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Abstract: For an ordered subset W = {w1, w2, · · · , wk} of vertices and a vertex v in a con-

nected graph G = (V, E), the (metric) representation of v with respect to W is the k-vector

r(v|W ) = (d(v, w1), d(v, w2), · · · , d(v, wk)). The set W is a resolving set for G if distinct

vertices of G have distinct representations with respect to W . A resolving set of minimum

cardinality is called a minimum resolving set and the cardinality of it is a dimension of G,

denoted by dim(G). In this paper, we introduce resolving connected domination number

γrc(G) of graphs. We investigate the relationship between resolving connected domination

number, connected domination number, resolving domination number and dimension of a

graph G. Bounds for γrc(G) are determined. Exact values of γrc(G) for some standard

graphs are found.
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§1. Introduction

In this paper, we consider the connected simple graph G = (V,E), that finite, have no loops,

multiple and directed edges, and there is a path between any pair of its vertices. Let G be such

a graph and let n and m be the number of its vertices and edges, respectively. The distance

d(u, v) between two vertices u and v of a graph G is the minimum length of the paths connecting

them (i.e., the number of edges between them). A graph H is a subgraph of G if V (H) ⊆ V (G)

and E(H) ⊆ E(G). For a subset S ⊆ V (G), the subgraph 〈S〉 of G is called the subgraph

induced by S if E(〈S〉) = {uv ∈ E(G)|u, v ∈ S}. We refer to [3], for graph theory notation and

terminology not described here.

A set D of vertices in a graph G is a dominating set of G if every vertex in V − D is

adjacent to some vertex in D. The domination number γ(G) of G is the minimum cardinality

of a dominating set in G. The concept of connected domination number was introduced by E.

Sampathkumar and H. Walikar [7]. A dominating set D of a graph G is connected dominating

set if a subgraph induced by D is connected. The connected domination number γc(G) of G is

the minimum cardinality of a connected dominating set in G . for more details in domination

theory of graphs we refer to [5].
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Let G be a connected graph of order n and let W = {w1, w2, · · · , wk} be an ordered set of

vertices of G. For a vertex v of G, the k-vector

r(v|W ) = (d(v, w1), d(v, w2), · · · , d(v, wk)) .

where d(v, u) represents the distance between the vertices v and u, is called the representation

of v with respect to W . The set W is a resolving set for G if r(u|W ) = r(v|W ) implies that

u = v for every pair u, v of vertices of G. A resolving set of minimum cardinality is called

a minimum resolving set or a basis of a graph G and the cardinality of a basis of G is its

dimension and denoted by dim(G). The concepts of resolving set and minimum resolving set

have previously appeared in the literature in [9] and later in [10],, Slater introduced these ideas

and used locating set for what we have called resolving set. He referred to the cardinality

of a minimum resolving set in a graph G as its location number of G. Slater described the

usefulness of these ideas when working with U. S. sonar and coast guard Loran (Long range

aids to navigation) stations. Independently, Harary and Melter [4], investigated these concepts

as well, but used metric dimension rather than location number, the terminology that we have

adopted.

C. Robert and et al. in [6], introduced the concept of resolving domination in graphs. A

set D of vertices of a graph G that is both resolving and dominating is a resolving dominating

set. The minimum cardinality of a resolving dominating set is called the resolving domina-

tion number γr(G). Motivated by this paper, we introduce the concept of resolving connected

domination number of graphs. We investigate the relationship between resolving connected

domination number, connected domination number, resolving domination number and dimen-

sion of graphs. Exact values of γrc(G) for some standard graphs are computed. Bounds for

γrc(G) of a graph are found.

Before we are starting in the main results of resolving connected domination, we consider

the following useful results on dimension and resolving domination numbers of graphs.

Theorem 1.1([1, 4]) Let G be a connected graph of order n > 2. Then

(a) dim(G) = 1 if and only if G = Pn;

(b) dim(G) = n− 1 if and only if G = Kn;

(c) For n > 4, dim(G) = n − 2 if and only if G = Kr,s, (r, s > 1), G = Kr + Ks,

(r > 1; s > 2), or G = Kr + (K1 ∪Ks), (r, s > 1).

