
International J.Math. Combin. Vol.4(2015), 74-83

Galilean Bobillier Formula for One-Parameter Planar Motions
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Abstract: In this present paper, Galilean Euler-Savary formula for the radius of curva-

ture of the trajectory of a point in the moving Galilean plane (or called Isotropic plane)

during one-parameter planar motion is taken into consideration. Galilean Bobillier formula

is obtained by using the geometrical interpretation of the Galilean Euler-Savary formula.

Moreover, a direct way is chosen to obtain Bobillier formula without using the Euler-Savary

formula in the Galilean plane. As a consequence, the Galilean Euler-Savary will appear as a

specific case of Bobillier formula given in the Galilean plane.
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§1. Introduction

The study of kinematic analysis and synthesis to describe a motion and to design a mechanism

for a desired range of motion, respectively, were examined by many researchers [1]-[9].

In 1959, H. R. Müller defined one-parameter planar motion in the Euclidean plane E2,

studied the moving coordinate system and Euler-Savary formula which gives the relationship

between the curvature of trajectory curves, during one-parameter planar motions, [8]. Then A.

A. Ergin, by considering the Lorentzian plane L2, instead of the Euclidean plane E2, introduced

the one-parameter planar motion in L2 and gave the relations between both the velocities and

accelerations and also defined the moving coordinate system [10]-[11]. Euler-Savary formula is

studied in Lorentzian plane for the one-parameter Lorentzian motions by using two different

ways: In 2002, I. Aytun studied the this formula for the one-parameter Lorentzian motions

with using the Müller’s Method [12]. In 2003, T. Ikawa gave this formula on Minkowski plane

by taking a new aspect without using the Müller’s Method [13]. Ikawa gives relation between

curvature of roulette and curvatures of these base curve and rolling curve, [13]. Euler-Savary

formula is a well documented and an admitted formula in the literature and it takes place in a

lot of studies of engineering and mathematics, [14]-[20].

In 1983, the kinematics in the isotropic plane is studied by O. Röschel. In [21], the fun-

damental properties of the point-paths are investigated, a formula analog to the well-known

1Received April 7, 2015, Accepted December 2, 2015.



Galilean Bobillier Formula for One-Parameter Planar Motions 75

formula of Euler-Savary is developed and special motions: an isotropic elliptic motion and an

isotropic four-bar-motion are studied. Besides, in 1985, the motions
∑

/
∑

0 in the isotropic

plane is studied in [22]. Given C2 -curve k in the moving frame
∑

. Röschel found the enveloped

curve k0 in the fixed frame
∑

0 and considered the correspondence between the isotropic cur-

vatures A and A0 of k and k0. Then third-order properties of the point-paths are investigated.

Moreover, M. Akar and S. Yüce, [23], introduced the one-parameter motions in the Galilean

plane G2 (or called Isotropic) and gave same concepts analog with [8] or [10]. They analyzed

the relationships between the absolute, relative and sliding velocities of one-parameter Galilean

planar motion as well as the related pole lines. Also in [24], one Galilean plane moving relative

to two other Galilean planes, one moving and the other fixed, was taken into consideration and

the relation between the absolute, relative and sliding velocities of this motion and pole points

were obtained. Also, a canonical relative system for one-parameter Galilean planar motion

was defined. Furthermore, Euler-Savary formula was obtained with the aim of this canonical

relative system by using Müller’s method in [24]. On the other hand, Euler-Savary formula

with using the Ikawa’s method is examined in [25].

In 1988, M. Fayet introduced a new formula relative to the curvatures in an one planar

motion Euclidean planar motion and called it Bobillier formula which may obtained by using

Euler-Savary formula and without using Euler-Savary formula [26, 27]. In addition to this, Bo-

billier formula gave a new analytically aspect to graphically viewpoint of Bobillier construction

which was studied by [15]-[20], [26]-[29]. Bobillier formula was established also with concerning

second order properties of one-parameter planar motion in the complex plane in [30] and with

regarding Lorentzian planar motion in [31].

In this respect, we bring a new breath of Bobillier formula in the Galilean plane in this

study. We introduce Bobillier formula with two ways: by using Galilean Euler-Savary equation

with respect to one-parameter Galilean motion and a direct way towards to it.

§2. Preliminaries

The study of mechanics of rectilinear motions reduces to a geometry of two dimensional space.

The geometry is invariant under transformation stated by I. M. Yaglom

x′ = x+ a

y′ = y + vx+ b

which is called Galilean transformation for rectilinear motions [32]. This geometry is called two

dimensional Galilean geometry is represented by G2. Yaglom also expressed three dimensional

Galilean geometry which is obtained by plane-parallel motions, is denoted by G3.

