ci" Anoma Research Topics | Technical Report

Juvix to VamplIR Pipeline

L

ukasz Czajka®

?Heliax AG

*

E-Mail: lukasz@heliax.dev

Abstract

This report explores two alternatives to Geb for Juvix-to-VampIR compilation. The first alternative is a straightforward
approach based on full normalisation, which may be implemented relatively quickly and used as a comparison baseline for all
other approaches. The second alternative is based on a pipeline of several compiler transformations that together convert
Juvix programs into a form that can be directly translated to VamplR input.

Keywords: Juvix; Vamp-IR; Geb; compilation; normalisation; arithmetic circuits;

(Received April 25, 2023; Published: August 16, 2023; Version: August 21, 2023)

Contents
1 Introduction 1
2 Language features overview 2
3 Current state of the Geb implementation (v0.4.1) 2
4 The branching problem 3
5 The normalisation approach 3
6 The transformation pipeline 4
7 Comparison 5
7.1 Efficiencyo e 5
7.2 Generality 5
7.3 The branching problem 5
8 Conclusion 6
References 6
A Analysis of normal forms 7
B Pipeline transformations 8
B.1 Lambda-lifting 8
B.2 Monomorphisation L e e e e 8
B.3 Defunctionalisation L 9
B.4 Unrolling of recursive functions 9
B.5 Hoisting of lets 10
B.6 Encoding of datatypes 10
B.7 Encoding of runtime errors 10
C Otbher technical issues 11
C.1 Recursion unrolling before defunctionalisation 11
C.2 Geb encoding of higher-order functions 11
1. Introduction

VamplR* is a language for writing arithmetic circuits with support for Halo2" and Plonk-ish proving systems. Juvix
targets VamplIR as one of its backends, currently through an external Geb-to-VamplR compilert. Juvix programs

*ht
tht
tht

tps://github.com/anoma/vamp-ir
tps://github.com/zcash/halo2.git
tps://github.com/anoma/geb

DOI: 10.5281/zenodo.8268823 Anoma Research Topics | August 21, 2023 | 1-11

https://github.com/anoma/vamp-ir
https://github.com/zcash/halo2.git
https://github.com/anoma/geb
https://dx.doi.org/10.5281/zenodo.8268823

are first translated into the JuvixCoreS language and then transformed in a series of steps into a form that can be
translated directly into Geb.

This report describes two possible alternative Juvix-to-VamplR compilation approaches which do not depend on
Geb.

1. Normalisation approach (Section 5).

Relatively easy to implement. Perhaps the most straightforward approach possible. Could serve as a baseline
comparison for other approaches and the quickest way to get a working Juvix-to-VampIR compiler, but suffers
from the (super-)exponential blow-up problem.

2. Transformation pipeline (Section 6).

Based on a pipeline of traditional compiler transformations which together convert JuvixCore programs into a
form that can be directly translated to VamplR. A crucial transformation is that of defunctionalisation which
removes higher-order functions (see Appendix B.3). The pipeline is more robust than the normalisation approach,
but more time-consuming to implement. It probably would be more efficient than unoptimised Geb, but it is
less general and harder to extend.

The conclusion of this report is the recommendation to implement the normalisation approach in order to have
a first working version of Juvix-to-VamplR compilation and a simple baseline compilation strategy against which
other approaches can be compared. The transformation pipeline from Section 6 can be considered as an “emergency”
alternative approach in case of significant unforeseen issues with Geb in the future.

In the rest of this report, we first present a brief overview of the features supported by Juvix, JuvixCore, Geb 0.4.1
and VamplR (Section 2). Then, we discuss the fundamental (super-) exponential blow-up problem for highly-branching
programs and its implications for any compilation strategy (Section 4). In Section 3, we discuss the issues with and
limitations of the current implementation of Geb. Sections 5 and 6 describe the normalisation approach and the
proposed transformation pipeline. Section 7 presents a comparison of the two approaches with Geb and each other.
Section 8 contains some recommendations and their justifications. The appendices contain technical details relevant
to the normalisation approach (Appendix A) and the transformation pipeline (Appendix B), and discussions of a few
more tangential technical issues (Appendix C).

