and temperature state), a novel online compensation
approach is presented and validated. The position corrections are processed with an industrial PC by means
of a purposely developed application which receives as input the position feedback from a laser tracker.
Experiments conducted on straight paths confirmed the validity of the proposed approach, which allows
remarkable reductions (in the order of 90%) of the orthogonal deviations and in-line errors during the robot
movements.
1. Introduction

Nowadays, Industrial Robots (IR) are assuming a primary role in
the modern factories owing to their extended operational flexibility,
high operation speed and ability to handle and process a wide range
of products. However, the application of IR in precision engineering
fields still faces limitations, particularly when position accuracy be-
comes a critical aspect for the process, as in the case of additive or
subtracting manufacturing operations. By leveraging their relatively
good unidirectional pose repeatability (typically in the order of 50
to 100 μm), robots are currently employed in operations like picking
and placing, assembly, welding, painting, and packaging, namely for
repetitive tasks in structured environments [1]. In such applications,
the use of manually imposed teaching points on the robot’s end-effector
path, together with the absence of external critical loads, allow to
meet the requirements in terms of operational accuracy and product
quality. On the other hand, the poor multi-directional repeatability
(rarely specified in robot’s datasheets and usually worse than the
unidirectional repeatability) and volumetric accuracy (typically over
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1 mm, as reported in Refs. [1–3]) of IR justify the rather limited use
in precise machining operations, which are still mostly performed
with special purpose devices [4,5]. In fact, compared to dedicated
industrial equipment (e.g. numerical controlled machine tools), the IR
open kinematic chain suffers of low structural stiffness and backlash-
like nonlinearities which inevitably affect the overall position accuracy
at the robot’s end-effector [6,7].

With the aim to extend the IR operability and allow robot-based
manufacturing processes, much research effort has been recently placed
on IR performance characterization and improvement [8–12]. To quan-
tify the robot accuracy experimentally, one may resort to different
measuring instruments. In particular, optical and infrared systems can
be considered due to their fairly low purchase price and the possibility
to track up to 6 Degrees Of Freedom (DOF). Nevertheless, depending on
the selected model, their measurement accuracy typically ranges from
0.1 mm to few millimeters (i.e. in this case comparable to that of many
IR models, as reported in Refs. [13,14]) which makes them unsuitable
for high quality performance testing and identification. Conversely,
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ballbars can reach an accuracy of 1 μm [15,16], although they only
perform planar measurements with a rather limited range of motion. In
this context, Laser Trackers (LT) offer a good compromise as they can
measure 3 or 6 DOF (depending on the model) with a final accuracy
ranging from 10 to 100 μm on a much larger workspace. LT technology
is widely adopted in robotics also due to its easy installation and high
frequency measuring capabilities, as documented in Refs. [5,17–20].

The assessment of robot position accuracy must follow the ISO 9283
standard [21] which, however, does not provide detailed information
on the testing methods. Actually, the lack of uniformity in testing
procedures has led previous research works to different results making
it challenging to compare their findings. One problem arises from the
need to refer all measurement data to the Robot Base Frame (RBF)
since no guidelines on how to perform the coordinate transformations
between the sensor frame and RBF are provided in the norm [22]. In re-
lation to this point, researchers have followed different approaches over
the years. For example, in Ref. [23] a classical method for defining Tool
Center Point (TCP) position is used, that is not very accurate, resulting
in estimated error up to 6 mm propagated through all subsequent
measurements. Differently, the method reported in Ref. [17] allows to
accurately locate the TCP. In that work, however, the length of certain
links is taken from the datasheet instead of directly measured on the
robot and thus uncertainty is introduced. An exhaustive discussion on
the RBF identification can be found in Ref. [22], though the reported
comparisons only refer to the repeatability of the methods and not to
their accuracy. An efficient method for determining the RBF is named
Circle Point Analysis (CPA), which is typically utilized for robot kine-
matic calibration (i.e. measuring real Denavit–Hartemberg parameters),
as shown in Refs. [24–26]. From the literature review, other gaps also
emerged regarding the IR position performance identification, i.e.: (i)
tests are normally performed in a single operating condition; (ii) the
effect of lubricant temperature is not properly assessed and described;
(iii) data post-processing is usually not outlined causing inability of
repeating experiments.

As for the IR accuracy improvement, many approaches have been
proposed either based on offline or online compensations. The first
type utilizes a model-based schematic where position corrections are
evaluated from previous measurements [9,27–29]. Despite their inher-
ent simplicity, these methods have shown many limitations, primarily
related to the difficulty of elaborating multi-parameter explicit models
of the robot error over large workspaces. Furthermore, one should
consider that the experiments are valid for the single robot model and
must be repeated for different operating conditions or state of degra-
dation of the robot. For these reasons, online compensation methods
are usually preferred due to their more general structure and superior
performance [5,19,30–33]. Here the position corrections are computed
via a purposely conceived sensor guided closed-loop algorithm which
cyclically communicates with both sensor (e.g. LT) and IR controller.
As the main drawbacks, the software integration of these devices may
become cumbersome due to the real-time constraints and, during the
commissioning phases, proper tuning operations (e.g. for control gains
and filters) become necessary to stabilize the control action. Previous
researches have already proposed and validated efficient compensation
strategies, although the following points are still unsolved or need
more discussion: (i) compensation is restricted to path orthogonal
deviations and does not consider in-path errors (causing the robot
speed to be unstable during the traveling); (ii) controller tuning op-
erations are rarely outlined and (iii) there is limited mention of the
fundamental parameters that influence the control system during online
compensation.

With the aim to overcome the above-discussed limitations concern-
ing IR positioning performance assessment, the present paper reports on
advances in experimental methods and guidelines for data acquisition,
processing and correlation. Additionally, it provides a more comprehen-
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sive understanding of the potential metrology-based control solutions
aimed at improving the IR accuracy, by discussing the primary pro-
cess parameters involved and identifying the current limitations in
implementing these solutions on modern IR controllers. Specifically,
the novel contributions of this work are as follows:

• To define and thoroughly explain an universal method to assess
the IR position accuracy performance. The reported procedure is
validated on high payload KUKA IR and all measurements are
carried out with a FARO LT within a flexible robotic cell for
manufacturing (installed at the university facilities).