Galilean geometry is a geometry of the Galilean Relativity or shortly a non-Euclidean

geometry. It is a ”bridge” from Euclidean geometry to Special Relativity. Two and three di-

mensional Galilean geometry were worked in detail in the literature and the further information

about the Galilean geometry can be found in [32]-[34]. Also, many studies are conducted in the

Galilean plane (or Isotropic plane) and Galilean space, [33]-[34].
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The basic notation about Galilean plane geometry can be given as below:

The distance between points A (x1, x2) and B (y1, y2) in G2 is defined by as follows:

d (A,B) =







|x1−y1| , x1 6= y1

|x2−y2| , x1 = y1.

In this paper, we will denote the inner product of two vectors in the sense of Galilean by

notation 〈, 〉
G
. Moreover, we will define the Galilean cross product as below:

(a×G b) =


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if a1=b1=0

where a = (a1, a2, a3), b = (b1, b2, b3). On the other hand, Galilean circle is defined by

SG(m, r) = {x−m ∈ G2 : 〈x−m,x−m〉
G

= r2}.

So the unit Galilean circle is x = ±1. Hence, we have

cosg α = 1, sing α = α

for all α. Also, by using another circle definition in Euclidean geometry, we get a set

ax2 + 2b1x+ 2b2y + c = 0

which are (Euclidean) parabolas. This set is called a Galilean cycle and denoted by Z.

§3. One-Parameter Planar Motion in the Galilean Plane G

Let G′ and G be fixed and moving Galilean planes with the perpendicular coordinate systems

{O′;g′
1,g

′
2} and {O;g1,g2}, respectively. If we take M1,M2 and M3 are points linked to

moving Galilean plane G then there are the conjugate points M ′
1,M

′
2 and M ′

3 of these points

which are the curvature centers of the trajectory drawn M1,M2 and M3 in the fixed Galilean

plane G′.

The normals of this trajectory pass from an instantaneous center of rotation that is denoted

by P and called as pole point.

Since there exist pole points in every moment t, during the one-parameter planar motion
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G/G′, any pole point P is situated varied position on the planes G and G′. The position of

pole point P on the moving plane G is usually a curve called moving pole curve and denoted

by (P ). Also the position of this pole point P on the fixed plane G′ is usually a curve called

fixed pole curve denoted by (P ′) [23].

The axis x is the common tangent and the axis y is the common normal to pole curves

(P ) and (P ′) at P , see Figure 1.

If θ is the rotation angle of motion of the Galilean plane G with respect to G′ at each t mo-

ment, then each point M makes a rotation motion with θ̇ angular velocity at the instantaneous

center P .

Let X1, X2 and X3 be unit vectors, then these unit vectors can be given as

X1 =
PM1

‖PM1‖G

,X2 =
PM2

‖PM2‖G

,X3 =
PM3

‖PM3‖G

. (3.1)

If the abscissae of the points M1 and M ′
1 on the axis (P,X1) are ρ1 and ρ′1 respectively,

then it can be written that

〈PM1,X1〉G = ρ1, and 〈PM′
1,X1〉G = ρ′1. (3.2)

Similarly,

〈PM2,X2〉G
= ρ2, and 〈PM′

2,X2〉G = ρ′2,

〈PM3,X3〉G
= ρ3, and 〈PM′

3,X3〉G = ρ′3.

§4. Inflection Points, Inflection Cycle and Euler-Savary Formula in

Galilean Plane G

Let M be an arbitrary point on moving Galilean plane G and M ′ be its conjugate point on fixed

plane G′. Let the coordinates of points M and M ′ be (m1,m2) and (m′
1,m

′
2) in the canonical

relative system, respectively. The vectors PM and PM′ have same direction which passes the

pole point P . So we can write

m′
1 = λm1, m′

2 = λm2,

where λ is an unknown ratio. From the definition of Euler-Savary equation in Galilean plane

[24], we get the relation between the points M and M ′ such as

m′
1 =

m1m2

m2 −m2
1

dθ
ds

, m′
2 =

m2m2

m2 −m2
1

dθ
ds

.

From the fact that, an inflection point may be defined to be a point whose trajectory

momentarily has an infinite radius of curvature [14, 15], we get the inflection cycle such that

m2 = m2
1

dθ

ds
.

Let the inflection points linked to the points M1,M2 and M3, by referring to Figure 1 be
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M∗
1 ,M

∗
2 and M∗

3 , respectively. The locus of such points is a cycle in the moving Galilean plane

G called as an inflection cycle. The abscissae of the inflection points can be written as below:

〈PM∗
1,X1〉G

= ρ∗1, 〈PM∗
2,X2〉G = ρ∗2, 〈PM∗

3,X3〉G = ρ∗3. (4.1)

Let the diameter of the inflection cycle be h. Then there is a relationship between h and

ρ∗1 as follows:

h sing θ1 = ρ∗1, (4.2)

where θ1 is angle of the motion G/G′.