Remark 1 (Update) As of Juvix version 0.3.5, the normalisation approach has been implemented. It exhibits the
limitations predicted in this report with regard to compiling highly-branching programs. The report has been slightly
updated to reflect the current state of the implementation of the normalisation approach and of Geb.

2. Language features overview

The following table provides an overview of the language features supported by Juvix, JuvixCore, Geb version 0.4.1,
and VamplR.

Feature Juvix JuvixCore Geb VamplIR
General recursion (functions) Yes Yes No No
First-class functions Yes Yes Yes No?
Inductive data types Yes Yes No No
Finite data structures Yes Yes Yes® No°¢
Prenex polymorphism Yes Yes No No?
Higher-rank polymorphism Some Yes No No
Primitive integer type Yes Yes No Yes®
Errors Yes Yes Yes No

?VamplR higher-order and anonymous functions are not fully “first-class” because they cannot nontrivially interact with the field elements - they
are essentially compilation-time-only.
bEncodable via products and coproducts.
“Pairs and lists in VamplIR cannot nontrivially interact with the field elements. In general, finite JuvixCore data structures cannot be translated into
them.
dPonmorphic functions are supported, but not polymorphic data types which can interact non-trivially with field elements. Hence, monomorphisation
is still necessary to translate from JuvixCore.
°VamplIR “integers” are the field elements, not integers strictly speaking.
3. Current state of the Geb implementation (v0.4.1)
Currently, Geb lacks the following features necessary for Juvix integration.

= Primitive integers and arithmetic operations.
= Support for bounded algebraic data types (needed for recursive data structures).

= Polymorphism (Juvix could alternatively implement monomorphisation).
These features are currently being worked on by the Geb team.

Shttp://github.com/anoma/juvix

DOI: 10.5281/zenodo.8268823 Anoma Research Topics | August 21, 2023 | 2

http://github.com/anoma/juvix
https://dx.doi.org/10.5281/zenodo.8268823

4. The branching problem

Compiling highly-branching functional programs to circuits may result in (super-)exponential circuit size blow-up. This
branching problem is a fundamental limitation on any direct non-interpretive compilation strategy. The difficulty lies
in the fact that circuits encode all potential computation routes.

The proposed pipeline would translate Juvix programs into VamplR programs, with the size of the program
increasing only by a factor polynomial in the unrolling depth limit. However, when compiling the generated programs
into circuits, VamplR needs to insert the bodies of functions at all call sites, which can cause the size of the circuit to
become (super-)exponential in comparison to the size of the VamplR input program. The recursive inlining done by
VamplR is essentially a full normalisation process, which involves the sharing of common normal subexpressions of
type integer.

The branching problem occurs, in particular, with recursive functions that have more than one recursive function
call occurrence in the body. For example, consider the filter function defined as follows.

filter : (a -> Bool) -> List a -> List a
filter p Nil = Nil
filter p (Cons x xs) = if p x then Cons x (filter p xs) else filter p xs

The filter function would be completely expanded up to the given recursion depth limit, with each recursive call
being expanded independently, leading to a circuit size that increases exponentially with the recursion depth limit. In
this example, the blow-up could be avoided by hoisting the common subexpression filter p xs, as follows.

filter p (Cons x xs) =
let xs' = filter p xs
in if p x then Cons x xs' else xs'

However, this is not always possible if there are two or more recursive calls with essentially different arguments.

Fortunately, there is a large class of functional programs that can be guaranteed to not cause an exponential
blow-up (assuming the circuits are DAGs not trees): those which use recursion linearly, i.e., for which there is only
one recursive call occurrence in each function body. Note that folds over non-branching data structures (e.g. lists)
fall into this category. In fact, the class of functions definable with linear recursion is quite large (though it might
be difficult or inconvenient to reformulate programs into this format). All primitive recursive functions on natural
numbers are definable with first-order linear recursion.