• To present the results of the experimental accuracy campaign
under different working conditions (end-effector speed, applied
payload and temperature state of the robot) and discuss their
influence on the robot absolute positioning and path accuracy.

• To develop and test a control solution aimed at reducing the IR
total spatial path tracking error (i.e. vector sum of orthogonal
deviation and in-line error).

Detailed descriptions of the employed experimental setup, also covering
installation and configuration aspects, are given throughout the paper.

The rest of the paper is structured as follows: Section 2 describes the
experimental setup; Section 3 outlines the method studied for quantify-
ing the robot pose and path accuracy; Section 4 presents and discusses
the results of the experiments carried out on the KUKA robot; Section 5
reports and validates a novel approach for path error compensation;
Section 6 provides the concluding remarks.

2. Experimental setup

In this section, the test equipment utilized for the experiments is
outlined, as well as the two cell configurations established to achieve
different objectives, i.e. respectively to quantify IR accuracy and im-
plement error compensation strategies. The described setup will be
promptly recalled in Section 3 to support discussions on the experi-
mental methods.

2.1. Equipment overview

The research activities are conducted in the context of a flexible
manufacturing robotic cell installed at the University facility and, in
particular, by considering the following equipment:

• A KUKA KR210 R2700 Prime IR having a total mass of 1111 kg, a
maximum payload of 210 kg and a maximum reach of 2700 mm.
The IR is controlled by a KRC4 controller, featuring the software
KSS version 8.3.25.

• A LT (FARO Vantage E) metrology system, whose motorized head
sends a laser beam to the Spherical Mounted Retroreflector (SMR)
tool attached to the robot’s end-effector and measures its spatial
position (𝑥, 𝑦, and 𝑧 coordinates) in a timely manner with respect
to the coordinate frame of the laser emission source. The LT is
positioned on a tripod with vibrations damping effect.

• A Thermal camera (FLIR A310), here adopted for assessing joints/
links temperature and verifying the achievement of thermal sta-
bility. While this sensor does not give the temperature of the
internal oil (as previously done in Ref. [34] with thermocouple
probes), it effectively shows the overall working condition of the
manipulator [35].

• An Industrial PC, i.e. a Beckhoff CX-5140 exploited to run the de-
veloped real-time path compensation algorithm and send position
corrections to the robot controller at each cycle time.

• A Laptop PC (Dell 3530), mainly used as an offline programming
environment and for the post-processing of the acquired data.

A conceptual schematic of the employed hardware and related con-
nections is reported in Fig. 1. As a research cell focused on industrial

applications, it is equipped with various manufacturing tools, such as a
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Fig. 1. Schematic of the employed setup and cell configurations. In the picture, KRL and RSI respectively indicate the KUKA Robot Language and the Robot Sensors Interface
package for real-time external control.
Fig. 2. Available tools for IR assessment: plate (tool 1), industrial gripper (tool 2) and
spot welding gun (tool 3).

gripper and a spot-welding tool (see Fig. 2). These devices will be used
as weight loads on the robot’s end-effector during the accuracy assess-
ment. To facilitate this, each of them has been disposed to securely
hold the SMR during dynamic measurements. The SMR is placed on its
magnetic base, which is attached to the metallic surface using both glue
and screws.

2.2. Cell configurations

In the first cell configuration, namely the one established for the
IR accuracy characterization, the KUKA robot is programmed with
standard offline approaches. In practice, the KUKA Robot Language
(KRL) code incorporating all the necessary linear (LIN command) and
joint (PTP command) movement instructions is produced on the laptop
PC (using WorkVisual environment) and then downloaded on the KRC4
computer, which is in charge of the entire robot control and supervi-
sion. During the tests, the LT measurements are managed through the
FARO Tracker Utilities, which automatically retrieve information from
the tracker control unit. Results are saved into text files containing
the sampled data (acquired at a frequency of 1000 Hz) and related
timestamp. In the first cell configuration, the absence of trigger signals
3

between IR and LT makes it necessary to use specific routines during
post-processing to synchronize the start and end of the reading and thus
compute errors. As for the thermal imaging camera, all the settings and
acquisitions are made through the native camera monitor tool provided
by FLIR.

For the purpose of developing an external path compensation mod-
ule capable of being implemented on real industrial assets, the cell
configuration must be modified. In particular, the robot motion profiles
can no longer be generated from the KRC4 based on the provided
KRL code, but are computed externally and applied through the KUKA
Robot Sensor Interface (RSI) package. During RSI control, the KRC4
must receive a new position setpoint every 4 ms (i.e. input frequency
of 250 Hz). Data exchange occurs by and from the KRC4 in XML format.
Concerning the LT acquisition, there are no pre-compiled software
allowing real-time data measurement and streaming. Therefore, a cus-
tomized solution is developed in C++ by exploiting the FARO Software
Development Kit (SDK). The signal synchronization is managed at code
level by taking the RSI tic as the reference clock for the application.
In practice, once a new RSI cycle starts, a request for a new position
feedback is sent to the LT via the SDK libraries. As a response, the
LT provides the last sample (and its time-stamp for precise input time
shift calculation) to the controller. Unfortunately, the time required
to get a measure from the LT suffers an unpredictable time delay
(usually from 1 to 4 ms). After this delay, which does not impact the
compensation algorithm as it always falls within the imposed RSI cycle
time, the tracker will promptly provide all missing data. To prevent
higher delays, a routine is included in the controller to handle situations
with missed packages. The routine has a maximum number of allowed
delayed packages before it stops the application and requests operator
intervention.

