Ath Edition

L e
———

La boratoryw“
. M_ajkl*‘&'f -

Simplified
Numerical Analysis
(MATLAB® version)

Amjad Al

Proofreading powered by Muhammad Ishaq
various AI-driven proprietary software Hamayun Farooq

Muhammad Umar

Laboratory Manual of Simplified Numerical Analysis (MATLAB® Version)
Accessible through: https://zenodo.org/record/8266086

Cite as:

Ali, Amjad, Ishaq, Muhammad, Farooq, Hamayun, & Umar, Muhammad. (2023).
Laboratory Manual of Simplified Numerical Analysis (MATLAB® Version). Zenodo.
https://doi.org/10.5281/zeno0d0.8266086

For availability of the codes, please visit:

GitHub - DrAmjadAlil11/SimplifiedNumericalAnalysis
https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis

Principal Book

Simplified Numerical Analysis
Fourth Edition

www.TimeRenders.com.pk

Companion Books

Laboratory Manual of Simplified Numerical Analysis (C++ Version)
Laboratory Manual of Simplified Numerical Analysis (MATLAB® Version)

Laboratory Manual of Simplified Numerical Analysis (Python Version)

https://zenodo.org/record/8266086
https://doi.org/10.5281/zenodo.8266086
https://github.com/DrAmjadAli11/SimplifiedNumericalAnalysis
http://www.timerenders.com.pk/

Laboratory Manual
of
Simplified Numerical Analysis
(MATLAB® Version)

Fouwrtrh Edition

Amjad Ali, Ph.D.

Bahauddin Zakariya University (BZU), Multan

Muhammad Ishaq, Ph.D.

COMSATS University Islamabad, Vehari Campus

Hamayun Farooq, Ph.D.

Government Degree College, Muzaffar Garh

Muhammad Umar, Ph.D.

University of Heidelberg, Heidelberg

Esteemed Panel of the Supporters:

Ms. Aniga Faizan, Bahauddin Zakariya University, Multan

Ms. Amna Waheed, Bahauddin Zakariya University, Multan

Dr. Zainab Bukhari, Times Institute, Multan

Ms. Syeda Zahra Kazmi, Bahauddin Zakariya University, Multan
Ms. Zoha Saleem, Bahauddin Zakariya University, Multan

Laboratory Manual of Simplified Numerical Analysis (MATLAB® Version)

A Companion book of the principal book:

Simplified Numerical Analysis (Fourth Edition)
©2023, Amjad Ali, Ph.D. (The Principal Author)
ISBN: 978-969-7821-14-3

Typeset: Mostly personally by Dr. Amjad Ali (The Principal Author), also contributed by the supporters.

Title Design: Mr. Muhammad Rizwan Qadeer (mrizwangadeer@gmail.com)

The proofreading is powered by various Al-driven proprietary software.

f;cm Publishers www.timerender.com.pk

Distribution Point:
238-B (PRIDE), Near Girls Comprehensive School, Gulgasht Colony, Multan, Pakistan.
Cell Phone: +923486981925, timerenderpublishers@gmail.com

Table of Contents

Chapter 1: Preliminary Concepts in Numerical Analysis (1)

1.1 Introduction

1.2 Number Systems and Representations

1.3 The Round-off Error

1.4 The Truncation Error

(000 T o TU LA a T 3= o 10 | oL TN 1
CNAPLEI SUMIMAIY oiiiiieeeciiee et e ettt e e ettt e e e ette e e s baeeeesateeeeessaeeessbeaa e staeeeasssaeessssaaeastaeesanssaeessseaeanssseasanes 6
(00T o1 1Tl el of 1Y YOS SPURRN 8

Chapter 2: Solution of a Nonlinear Equation in One Variable (9)

Corridor I: BASICS

2.1 Introduction
2.2 Bracketing Methods
2.2.1 The Bisection Method (or Bolzano Method)
2.2.2 The False-Position Method (or Regula-Falsi Method)
2.3 Open Methods
2.3.1 The Fixed-Point Iteration Method
2.3.2 The Newton-Raphson Method
2.3.3 The Secant Method
Corridor II: ANALYSIS
2.4 Convergence Analysis
The Bisection Method
The Regula-Falsi Method
The Secant Method
The Newton-Raphson Method
The Fixed-Point Iteration Method
2.5 Further Discussions
Corridor IlI: PROGRAMMING ARCADE
2.6 Algorithms and IMplemMENtatioNsccciiiciiiriiiee e e e e e e eaee e e s reee s 11
The Newton-Raphson Method..........cccuiiiieiiiiicieee e 11
The Fixed-Point [teration Method...........ooviiiiiiiieeee e 16
The SECaNt METNOMoiiiiiii e e e et e e e e e s eataa e e e e e e e ean 18
The Bisection MEthodcooiiiiiiiiee et e e e e 19
The Regula-Falsi MEethoduuiiiiiiieceeee et e rbra e e e e e 22
BUilt-in MATLAB® COMMANGS c..ovviueiiiiiieiceiceeeeeeeeetee sttt et ses st saesee e 26
(@ 0T o1 0T g U 4o T o T- VSR 28
(O o1 Tl ool =T o of Y SR 32

Chapter 3: Polynomial Interpolation (37)

Corridor I BASICS

3.1 Introduction
3.2 The Newton’s Divided Difference Interpolation
3.3 The Lagrange Interpolation
3.4 Deriving the Lagrange Interpolation Formula from the Newton’s Divided-Difference Formula
3.5 Interpolation Formulas for Equally Spaced Nodes
3.6 Hermite Interpolation
3.7 Spline Interpolation

3.7.1 Linear Spline

3.7.2 Quadratic Spline

3.7.3 Cubic Spline

Corridor II: ANALYSIS
3.8 Error of Interpolation

Corridor IlI: PROGRAMMING ARCADE

3.9 Algorithms and IMplementationsccceoiieiiiieiieene ettt e e st e e 39
The Newton's Divided Difference Interpolation Formulaccccovveriiiiniennieeniicennnen. 39
Built-in MATLAB® COMMANGSccvevieiierieiirereeieereeeetetee s tese st sse et ss s s s s sese e 42
Capter SUMIMATY oueeiiiieiie ettt ettt ettt e se e st e e s a bt e s it e e s ateesae e e sabeesabeesabeeeateesabeesaseesabeesaseesareennneesas 44
(0o o1 (Tl el =T ol Y Y-SR 47

Chapter 4: Numerical Integration (51)

Corridor I BASICS
4.1 Introduction
4.2 The Trapezoidal Rule
4.3 The Simpson’s 1/3 Rule
4.4 Generalized Closed Newton-Cotes Quadrature

Corridor II: ANALYSIS
4.5 Truncation Error of the Trapezoidal Rule
4.6 Truncation Error of the Simpson’s 1/3 Rule
4.7 Further Discussions
4.8 The Gaussian Quadrature

Corridor IlI: PROGRAMMING ARCADE

4.9 Algorithms and IMplementationsc..uuiiiiii i e e e e rara e e e e e 55
The Composite Trapezoidal RUIE...........oeieuiiiicciiee e 55
The Composite SIMPSON’S 1/3 RUIE.......cccviicieecieere ettt 58
The Composite SIMPSON’S 3/8 RUIE........ccueeeiieiieeere ettt 60
BUilt-in MATLAB® COMMANGSoovevieiierieietereeeeeteeetetee s vees et sseseasesetensssesessesesene s 62
(010 Y o =T g VT 0 Y0 0 F= 1 VUSSP UPUROt 63
(010 P o) €= gl el ol [T U UPRROt 66

Chapter 5: Numerical Differentiation (71)

5.1
5.2

5.3

Introduction

Finite Difference Approximations of Derivatives using the Taylor Series

5.2.1 First Order Derivatives
5.2.2 Second Order Derivatives
Listing of the Derivative Formulas

Chapter 6: Direct Linear Solvers (73)

6.1
6.2
6.3

6.4
6.5

6.6
6.7

6.8

Chapter Summary
Chapter Excercises

Corridor I: BASICS

Introduction to Linear Systems
Solving Linear Systems using the Gaussian Elimination Method
Pivoting Strategies

Partial Pivoting

Scaled Partial Pivoting

Complete Pivoting
The Gauss-Jordan Method
Solving Linear Systems using the LU Factorization Method
6.5.1 The Doolittle’s Method
6.5.2 The Crout’s Method
6.5.3 The Cholesky’s Method

Corridor II: ANALYSIS
Operation Count Analysi
Matrix Inversion

Corridor III: PROGRAMMING ARCADE

Algorithms and Implementationsccoueerieniieniee e
The Guassian Elimination Method with Partial Pivoting.........ccccceeeeennne
Solving AX = B using the Doolittle's Methodcccccceviiirieeniiinnennns
Solving AX = B using the Crout's Methodcccccceeviiniiiiniiiniiinneene
Solving AX = B using the Cholesky's Methodcccoceeiiiiieeiiciieecnns
Performing Operation Count ANalysiscccceeeecieeeeiieeeeciiee e,
Built-in MATLAB® COMMEANGS ..c.coveviririeiiiieieirieieeesseteessesessssesesessesens

Chapter 7: Iterative Linear Solvers (107)

7.1
7.2
7.3

Corridor I: BASICS
Vector Norms and Distances
Convergence Criteria for Linear Solvers
Basic Methods
7.3.1 The Jacobi Method

7.3.2 The Gauss-Seidel Method
7.3.3 The SOR Method

Corridor II: ANALYSIS
7.4 Matrix Norms and Conditioning
7.5 Iteration Matrix and Matrix Form of a Solver