For first-order linearly recursive programs, the size of the final circuit DAG should be at most proportional to the
program size multiplied by a factor polynomial in the recursion unrolling depth limit, with the degree of the polynomial
depending on the number of functions in the program source.

For higher-order linearly recursive programs, to guarantee the lack of blow-up, one also needs to require that
functions provided as arguments to higher-order recursive functions are themselves not recursive.

With the normalisation approach discussed in the next section, to obtain an absolute guarantee for the lack of
blow-up, one also needs to restrict to programs which use only numbers and booleans.

5. The normalisation approach

One can prove that, for appropriate reduction rules, any closed JuvixCore normal-form lambda-term t of type
Int — ... = Int — Int must have the form t = Az1 ... x,.b where b is an expression built up from:

= the variables z1,..., 2y,

= number literals,

= arithmetic operations and comparisons,
= if-then-else,

= runtime error nodes.

See Appendix A for a more detailed analysis. After removing the error nodes, any lambda-term in such a form can be
directly translated to VamplR.
This suggests a straightforward compilation strategy with two main steps:

1. Unrolling of recursive functions (already implemented).

2. Normalisation (partly implemented).

Once recursion is unrolled, all typed terms are strongly normalising, and normalisation can be performed without
looping. After normalisation, the runtime error nodes need to be removed, but the effort required is low (see
Appendix B.7).

DOI: 10.5281/zenodo.8268823 Anoma Research Topics | August 21, 2023 | 3

https://dx.doi.org/10.5281/zenodo.8268823

For normalisation to work on anything but the tiniest toy programs one needs to use the Normalisation by Evaluation
(NbE) technique.Y One also needs to take care to propagate “stuck” runtime error nodes!, share common normal
subexpressions of type Int using lets and perform appropriate permutative conversions (explained below). Implementing
NbE with these modifications is more involved than a naive repetition of S-reductions. The implementation effort is
still much smaller than for the remaining parts of the pipeline from Section 6.

The problem with the normalisation approach is that normalising a (simply-typed) lambda-term may increase its
size super-exponentially. In fact, the blow-up may be non-elementary, that is, the size of the output may be greater
than

om

02"

for any tower of 2s, where n is the size of the original term. See (Sgrensen and Urzyczyn, 2006, Section 3.7).

Naive normalisation without sharing of subexpressions of type Int may cause an exponential blow-up of the program
size even for numeric first-order linearly recursive programs. For example, normalising the n-times composition of
Az.fxz results in a normal form of size exponential in n. A remedy is to reduce (Ax.t)s to letz := sint when s is a
non-constant normal form of type Int. After normalisation, the lets need to be hoisted (see Appendix B.5).

If normalisation is implemented to share subexpressions of type Int, it can be guaranteed that numeric first-order
linearly recursive programs do not cause an exponential blow-up. Nonlinearly recursive programs may still increase in
size super-exponentially.

Unfortunately, it is not possible to use the trick with lets for non-numeric data types. First-order linearly recursive
programs that use data structures other than numbers or booleans may still cause a super-exponential blow-up.

Because JuvixCore has case-expressions on booleans (i.e., “if-then-else”), in order to obtain the desired kind of
normal forms the reduction rules need to be extended with appropriate permutative conversions which move around
case and let-expressions to expose “stuck” redexes (see (Troelstra and Schwichtenberg, 1996, Chapter 6)). Permutative
conversions may cause an exponential blow-up for linearly recursive programs even if common subexpressions of
type Int are shared. This happens because for non-boolean A1, A2, a case-expression

case (case M of {C1 -> Al1l; C2 -> A2}) of
D1 -> B1
D2 -> B2

needs to be converted into

case M of
Cl -> case Al of
D1 -> Bi
D2 -> B2
C2 -> case A2 of
D1 -> B1
D2 -> B2

to expose potential redexes in the case analysis on A1, A2. But this duplicates B1 and B2.