The elaborated C++ program also contains the robot path gener-
ation and compensation functions as well as the communication with
the KRC4. To maximize the control performance and reduce possible
communication errors, the application is run on the Beckhoff industrial
PC (Windows 10 environment), embedded with two real-time capable
Ethernet ports.
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Fig. 3. Flowchart of the robot accuracy assessment.
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2.3. Tracker measurements

As a fundamental step to perform valid experiments, the LT mea-
surement capabilities must be first checked within the current ex-
perimental setup. At first, since the adopted LT can perform 3 DOF
measurements (i.e. tracing of target position along 𝑋, 𝑌 and 𝑍 axes),
the robot’s end-effector orientation (𝐴, 𝐵 and 𝐶 in KUKA) is not de-
tected and, therefore, the tool is assumed to have a constant orientation
during the experiment. For a complete assessment, one could adopt a LT
enabling 6 DOF tracking (e.g. the FARO Vantages6 or the Leica AT402)
or, alternatively, install additional SMR on the end-effector, although
in the latter case some practical issues arise. At first, installing multiple
SMRs on different planes may not be feasible for all end-effectors.
Secondly, this method is not suitable for evaluating path accuracy as
the LT must move from one SMR to the next for each point, collecting
all required information and determining tool orientation during post-
processing. This multi-step measuring process also makes it difficult to
implement closed loop approaches with real-time constraints.

Usually, ISO 10360-10 is used to assess the tracker performance,
but also ASME B 89.4.19 standard is quite common. LT measurements
are strongly affected by external factors, such as airflow, environment
temperature, vibrations and floor deformation [36]. On the FARO
manual, the LT accuracy is specified to be 20 μm + 5 μm/m (i.e. it
deteriorates of additional 5 μm for every meter of distance between
the LT and the SMR), while no repeatability values are provided.
Regardless of the considered acceptability threshold, the spatial interval
in which the real point can be, starting from the measured point, has
an ellipsoidal shape. Since the ellipsoid is squashed in the outgoing
direction from the tracker, there is an anisotropy in the perception of
the space surrounding the tracker (see [37] for more details). These
considerations are the basis for the correct positioning/orientation of
the instrument to obtain the best performance, as it will be shown in
Section 3.

Concerning the LT repeatability, a test has been conducted inside
the cell by placing a SMR target on a tripod and recording its static
position for 1 h. During this period, environmental conditions were
controlled (doors closed, minimal operators movements). As expected,
the processed data reported a maximum peak to peak deviation sensibly
lower in the direction aligned with the laser beam (0.02 mm against
0.3 mm). The LT repeatability in the environment is found to be around
54 μm. This value is similar to that of the employed IR (i.e. 60 μm,
as declared in the robot datasheet), confirming the LT cannot be used
for estimating the robot position repeatability. On the basis of these
considerations and of the adopted setup, the present work focuses on
the IR accuracy evaluation.

3. Accuracy assessment method

This section reports on experimental methods and procedures for
the assessment of the IR positioning accuracy which are generally valid
for any combination of anthropomorphic robot and metrology system.
The proposed framework, validated on the industrial asset described in
4

Section 2, can be summarized in the following basic steps: d
Fig. 4. Position accuracy principle (from ISO 9283).

1. Definition of performance indexes, based on ISO 9283;
2. Cell layout setup (LT positioning with respect to the IR’s test

working area);
3. Estimation of the coordinates transformation matrix (correlation

between LT and IR frames);
4. Definition of experimental procedures and tested operating con-

ditions.

A flowchart of the process is reported in Fig. 3. These aspects will be
discussed in detail in the remaining of this section.

3.1. Performance indexes

In many industrial practices the pose repeatability is considered the
only index worthy of expressing the error of the robot, so much that on
many IR datasheets only this characteristic is reported. However, this
statement is valid only when considering repetitive tasks, for which
the robot has previously followed a manual teaching procedure. The
emergent need for reconfigurable and autonomous robotic systems that
can adapt to multiple tasks on extended workspaces, has moved the
attention also to the pose accuracy. According to the ISO 9283, ‘‘Pose
accuracy expresses the deviation between a command pose and the
mean of the attained poses when approaching the command pose from
the same direction’’. The following relation is given on the standard to
quantify pose accuracy (𝐴𝑃 ):

𝐴𝑃 =
√

(𝑥𝑐 − �̄�)2 + (𝑦𝑐 − �̄�)2 + (𝑧𝑐 − �̄�)2 (1)

where 𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 represent the spatial commanded position in the RBF
and �̄�, �̄�, �̄� are simply calculated for 𝑛 repetitions as:

̄ = 1
𝑛

𝑛
∑

𝑖=1
𝑥𝑖 �̄� = 1

𝑛

𝑛
∑

𝑖=1
𝑦𝑖 �̄� = 1

𝑛

𝑛
∑

𝑖=1
𝑧𝑖 (2)

being 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 the reached position in the 𝑖th experiment expressed
n the RBF. Fig. 4 represents graphically what expressed in previous
ormulas. Once correctly evaluated, 𝐴𝑃 assumes particular significance
uring offline programming as it allows to finely adjust the targets’
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𝑥

Fig. 5. Path characteristics and error calculation principle: (a) Offline experiments (b) Online experiments with time synchronization.
position. However, it does not account for errors made along the robot
paths.