Theorem 1.1([8, 4]) (a) For a cycle Cn , n ≥ 3, dim(Cn) = 2;

(b) For n ≥ 3, let W1,n be the wheel graph on n+ 1 vertices. Then

dim(W1,n) =







3, if n = 3 or n = 6;

⌊ 2n+2
5 ⌋, otherwise.

The following definitions are stated in [1, 4].

Definition 1.3 Fix a graph G. A vertex v ∈ V (G) is called a major vertex if d(v) ≥ 3. An
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end-vertex u is called a terminal vertex of a major vertex v if d(u, v) < d(u,w) for every other

major vertex w in G. The terminal degree of a major vertex v is the number of terminal vertices

of v. A major vertex v is an exterior major vertex if it has positive terminal degree. Let σ(G)

denote the sum of terminal degrees of all major vertices of G, and let ext(G) the number of

exterior major vertices of G.

Theorem 1.4([1]) If T is a tree that is not a path, then dim(T ) = σ(T ) − ext(T ).

Corollary 1.5([5]) If T is a tree of order n > 3, then γc(T ) = n − l(T ). Where l(T ) denote

the number of end-vertex of T .

Lemma 1.6([6]) Let u and v be vertices of a connected graph G. If either

(1) u and v are not adjacent and N(u) = N(v). or

(2) u and v are adjacent and N [u] = N [v], then every resolving set of G contains at least one

of u and v.

Proposition 1.7([6]) If G is a connected graph of order n > 2 and diameter d, then γr ≥
f(n, d), where

f(n, d) = min{k +
k
∑

i=1





k

i



 (d− 1)k−i}.

§2. Main Results

A connected graph G ordinarily contains many dominating sets. Indeed, every superset of a

dominating set is also a dominating set. The same statement is true for a connected dominating

sets, also for resolving sets. In this paper we study those connected dominating sets that are

resolving sets as well. Such sets will be called resolving connected dominating sets. Thus a

resolving connected dominating set D of vertices of G not only dominates all the vertices of

G but has the added feature that the subgraph 〈D〉 induced by it is connected, also distinct

vertices of G have distinct representations with respect to D. The cardinality of a minimum

resolving connected dominating set is called the resolving connected domination number of G

and is denoted by γrc(G). A resolving dominating and resolving connected dominating sets

of cardinality γr(G) and γrc(G), is called a γr(G)-set and γrc(G)-set, for G, respectively. To

illustrate these concepts, consider the following graph G in Figure 1.

v1

v2

v3

v4 v5

v6

v7

v8

Figure 1. A graph with γ = 2, γc = 3, γr = 4, γrc = 5 and dim = 3.
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By Lemma 1.6, every resolving set of G contains at least two vertices from set W =

{v1, v2, v3}. Since no 2-element subset of W is a resolving set, it follows that dim(G) ≥ 3. On

the other hand, the set {v1, v2, v6} is a resolving set for G, implying that dim(G) = 3. The set

{v4, v6} is a γ-set of G and so γ(G) = 2, the set {v4, v5, v6} is a γc-set of G so γc(G) = 3, the

set {v1, v2, v4, v6} is a γr-set of G so γr(G) = 4 and the set {v1, v2, v4, v5, v6} is a γrc-set of G

and so γrc(G) = 5.

2.1 Exact Values of Resolving Connected Domination of Some Standard Graphs

In this section, we present The exact values of resolving connected domination numbers of some

well-known classes of graphs as following:

Proposition 2.1

(1) γrc(Kn) = γrc(K1,n) = n− 1, for n ≥ 2;

(2) γrc(Pn) = n− 2, for n ≥ 4;

(3) γrc(Cn) = n− 2, for n ≥ 3;

(4) γrc(Kr,s) = r + s− 2, for r, s ≥ 2;

(5) For integers 2 ≤ n1 ≤ n2 ≤ · · · ≤ nk with n1 + n2 + · · · + nk = n and k ≥ 2,

γrc(Kn1,n2,··· ,nk) = n− k.

Theorem 2.2 For a wheel graph W1,n of order n ≥ 7

γrc(W1,n) =

⌊

2n+ 2

5

⌋

+ 1.