However, if we ultimately target circuits and the blow-up does not happen during Juvix-to-VampIR compilation, it
may happen when VamplR tries to generate the final circuit. VamplR needs to essentially fully inline all functions,
which amounts to full normalisation (with sharing of common normal subexpressions of numeric type). With the
pipeline from Section 6 the blow-up is delayed until VamplIR generates the circuit. With the normalisation approach,
it already happens when compiling Juvix to VamplR.

Nonetheless, it is a major disadvantage that the (super-)exponential blow-up happens already when compiling to
VamplR, which could make it impossible in practise to generate any VamplR input at all. This would prevent VampIR
from optimising the programs in the particular special cases when the blow-up could be avoided. Also, if parts of the
circuit programs are to ultimately be interpreted in a VM, then the right VM /interpreter code format is probably
closer to Geb/VamplIR than to the initial JuvixCore without further transformations.

6. The transformation pipeline

The proposed pipeline for compiling Juvix to VamplR directly, without going through Geb, consists of several JuvixCore
transformations which together convert a JuvixCore program into a form that can be straightforwardly translated into
the input format of VamplR. The transformations remove step-by-step the features of JuvixCore not supported by
VamplIR (see Section 2).

1. Lambda-lifting (already implemented).
= Removes anonymous lambda-abstractions by converting them into top-level named function definitions.

IThe difference between evaluation and normalisation is that evaluation does not reduce under binders, e.g., Ax.(Ay.y)x is a value but not a normal
form. Evaluation is what mainstream functional programming languages do (e.g., Haskell, OCaml, Lisp). Normalisation is what dependently-typed
proof assistants do (e.g., Coq, Agda, Idris).

IE.g. reducing (if error M N) to error.

DOI: 10.5281/zenodo.8268823 Anoma Research Topics | August 21, 2023 | 4

https://dx.doi.org/10.5281/zenodo.8268823

2. Monomorphisation (necessary for polymorphism).
= Instantiates all type parameters in functions and datatypes with concrete types.
3. Defunctionalisation.
= Removes higher-order functions.
4. Unrolling of recursive functions (already implemented).
= Unrolls recursion up to some specified depth.
5. Hoisting of lets.
= Moves lets upwards, out of applications.
6. Encoding of datatypes.
= Encodes datatypes into tuples of numbers.
7. Encoding of runtime errors.

= Encodes runtime errors with pairs.

See Appendix B for more detailed descriptions of the transformations.
After performing the above transformations, we are left with a collection of non-recursive first-order function
definitions of the form

fun £ x1 ... xn =
let y1 = vi
ym = vm
in
v
where z1,...,%n,Yy1,...,Ym have the types of numbers or tuples of numbers, and v1,...,vm,v are applicative

expressions built from:

= variables,

= number literals,

= fully applied functions,

= arithmetic operations and comparisons,

= tuple operations (tuple creation and destruction).

Any definition of this form can be directly translated to a VampIR function definition. VamplIR supports local
definitions, arithmetic and tuples (at circuit generation time).

7. Comparison

7.1. Efficiency. The proposed pipeline relies on traditional compiler transformations to convert Juvix programs into
a form that can be straightforwardly translated to VamplR. The transformations are “syntactic” and relatively
“low-level”. Such an approach might give better control over the details of the generated VamplIR code and make it
easier to generate good VamplIR code (which can be compiled to smaller circuits that need less proving and verification
time). The code generated with the proposed transformation pipeline should be reasonably efficient without further
optimisations.

The normalisation approach essentially “fully inlines” the program by normalizing it. This may result in super-
exponential blow-up at compilation stage and thus failure to compile. But the code that does compile without blow-up
should be reasonably efficient.

Efficiency of Geb-generated code improved since the first version of this report, but Geb is still missing some
features to allow for compilation from Juvix and a thorough comparison.

7.2. Generality. Geb is more abstract and general, which in the long term might make it more amenable to modular,
structured extensions, and to formal verification. For example, according to Terence Rokop supporting higher-rank
polymorphism is not problematic. With the proposed pipeline, it is not clear how to handle higher-rank polymorphism.
Also, adding support for dependent types may be more challenging with the proposed pipeline than with Geb.