Corridor IlI: PROGRAMMING ARCADE

7.6 Algorithms and IMplementationscooiieiiiiiiieii e s 108
LI TS E Tole] o1V =1 o To o IR SPTUP 109
Modification in the Jacobi Method's algorithm for the Gauss-Seidel Method 110
Modification in the Jacobi Method's algorithm for the SOR Method 110
CaPter SUMIMATY oueiiiiiiiiie ettt ettt ettt e sbt e e bt e s bt e e bt e e s bt e e bt e e sbee s bt e e ssbe e bt e esaneeneeesnnesneees 114
CRAPTEI EXCEITISES «.uveiiiieeiieeiieeeite ettt ettt ettt et ettt e sht e bt e s bt e s bt e s bt e e bt e e bt e s be e e sate e bt e esnnesseeesnneeneeas 118

Chapter 8: Eigenvalues and Eigenvectors (119)

Corridor I: BASICS

8.1 Basic Definitions and Concepts
8.2 General Approach of Finding Eigenvalues and Eigenvectors
8.3 Some Numerical Methods for Eigenvalues

The Power Method

The Householder Method

The QR Factorization Method

The Sturm Method

Corridor II: ANALYSIS
8.4 Further Discussions
The Power Theorem
The Gerschgorin Circle Theorems
The Singular Value Decomposition (SVD)

Corridor III: PROGRAMMING ARCADE

8.5 Algorithms and IMplementationsceiiiiiiiiiiiiiie e e e e e e serare e e e e e e eanees 120
BUilt-in MATLAB® COMMANAS ...ouvevivieeeecrireeectereeeeteereneete e eseeeseereseneeseseseereeens 120
The POWEr IMETNOM ..ottt e e st e e et e e esanae e e snreeean 121
(@0 o 10T A U4 o1 o Y- YRS 124
(00 Y o) €= g el ol [T PSPPSR 125

Chapter 9: Numerical Solution of Ordinary Differential Equations (ODEs)
(127)

Corridor I: BASICS
9.1 Introduction

Vi

9.2 Solving IVPs using Single Step Methods and Multistep Methods
The Euler Method
The Mid-point Method (an RK2 method of Order 2)
The Modified/Improved Euler Method (an RK2 method of Order 2)
The RK Method of order 4 (RK4)
9.3 Solving IVPs using Predictor-Corrector Methods
The Adams-Bashforth-Moulton Method of Order 4
9.4 Solving Systems of ODEs and Higher Order ODEs
Using the Classical RK4 Method
9.5 Solving Linear BVPs using the Finite Difference Method

Corridor II: ANALYSIS
9.6 Some Theoretical Concepts and Error Analysis

Corridor IlI: PROGRAMMING ARCADE

9.7 Algorithms and IMplementationsc..ceoiiiiiiiiiieee et s 130
LT 0 V=] o o T Yo HR PP PP 130
Mid-PoiNt MELNOMccoiiiiiecee e et e e et e e e e are e e eanes 134
Modified/Improved Euler Methodcccueiiiieiiiiiiieeciec e 137
RK method of 0rder 4 (RK4)cocuiie ettt et etee e et e et e e e 140
Adams-Bashforth method of order 4 ... 142
Adams-Bashforth-Moulton method of order 4cccooeeviiiieiiiiiieceee e 146
RK4 method for a system of tW0O ODEScooueiiiiiiiieiieeieeeeeceeeee e e 149
RK4 method for a system of three ODEScoocuieiieeiiiienieeeiee e 152
RK4 method for Second Order ODEccoocuiieeeiiiee ettt eree e st e e arae e e 155
RK4 method for Third Order ODEc..eeeeciieeeeiiee ettt e eree e e sar e e e earae e eeanes 156
LINEAI FDM fOF BVP ..ottt ettt e e et e e e e tte e e eaaba e e e s abaeeeenstaeeennees 157
BUilt-in MATLAB® COMMANGS ...cvveviriieiceiceieeceeeeeete sttt ettt sts et ene e seeae e 164
(00T o1 0T o U 4 o1 a o -1 V2SS 165
(0o o1 1Tl ol =T o of YRS 165
23] o [ToT={ =1] o |V SRR 169
I 1 =X o T PR SRP 170

Vii

MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc.

See mathworks.com/trademarks for a list of additional trademarks.

For MATLAB® and Simulink® product information, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA, 01760-2098 USA

Tel: 508-647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com

Web: https://www.mathworks.com

How to buy: https://www.mathworks.com/store

Find your local office: https://www.mathworks.com/company/worldwide

viii

Chapter 1

Preliminary Concepts
in Numerical Analysis

1.1 Introduction

1.2 Number Systems and Representations
1.3 The Round-off Error

1.4 The Truncation Error

To unleash the topics of this Chapter, please delve into the principal book:
Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

Computing Resources

The numerical methods are devised just to be used on computers. It makes no sense to study a
numerical method without considering its practicality using some computing tools. A variety of
numerical computing tools, both freeware and proprietary, are available. The students are advised to
understand the algorithmic (step-by-step) style of the numerical methods they learn. This book
suggests the following resources for beginners.

(1) C++: The numerical methods can be programmed in any programming language, especially
C++, FORTRAN, and Python. The book discusses a wide variety of C++ programs of the
numerical methods in this book. One can modify the as per need. Several C++ IDEs
(Integrated Development Environments) are available, such as Dev-C++, and Code::Blocks for
Windows and GNU-C++ for Linux operating system. One can even find C++ Apps (apps is an
acronym for computer application software) for Android or iOS devices. Some online C++
IDEs are also available, which can be used for executing C++ programs without installing
them.

http://www.timerenders.com.pk/

Preliminary Concepts in Numerical Analysis 2

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Python: There are several free Python IDEs available for the Desktop use (such as Spyder,
Jupyter, and PyCharm) or On-line use (such as Google Colab). It is quite a pertinent skill of the
day that the students of computational sciences are familiar with programming in Python.
The companion website of this book (www.timerender.com.pk) shares a Python Library
having a variety of codes for the numerical methods discussed in this book.

MATLABE®: It is a proprietary software, by The MathWorks, Inc., available in both Desktop and
Online versions. MATLAB® offers a wide variety of built-in functions and programming
capabilities for mathematical computations (both symbolic and numeric, although more
suitable and expert for numeric computations), for all modern areas of science and
engineering. The book discusses a wide variety of MATLAB® programs and MATLAB® built-in
functions for the numerical methods in this book.

GNU-Octave: It is an open-source (and freeware) version of MATLAB®, available in both
Desktop and Online versions. Most of the MATLAB® codes and built-in functions discussed in
this book can be executed in GNU-Octave and Octave-online.

MATHEMATICA®: It is a proprietary software by Wolfram Research. It is one of the best
Computer Algebra Systems (CAS) available. It offers an extensive variety of built-in functions
and programming capabilities for mathematical computations (both symbolic and numeric),
for all modern areas of science and engineering.

MAPLE”: It is a proprietary software by Maplesoft for mathematical computations (both
symbolic and numeric), for all modern areas of science and engineering. It is also one of the
best Computer Algebra Systems (CAS).

Spread-Sheet: A spread-sheet software (such as Excel by Microsoft’) can be used for
computations involved in simple numerical methods. The companion website of this book
(www.timerender.com.pk) may shares a spread-sheet workbook having a variety of sheets
for most of the numerical methods discussed in this book.

Various Math Solver Tools: Wolfram|Alpha, Symbolab, and Microsoft” Math Solver are
three of the advanced tools for math education to be used as calculators. These are
extensive, feature-rich, online tools, accessible both through the web browser and the
relevant android/iOS apps. These tools provide automated step by step solutions to algebra
and calculus problems covering from middle school through college. The premier versions of
these tools are freely available, whereas professional (pro) versions are not free.

Various Other Online Tools/Websites: There are various other online tools and websites that
offer basic computing facilities for numerical and symbolic computations. Examples include:

e AtoZmath.com [https://atozmath.com/]
e CalculatorSoup” [https://www.calculatorsoup.com/].

e Keisan - CASIO® [https://keisan.casio.com/]
EEE

3 Simplified Numerical Analysis

Question 06: What are the significant figures (or significant digits) of an approximate number?

Significant figures of a number (that approximates a true value) are the digits that are used to
express the number meaningfully. The significant figures are counted for a number that
approximates some other number to express the degree of precision in the approximate number.

The significant figures begin with the leftmost nonzero digit and end with the rightmost correct
digit. The rightmost zeros, which are exact, are also significant. That is,

e All the nonzero digits (i.e., 1,2, 3,++,9) are significant.

e Zeroes appearing anywhere between two nonzero digits are significant (e.g., in
3005.00102 there are nine significant digits).

e Leading zeros (i.e. left to the first nonzero digit) are not significant (e.g., the number
0.000081 has only two significant digits, namely 8 and 1). The leading zeros are used to
fix the decimal place.

e Trailing zeroes are significant if they are exact with regard to some true value. Trailing
zeros may or may not be significant. It depends on the context; how the number is
approximated or obtained by rounding-off some other number.