These are captured with dedicated experiments where the entire
robot path is recorded as a series of 𝑚 discrete points for 𝑛 repetitions.
The path accuracy index (𝐴𝑇𝑝) is then calculated in the RBF as follows:

𝐴𝑇𝑝 = 𝑚𝑎𝑥
(

√

(𝑥𝑐,𝑗 − �̄�𝑗 )2 + (𝑦𝑐,𝑗 − �̄�𝑗 )2

+(𝑧𝑐,𝑗 − �̄�𝑗 )2, 𝑗 = 1,… , 𝑚
)

(3)

where �̄�𝑗 , �̄�𝑗 and �̄�𝑗 are the mean values of the 𝑛 measurements
performed for the 𝑗th point, i.e.:

̄ 𝑗 =
1
𝑛

𝑛
∑

𝑖=1
𝑥𝑗,𝑖 �̄�𝑗 =

1
𝑛

𝑛
∑

𝑖=1
𝑦𝑗,𝑖 �̄�𝑗 =

1
𝑛

𝑛
∑

𝑖=1
𝑧𝑗,𝑖 (4)

For a given path, 𝐴𝑇𝑝 reveals the maximum deviation of the obtained
mean path from the ideal (i.e. commanded) one. As shown in Fig. 5,
the error can be calculated in two ways depending on whether the
commanded path only includes geometric information (i.e. when the IR
is moved with standard instructions and time synchronization between
LT and robot is not guaranteed, as in the first cell configuration of
Fig. 1) or if it is a real-time controlled series of points (as in the second
cell configuration). In the former setup (aimed at characterization),
errors are calculated orthogonal to the commanded path, whereas in
the latter setup (aimed at compensation) an error parallel to the path
(called in-line error) can also be identified, contributing to the overall
error. The in-line error can be further split into geometric error, due to
the mechanical system, and control error, which can be seen as the end-
effector’s anticipation/delay with respect to the planned in-line position
at a certain time. Naturally, to calculate the orthogonal deviation for
paths executed along the RBF principal axes, only two of the three
directional errors listed in Eq. (3) are considered.

3.2. Installation practices

The ISO 9283 specifies that tests have to be performed inside a cube,
which is defined based on the following criteria: (i) it shall be located in
the portion of the IR workspace where the robot will be most frequently
(or for a specific task) used; (ii) it shall have the largest possible
volume while keeping its edges aligned with the RBF. Therefore, the
5

primary definition of the measurement cube is based on the workspace
Fig. 6. Cell layout for experiments.

representation provided on the IR datasheet. Then, one must also
check the extension and spatial configuration during functioning of the
mounted tools (see Fig. 2) as well as the presence of possible obstacles
(i.e. other cell devices) within the working environment. In the present
case, the experiments are conducted within a flexible robotic cell for
manufacturing and the measuring cube is located by considering the
robot workspace close to the spindle to retrieve information that will
be used during machining operations for improving part quality.

3D simulation software (e.g. KUKA.Sim or RoboDK) could facilitate
this task and help in preventing from collisions during the testing.
They also allow to check the robot configurations and avoid possible
kinematic singularities, which would otherwise cause the robot to de-
celerate and even stop during the path execution. Actually, to properly
assess the influence of the robot traveling speed on the path accuracy, it
is essential to maintain a constant speed during each single experiment.

Once the previous conditions are met, the measuring cube’s size
and position must be further revised on the basis of the adopted
instrumentation. In the specific case of a LT, the working distance
between the tracker’s head and the SMR must fall within a specific
interval. In particular, a minimum distance is necessary for allowing the
laser beam to reach the SMR at each programmed position in the cube
(for all the mounted tools). On the other hand, increasing this distance
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Fig. 7. RBF evaluation through axes rotation and CPA.
Fig. 8. Determination of SMR position with respect to the robot flange frame through axes rotation and CPA.
will lower the LT measuring accuracy, as highlighted in Section 2.3.
To visualize these concepts, a schematic of the cell layout adopted in
this work is reported in Fig. 6. In the shown configuration, the cube’s
size is 1000 mm and the LT is installed at a distance of 5200 mm
(i.e. 6800 − 1100 − 1000∕2) with respect to the cube’s center point. This
arrangement results in a measuring accuracy of approximately 46 μm
(i.e. 20 + 5 ⋅ 5.2), using the formula reported in Section 2.3.

3.3. Frames identification

The position of a point measured with the LT is expressed in its
own frame, while the robot pose is defined in the RBF. Hence, for
accuracy estimation (i.e. error calculation), the following preliminary
requirements are mandatory:

1. The transformation matrix to convert the LT sampled points
in the RBF must be determined (once the cell layout is cho-
sen [38]).

2. For each tool installed on the robot (see Fig. 2), the TCP must
coincide with the SMR. In other words, the SMR offset with
respect to the robot flange frame is to be measured and then
specified in the controller settings as it will be used for the
trajectory generation.

Both these steps are conducted experimentally adopting the CPA
method, and the associated geometric relations are calculated during
6

post-processing. In particular, the CPA is based on moving the robot’s
joints one at a time and measuring the circular path described by a
point where the SMR is fixed. In this way, kinematic and control errors
are reduced to the extent possible since only single joint movements
are commanded. Random errors, however, can be introduced by the
LT, whose influence can be reduced with a large number of samplings.
From the measured data, one could find the circle that best fits the path
and thus derive the related joint’s origin and axis of rotation [20].

1. Transformation matrix: with reference to Fig. 7, by assuming
𝑂1𝑋1𝑌1𝑍1 and 𝑂2𝑋2𝑌2𝑍2 respectively the LT frame and the RBF, the
matrix can be written as:

𝐓 =
[

𝐑𝟑𝐱𝟑 𝐭𝟑𝐱𝟏
𝟎𝟏𝐱𝟑 1

]

(5)

where 𝐑𝟑𝐱𝟑 and 𝐭𝟑𝐱𝟏 are the rotation matrix and the distance vector
between the systems, i.e.:

𝐑𝟑𝐱𝟑 =
⎡

⎢

⎢

⎣

𝑢𝑥2 𝑣𝑥2 𝑤𝑥2
𝑢𝑦2 𝑣𝑦2 𝑤𝑦2
𝑢𝑧2 𝑣𝑧2 𝑤𝑧2

⎤

⎥

⎥

⎦

(6)

𝐭𝟑𝐱𝟏 = 𝐑𝟑𝐱𝟑(𝑂2 − 𝑂1) (7)

being 𝑢_2, 𝑣_2 and 𝑤_2 the components of versors of the RBF axes in the
LT frame. The matrix 𝐓 is defined such that its product with a vector
representing the SMR spatial position in the LT frame will return the
same vector in the RBF. The CPA-based procedure for its experimental
identification is shown in Fig. 7 and involves the following steps:
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• A rotation of joint-1 is performed to find the direction of the RBF’s
𝑍-axis (𝑢𝑧2, 𝑣𝑧2, 𝑤𝑧2). To exclude any source of errors during the
measurement (e.g. unwanted movements of the robot structure
due to reducers backlash and compliance), the SMR is attached
to the link closest to the joint in motion (i.e. link 1).