7.3. The branching problem. The Geb approach, in the long run, might be better suited to address the branching

problem. Interpreting (parts of) the programs might avoid circuit size blow-up at the cost of significant interpretation
overhead. We are not sure to what extent the current version of Geb avoids the branching problem.

DOI: 10.5281/zenodo.8268823 Anoma Research Topics | August 21,2023 | 5

https://dx.doi.org/10.5281/zenodo.8268823

8. Conclusion
We recommend the following.

1. Regardless of any other choices, implement the normalisation approach from Section 5 as a reference baseline.
Justification:

= The normalisation approach is perhaps the most straightforward compilation method possible for Juvix-to-
VamplR. It can serve as a reference point for more sophisticated methods.

= The normalisation approach can be implemented relatively quickly.

= Implementing the normalisation approach will give the Geb team more time to design the incorporation of
the features needed by Juvix in a structured and modular manner.

2. Continue the work on Geb. In case of significant unexpected difficulties with the Geb approach, implementing
the pipeline from Section 6 could be considered.

Justification:

= Geb is more general than the proposed pipeline, which in the long term may make it easier to extend it
with higher-rank polymorphism, dependent types or other features. Potential formalisation might also be
easier.

= Geb might make it easier to solve the branching problem.

Acknowledgements

The author expresses his gratitude to the organisers of the Valencia Heliax retreat 2023, where the possibility of
direct compilation from Juvix to VampIR was discussed with Jonathan Prieto-Cubides and Murisi Turesenga. Jan
Mas Rovira implemented let-hoisting used in the normalisation pipeline. Also, thanks to the entire VampIR team for
their ongoing support and updates during the implementation process. The Geb team, in particular Terence Rokop,
clarified many Geb-related issues. Last but not least, special thanks to Jonathan Prieto-Cubides for reviewing this
report and suggesting improvements.

References

Sgrensen, M.H. and Urzyczyn, P. Lectures on the Curry-Howard Isomorphism. Elsevier, 2006
Troelstra, A. and Schwichtenberg, H. Basic Proof Theory. Cambridge University Press, 1996
Heliax AG. “Geb Lisp Implementation.” 2023a

Heliax AG. “VamplR Rust Implementation.” 2023b

Heliax AG. “Juvix Haskell Compiler.” 2023c

DOI: 10.5281/zenodo.8268823 Anoma Research Topics | August 21, 2023 | 6

https://dx.doi.org/10.5281/zenodo.8268823

A. Analysis of normal forms

We consider the problem of compiling a Juvix program with the main function of type Int — Int into a one-argument
VamplIR function f. One would then use this function e.g. in a VamplIR equation fz = y with the input variables z, y.

A generalisation to multiple arguments of type Int is straightforward. To handle first-order algeraic data types as
the arguments/result of the main function, one needs to specify how to encode them into (tuples of) numbers.

Note that we restrict only the type of the main function. Other parts of the program can use arbitrary types, be
polymorphic, higher-order, etc.

We consider an extended polymorphic lambda calculus without recursion which essentially corresponds to JuvixCore
after compilation of pattern matching and the unrolling of recursion. For the sake of brevity, we omit some features of
JuvixCore (integer comparisons, if-then-else, errors) but the analysis extends to them with small modifications.

In the presence of case-expressions on booleans and integer comparisons (or other functions which produce booleans
from integers), the reduction rules need to be extended with appropriate permutative conversions (see (Troelstra and
Schwichtenberg, 1996, Chapter 6)).