]
Remark: The significant figures of a number can easily be identified by using its normalized
scientific notation. The digits in the fractional part (or mantissa) are regarded as significant
figures. For example, each of the numbers 42.134, 6.0013, and 0.0015784 has five significant
figures, which can be identified easily by converting these numbers into their normalized
scientific notation as:

42134 = 0.42134 x 10?
6.0013 = 0.60013 x 10
0.0015784 = 0.15784 x 1072

Remarks:

e 6500 has 2 significant figures (i.e., the digits 6 and 5) if it has been obtained by rounding-off a
number to the nearest 100 (e.g., by rounding-off the numbers 6497 or 6543.88 to the nearest
hundred). In fact, any number in the interval (6450, 6550) gives 6500, when rounded to the
nearest 100.

e 6500 has 3 significant figures (i.e., the digits 6, 5, and the following 0) if it has been obtained
by rounding-off a number to the nearest 10 (e.g, by rounding-off the numbers 6497 or
6504.99 to the nearest ten). In fact, any number in the interval [6495,6505] gives 6500,
when rounded to the nearest 10.

Preliminary Concepts in Numerical Analysis 4

e 6500 has 4 significant figures if it has been obtained by rounding-off a number to the nearest
whole number (e.g., by rounding-off the numbers 6499.8 or 6500.47 to the nearest whole
number). In fact, any number in the interval [6499.5,6500.5] gives 6500, when rounded to
the nearest whole number.

e 70500 has at least 3 significant figures (i.e., the digits 7, 5, and the 0 in between these).
Depending upon the context, as just explained, it may have 3 to 5 significant figures.

e 0.00364300 has 4 significant figures (i.e., the digits 3, 6, 4, and 3) if it has been obtained by
rounding-off a number to 4 significant figures (e.g, by rounding-off the numbers
0.003642859 or 0.0036432099 to 4 significant figures). Usually, in that case, the
approximate number is written as 0.003643, without any non-significant trailing zero. In fact,
any number in the interval [0.0036426,0.0036435) gives 0.003643, when rounded to 4
significant figures.

e 0.00364300 has 5 significant figures (i.e., the digits 3, 6, 4, 3, and the following 0) if it has
been obtained by rounding-off a number to 5 significant figures (e.g., by rounding-off the
numbers 0.003642978001 or 0.003643049 to 5 significant figures). Usually, in that case, the
approximate number is written as 0.0036430, without any non-significant trailing zero. In
fact, any number in the interval [0.00364295,0.00364306) gives 0.0036430, when rounded
to 5s.f.

e 0.00364300 has 6 significant figures (i.e., the digits 3, 6, 4, 3, and the following two 0s) if it
has been obtained by rounding-off a number to 6 significant figures (e.g., by rounding-off the
numbers 0.003642998001 or 0.003643001 to 6 significant figures). In fact, any number in
the interval [0.003642995,0.003643006) gives 0.00364300, when rounded to 6 significant
figures.

]

Remark:

An approximation x* to a number x is called accurate to t significant figures if there are exactly t
digits in the mantissa of x* that agree with the first t digits of the mantissa of x, where x has the
same exponent as x*. Suppose that the number x is represented in the following form

x = +0.dydyds - dpdpyq X 10°

Then, the number x* is accurate to t significant figures to the number x if it can be written in the
following form

x* = 40.dydyds - dydlyq - X 10

Simplified Numerical Analysis

32 bits

S

(&

f

1

€ pig !

8 bits

23 bits ——)

Fig. (1.3): According to the IEEE 754 standard, single-precision floating point representation of a
binary real number x = +1.b,bsb, ++- x 2% is (1 — 2s) x 2°7127 x (1 +f).

64 bits

S

c

j

I
“pit”!

11 bits

52 bits —— |

Fig. (1.4): According to the IEEE 754 standard, double-precision floating point representation of a
binary real number x = +1.b,bzb, -+ x 28 is (1 — 2s) X 2671923 x (1 +).

Here, s is used for the sign of the number (0 means positive, 1 means negative). c in the exponent
is called the biased exponent. f is the mantissa minus 1 (the hidden bit).

overflow
|

(C

(4

underflow
Ll

(¢

overflow
| 2l

)
128

)

I
-1

P

1 1
126 9126

I(d
)

[
1

P

—
2128

Fig. (1.5): Overflow/Underflow for single-precision floating-point representation

overflow
|

(&

(C

underflow
[

(4

overflow
| <l

S
-21024

)

I
-1

P

1 1
.9-1022

9-1022

(e
P

[
1

)

—
21024

Fig. (1.6): Overflow/Underflow for double-precision floating-point representation

Preliminary Concepts in Numerical Analysis 6

Chapter Summary

The numerical methods obtain some approximate solution of the problems, usually in the numeric
form, in contrast to the analytic or exact methods, which obtain the exact solution of the problem.

Numerical Analysis is the field of deriving, analyzing, and implementing the numerical methods.

The most common approach followed by the numerical methods is the iterative approach. According to
this, choose an initial approximation or guess to the solution and apply a set of simple computational
steps to obtain a better approximation. Repeatedly apply the same set of steps to the better
approximations, ultimately obtaining a sufficiently accurate solution and then stop the repetition. Each
course of repetition of the set of computational steps is called iteration. Geometrically, a root of an
equation f(x) = 0 is the point where the graph of f(x) intersects the x-axis.

For selecting a numerical method from several choices, the characteristics of accuracy,
efficiency, and robustness are taken into consideration.

The numerical analysis may be regarded as the “mathematics of scientific computing”.

Errors can be quantified as:

o Absolute Error = [True value — Approximate value|
. absolute error True value—Approximate value
o Relative Error = = | PP |
|True value| |True value|

. absolute error
o Percentage Relative Error = ————x100%
|True value|

The errors can be categorized in three major categories in regard to their sources: Data Error or
Inherent Error (quite unrelated to the numerical methods; occur as blunders, mistakes, model
simplification, or data uncertainty), Round-off Error (occurs due to number approximation by humans
and computers), Truncation Error (occurs due to approximation of a mathematical procedure to avoid
insignificance), and Distcretization error (occurs due to approximation of a continuous function by a
set of discrete data points).

Significant figures of a real number (which is an approximation of the true value) are the digits that
are used to express the number meaningfully. The significant digits begin with the leftmost nonzero
digit and end with the rightmost correct digit. The rightmost zeros, which are exact are also significant.

An approximation x* to a number x is called accurate to t significant figures if there are exactly t digits
in the mantissa of x* that agreed with the first t digits of the mantissa of x having the same exponent or
characteristics.

Accuracy of an approximate value is a measure of how much the approximate value agrees with the
true value. Precision, on the other hand, has nothing to do with how much the approximate value
agrees with the true value. Precision is only concerned about the size of the number.

The following four are the commonly used number systems, even supported by the computer
architectures.

1. Decimal number system (base 10) 3. Octal number system (base 8)
2. Binary number system (base 2) 4. Hexadecimal number system (base 16)

Any nonzero real decimal number x can be represented in floating-point form: x = +0.d;d,d3 - X 10°.
Here d;,i = 1,2, are digits from 0 to 9 with d; # 0, called most significant digit and e is an integer
that might be positive, negative or zero, called an exponent or characteristic. The number 0.d;d,d; -+,
may be denoted by m, is called the finite normalized mantissa. For numbers in the decimal system with

base 10,i <m < 1.Thatis,m € [i,l).
10 10

For numbers in the binary system, the floating-point representation of a number x can be given by,
x = 10.b1by b3 - X 26 = +m X 2¢, were each of b; is a bit, either 0 or 1, with b; # 0, and% <m<l1

The numbers that are representable precisely in a computer are called machine numbers. The real
numbers with a non-terminating fractional part (such as 1/3) cannot be represented, precisely. So
many other numbers (for example, 0.01) also has not a precise representation in computer (i.e. a
machine number).

If the number lies within the allowable range of the possible numbers according to the precision level of
the computer, then it is rounded to a nearby machine number (incurring the round-off error) for storing
it. The rounding options involve correct rounding (round to nearest machine number), rounding up,
rounding down or towards zero, etc.

There are commonly two ways to terminate the mantissa of a number to obtain its nearest machine
number, namely, correct chopping and correct rounding. The chopping or rounding of the number to
the nearest machine number (representable in a computer) for representation in computers (for
storage or for using in computations) causes the error in a number called the round-off error.

The floating-point form of a number x representable in a computer can be regarded as consisting of the
three parts: x = +mx B¢ = sign X mantissa x (base)exronent
The sign is either positive (+) or negative (—), the finite normalized mantissa is from the interval [% 1),

and the integer exponent either positive, negative, or zero as a power of the base.

An account on the IEEE Binary Floating-Point Arithmetic Standard 754-1985 for representing the
real numbers in computers can be found under Question 13 in this chapter.

e If a number x* is accurate to t significant figures in approximating a number x then the relative

]~ 5% 10t
Il

error is bounded above by 5 x 107, That is,

If an iterative process is to be stopped when the successive approximations become accurate to t
significant figures, the relative error bound might be set as 5% 107% Thus, the relative error is
computed after every iteration using the result of the current iteration and that of the previous
iteration. If the relative error is smaller than the bound of 5X 107%, then it ensures that the
approximation the accurate to t significant digits.

Whenever two nearly equal numbers are subtracted, some loss of significance might occur. The risk of
loss of significance can be eliminated by avoiding the subtraction through some mathematical
manipulation.