• After setting the joint-1 to its zero position, joint-2 is rotated to
obtain the 𝑌 -axis (𝑢𝑦2, 𝑣𝑦2, 𝑤𝑦2). At this step, the SMR is fixed
to link 2. As the zero position of joint-1 can be reached with
either clockwise or counterclockwise rotations, which may lead
to slightly different results, the experiment is conducted un-
der both conditions and the outputs are then averaged during
post-processing.

• The 𝑋-axis (𝑢𝑥2, 𝑣𝑥2, 𝑤𝑥2) is determined by taking the cross prod-
uct of the 𝑌 -axis and 𝑍-axis. To address the issue of non-
orthogonality between the axes, the method outlined in Ref. [17]
can be employed, which enforces orthogonality through a final
vector product.

• A set of 9 points is measured by placing the SMR on the upper
surface of the visible (i.e. LT accessible) robot’s base supports
to identify the base plane. Although only 3 points are theoreti-
cally needed for the calculation, each support exhibits irregulari-
ties and different inclinations due to production and installation
errors, thus multiple measurements are taken.

• The origin 𝑂2 is found by intersecting the base plane with the
𝑍-axis.

he procedure must be repeated whenever the LT (or, eventually, the
obot) location is varied inside the cell.
2. SMR position: For each mounted tool the SMR is fixed at a

pecific user-defined point, which should become the new TCP. In
he robot control system, the TCP origin is specified with respect to
he flange frame. Such distance can be obtained from CAD models,
lthough using the CPA can yield more accurate results. In the latter
ase, similarly to the previous approach and according to Fig. 8, the
ransformation matrix between 𝑂1𝑋1𝑌1𝑍1 and 𝑂3𝑋3𝑌3𝑍3 is found as

follows:

• An initial configuration with the last three robot joints set to zero
is commanded.

• The SMR position in registered in static conditions.
• A rotation of joint-5 is imposed to find the 𝑌 -axis of the flange

frame.
• Joint-5 is homed at zero and joint-6 is rotated to find the 𝑍-axis.
• After installing another SMR on the flange plane, joint-6 is rotated

again to identify such plane.
• The 𝑋-axis is obtained from the cross product. As discussed

before, an additional product may be necessary to ensure perfect
orthogonality. The center of the spherical wrist is identified from
the intersection of the previous axes.

• The origin of the flange frame (𝑂3) is found by intersecting the
flange plane with the 𝑍-axis (i.e. at a distance 𝑠 along the 𝑧
coordinate from the wrist center).

Once 𝑂3𝑋3𝑌3𝑍3 is identified, the vector 𝛿 can be easily determined
and the tool data updated during robot programming. To facilitate the
implementation of the reported procedures, a sample of Matlab code
addressing the data post-processing is included in the supplementary
materials section.

3.4. Experimental procedure

All the experiments are performed with the following settings on
the KRC4 controller:

1. Absolute Accuracy mode deactivated. This feature, provided by
KUKA, is meant to improve accuracy of the robot, although
7

it is typically provided upon extra costs and thus may not
be available in every industrial cell. To suppress it, the value
of the $DEACTIVATE_ABS_ACCUR system variable inside the
custom.dat file is changed.

2. Correct the RBF orientation ($ROBROOT in KUKA) to allow
the robot controller to correctly consider the gravity direction
(𝑍-axis alignment based on the robot installation). Gravity-
alignment can be made with the LT. This operation is performed
at software level by editing the machine configuration.

3. Execute Mastering for each tool. Detailed procedures for this
operation can be found on the robot manuals. The objective is
to find the zero-point of all the axes at the output stage of gear
reducers, which is slightly different for each type of load to be
handled.

After completing these initial steps, the accuracy testing is carried out
using the metrics specified in Section 3.1.

The pose accuracy is measured for five positions (repeated 30 times)
within the designated measurement cube. The selected points lie on a
plane formed by cutting the cube diagonally, as illustrated in Fig. 9.
The points are located inside the cube (i.e. no intersection with the
cube’s faces). For each operating condition (described in Section 3.5) a
single recording is generated. The robot is moved with a point-to-point
motion (PTP instruction in KUKA) and a dwell time of 4 s is imposed at
each point to allow system stabilization and measurement, which can
be identified during post-processing by analyzing the acceleration plots.
A threshold is then used to detect the samplings, and the final pose
is obtained from their average value. After coordinate transformation
from LT frame to RBF (matrix 𝐓 in Eq. (5)) and direct comparison with
the ideal (commanded) pose, the position accuracy is calculated as in
Eq. (1).

For path accuracy tests, a set of 25 linear movements (LIN instruc-
tion in KUKA) is executed for each Cartesian direction in the RBF.
The lines are disposed in planes parallel to the faces of the cube, as
visible in Fig. 9. All the linear paths has been verified within RoboDK
environment to confirm that the robot does not pass through any
singular position. The first 50 mm of each line is run at a low and
constant speed for all tests (50 mm/s) to obtain comparable starting
data. For each direction of motion (i.e. 𝑋, 𝑌 and 𝑍 axes), the lines
are repeated 3 times within a single LT record. During post-processing,
all the linear paths are segmented into discrete points by intersecting
them with a series of parallel planes. For each generated point, the
determination of the orthogonal deviation error follows Eqs. (3) and
(5). It should be once again recalled that in the current setup the in-line
error has not been considered.

3.5. Parametric study

A parametric study has been carried out aimed at evaluating the
robot accuracy for different operating conditions. The collected results
will be organized to produce performance maps over the explored
multi-domain, which comprises the following variables:

• Workspace: different points/lines are evaluated within the pre-
scribed cube, each of them characterized by a specific number
(as in Fig. 9). Note that cube dimensions and position are now
considered fixed parameters.