Proof In W1,n = K1 +Cn, n ≥ 7, let V (W1,n) = {v0, v1, v2, · · · , vn}, where v0 is a central

vertex and v1, v2, · · · , vn are vertices of Cn. Let R be a minimum resolving set of W1,n. Since

d(v0, vi) = 1 for all i with 1 ≤ i ≤ n it follows that v0 does not belong to any minimum resolving

set of W1,n. Hence, v0 /∈ R. In other hand, the set {v0} is a γ-set of W1,n and it is a connected

set so the set {v0} is also a γc-set of W1,n. Thus, the set D = {v0} ∪ R is a γr-set of W1,n.

Since the subgraph 〈D〉 is connected it follows that the set D is a γrc-set of W1,n. Therefore,

by this and Theorem 1.2 we get

|D| = |R ∪ {v0}| = |R| + |{v0}| =

⌊

2n+ 2

5

⌋

+ 1.

And this completes the proof. 2
Theorem 2.3 Let T be a tree of order n ≥ 4, that is not a path. If every major vertex of T

adjacent to its terminal vertex, then

γrc(T ) = n− ext(T ).

Proof Let W, S and D be a resolving set, a connected dominating set and a resolving
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connected dominating set of a tree T , respectively, with minimum cardinality. Since every

superset of a resolving set is a resolving set and every superset of a connected dominating set

is a dominating set it follows that S ∪W is a resolving connected dominating set of T . Thus,

D ⊆ (S ∪W ). it follows that

|D| ≤ |S ∪W | ≤ |S| + |W | (1)

Conversely, Since a resolving connected dominating set is both a resolving set and a con-

nected dominating set it follows that W ⊆ D and S ⊆ D. Hence, (W ∪ S) ⊆ D. Therefore,

|S|+ |W |−|S∩W | ≤ |D|. Now, let L(T ) be the set of all end-vertex of T . Then from Definition

1.3 we get |L(T )| = l(T ) = σ(T ). From Theorem 1.4 and lemma 1.6 and since every major

vertex of T adjacent to it terminal vertex, we conclude that a connected domination set S dose

not containing any resolving set. Then W ⊂ L(T ). Since L(T ) ⊆ V (T ) − S it follows that

S ∩W = φ. Hence,

|S ∪W | ≤ |D|. (2)

From equations (1) and (2) we have |D| = |S| + |W |. Therefore, by Theorem 1.4 and

Corollary 1.5 we get

γrc(T ) = |D| = |S| + |W | = γc(T ) + dim(T )

= n− σ(T ) + σ(T ) − ext(T ) = n− ext(T ). 2
Corollary 2.4 Let T be a tree of order n ≥ 4, that is not a path. If every major vertex of T

adjacent to its terminal vertex, then

γrc(T ) = γc(T ) + dim(T ).

2.2 Bounds on Resolving Connected Domination Number

In this section we investigate with some bounds on resolving connected domination number of

graphs.

Theorem 2.5 For any connected graph of order n ≥ 2, γrc(G) ≤ n− 1. The bound is sharp,

Kn and K1,n attainting this bound.

Corollary 2.6 For any connected graph G of order n and size m, γrc(G) ≤ m.

Theorem 2.7 For any tree T of order n ≥ 4, that is not a star,

γrc(T ) ≤ n− 2.

Proof Let T be a tree of order n ≥ 4, that is not a star, on contrary we suppose that

γrc(T ) ≥ n − 1. if T = Pn then by proposition 1.1 γrc(T ) = n − 2 , contradiction. Now, if

T 6= Pn, then T has at least one vertex (say v) with d(v) ≥ 3. Then v is a major vertex of T

which is an exterior vertex. Consider the following cases.
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Case 1. T has only one a vertex v as a major vertex. Since T not a star, it follows that there

exists a vertex u ∈ V (T ) such that d(v, u) ≥ 2. Without loss the generality, and for simplicity

we consider T is a broom graph (see Figure 2).
v1

v2

v3

vk

u1u2u3um−1um v

Figure 2. A broom graph

The set S = V (T )−{v1, v2, · · · , vk, um} is a γc-set of T and a setW = {v1, v2, · · · , vk−1, u1}
is a resolving set of T . Hence, a set D = S ∪W is a γrc- set of T with minimum cardinality.