Preliminary Concepts in Numerical Analysis 8

Chapter Exercises

Exercise 01: Compute the absolute error E, and relative error E, in an approximation of x by x*
@) x=logi2,x* =0.301 (ii) x=17/6,x* =2.8333
(ii)) x =+mx* =1.77245 (iv) x=e"1,x" =036787

Exercise 02: Write the following numbers in floating-point form and identify their mantissa and exponent:
(i) x=-23.500128 (i) x =658.000012 (ii)) x=0.010023

(iv) x=-0.0000782 (v) x=

23424 (vi) x=541000

Exercise 03: Simplify the following expression by performing the computations

(a) Exactly

(b) Using four-digit chopping arithmetic
(c) Using four-digit rounding arithmetic
(d) Compute the relative errors

) % - g (i) Z(; + 4) (iid) HT_l
3
(iv) 10m—2e+1) (W)) (%) : (;)

Consider and e expressed with fifteen significant digits as the exact numbers.

Exercise 04: Calculate the roundoff error if chopping and rounding is used to write the following numbers
accurate to four decimal digits:

(i) 355/113 (i) +f3/142 (i) VIn2

Exercise 05: We want to round-off each the following numbers to three decimal places. For which number,
the result of “round-off by chopping” and “round-off by rounding-rule” will be the same:

(A) 5.5555 (B) 3.3575 (C) 5.5565 (D) 4.4555
Exercise 06: Find the absolute and relative errors involved in rounding 4.9997 to 5.000.

Exercise 07: Suppose a real number x is represented approximately by 0.6032 with the relative error is at
most 0.1%. What is x?

Exercise 08: Suppose that a number is accurate to n significant figures and a; is the first significant figure

than show that the relative error is bounded above by ai x 10177,
1

Exercise 09: Show that if a number is rounded off to n digits than the relative error is bounded by% x 10177,

Chapter 2

Solution of a Nonlinear Equation
In One Variable

Cornidor I: BASICS

otet's ,olan. it

2.1 Introduction
2.2 Bracketing Methods

2.2.1 The Bisection Method (or Bolzano Method)

2.2.2 The False-Position Method (or Regula-Falsi Method)
2.3 Open Methods

2.3.1 The Fixed-Point Iteration Method

2.3.2 The Newton-Raphson Method

2.3.3 The Secant Method

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

http://www.timerenders.com.pk/

10 Simplified Numerical Analysis

Corridor II: ANALYSIS

ozet's think deep

2.4 Convergence Analysis
The Bisection Method
The Regula-Falsi Method
The Secant Method
The Newton-Raphson Method
The Fixed-Point Iteration Method
2.5 Further Discussions

To unleash the topics of this Corridor, please delve into the principal book:
Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

Corridor III: PROGRAMMING ARCADEL

otet’s do it

2.6 Algorithms and Implementations
The Newton-Raphson Method
The Fixed-Point Iteration Method
The Secant Method
The Bisection Method
The Regula-Falsi Method
Built-in MATLAB® Commands

To cross-check the results/output of the computer programs you would execute, please delve into
the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/

Solution of a Nonlinear Equation in One Variable 11

2.6 Algorithms and Implementations

Question 36: Write down the algorithm (pseudo code) of the Newton’s method to solve f(x) = 0. The
algorithm should perform a fixed number of iterations.

Algorithm: To solve f(x) = 0 using the following iterative formula (given an initial approximation x):

X
Xy = X UCSY) fork =1,2,3,-

k=17 Zrce Y\
f'(x-1)
x0: a real value as the initial approximation x, sufficiently close to the root

INPUTS: {N : an integer as the maximum number of iterations

xn: areal value as the approximate solution
OUTPUT: {(on completing N iterations)
Step 1 Receive the inputs as stated above
Step 2 Setxn = x0 (initialize xn with the initial approximation)
Step 3 fork =1,2,3,:,N perform Steps 4-6
_ xp is to keep a copy of the approximation xn,
Step 4 Setxp = xn { because xn is going to be updated.
Step 5 Set fxp as the value of f(xp)
Set df xp as the value of f'(xp)
Step 6
_ . Jxp {Computing anew
mn =xp dfxp approximation to the root

end for (Go to Step 4 for the next iteration)

Step 7 Print the output: xn

[Additionally, the initial approximation (x0), number of iterations (k), and f (xn) can be printed]

STOP.

Remark: In the algorithm, it is assumed that neither any pitfall of the method will occur, nor f(x) will be
equal to zero (or the machine-epsilon) in any iteration for the given problem and initial approximation.

12 Simplified Numerical Analysis

Problem 19: Write a MATLAB® program to find a real root of f(x) = 4x + sinx — e* = 0 using the
Newton-Raphson method. Take initial approximation as x, = 0. Here f'(x) = 4 + cosx — e*. The program
should perform a fixed number of iterations.

1 clear, clc;

2 N=100; % maximum number of iterations
3

4 xn = input(' Enter the initial approximation x0: ') ;

5

Bl Yoo Processing Section ------=======-==cmmmeuuuo %
7

8 fork=1:1:N

9 Xp = Xn ;
10 fxp = 4*xp + sin(xp) - exp(xp) ;
11 dfxp = 4 + cos(xp) - exp(xp) ; flx_y)
12 xn = xp - fxp / dfxp ; M= e T G)
13 end
14
15 Y%------mmmmmmmmmmm oo Output Section ------=======-==--mmmmmmmoee %
16

17 fprintf('An approximate root of the given function is %9.6f.\n', x)
18 fprintf("\n%i iterations completed.\n' ,N)

Remark: In the program of Problem 19, the code segment of line 17 can be placed just before line 13 to print
the latest result on completion of each of the iterations.

Remark: In the program, it is assumed that neither any pitfall of the method will occur, nor f(x) will be
equal to zero (or the machine-epsilon) in any iteration.

Remark: The algorithm in Question 36 (likewise Problem 19) has a shortcoming that on completion of the
given fixed number of N iterations the solutions might not have been converged (the desired accuracy might
not have been achieved). Moreover, the algorithm has a shortcoming if the convergence has been achieved
(or divergence has occurred) in few iterations, even then the iterations would not stop immediately; the
algorithm will complete the fixed number of iterations. These shortcomings in the algorithm can be
addressed by incorporating the two convergence criteria such that if the convergence is achieved
(i.e., error < tolerence), then no more iterations will be performed, however, the number of iterations
would not exceed the maximum limit on the number of iterations. Such an indispensable modification
regarding the stopping criteria is adopted throughout the subsequent part of the book.

Solution of a Nonlinear Equation in One Variable 13

Question 37: Write down the algorithm (pseudo code) of the Newton’s method to solve f(x) = 0.

Algorithm: To solve f(x) = 0 using the following iterative formula (given an initial approximation x):

f(e—1)
X = Xpe1— fork=1,2,3,-
*)
x0: a real value as the initial approximation x, sufficiently close to the root
INPUTS: TOL: areal value as the tolerance (permissible error)

N: an integer as the maximum number of iterations

OUTPUT: {xn: areal value as the approximate solution
" ((either on convergence or on completing N iterations — whichever happens first)
Step 1 Receive the inputs as stated above
Step 2 Setxn = x0 (initialize xn with the initial approximation)
Step 3 fork =1,2,3,:,N perform Steps 4-8
_ xp is to keep a copy of the approximation xn,
Step 4 Setxp = xn { because xn is going to be updated.
Step 5 Set fxp as the value of f(xp)
Set df xp as the value of f'(xp)
Step 6
fxp {Computing anew
xn =xp — L2
dfxp approximation to the root
Step 7 Seterr = |xn — xp| (orerr = |xn — xp|/|xp|)
Step 8
if (er < TOL) then This means 'that the consecutive
. approximations are nearly the same,
Exit/Break the loop

Therefore, stop iterations.

end for (Go to Step 4 for the next iteration)

Step 9 Print the output: xn

[Additionally, the initial approximation (x0), number of iterations (k), f (xn), and error (err) can be printed]
if (err < TOL) OUTPUT (‘The desired accuracy achieved; Solution converged.”)

else OUTPUT (‘The number of iterations exceeded the maximum limit.") because k > N

STOP.

Remark: In the algorithm, it is assumed that neither any pitfall of the method will occur, nor f(x) will be
equal to zero (or the machine-epsilon) in any iteration for the given problem and initial approximation.

14 Simplified Numerical Analysis

Problem 21: Write a MATLAB® program to find a real root of f(x) = 4x + sinx — e* = 0 using the
Newton-Raphson method. Take initial approximation as x, = 0. Here f'(x) = 4 + cos x — e*. The iterations
of the method should stop when either the approximation is accurate within 10>, or the number of
iterations exceed 100, whichever happens first.

1 clear; clc;
2 | TOL = 0.000001 ; % error tolerance
3 N=100; % maximum number of iterations
4
5 X0 = input(' Enter the initial approximation x0: ") ;
6 xn =x0;
7
8 Yo---m-mmmmmmmmmmmmmoee e Processing Section ---------===-==---------- %
9
10 for k=1:1:N
11 Xp = Xn ;
12 fxp = 4*xp + sin(xp) - exp(xp) ;
13 dfxp = 4 + cos(xp) - exp(xp) ; JiCT)
14 xn = xp - fxp / dfxp ; e = e T)
15 err = abs(xn - xp) ; Error = |x;, — Xj_4|
16
17 fprintf ('After %i iterations, the approximate root = %9.6f ', k-1 , xn)
18 fprintf (' f(x) = %9.6f, Error = %9.6f. \n', fxp , err)
19
20 if (err < TOL) break; end
21 end
22
23 Y- Output Section ------=--====-—=-—mmmme- %
24
25 if (err < TOL)
26 fprintf (‘The desired accuracy achieved; Solution converged. \n')
27 else
28 fprintf ('The number of iterations exceeded the maximum limit.\n")
29 end

Remark: This program is based on the assumption that neither any pitfall of the method will occur, nor f(x)
will be equal to zero (or machine-epsilon) in any iteration for the given problem and data.