• Direction of motion: path accuracy tests are executed along 𝑋, 𝑌
and 𝑍 axes (see Fig. 9).

• Movement speed: this is imposed as a percentage of the maximum
allowed speed for PTP instructions and as a linear speed (mm/s)
for LIN instructions. Since high joint speeds may be needed when
traveling close to singularities, to ensure stable conditions and
avoid controller issues, the maximum considered linear speed is
set to 300 mm/s.

• Payload: corresponding to the 3 robot tools reported in Fig. 2,
having a total mass of 30 kg (tool 1), 80 kg (tool 2) and 160 kg
(tool 3), i.e. respectively 14%, 38% and 76% of the robot rated
payload.
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Fig. 9. Position and path test geometry: points and lines spatial distribution within the cubic workspace.
Fig. 10. Robot warmed up condition registered with the thermal camera after 2 h of
cycling (temperature reported in ◦C).

• Thermal state: it refers to the temperature of the robot and of
its servo modules. In this study, it has been distinguished in
two cases: (i) Cold start (robot at environment temperature after
several hours of inactivity) and (ii) Warmed-up (robot at steady-
state temperature after running a cyclical program for a few
hours).

While the effects of speed and payload have been deeply investigated
in previous studies, the robot thermal condition has been rarely con-
sidered during accuracy assessments, although its influence on the
dynamic behavior of IR and related servo modules can be seen in
Refs. [34,39]. In this work, the effects of warming up the robot struc-
ture are monitored with the thermal camera. An example of heated
condition, reached after 2 h of cycling, is reported in Fig. 10. It must be
specified that precise information regarding the reducers’ oil state are
not available adopting an external sensor due to the high wall thick-
ness of the robot components. Also, the temperature measured before
starting the experiment (and after the warm-up phase) may fluctuate
during operation depending on the applied speed and payload.

The experimental study has been structured as a grid comprising
all the possible combinations between variables, whose values are
summarized in Table 1. Overall, a total number of 90 points (repeated
30 times) and 1350 lines (repeated 3 times) are recorded.
8

Table 1
Parameters and values considered during the accuracy assessment on the KUKA robot.

Variable Values Unit

Pose accuracy
Pose number 1, 2, 3, 4, 5 –
Speed 10, 50, 100 [%]
Payload 30, 80, 160 [kg]
Heating condition Hot, cold –

Path accuracy
Line number 1 to 25 –
Direction of movement x, y, z –
Speed of motion 100, 200, 300 [mm/s]
Payload 30, 80, 160 [kg]
Heating condition Hot, cold –

4. Experimental results

This section presents the main outcomes of the experimental cam-
paign carried out on the KUKA KR210 R2700 Prime robot. The col-
lected results are hereafter reported and commented.

4.1. Pose accuracy

At first, the pose accuracy 𝐴𝑃 is evaluated in the RBF as in Eq. (1).
A comparison of the results from the various conditions tested for
points 1–5 is reported in Fig. 11. Statistical analyses have been con-
ducted to highlight the dependency of 𝐴𝑃 from each parameter. Since
normality hypothesis on the data distribution cannot be verified, non-
parametric tests [40,41] are used to show the differences between
operating conditions. In particular, two types of tests are considered:

• Wilcoxon signed rank: it is used to determine if there are significant
differences in 𝐴𝑃 between pairs of data when a single parameter
is varied (e.g. travel speed increased from 10% to 50%). The
imposed null hypothesis is that the median difference between
paired population is zero.

• Friedman: it is used to check if there is a dependency of 𝐴𝑃 on the
target position in the robot’s workspace (i.e. the measuring cube).
In this case, the null hypothesis is that all the selected points have
the same 𝐴𝑃 .
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Fig. 11. Pose accuracy values of points 1 to 5 for all the tested conditions. Results have been divided in two plots, respectively for cold start (a) and warmed up (b) thermal
states.
Table 2
Pose accuracy statistical results: effect of varying each single parameter on 𝐴𝑃 .
Variation Test type p-value Mean 𝐴𝑃 increment Significance

Speed 10% to 50% Wilcoxon 0.75 – No
Speed 10% to 100% Wilcoxon 0.57 – No
Speed 50% to 100% Wilcoxon 0.0822 – No
Payload 30 kg to 80 kg Wilcoxon 1.7e−6 1.06 mm Yes
Payload 30 kg to 160 kg Wilcoxon 1.7e−6 4.92 mm Yes
Payload 80 kg to 160 kg Wilcoxon 1.7e−6 3.86 mm Yes
Hot to cold Wilcoxon 5.5e−6 0.11 mm Yes
Pose to pose Friedman 1.3e−12 Up to 1.22 mm Yes
Fig. 12. Directional errors (calculated as (𝑥𝑐 − �̄�), (𝑦𝑐 − �̄�) and (𝑧𝑐 − �̄�), see Eq. (1)) for all samples.
1
e
i
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o determine the significance of such hypotheses, the 𝑝-value has been
alculated for each test (see Table 2). In particular, if the 𝑝-value is less
han 0.05, the null hypothesis is rejected and a statistically significant
ifference between the conditions is found. In these cases, the mean
𝑃 increment is also calculated.

Overall, it can be observed that the payload has a great impact on
9

he pose accuracy (𝐴𝑃 variations up to 400% when stepping from tool t
to tool 3, namely from 30 kg to 160 kg). As the payload increases, the
rror in the 𝑍-axis becomes increasingly important, ultimately resulting
n the dominant contribution of the overall position error, as shown in
ig. 12. Changing thermal state has good significance, as it can be noted
rom Fig. 11 and further confirmed in Table 2, although preheating the
R before operation only results in minimal accuracy improvements (in
he order of few tenths). At last, it is found that the travel speed has
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Fig. 13. Position error in z direction calculated in the RBF for 𝑥 and 𝑦 lines traveled at 100 mm/s (cold start).
Fig. 14. Effect of payload on the orthogonal error along line 13, traveled for each direction at a speed of 100 mm/s (cold start).
little impact on 𝐴𝑃 , which is primarily influenced by the robot pose
(see differences between points 2 and 4 in Fig. 11). For this reason,
also depending on the specific robotic application, more poses may
eventually be registered for a comprehensive volumetric analysis.