The types 7,0 are:
= primitive integer type Int,
= type variables «, 3,
= parameterised inductive types I7; ... 7y,
= function types 7 — o,
= type quantification Va.T.
The terms t, s, r are:
= integer literals n,m,
= arithmetic operations t © s where ©® € {+, —, %, /},
= variables z,y,
= application ts,
= |lambda-abstraction Az : T.t,
= type application tr,
= type abstraction Aa.t,
= inductive type constructors c,
= case-expressions: casetof {c;z1...xk, =t |i=1,...,n}.
The reductions are:

Az : 7.t)s —p tlx = 3]
(Aat)T —p tla == 7]
caseCmSi ... Sk, of {ciz1...xp, =t |i=1,...,n} =, tm[z1 1= S1,..., Tk, = Sk |
We omit the standard typing rules. The arithmetic operations have type ® : Int — Int — Int.
Lemma 2 Any closed (i.e. without free variables) Bt-normal term t of type Int — Int must have the form t = Az : Int.s
where s is a Bi-normal term of type Int built up from:
the variable x,
integer literals n,m,
arithmetic operations ©®.
Proof. This is an easy lambda-calculus exercise in normal form analysis. Because ¢ : Int — Int is St-normal and
closed, it must be a lambda-abstraction Az : Int.s with s : Int also St-normal and FV(s) = {z}. Then one proves by
induction on the size of St-normal s : Int with FV(s) = {z} that s has the required shape. The crucial observation is
that if s is an application s = hsi ... s, then h cannot be a lambda-abstraction (because s is 3-normal), so it must
be an arithmetic operation (because there are no other terms available having a function type with target Int). To

exclude the possibility that s (or i or t above) is a case-expression, one also needs to show by induction on Bt-normal
r: It ... 7m with FV(r) = {z} that r = ¢r1 ... 7, for some constructor c of I. O

Any term in the form specified by the above lemma can be directly translated into a VamplR function definition.

DOI: 10.5281/zenodo.8268823 Anoma Research Topics | August 21, 2023 | 7

https://dx.doi.org/10.5281/zenodo.8268823

B. Pipeline transformations

In this appendix, we describe in more detail the transformations for the pipeline proposed in Section 6.

B.1. Lambda-lifting.
= Necessity: required
= Workload: already implemented
Lambda-lifting removes anonymous lambda-abstractions by converting them into top-level named function definitions.
For example,
fyz=map (\x >x+7y)z
is transformed into

lam y x = x + §y
fyz=map (lam y) z

This transformation has already been implemented for the WebAssembly pipeline.

B.2. Monomorphisation.

= Necessity: required for polymorphism

= Workload: medium
Monomorphisation instantiates all type parameters in functions and datatypes with concrete types.
For example,

data List a = Nil | Cons a (List a)

map : (a -> b) -> List a -> List b

map £ Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)

is transformed into

data List_Nat = Nil_Nat | Cons_Nat Nat List_Nat
data List_String = Nil_String | Cons_String String List_String

map_Nat_Nat : (Nat -> Nat) -> List_Nat -> List_Nat
map_Nat_Nat £ Nil_Nat = Nil_Nat
map_Nat_Nat f (Cons_Nat x xs) = Cons_Nat (f x) (map_Nat_Nat f xs)

map_String_Nat : (String -> Nat) -> List_String -> List_Nat
map_String_Nat f Nil_String = Nil_Nat
map_String_Nat f (Cons_String x xs) = Cons_Nat (f x) (map_String Nat f xs)

provided that map occurs in the program with a = b = Nat and with a = String, b = Nat.

Note that not all Juvix programs can be monomorphised, because Juvix supports some higher-rank polymorphism.
For example, the following is a valid Juvix definition

f : {A : Type} -> ({B : Type} -> B -> B) -> A —> A;
f x := x x;

It is not possible to (directly) monomorphise £ because Az.zz is not simply-typable.

With this approach, any program with non-monomorphisable higher-rank polymorphism would cause a compilation
error. One could also consider a more general approach to monomorphisation, which would duplicate the higher-rank
polymorphic function arguments and move the type quantifiers to the top, e.g., first changing the above £ to

f: {ABC: Type} -> (B -> B) -> (C -> C) -> A —> A;

f x1 x2 := x1 x2;

and adjusting all call sites appropriately. At this point, it is not clear how to formulate this transformation in full
generality.