Problem 23: Write a MATLAB® program to find a real root of the equation f(x) = 4x + sinx —e* =0
using the Newton-Raphson method. Take initial approximation as x, = 0. Here f'(x) = 4 + cos x — e*. Write
user-defined MATLAB® functions to evaluate f(x) and f'(x) at the current approximation. The iterations of
the method should stop when either the approximation is accurate within 1075, or the number of iterations
exceed 100, whichever happens first.

Solution of a Nonlinear Equation in One Variable 15

OO WN

A DDA DA DWWWWWWWWWWNNNNNNNNNNRRRPRRERPRRRRRR
U P WNPFPOUOVOONOOOULE, WNRPRPOOVUONOUPEL,WNREPRPOOOONOUPSWNERELO

clear, clc ;
fval = @ (x) 4*x + sin(x) - exp(x) ; % Evaluating f(x)
dfval = @ (x) 4 + cos(x) — exp(x) ; % Evaluating f '(x)
TOL = 0.000001 ; % error tolerance
N =100 ; % maximum number of iterations
X0 = input(' Enter the initial approximation x0: ') ;
xn = x0 ;
Yo-===mmmmmmmmmmm o Processing Section ----------==-==-=-------- %
fork =1:1:N
Xp = Xn ;
fxp = fval(xp) ;
dfxp = dfval(xp) ; _ _ f(ed)
xn = xp - fxp / dfxp ; e = M T e)
err = abs(x - xp) ; Error = |x, — x_4|

fprintf ('After %i iterations, the approximate root = %9.6f ', k-1, xn)
fprintf (' f(x) = %9.6f, Error = %9.6f. \n', fxp , err)

if (err < TOL)
break;

end

end

if (err < TOL)

fprintf ('The desired accuracy achieved; Solution converged.\n")
else

fprintf ('The number of iterations exceeded the maximum limit.\n")

end

16 Simplified Numerical Analysis

Question 38: Write down the algorithm (pseudo code) of the Fixed-Point Iteration method to solve f(x) = 0.

Algorithm: To solve f(x) =0 < x = g(x), using the following iterative formula (given an initial

approximation x;)
x, = glg_1), fork=1,2,3,-

x0: a real value as the initial approximation x, sufficiently close to the root
INPUTS: TOL: areal value as the tolerance (permissible error)
N: an integer as the maximum number of iterations

OUTPUT: {xn: areal value as the approximate solution
" ((either on convergence or on completing N iterations — whichever happens first)
Step 1 Receive the inputs as stated above
Step 2 Setxn = x0 (initialize xn with the initial approximation)
Step 3 fork =1,2,3,-:-,N perform Steps 4-7
_ xp is to keep a copy of the approximation xn,
atep 4 Setxp = xn { because xn is going to be updated.
Step 5
Computing a new
etz at iz veellts off A7) {approximation to the root
Step 6 Seterr = |xn — xp| (orerr = |xn — xp|/|xp|)
Step 7
if (er < TOL) then This means 'that the consecutive
. approximations are nearly the same,
Exit/Break the loop

Therefore, stop iterations.

end for (Go to Step 4 for the next iteration)

Step 8 Print the output: xn

[Additionally, the initial approximation (x0), number of iterations (k), f (xn), and error (err) can be printed]
if (err < TOL) OUTPUT (‘The desired accuracy achieved; Solution converged.”)
else OUTPUT (“The number of iterations exceeded the maximum limit.")

STOP.

Solution of a Nonlinear Equation in One Variable

Problem 25: Write a MATLAB® program to find a real root of f(x) = 4x + sinx — e* = 0 using the Fixed-
Point Iteration method. Take x = g(x) = %(e" —sinx) and x, = 0 as an initial approximation. The iterations
of the method should stop when either the approximation is accurate within 10>, or the number of

iterations exceeds 100, whichever happens first.

O ooNOOULLBE WN -

[
= O

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
32
33
33
34
35
36
37

clear, clc ;
TOL = 0.000001 ; % error tolerance
N =100 ; % maximum number of iterations

X0 = input(' Enter the initial approximation x0: ') ;

xn = x0 ;

Y%o--=====mmmmmmmmm oo Processing Section ---------=======--------- %

fork = 1:1:N
Xp = Xn ;
xn = 0.25 * (exp(xp) - sin(xp)) ; % Computing g(x) at the current approx.
err = abs(xn - xp) ; Error = |x; — Xp_4|

fprintf ('After %i iterations, the approximate root = %5.5f. \n', k , xn)
if (err < TOL)

break;
end

end

if (err < TOL)

fprintf ('The desired accuracy achieved; Solution converged.')
else

fprintf ('The number of iterations exceeded the maximum limit.")

end

18 Simplified Numerical Analysis

Question 39: Write down the algorithm (pseudo code) of the Secant method to solve f(x) = 0.

Algorithm: To solve f(x) = 0 using the iterative formula (given the root containing interval):

[1) (p—g — Xg—2)

X = Xp—1— , fork =2,3,4,--
‘ T fOnen) = fGoe2)
a and b: two real values as the initial approximations sufficiently close to the root
INPUTS: TOL: areal value as the tolerance (permissible error)

N: an integer as the maximum number of iterations

OUTPUT: {xn: areal value as the approximate solution
" ((either on convergence or on completing N iterations — whichever happens first)
Step 1 Receive the inputs as stated above
Step 2 Setxn=>b (initialize xn with any of the two endpoints)
Step 3 Setx0=a
Setx1=0»b

Set fx0 as the value of f(x0)
Set fx1 as the value of f(x1)

Step 4 fork =2,3,:--,N + 1 perform Steps 5-10
_ xp is to keep a copy of the approximation xn,
Step 5 Setxp = xn { because xn is going to be updated.
Step 6
1 fx1(x1 — x0) {Computing anew
D fx1— fx0 approximation to the root
Step 7 Set fxn as the value of f(xn)
Step 8 Seterr = |xn — xp|/|xp| (orerr = |xn — xp|)
Step 9
if (err < TOL) then This means _that the consecutive
Exit/Break the loo } approximations are nearly the same,
p Therefore, stop iterations.
else
Setx0 = x1 . . .
Set fx0 = fx1 preparing two approximations
Setx1 = xn J for the next iteration
Set fx1 = faxn

end for (Go to Step 5 for the next iteration)

Step 10 Print the output: xn
[Additionally, the initial approx. (x0 and x1), number of iterations (k — 1), f(xn), and error (err) can be printed]
if (err < TOL) OUTPUT (‘The desired accuracy achieved; Solution converged.”)

else OUTPUT (“The number of iterations exceeded the maximum limit.")
STOP.

Solution of a Nonlinear Equation in One Variable 19

Problem 27: Write a MATLAB® program to find a real root of the equation f(x) = 4x + sinx — e* =
using the Secant method. Take initial approximation as x, = 0 and x; = 1. The iterations of the method
should stop when either the approximation is accurate within 10>, or the number of iterations exceeds 100,
whichever happens first.

O oo NOOUDWN R

e
= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

clear, clc ;

TOL = 0.000001 ; % error tolerance

N =100 ; % maximum number of iterations
x0 = input(' Enter the first initial approximation x0: ') ;

x1 = input(' Enter the second initial approximation x1: ') ;

Yo--mmmmmmmmmm e Processing Section -------==-===--mommmumu %

xn = x1;

fx0 = 4*x0 + sin(x0) - exp(x0) ; % Evaluating f(x) at x0

fx1 = 4*x1 + sin(x1) - exp(x1) ; % Evaluating f(x) at x1

fork = 2:1:N+1

Xp = Xn ;
xn = x1 - (fx1 * (x1 - x0)) / (fx1 - fx0) ; =y f a1 Gy — Xi—2)
fxn = 4*xn + sin(xn) - exp(xn) ; T) — fae2)
err = abs(xn - xp)/abs(xn) ; |2 = X4

Error =
[l

fprintf ('After %i iterations, the approximate root = %9.6f ', k-1, xn)
fprintf (' f(x) = %9.6f, Error = %9.6f. \n', fxp , err)

if (err < TOL) break ;

else
x0 =x1;
fx0 = fx1 ;
X1l = xn;
fx1 = fxn ;
end
end
if (err < TOL) fprintf ('The desired accuracy achieved; Solution converged.')
else fprintf ('The number of iterations exceeded the limit.") end

Question 40: Write down the algorithm (pseudo code) of the Bisection method to solve f(x) = 0.

Algorithm: To solve f(x) = 0 using the iterative formula (given the root containing interval):

Xk—1 — Xg—2

Xy = Xp—p+ > , fork =2,3,4,

20 Simplified Numerical Analysis
a and b: two real values as the initial approximations bracketing the root
INPUTS: TOL: areal value as the tolerance (permissible error)
N: an integer as the maximum number of iterations
OUTPUT: {xn: areal value as the approximate solution
" ((either on convergence or on completing N iterations — whichever happens first)
Step 1 Receive the inputs as stated above
Step 2 Setxn =b (initialize xn with any of the two endpoints)
Step 3 Setx0=a
Setx1=0»b
Set fx0 as the value of f(x0)
Set fx1 as the value of f(x1)
Step 4 fork =2,3,:--,N + 1 perform Steps 5-10
_ xp is to keep a copy of the approximation xn,
Step 5 Setxp = xn { because xn is going to be updated.
Step 6
— 0+ x1 —x0 {Computing a new
. 2 approximation to the root
Step 7 Set fxn as the value of f(xn)
Step 8 Seterrl = |xn — xp|/|xn| (orerr = |xn — xp|)
Seterr2 = |fxn|
Set err = min(erril,err2)
Step 9
if (err < TOL Ythen This means that elth(?r f(xn) 1s.the ?lose to
Exit/Break the loop } zero, or the consecutive approximations are
nearly the same. Therefore, stop iterations.
else if (f(x0)f(xn) < 0) then
Setx1 =xn Adjusting one endpoint
Set fx1 = fxn of the interval such that
else half of the interval will be
Setx0 = xn used in the next iteration
Set fx0 = fxn
end for (Go to Step 5 for the next iteration)
Step 10 Print the output: xn

STOP.

else

[Additionally, the starting interval [a, b], number of iterations (k — 1), f (xn), and error (err) can be printed]
if (err < TOL) OUTPUT (‘The desired accuracy achieved; Solution converged.”)