During one-parameter planar motion G/G′, the point M1 in the moving Galilean plane

G draws a trajectory with instantaneous curvature center M ′
1 in the fixed Galilean plane G′.

In reverse motion, the point M ′
1 in G′ draws a trajectory in G, being the curvature center at

the point M1, (see Figure 1). This interconnection between the points M1 and M ′
1 is given by

Euler-Savary formula
(

1

ρ′1
− 1

ρ1

)

sing θ1 =
1

R′
1

− 1

R1
, (4.3)

where R′
1 and R1 are the abscissae on (O, ~y) of the curvature centers of pole curves (P ′) and

(P ), respectively [24]. From the equations (4.2) and (4.3) it is seen that

(

1

ρ′1
− 1

ρ1

)

sing θ1 =
1

R′
1

− 1

R1
=

ds

dθ1
=

1

h

in which 1
h

= 1
R1

− 1
R′

1

(first form) or 1
h

= ± ω
V

(second form) where ω is the angular velocity of

the motion of the plane G with respect to G′ and V is the common velocity of P on (P ′) and

(P ).

PMi, PM∗

i
, 1 ≤ i ≤ 3, vectors Qi, 1 ≤ i ≤ 3, points

Figure 2

§5. Galilean Bobillier Formula Obtained by Galilean Euler-Savary Formula

Let consider the points Qj are defined by PQj = 1
ρ∗

j

Xj where 1
ρ∗

j

= 1
ρj

− 1
ρ′

j

for 1 6 j 6 3.

Then the points Q1, Q2, and Q3 are the images of points M∗
1 , M

∗
2 , and M∗

3 of the inflection
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cycle which belong to (P,X1), (P,X2) and (P,X3), respectively (see Figure 2). Therefore the

following equations can be written as follows:

〈PQ1,X1〉G
= 1

ρ∗

1

, 〈PQ2,X2〉G = 1
ρ∗

2

, 〈PQ3,X3〉G = 1
ρ∗

3

, 〈PQ,x〉
G

= 1
h
. (5.1)

From the definition of Euler-Savary formula in Galilean plane [24] and the equation (5.1)

PQ1 sing θ1 =
1

ρ∗1
X1 sing θ1 =

1

h
X1,

PQ2 sing θ2 =
1

ρ∗2
X2 sing θ2 =

1

h
X2,

and

PQ3 sing θ3 =
1

ρ∗3
X3 sing θ3 =

1

h
X3,

are obtained. By taking into account the last three equations, we have

〈PQ1,X1〉G sing θ1 = 〈PQ2,X2〉G
sing θ2 = 〈PQ3,X3〉G sing θ3 =

1

h
.

Thus, the set of the points Q is a straight line which is denoted by D parallel to real axis x.

Thus the line x is an image of the inflection cycle by this inversion, see Figure 1. From the fact

that the vectors PQ1 − PQ2 and PQ2 − PQ3 are linearly dependent, the following equation

can be written:

(PQ1 × PQ2) − (PQ2 × PQ2) − (PQ1 × PQ3) + (PQ2 × PQ3) = 0.

Since PQ1 = 1
ρ∗

1

X1, PQ2 = 1
ρ∗

2

X2, PQ3 = 1
ρ∗

3

X3 and ρ∗1ρ
∗
2ρ

∗
3 never vanishes, we get

ρ∗1 (X2 × X3) + ρ∗2 (X3 × X1) + ρ∗3 (X1 × X2) = 0

and for the sake of brevity, if we take

θ3 − θ2 = θ23, θ1 − θ3 = θ31, θ2 − θ1 = θ12, (5.2)

then we find

ρ∗1 sing θ23 + ρ∗2 sing θ31 + ρ∗3 sing θ12 = 0 , (5.3)

where 1
ρ∗

j
= 1

ρj
− 1

ρ′

j
for 1 6 j 6 3.

This is Bobillier formula for one-parameter planar motion in Galilean plane G analog with

Bobillier formula given in Euclidean plane [27], complex plane [30] and Lorentzian plane [31].

With using the Galilean trigonometric properties we can write

ρ∗1θ23 + ρ∗2θ31 + ρ∗3θ12 = 0 . (5.4)

The equation (5.4) is called the Galilean Bobillier formula during the one-parameter planar

motions G/G′.
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§6. Galilean Bobillier Formula Deduced from a Direct Way in the

Galilean Plane G

In this section, we will introduce Galilean Bobillier formula from a direct way. Let us examine

the trajectory velocity and trajectory acceleration of the points in moving Galilean plane G.