4.2. Path accuracy

Path results are analyzed referring to either the path accuracy
index (𝐴𝑇𝑝) and the point-to-point orthogonal deviation error with
respect to the ideal (commanded) lines. Such quantities have been
initially computed in the RBF, as specified in the norm and reported
in Section 3.1. However, the obtained 𝐴𝑇𝑝 values inevitably include
𝐴𝑃 , being the first point of a new line reached with a certain position
error. This is clearly visible in Fig. 13, where the contribution of 𝐴𝑃
on the z error can be deduced for each plotted line after comparison
with Figs. 11 and 12. Hence, to better identify the errors committed by
the robot during path traveling, path results have been processed with
respect to a local frame located at the corner of the cube where lines 1
of the x, y, and z directions intersect (Fig. 9).

Similarly to Section 4.1, a Wilcoxon signed rank statistical test is
performed to investigate the 𝐴𝑇𝑝 dependency from each single pa-
rameter (payload, speed and thermal state). Then, two Friedman tests
are conducted, respectively to check the influence of the line position
10
(i.e ranging from line 1 to 25) within the cube and of the travel
direction (i.e. considering x, y, and z lines) on 𝐴𝑇𝑝. From a close
observation of the processed data, the following considerations can be
made:

• An increasing payload leads to higher orthogonal errors, as visible
in Fig. 14 and confirmed by the comparisons reported in Table 3.
Error plots exhibit higher mean values and amplified oscillations,
with a particularly pronounced effect on the 𝑥 and 𝑦 lines.

• Differently from pose accuracy, higher traveling speeds negatively
impact the robot path accuracy, as it can be seen in Fig. 15 and
in Table 3. In particular, the harmonic content plotted for each
line shows an amplification of the main peaks. Overall, errors
are in the frequency range between 0 and 15 Hz. A frequency
shift is observed between the curves at different speeds which
can be possibly attributed to joint mechanical transmission errors.
Indeed, as discussed in Ref. [39], position dependent reducer
errors, corresponding e.g. to eccentricity and tooth-to-tooth er-
rors, manifest at specific positions in the angular domain (i.e. a
certain number of times per each revolution of the output shaft),
which means that their frequency in the time domain shifts in the
spectrum based on the operated angular speed.
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Table 3
Path accuracy statistical results: effect of varying each single parameter on 𝐴𝑇𝑝.

Variation Test type p-value Mean 𝐴𝑇𝑝 increment Significance

Speed 100 to 200 mm/s Wilcoxon 2.7e−54 0.07 mm Yes
Speed 100 to 300 mm/s Wilcoxon 1.5e−61 0.11 mm Yes
Speed 200 to 300 mm/s Wilcoxon 4.22e−25 0.04 mm Yes
Payload 30 kg to 80 kg Wilcoxon 1.6e−73 0.18 mm Yes
Payload 30 kg to 160 kg Wilcoxon 6.7e−65 0.29 mm Yes
Payload 80 kg to 160 kg Wilcoxon 4.08e−24 0.11 mm Yes
Cold to hot Wilcoxon 3.6e−5 0.02 mm Yes
Direction of motion Friedman 3.1e−52 Up to 0.22 mm Yes
Line to line Friedman 7.1e−153 Up to 1.03 mm Yes
Fig. 15. Effect of speed on the orthogonal error along line 13, traveled for each direction with a payload of 30 kg (cold start). In the picture, FFT indicates the Fast Fourier
Transform.
Fig. 16. Contour plot of orthogonal error and 𝐴𝑇𝑝 for lines traveled at 100 mm/s with a payload of 30 kg (cold start).
• The maximum path error (and 𝐴𝑇𝑝 value) has been registered
for 𝑦 lines, while z lines show the best performance, as visible
in Fig. 16.

• Overall, great variability is registered between lines of the same
direction (i.e. ranging from line 1 to 25), highlighting the strong
dependence of the robot’s dynamic behavior on its assumed con-
figuration (as also confirmed by the results shown in Section 5).
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• Warming up the robot leads to limited changes on the path error,
being the mean 𝐴𝑇𝑝 increment equal to 0.02 mm. Such value is
comparable with the LT accuracy.

The complete dataset of the performed experiments is shared from
the supplementary material section, including scripts for results pro-
cessing and visualization.
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The conducted tests have successfully validated the methodology
presented in Section 3. The approach, which turned out to be solid and
straightforward, can be easily applied to any serial manipulator and de-
signed path, allowing programmers and system integrators to establish
correlations among parameters and position errors, and facilitating the
deployment, calibration and predictive maintenance of existing cells,
as well as the commissioning of new ones.

5. Path error online compensation

This section describes an online control strategy aimed at reducing
the robot errors during path execution. As discussed in Section 1,
most of the available offline compensation algorithms partially solve
the accuracy errors of serial manipulators. This is mainly due to the
complexity of defining precise compensation models given the high
number of variables affecting the robot performance, namely: speed,
payload, temperature, kinematic configuration and direction of motion
(see differences in results for various pose/line numbers in Fig. 16),
reducer type and state, and general state-of-degradation of the system.
In the specific case of the tested KUKA robot, if the Absolute Accuracy
mode is active (meaning $DEACTIVATE_ABS_ACCUR is set to FALSE),
significant reductions in the position error are observed during pose
reaching as a result of the payload weight compensation obtained with
precise stiffness models of the manipulator. This is a favorable outcome
as the payload is the primary contributor to pose accuracy errors, as
visible in Fig. 13. However, during path execution, where servo reducer
kinematic errors have significant impact on the end-effector motion,
path deviations and in-line errors are still present. To solve for these,
an online compensation appears to be the most appropriate solution
since it can potentially detect and compensate for any error source that
occur within the controller’s bandwidth.