OUTPUT (“The number of iterations exceeded the maximum limit.")

Solution of a Nonlinear Equation in One Variable 21

Remark: While using a bracketing method, there might arise a situation in which the two
consecutive approximations to the roots are not sufficiently close to each other (i.e., the sequence
of successive approximations has not converged), but the function values at the approximations
are sufficiently close to zero (i.e., |[f(x;)| < tolerence). Therefore, there is no point to proceed the
iterations further. The iterations should be stopped. Therefore, the algorithm of a bracketing
method (the Bisection, or Regula-Falsi method) should include both of the convergence criteria
of testing the convergence of the roots, and closeness of the function values to zero. The iterations
should be terminated on whichever criterion is met first, ensuring the convergence. To
accommodate this in the algorithm, the two kinds of errors are computed and the minimum of the
two errors is found to compare with the tolerance:

Seterrl = |xn — xp|/|xn| (or err = |xn — xpl)

Seterr2 = |fxn|

Set err = min(errl, err2)

Problem 29: Write a MATLAB® program to find a real root of f(x) = 4x + sinx — e* = 0 in [0, 1] using the
Bisection method. The two function values at the endpoints of the interval have opposite signs. The
iterations of the method should stop when either the approximation is accurate within 10~5, or the number
of iterations exceeds 100, whichever happens first.

1 clear, clc;

2 | TOL = 0.000001 ; % error tolerance

3 N=100; % maximum number of iterations
4

5 x0 = input(' Enter the left endpoint of the starting interval: ') ;

6 x1 = input(' Enter the right endpoint of the starting interval: ') ;

7

8 Y%o-----m-mmmmmmmmmee- Processing Section ----------------------- - %

9
10 xn =x1;
11 | X0 = 4*x0 + sin(x0) - exp(x0) ; % Evaluating f(x) at x0

12 | fx1 = 4*x1 + sin(x1) - exp(x1) ; % Evaluating f(x) at x1

13

14 fork = 2:1:N+1

15

16 Xp = Xn ;

17 xn =x0 + (x1 -x0)/2; Xyo1 — Xy
18 fxn = 4*xn + sin(xn) — exp(xn) ; Fe = X2 F 2

19
20 errl = abs(xn - xp)/abs(xn) ; Error 1 = |x; — xp_q|/1%]
21 err2 = abs(fxn) ; Error 2 = [f(x)|

22 Simplified Numerical Analysis

22 err = min(errl, err2) ;

23

24 fprintf ('After %i iterations, the approximate root = %9.6f ', k-1, xn)
25 fprintf (' f(x) = %9.6f, Error = %9.6f. \n', fxp, errl)

26

27 if (err < TOL)

28 break ;

29 elseif (fx0*fxn < 0)

30 x1l = xn ;

31 fx1 = fxn ;

32 else

33 x0 = xn ;

34 fx0 = fxn ;

35 end

36

37 end

38

39 if (err<TOL) fprintf ('The desired accuracy achieved; Solution converged.')
40 else fprintf ('The number of iterations exceeded the limit.") end

Question 41: Write down the algorithm (pseudo code) of the Regula-Falsi method to solve f(x) = 0.

Algorithm: To solve f(x) = 0 using the iterative formula (given the root containing interval):

[(1) (-1 — Xp—2)

Xy = Xp-1— , fork =2,3,4,-
“ e f 1) = f(x—2)

a and b: two real values as the initial approximations bracketing the root
INPUTS: TOL: areal value as the absolute error tolerance

N: an integer as the maximum number of iterations
OUTPUT: {xn: areal value as the approximate solution

" ((either on convergence or on completing N iterations — whichever happens first)

Step 1 Receive the inputs as stated above
Step 2 Setxn=»>b (initialize xn with any of the two endpoints)
Step 3 Setx0 =a

Setx1=»b

Set fx0 as the value of f(x0)

Set fx1 as the value of f(x1)
Step 4 fork =2,3,--,N + 1 perform Steps 5-10

xp is to keep a copy of the approximation xn,

Step 5 Setxp = xn { because xn is going to be updated.

Solution of a Nonlinear Equation in One Variable 23

Step 6
e fx1(x1 — x0) {Computing anew
gt fx1 — fx0 approximation to the root
Step 7 Set fxn as the value of f(xn)
Step 8 Seterrl = |xn — xp|/|xn| (orerr = |xn — xpl)
Seterr2 = |fxn|
Set err = min(erril,err2)
Step 9
if (err < TOL Ythen This means that elth?r f(xn) 1s.the ‘.:lose to
Exit/Break the loop } zero, or the consecutive approximations are
nearly the same. Therefore, stop iterations.
else if (f(x0) f(xn) < 0) then \
Setx1 = xn Adjusting one endpoint
Set fx1 = fxn of the interval such that
else a shorter interval will be
Setx0 = xn | used in the next iteration
Set fx0 = fxn)
end for (Go to Step 5 for the next iteration)

Step 10 Print the output: xn

STOP.

[Additionally, the starting interval [a, b], number of iterations (k — 1), f (xn), and error (err) can be printed]
if (err < TOL) OUTPUT (‘The desired accuracy achieved; Solution converged.”)

else OUTPUT (“The number of iterations exceeded the maximum limit.")

Problem 31: Write a MATLAB® program to find a real root of f(x) = 4x + sinx — e* = 0 in [0, 1] using the
Regula-Falsi method. The two function values at the endpoints of the interval have opposite signs. The
iterations of the method should stop when either the approximation is accurate within 10~5, or the number
of iterations exceeds 100, whichever happens first.

OCooNOOULP,WN R

[Eny
o

clear, clc ;
TOL = 0.000001 ; % error tolerance
N =100 ; % maximum number of iterations

x0 = input(' Enter the left endpoint of the starting interval: ') ;
x1 = input(' Enter the right endpoint of the starting interval: ') ;

24 Simplified Numerical Analysis
11 fx0 = 4*x0 + sin(x0) - exp(x0) ; % Evaluating f(x) at x0
12 fx1 = 4*x1 + sin(x1) - exp(x1) ; % Evaluating f(x) at x1
13
14 fork = 2:1:N+1
15
16 Xp = Xn ;
17 xn = x1 - (fx1 * (x1 - x0)) / (fx1 - fx0) ; 5 FOer) ey — Xp—z)
18 fxn = 4*xn + sin(xn) - exp(xn) ; KT) — f(eo)
19
20 errl = abs(xn - xp)/abs(xn) ; Error 1 = |x;, — xy_1 /%]
21 err2 = abs(fxn) ; Error 2 = |f(xp)|
22 err = min(errl, err2) ;
23
24 fprintf ('After %i iterations, the approximate root = %9.6f ', k=1, xn)
25 fprintf (' f(x) = %09.6f, Error = %9.6f. \n', fxp, errl)
26
27 if (err < TOL)
28 break ;
29 elseif (fx0*fxn < 0)
30 x1l =xn;
31 fx1 = fxn ;
32 else
33 x0 = xn ;
34 fx0 = fxn ;
35 end
36
37 end
38
39 if (err<TOL) fprintf ('The desired accuracy achieved; Solution converged.')

Problem 33: Write a MATLAB® program to find a real root of f(x) = 4x + sinx — e* = 0 in [0, 1] using the
Regula-Falsi method. The two function values at the endpoints of the interval have opposite signs. Write
user-defined MATLAB® function to evaluate f (x) at any approximation. The iterations of the method should
stop when either the approximation is accurate within 107>, or the number of iterations exceeds 100,
whichever happens first.

coONOUL A WN -

clear, clc ;

TOL = 0.000001 ; % error tolerance

N =100 ; % maximum number of iterations
fval = @(x) 4*x + sin(x) - exp(x) ; % A user-defined MATLAB function
x0 = input(' Enter the left endpoint of the starting interval: ') ;

x1 = input(' Enter the right endpoint of the starting interval: ') ;

Solution of a Nonlinear Equation in One Variable 25

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Ofp-=mmmmmmmmmmmm oo Processing Section -----=-====-==mmmmmuenm- %
xn = X1 ;

fx0 = fval(x0) ; % Evaluating f(x) at x0
fx1 = fval(x1) ; % Evaluating f(x) at x1

fork = 2:1:N+1

Xp = Xn ;

xn = x1 - (fx1 * (x1 - x0)) / (fx1 - fx0) ; 5 G 1) Ctimr — Xi2)
fxn = fval(xn); M= T T) —)
errl = abs(xn - xp)/abs(xn) ; Error 1 = |x; — xp_q|/|%]
err2 = abs(fxn) ; Error 2 = |f(x)|

err = min(errl, err2) ;

fprintf ('After %i iterations, the approximate root = %9.6f ', k-1, xn)
fprintf (' f(x) = %9.6f, Error = %9.6f. \n', fxp, errl)

if (err < TOL)

break ;
elseif (fx0*fxn < 0)
X1l =xn;
fx1 = fxn ;
else
x0 = xn ;
fx0 = fxn ;
end
end
if (err < TOL) fprintf ('The desired accuracy achieved; Solution converged.')

else fprintf ('The number of iterations exceeded the limit.") end

26

Simplified Numerical Analysis

Question 42: List out some built-in functions/commands of MATLAB® for solving f (x) = 0. Also
briefly explain the usage of the commands.

fzero

fzero is a built-in function of MATLAB® that is used to locate the zero of a function.