Suppose that V′ (M1) and J′ (M1) are absolute velocity and absolute acceleration vector of

the point M1, respectively. Let denote the angular velocity of planar motion G/G′ by ω, then

ω = ∆θ
∆t

where θ is the rotation angle. By taking an orthogonal vector to the Galilean planes

G and G′ as z, the angular velocity vector can be defined by ω = ωz. Moreover, the sliding

velocity vector of the point M1 is

V (M1) = ω × PM1 = ω ‖PM1‖G
sing θ. (6.1)

The relation between velocities during one-parameter planar motion in Galilean plane is

V′ (M1) = V′ (P ) + V (M1) ,

where V′ (M1) ,V
′ (P ) and V (M1) denote the absolute, sliding and relative velocity vectors of

G/G′, respectively [23]. With using the equation (6.1), we have

V′ (M1) = V′ (P ) + (ω × PM1) . (6.2)

By differentiating the equation (6.2) with respect to time t , we obtain

J′ (M1) = J′ (P ) +
( .
ωz × PM1

)

+ ω2PM1, (6.3)

where J′ (P ) is acceleration vector of the point on G′ that coincides instantaneously with P .

Here the first term is the trajectorywise invariant acceleration component, the second term is

tangential acceleration component and the third term is centripental acceleration component.

With considering this explanation for the inflection points whose acceleration normal is zero,

then the absolute velocity vector and acceleration vectors of the point M∗
1 on the inflection

cycle becomes linearly dependent, so

V′ (M∗
1 ) × J′ (M∗

1 ) = 0

can be written. If we substitute the method of the (6.2) and (6.3) into the last equation, the

equation rewritten as follows:

(V′ (P ) + (ωz × PM∗
1)) ×

(

J′ (P ) +
( .
ωz× PM∗

1

)

+ ω2PM∗
1

)

= 0.

From V′ (P ) = 0 and the equation (4.1) ‖PM∗
1‖G

= ρ∗1, we obtain

〈PM1
∗,J′ (P )〉

G
z − ω2 ‖PM∗

1‖2
G
z = 0.

With simplifying calculations and using PMj
∗ = ‖PMj

∗‖
G
Xj for 1 ≤ j ≤ 3, we obtain
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the equations as follows,

ρ∗1 =
〈X1,J′(P )〉

G

ω2
(6.4)

ρ∗2 =
〈X2,J′(P )〉

G

ω2 , (6.5)

ρ∗3 =
〈X3,J′(P )〉

G

ω2 , (6.6)

for the points M∗
1 ,M

∗
2 and M∗

3 , respectively. It is easily seen from the equations (6.4), (6.5)

and (6.6) that ρ∗1, ρ
∗
2, and ρ∗3 are the orthogonal projections of the same vector J′(P )

ω2 onto the

vectors X1, X2 and X3, respectively. The relationship between these unit vectors is indicated

with the equation

λ1X1 + λ2X2 + λ3X3 = 0,

where λ1, λ2 and λ3 are quantities. By successive Galilean cross products with X1 and X2 the

quantities λ1, λ2 and λ3 are obtained and using the specification (5.2), then the previous linear

combination becomes

sing θ12X3 + sing θ23X1 + sing θ31X2 = 0.

The product of the previous equation with the vector J′(I)
ω2 is given as below:

sing θ12
〈X3,J

′(P )〉
G

ω2
+ sing θ23

〈X1,J
′(P )〉

G

ω2
+ sing θ31

〈X2,J
′(P )〉

G

ω2
= 0.

Finally, if we substitute the equations (6.4), (6.5) and (6.6) into the last equation, we obtain

the equation (5.4) which was called Bobillier formula. It can be noticed that, the direct way

gives us the Bobillier formula without using the Euler-Savary formula. Therefore the following

theorem can be given.

Theorem 6.1 During the one-parameter planar motion G/G′, the relation between the distances

of inflection points of points in the moving plane G and the pole point is given by the equation

(5.4) which is called Bobillier formula.

Let us analyze a particular case of Theorem 6.1. If a point K linked to moving plane G is

coincident with instantaneous pole center P , then V′ (K) = 0 and similarly J′ (K) = 0. From

this place, the vector X2 is equal to x which is the normal to the path of K at P . Hence, in

the equation (6.5) ρ∗2 is equal to zero. Thus we can express the following corollary.

Corollary 6.2 Let a point K linked to moving plane G be coincident with instantaneous pole

center P . In that case Bobillier formula in the Galilean plane becomes

ρ∗1 + ρ∗3θ12 = 0.

In conclusion, the corollary simply a particular case of Bobillier formula in the Galilean

plane G.
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