For this purpose, the previous setup has been modified to allow
the implementation of an external trajectory compensation module,
as illustrated in Section 2.2. To enable externally guided motion, the
following configurations on the KRC4 controller have been established:

1. Sensor mode set to IPO_FAST so as to work with minimum cycle
time (4 ms).

2. Correction type set to Sensor-Guided Motion. This excludes any
internally generated motion profile to be executed and enables
the external trajectory streaming.

3. Coordinate system for Cartesian corrections set to Absolute. This
system has its origin in the first point of RSI activation and is
oriented as the RBF.

The compensation module (running on the industrial PC, as shown
in Fig. 1) is based on a closed loop algorithm subject to real-time
constraints imposed by the RSI. In particular, recalling Section 2.2, once
a new RSI cycle starts, a request for position feedback is sent to the
LT which in turn provides the last sampled data to the compensation
module. This performs error computation (involving coordinate trans-
formation from LT frame to RBF), and provides path correction data to
the RSI within the current cycle. The novelty of the proposed solution
lies in the compensation of both orthogonal deviation and inline error
(as in Fig. 5). The overall error is processed with a PID controller
to generate the effective correction. Additionally, a function for the
computation of both the input and output shift, i.e. time intervals
determining respectively when the received LT data was generated and
when the correction will become effective on the robot, is established
to further optimize the control performance.

To prevent the excitation of mechanical resonances and ensure safe
and effective operation, the generated control action is filtered before
entering in the RSI by means of a second order low pass filter. A
cutoff frequency of 7 Hz has been set as a trade-off between sup-
pressing unwanted frequencies and maintaining control responsiveness.
The robot frequency response has been investigated for many spatial
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configurations within the previous cubic domain (see Fig. 6) by varying
Fig. 17. Map of the robot first natural frequency obtained for 𝑦 movements at different
poses within the cubic domain (results fitted with a third-order polynomial surface).

the angular position of joint-2 and joint-3. Following Ref. [42], for each
pose, a step motion is commanded along 𝑦 direction (0.5 mm in a single
RSI cycle), causing the robot to vibrate. The first natural frequency is
then extracted from the LT data. Results have been organized on a
two dimensional grid and fitted to yield the empirical surface shown
in Fig. 17. Overall, the natural frequency shows high variation on the
domain, ranging from the 7.5 to 12 Hz. The imposed filter ensures
control stability in the considered workspace. The main drawback is
that error contributions at frequencies higher than 7 Hz cannot be
compensated. Therefore, on the basis of the results shown in Fig. 15,
in the current configuration the online path compensation is expected
to be particularly effective for speeds up to 100 mm/s.

To validate the proposed approach, tests have been performed by
imposing linear movements along x, 𝑦 or z directions. The control gains
have been manually tuned to ensure the best control performance.
Alternatively, model-based methods can be adopted to speed up the
commissioning phase on large workspaces [43], where the robot dy-
namic properties are more likely to change, as clearly demonstrated in
Fig. 17.

Fig. 18 reports the results obtained for each line, adopting a travel
speed of 50 mm/s. In all cases, the robot accuracy has been drasti-
cally increased. In particular orthogonal deviation has been reduced of
amounts equaling to 93.3%, 80.5% and 64.2%, whereas in-line errors of
about 98.4%, 92.8% and 97% respectively for x, 𝑦 and z lines. Overall,
the developed compensation module reduces the oscillation amplitude
in the frequency range up to 7 Hz, where the main error contributions
occurred. Better performance would potentially be achieved by imple-
menting well-tuned band-stop filters which would extend the controller
bandwidth.

The proposed approach can be beneficial for various industrial
applications that involve precise positioning of tools or components,
including assembly, machining, gluing, sealing, painting, coating, and
welding. Nevertheless, there are some aspects that need to be consid-
ered before implementation, namely: (i) Costs related to LT purchase
and maintenance; (ii) Work environment, as the LT measurement is
sensitive to temperature, humidity, dust and air flow conditions; (iii)
Available space (cell footprint and encumbrances) for installation and
resulting measuring distances (as outlined in Section 3.2), which re-
flects to (iv) LT performance and type/size of measured volume and,
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Fig. 18. Comparison between compensated and not compensated paths in x, 𝑦 and z directions.
finally, (v) Time needed for installation and setup (i.e. frame identifi-
cation, Section 3.3), to be repeated e.g. when the LT is relocated or the
SMR is mounted in a different position on the device.

6. Conclusions

The paper reports an engineering method for the evaluation of IR
position and path accuracy, which can be applied to any serial manip-
ulator within its working environment. A commercial LT measurement
system has been used to develop and validate the proposed procedure
in the context of a flexible robotic manufacturing cell, although the
method has general validity and can potentially be applied to other
measuring systems. The test equipment also comprises a thermal cam-
era for the assessment of the robot thermal state. Following ISO 9283,
an experimental campaign is carried out on a KUKA KR210 R2700
Prime robot aimed to provide comprehensive performance maps of
the robot pose and path accuracy. Tests are performed for different
combinations of robot speeds, payloads and thermal states. During
post-processing, statistical tests have been executed to identity and an-
alyze the correlation among input parameters and pose/path accuracy
indexes. In the last part of the work, a novel online compensation
approach is presented and validated. The cell configuration has been
varied to enable real-time robot control through an external controller
running on an industrial PC and directly connected to the KUKA RSI
module. Despite the need for further improvements aimed at extending
the controller bandwidth, the proposed approach yielded remarkable
results in reducing orthogonal deviations (by over 64%) and in-line
errors (by over 93%), significantly improving the IR path accuracy
during the execution of linear movements at a speed of 50 mm/s. This
method can be extended to other IR models and used to enhance their
usability in high precision applications, such as machining and precise
assembly. The experimental data related to this work is made available
to the research community for further developments.
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