The general format of using £zeroisx = fzero(f,

x0)

Here the argument £ is the function whose zero is to be found and the argument x0

provides some initial approximation of the root. If x0 is a scalar, then £zero first finds

an interval containing x0 (i.e, on which the function values at the endpoints have

opposite signs, and then searches in that interval for a zero. If %0 is a vector of two

components, i.e., x0=[a,b], then the two points are assumed to bracket the root.

An optional third argument to £zero could be set to specify the error tolerance.

Worked Example: Find a real root of the equation cosx — xe® = 0 in [0,1], by using a

built-in function of MATLAB®.

>> £

>> r

ans =

0.5178

@(x) (cos(x) - x*exp(x));

fzero(£,[0 1],0.00000001)

If it is desired to print the result of each of the iterations then optimset option is used

as follows:

>> f = @(x) (cos(x) - x*exp(x)):;

>> option = optimset('DISP',

>> r = fzero(f,[0 1],option)

ans=

Func-count X

.314665
.589722
.504733
.516994
.517758
.517757

O ~J o U b w N
O O O O O O

f(x)

1
0.519871
-0.232462
0.0391915
0.00231933
-2.30077e-06
1.47021e-09

"ITER')

Procedure

initial
interpolation
interpolation
interpolation
interpolation
interpolation
interpolation

Solution of a Nonlinear Equation in One Variable 27

roots

9 0.517757 9.99201e-16 interpolation
10 0.517757 -3.33067e-16 interpolation

Zero found in the interval [0, 1] is given by

r =

0.5178

roots is a built-in function of MATLAB® that determines all the roots of a polynomial
(either real or complex). The general format of using roots is,

r = roots(p)

Here the argument p is an input vector of coefficients of the given polynomial in
descending order.

Worked Example: Find the roots of the polynomial

F(x) = x5 — 12.1x* + 40.59x3 — 17.015x2 — 71.95x + 35.88

> p = [1 -12.1 40.59 -17.015 -71.95 35.88];
>> roots (p)
ans =

6.5000

4.0000

2.3000

-1.2000

0.5000

Remark: An interesting online calculator by CASIO® at https://keisan.casio.com has the
following webpage to approximate the root of a non-linear equation using different methods.

https://Kkeisan.casio.com/menu/system/000000001000

Simplified Numerical Analysis

Chapter Summary

The root-finding problem refers to find some appropriate value x = « in the domain of a function f such
that f(a) = 0. Every such possible value « is called a root of the equation f(x) = 0.

Geometrically, a root of an equation f(x) = 0 is the point where the graph of f intersects the x-axis.

An iterative numerical method to approximate the root starts with some appropriate or reasonable
estimation (also called initial approximation or guess) of the exact root and attempts to refine the
approximation, iteratively. The iterations are repeated until a desired level of accuracy is achieved.

Let xo denotes the initial approximation and x4, x,, x3, --- denote the successive iterative solutions to an
exact root « of the equation f(x) = 0. The sequence {x;};, of the successive approximations is said to
converge to the exact root a, if the successive approximations approach a. In such a case, the iterative
method is also said to converge. In other words, the iterative method is said to be convergent for a
given initial approximation if the corresponding sequence of successive approximations is convergent
to the exact solution. Under certain conditions, it is possible for an iterative method that the sequence of
successive approximations might diverge from a desired exact root a.

Stopping Criteria: The most common convergence criterion to stop the iterative process is based on
the comparison of the estimated error with the error tolerance. For this purpose, the current
approximation is considered as the true solution and the previous approximation is considered as the
approximate solution for estimating the error and any appropriate one of the following criteria is used,

D) g — x4 < 1
X — Xj—

) |7" ko1 <
Xk
X — Xj—

3) |7" 1llx100 < 1

Here x;, and xj,_; denote the current and previous approximations, respectively, and t denotes the
tolerance.

Another Stopping Criterion: Note that the values of the function f tend to zero with the progress of
the iterative process. Thus, falling of the difference between the function values and zero beyond a
certain level might also indicate convergence.

The numerical methods of finding a root of f(x) = 0 can be categorized as bracketing methods and
open methods.

Bracketing methods start with an interval containing a root and squeeze down the interval, iteratively.
Two well-known root bracketing methods are the Bisection method and the Regula-Falsi (False-
Position) method.

Solution of a Nonlinear Equation in One Variable 29

e Open Methods are those who obtain successive single approximations irrespective of their location at
any side of the root. Some of the well-known open methods are the Fixed-Point Iteration method, the
Newton-Raphson method (Newton’s method), and the Secant method.

e A bracketing method for finding a root/zero of a continuous function f starts with an interval [a, b]
containing a root. The opposite signs of f(a) and f(b) ensure (due to the Intermediate value theorem)
that there exists a root @ of f(x) = 0 in (a, b). To get closer to the root a, first a point ¢ € (a + b) is
chosen. If f(c) = 0, then c is the exact root. Otherwise, either of the intervals [a, c] or [c, b] is chosen as
the squeezed interval containing the root. The root lies in [a, c] if f(a)f(c) < 0, orin [c, b] if f(c)f(b) <
0. The selected interval is relabeled as [a, b] and the process is repeated. This way, a sequence of points
€1,Cz,C3,, is formed. The iterations are performed until the approximations of the root of f(x) in two
consecutive iterations are sufficiently close to each other.

e The Bisection method selects ¢ € (a + b), as the midpoint of the interval [a, b], using the formula

_(a+b)
€=

o The Regula-Falsi method selects ¢ € (a + b), as the point where the line segment joining f(a) and
f(b) intersects the x-axis, using the formula

N OICRD)
f®&) =@

e For the Bisection method, the error-bound is given by,

la — ¢l < fork=1,2,3,,

—a
2k 7
Ag—1+bg_1

Here « is the exact root of the equation f(x) =0 in (a,b) and ¢, = n

is the midpoint of the
interval in kth iteration.
e The formula to determine the maximum number of iterations N of the Bisection method after which the

error associated with any point in the squeezed interval is not greater than a given permissible absolute
error 7, is as below:

. log(b — a) —log(za)
- log(2)

This formula tells that, for an interval of unit length, it is sure that after 10, 14, 17, and 20 iterations the

length of the squeezed interval (or the absolute error) is not greater than 1073, 10=%, 107>, and 107°,
respectively.

¢ The Fixed-Point Iteration method is an open method that approximates a root of the equation f(x) =
0 by rearranging the equation f(x) = 0 to get an appropriate form x = g(x) and generating a sequence
of successive approximations {xy };=; by the iterative formula x;, = g(xy_1), fork =1,2,3,--. The said
sequence may

o converge but could be different for different forms of x = g(x),

30

Simplified Numerical Analysis

o converge but could be different for different choices of the initial approximation x, for a
particular form of x = g(x), or

o diverge for some unsuitable form of x = g(x) or an initial approximation x.

Suppose that f is a continuous function and the equation f(x) = 0 has a real root a. Suppose that the
equation f(x) = 0 can be rearranged in the form x = g(x) such that « is a fixed-point of the function g,
and g and g’ are continuous in some neighbourhood I around a. If

g <= K < 1, forall x € I,

then for any initial approximation x, € I, the sequence {x; };=; of successive approximations, generated
by the iterative formula x;, = g(x,_4), fork = 1,2, 3,--, converges to the solution a.

To find a root of a non-linear equation f(x) = 0 the Newton-Raphson method requires an initial
solution x, and considers the x-intercept of the tangent line to the function f(x) at x = x, as the new
approximation. Then, the x-intercept of the tangent line to the function at the new approximation is
considered as the next approximation. This way, the process is repeated with the successive
approximations until sufficient convergence is achieved. The formula to generate the sequence of
successive approximations based on the said approach is given by

_ fx—1) .
Xy = Xp-1) fork=1,2,3,

A sufficient condition of convergence for the Newton-Raphson method: Suppose that a is a root of the
equation f(x) = 0. Suppose that I is a neighbourhood of a such that f(x), f'(x) and f"(x) are
continuous on I. If [f(x)f""(x)| < |f'(x)|? forallx € I, then for an initial approximation x, € I, the
sequence {xy)=, of successive approximations, generated by the Newton’s formula, converges to the
solution a.

The iterative formula of the Secant method for solving f(x) = 0 (with x = x, and x = x; as the initial
approximations) is given by

[Otk—1) (X1 — Xg—2)

fle—1) = fle—2) ’

Xk = Xg—1— fork = 2, 3, 4,

Comparison of the False-Position method and the Secant method:
o The False-Position method is a bracketing method, whereas the Secant method is an open method.

o The False-Position method keeps the root bracketed by selects out the root bracketing subintervals
out the two subintervals obtains in each of the iterations. On the other hand, the Secant method
selects the two most recent approximations out of the three available approximations in any
iteration to proceed to the next iteration.

o The False-Position method always converges, whereas the Secant method may not converge for
certain situations.