Therefore, γrc(T ) = n− 2 ≤ n− 1, contradiction to hypothesis.

Case 2. T has at least two an exterior vertices, then γrc(T ) ≤ n−ext(T ) ≤ n−1, contradiction.

Therefore, the theorem is true. 2
Proposition 2.8 For every connected graph, necessarily,

dim(G) ≤ γr(G) ≤ γrc(G),

γ(G) ≤ γc(G) ≤ γrc(G)

and

γ(G) ≤ γr(G) ≤ γrc(G).

Theorem 2.9 Let G be a connected graph of order and size n, m, respectively. Then γrc(G) =

m if and only if G = K1,n.

Proof If G = K1,n, then γrc(G) = n− 1 = m.

Conversely, suppose that γrc(G) = m. Then by Theorem 2.5, m ≤ n − 1. Since G is a

connected it follows that m = n−1. Hence G must be a tree. If n ≤ 3, it is clear that G is a star

and the theorem is holding. Otherwise if n ≥ 4, by Theorem 2.7 γrc(T ) ≤ n− 2 < n− 1 = m,

contradiction. Therefore, must G be a star. 2
Theorem 2.10 Let G be a connected graph of order n ≥ 2 such that the complement Ḡ of its

is a connected. Then

γrc(G) + γrc(Ḡ) ≤ n2 − n

2
.

The equality is holding if and only if G = k1,2.

Proof Let m and m
′

be the size of G and Ḡ, respectively. By Corollary 2.6, we have

γrc(G) + γrc(Ḡ) ≤ m+m
′

=
n2 − n

2
.
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To prove the second part of theorem, let G = K1,2. Then γrc(G) = 2 and γrc(Ḡ) =

γrc(K2) = 1. Hence, γrc(G) + γrc(Ḡ) = 3 = 9−3
2 .

Conversely, if γrc(G) + γrc(Ḡ) = n2−n
2 , we should have γrc(G) = m and γrc(Ḡ) = m

′

. but this

imply by Theorem 2.8, that G is a star. which requires that n = 3. So that G ∼= k1,2. This

completes the proof. 2
There are only finitely many connected graphs having a fixed resolving connected domina-

tion number. To verify this, we first, motivation by the lower bound of a resolving domination

number in Proposition 1.7, establish a lower bound for a resolving connected domination number

of a graph.

Theorem 2.11 Let G be a connected graph of order n ≥ 2 and diameter d. Then

γrc(G) ≥ f(n, d).

From Theorem 2.11 we have the following result.

Corollary 2.12 Let G be a connected graph of order n ≥ 2, diameter d and resolving connected

domination number k. Then

n ≤ k +

k
∑

i=1





k

i



 (d− 1)k−i.

Theorem 2.13 For every positive integer k, there are only finitely many connected graphs G

with resolving connected domination number k.

Proof Let G be a connected graph of order n ≥ 2 with γrc(G) = k. Since γc(G) ≤ γrc(G) =

k it follows that the diameter of G is at most k + 1. By Corollary 2.12 we get

n ≤ k +
k
∑

i=1





k

i



 kk−i.

Hence n is finite, and the result is follows. 2
It is an immediate observation that the only nontrivial graph having resolving connected

domination number 1 is K2. It is clear form the previous theorem , the order of any connected

graph G with resolving connected domination number 2 is at most 5. By Theorem 2.13, the

order of any connected graph G with resolving connected domination number 3 is at most 40.

In fact, we can improve upon this statement.

Theorem 2.14 The order of every connected graph of order n with resolving connected domi-

nation number 3 is at most 12.

Proof Let G be a connected graph with γrc(G) = 3 and let D = {v1, v2, v3} be a γrc-set

for G. Since every vertex in V (G)−D is adjacent to at least one vertex of D and has distance
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at most 3 from the other, the representations (v|D) of a vertex v in V (G) − D with respect

to D is 3-vector, every coordinate of which is a positive integer not exceeding 3, at least one

coordinate of which is 1. The only possible representations (v|D) for every v ∈ V (G) −D are

(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (1, 2, 3), (2, 1, 1), (2, 1, 2), (2, 2, 1) and (3, 2, 1). Then the order

of G at most 12. 2
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