According to Terence Rokop, higher-rank polymorphism is not a problem for Geb, in principle. Geb is expected to
support higher-rank polymorphism in the future.

DOI: 10.5281/zenodo.8268823 Anoma Research Topics | August 21, 2023 | 8

https://dx.doi.org/10.5281/zenodo.8268823

B.

3. Defunctionalisation.
= Necessity: required

= Workload: medium

Defunctionalisation removes higher-order functions by representing them as data structures and encoding unknown
function applications as case distinctions on this data structure.

For example,

map : (Nat -> Nat) -> List Nat -> List Nat
map f Nil = Nil

map f (Cons x xs) = Cons (f x) (map f xs)
z = map (g 0) (map f xs)

transformed into

data Fun_Nat_Nat = F | G Nat

app_Nat_Nat : Fun_Nat_Nat -> Nat -> Nat

app_Nat_Nat F x = f x
app_Nat_Nat (G x) y=gxy

map : Fun_Nat_Nat -> List Nat -> List Nat
map £ Nil = Nil
map f (Cons x xs) = Cons (app_Nat_Nat f x) (map f xs)

z = map (G 0) (map F xs)

assuming that f, g are the only functions in the entire program which occur as the head of a partial application of
type Nat -> Nat.
Note that, in general, one cannot use VamplR higher-order functions to encode Juvix higher-order functions,
because VamplR higher-order functions are compile-time only and cannot interact nontrivially with the field elements.
Thus, they cannot be, e.g., directly stored in a data structure encoded as a tuple of field elements.
In many cases, one could optimise by using VamplIR higher-order functions instead of defunctionalising, but not
in general. In terms of the effect on the final circuit, however, this seems equivalent to doing the specialisation
optimisation on the JuvixCore level (i.e. duplicating the higher-order functions with each known function argument

“pasted in").

Sections 4,5). It should probably be performed only selectively.

B.4. Unrolling of recursive functions.

= Necessity: required for recursion

= Workload: already implemented

Unrolls recursion up to some specified depth.

For example,

fact x = if x == 0 then 1 else x * fact (x - 1)

is transformed into

fact0 x = error "recursion too deep"

factl x = if x == 0 then 1 else x * factO0 (x - 1)
fact2 x = if x == 0 then 1 else x * factl (x - 1)
fact3 x = if x == 0 then 1 else x * fact2 (x - 1)

fact{D} x = if x == 0 then 1 else x * fact{D-1} (x - 1)

fact x = fact{D} x

This transformation has already been implemented for the Geb pipeline.

DOI: 10.5281/zenodo.8268823

Anoma Research Topics

August 21, 2023

The downside of this optimisation is that it might result in program/circuit size blow-up (see also

9

https://dx.doi.org/10.5281/zenodo.8268823

B.5. Hoisting of lets.
= Necessity: required
= Workload: low
Hoisting of lets moves lets upwards, out of applications and other subexpressions.
For example,
f (let x = let z =g ain z + 2 in x * b)
is transformed into

let z =g a

in
let x =z + 2
in

f (x * b)

B.6. Encoding of datatypes.
= Necessity: required
= Workload: medium

Elements of each datatype (i.e. the constructors) need to be encoded into (tuples of) numbers (field elements).
Any unambiguous bit encoding of constructors can be used. For example,

= the first 8 bits for the constructor tag (indicating which constructor),

= the remaining bits for the encodings of constructor arguments in the order from left to right.

Note that after defunctionalisation all data types are first-order, so every constructor argument is itself a constructor
or an integer. For finite bounded datatypes, the maximum number of bits needed for the encoding can be calculated
at compile time. If the number of bits needed exceeds the number of bits available in a field element, then we use
an appropriate tuple of field elements. For unbounded datatypes, one needs to set some bound on the depth of the
data structure and calculate the number of bits based on that. Pattern matching on data types is then encoded by
appropriate arithmetic and tuple operations.

For finite datatypes which are not too deep, a simpler and more readable encoding by nested tuples can be used.
Let n be the maximum number of constructor arguments in any inductive type in the entire program. Then a
constructor with k£ arguments is encoded by an n + 1-tuple where:

= the first element is the tag,
= the next k elements are the encodings of the constructor arguments,

= the remaining n — k elements are arbitrary elements of appropriate tuples (they're irrelevant since they'll never
be accessed).

For the types to match, any integer that is a constructor argument must also be encodable as an n + 1-tuple, e.g., by
encoding it in the tag field.
The nested-tuple encoding is a bit simpler but not very efficient with datatypes of larger depth.

B.7. Encoding of runtime errors.

= Necessity: required

= Workload: low
Runtime errors need to be encoded, for example, using pairs.
For instance,

Int -> Int

f
f x = if x == 0 then error "Runtime error" else x - 1
is transformed into

f : (Int, Int) -> (Int, Int)
f (1, x) = (1, x)
f (0, x) = if x == 0 then (1, 0) else (0, x - 1)

where the first component of the pair indicates whether a runtime error occurred.

DOI: 10.5281/zenodo.8268823 Anoma Research Topics | August 21, 2023 | 10

https://dx.doi.org/10.5281/zenodo.8268823

C. Other technical issues

C.1. Recursion unrolling before defunctionalisation. Unrolling recursion without defunctionalising first may result
in counterintuitive effective recursion depth limit. This is because with higher-order functions one can “cheat” the
recursion depth limit. For instance, consider the following Juvix program:

iterate : {A : Type} + (A + A) -+ Nat =+ A - A;
iterate f zero x := x;
iterate £ (suc n) x := f (iterate f n x);

plus : Nat - Nat - Nat;
plus := iterate suc;

mult : Nat -+ Nat -+ Nat;
mult m n := iterate (plus n) m O;

exp : Nat -+ Nat - Nat;
exp m n := iterate (mult m) n 1;

If one unrolls iterate up to depth k without defunctionalising (i.e. independently of its function argument), then
the effective recursion depth limit for the entire program (and the size of the normal form) can be proportional
to k¥, because the exp function iterates an iteration of iterations, each with idependent depth limit k. Note that the
normal-form size blow-up may happen even if exp is never actually expected to be called with arguments that would
result in exponential recursion depth.

After defunctionalisation, the depth limits will depend on each other — in iterate the calls via app to plus and
mult will ensure a decreasing depth limit for them.

C.2. Geb encoding of higher-order functions. As far as we understand, Geb essentially encodes higher-order functions
as field elements in a generic way (i.e., not depending on the particular program but encoding the entire lambda-term
generically) and later essentially “interprets” them upon application (via the eval morphism associated with the
exponential object). The difference with defunctionalisation seems to be that in defunctionalisation we just do a
simple switch to choose between a finite number of functions that were present in the original program and compiled
“normally”, while when the entire lambda-term is encoded as a data structure all of it needs to be “interpreted”. This
might be much less efficient than defunctionalisation. At this point, we are unable to investigate this more thoroughly,
because the Geb implementation of higher-order functions is not yet finished.

However, this issue will mostly disappear after Geb implements the planned optimisation of using higher-order
VamplR functions for Geb higher-order functions. Since VamplR higher-order functions are compile-time only, there
are some situations where they cannot be used to implement Geb higher-order functions. In such rare situations, the
issue may persist.

DOI: 10.5281/zenodo.8268823 Anoma Research Topics | August 21, 2023 | 11

https://dx.doi.org/10.5281/zenodo.8268823

	Introduction
	Language features overview
	Current state of the Geb implementation (v0.4.1)
	The branching problem
	The normalisation approach
	The transformation pipeline
	Comparison
	Efficiency
	Generality
	The branching problem

	Conclusion
	References
	Analysis of normal forms
	Pipeline transformations
	Lambda-lifting
	Monomorphisation
	Defunctionalisation
	Unrolling of recursive functions
	Hoisting of lets
	Encoding of datatypes
	Encoding of runtime errors

	Other technical issues
	Recursion unrolling before defunctionalisation
	Geb encoding of higher-order functions