Solution of a Nonlinear Equation in One Variable 31

o If the Secant method is convergent, it converges faster than the False-Position method. That is, it
has a higher convergence rate than that of the False-Position method.

e The order/rate of convergence of the Bisection method is 1 (i.e., linear) and the asymptotic error
constantis (1/2)

e The order/rate of convergence of the False-Position or Regula-Falsi method is 1 (i.e, linear) and the

. . 11" ()
asymptotic error constant is — - @ 0

e The order/rate of convergence of the Fixed-Point Iteration method is 1 (i.e, linear) and the asymptotic
error constant is the maximum value of the function g'(x) in some neighbourhood around the
solution a.

e The order/rate of convergence of the Newton-Raphson method is 2 (i.e., quadratic) and the asymptotic
1@
error constant is — - o)

e The order/rate of convergence of the Secant method is 1.62 (i.e., superlinear).

e The Newton-Raphson method may fail to converge to a root in different situations including where
f'(x) or f"(x) becomes zero at any approximation.

e The Newton-Raphson method converges to a multiple root very slowly (instead of exhibiting quadratic
convergence).

e The Aitken’s A?> method offers a technique for accelerating the convergence of any sequence that is
linearly convergent. From the given sequence {x;};=; that linearly converges to a, another sequence
{Xk)=, that also converges to a with possibly improved convergence rate is constructed by using the
Aitken’s acceleration formula given as
= (Ax;.)?

X = Xg Azxk

32 Simplified Numerical Analysis

Chapter Exercises

Exercise 01: Find a real root of the following equations using the Bisection method accurate to
four decimal places.

Q) log(x) —cosx =0
(i) e —10x=0
(i) x*+x2—-1=0

Exercise 02: Find a real root of the following equations using the Bisection method accurate to
three decimal places.

(i) x6—x*—x3-1=0
(i) x3—sinx+1=0
(ii) xlog,ox = 4.77

Exercise 03: Approximate the solution of the following equations using the Regula-Falsi method
accurate to three decimal places.

) 3x +sinx—e* =0
() 4x3—1-—e(*/2)
(i) x2=(e"#*-2)/x

X
Exercise 04: Find the approximation to a real root of the equation 2 sin x — eT — 1 = 0 starting

with [—5, —3] using the Regula-Falsi method.

Exercise: Find a real root of each of the following equations using (a) the Bisection method, (b)
the Regula-Falsi method, (c¢) the Newton’s method, (d) the Secant method. Choose the initial
approximation/s in the given interval. Assume that the tolerance for the approximate root is
0.001. The numeric values should not be rounded to less than 5 decimal places. (x is in radians,
wherever applicable).

) cosx —xe* =0,in [0, 1]

(i) cosx —x+2=0,in[1,2]
(iii) e*—x—3=0,in[1,2]

(iv) In(x) + x — 4 =0,in [2, 3]
v) 4x + sinx —e* = 0,in [0, 1].

Exercise 06: Find a real root of the Chebyshev polynomial of degree four, T,(x) = 8x* — 8x? + 1
using the Newton’s method accurate to four decimal places.

Solution of a Nonlinear Equation in One Variable 33

Exercise 07: Find a root of the Laguerre polynomial of degree four, L,(x) = x* — 16x3 + 72x% —
96x + 24 using the Newton’s method accurate to four decimal places.

Exercise 08: Find a root of the following equations using the Newton’s method accurate to 4
decimal places.

() 2x +3cosx —e* =0,
(i) x2—4x+4—-Inx=0
(iii) tanx —6=0

Exercise 09: Find the roots accurate to within 1073 of the Legendre polynomial P,(x) = x* —

6 3 . .
“x?+ 35 on each interval, using the Secant method.

(i) [—1,—0.5]
(ii) [—0.5,0]
(i) [0,0.5]
(iv) [0.5,1]

Exercise 10: Approximate the value of /4 using the Secant method accurate to 107,

Exercise 11: Find a real root of the following equations using the Secant method accurate to 1073

) x3-2x+2=0
(i) 10 — 2x +sinx =0
(iii) 2e3x+1-3e3 =0

Exercise 12: Use the Fixed-Point method to find a root of the following, accurate to 3 decimal
places.

@) e* —2x? for0<x <2
(i) xe*=0for1<x<2
(i) xZ2—sinx—x=0

Exercise 13: Find the solutions of the following equations using the fixed-point method accurate
to 1073.

(D) X =tanx
(i) X =cosx
(iii) x = sin(x + 2)
Exercise 14: Find the solution of the equation (relevant to the vibrating beam),

cosxcoshx =1

34 Simplified Numerical Analysis

3 .
near x = — - using the Newton-Raphson method.

Exercise 15: The velocity V, in meters per second (m/s), of a free falling sky diver is expressed

as:
gm (—Dct)

V= 1- —

o (1-em (5

Here m is the mass of the falling body in kilograms (kg), D, is the drag coefficient in kilogram per
second (kg/s), t is the time in seconds (s), and g = 9.8m/s? is the gravitation acceleration. If the
velocity of a body of mass 85kg is 40m/s after 5 seconds of free fall, then calculate the drag
coefficient.

Hint for the Solution:

Givenm = 80kg,V = 40m/s, g = 9.8m/s?, and t = 5s, the equation takes the form:

(9.8)(85) 5D,
0="7 (1_exp(85))

f(D.) =D, +171In(1 — 0.04802D.) =0

or

Solve this equation for D., using any appropriate iterative method. To obtain an initial guess of D,
a trick is to calculate V for different assumed values of D.. The values of the D., which produce
values of V close to 40, can offer reasonable initial guess of D.. While using an iterative method,
approximate error should be calculated at each iteration. [exp(x) = e*]

Exercise 16: The velocity V, in meters per second (m/s), of a free falling sky diver is expressed

as:
gm (—Dct)
V=-—-1I[1- —
(1o (S

Here m is the mass of the falling body in kilograms (kg), D, is the drag coefficient in kilogram per
second (kg/s), t is the time in seconds (s), and g = 9.8m/s? is the gravitation acceleration. If the
velocity of a falling body with drag coefficient of 18 kg/s is 50m/s after 7 seconds of free fall, then
calculate the mass m of the body, accurate to 0.0001. [exp(x) = e*]

Hint for the Solution:
Given D, = 18kg/s,V = 50m/s, g = 9.8m/s?,and t = 7s, the equation takes the form:

50 = (9'18;1” <1 —exp (#))

or

Solution of a Nonlinear Equation in One Variable 35

91.83673)

f(m)=mln<1— +126=0

Solve this equation for m, using any appropriate iterative method. To obtain an initial guess of m,
a trick is to calculate V for different assumed values of m. The values of the m, which produce
values of V close to 50, can offer reasonable initial guess of m. While using an iterative method,
approximate the error at each iteration.

Exercise 17: The volume V of spherical water-tank in cubic meters can be calculated as:
nH?*(3R — H
V= %

where H denotes the height of water level in meters from the base of the tank, and R denotes the
radius of the spherical tank in meters. If the radius R of a tank is 2.5 meters, then how much water
level must be raised in the tank to hold 27 cubic meters of water.

Hint for the Solution:
Given R = 2.5and V = 27, and taking m = 3.14159 the equation takes the form

,_mH (7.5~ H)

3
or

f(H) = 3.14159H3 — 23.56193H* + 81 =0

Solve this equation for H, using any appropriate iterative method. Intuitively, appropriate initial
guesses for H can be taken from [0,2R]. While using an iterative method, approximate error
should be calculated at each iteration.

Exercise 18: Numerically, compare the convergence of the method:

f (1)

Xjeq — 22—, fork=1,2,3,-
T)

Xk

with the Newton-Raphson method on a function with a known double root.
Exercise 19: The ideal gas equation relates the volume (V in L), temperature (T in K), pressure
(P in atm), and the amount of gas (number of moles n) by:

nRT
p =

|4
where R = 0.08206 (L atm)/(mol K) is the gas constant.

The van der Waals equation gives the relationship between these quantities for a real gas by

na
P+W (V—le) = nRT

36 Simplified Numerical Analysis

where a and b are constants that are specific for each gas.

Calculate the volume of 2 mol €O, at temperature of 50°C, and pressure of 6 atm. For C0,, a =
3.59 (L% atm)/mol?, and b = 0.0427 L/ mol. Because C0, is a real gas, so we need to use the
second equation for the solution. But for solving the second equation for the volume, obtain an
appropriate guess of the volume from the first equation: ideal gas equation.

Exercise 20: Golden-ratio corresponds to the order of which method:

(A) Secant (B) Regula-Falsi (C) Fixed-Point Iteration (D) Newton-Raphson

Exercise 21: Which of the following methods, has an explicit formula that can be used to
determine the required number of iterations in advance for achieving a given accuracy:

(A) Bisection (B) Regula-Falsi (C) Fixed-Point Iteration (D) Newton-Raphson (E)
Secant

Exercise 22: The convergence rate of which of the following methods is highest:

(A) Bisection (B) Regula-Falsi (C) Fixed-Point Iteration (D) Newton-Raphson (E)
Secant

Chapter 3

Polynomial Interpolation

Cornidor I: BASICS

otet's ,olan. it

3.1 Introduction
3.2 The Newton’s Divided Difference Interpolation
3.3 The Lagrange Interpolation
3.4 Deriving the Lagrange Interpolation Formula from the Newton’s Divided-Difference
3.5 Interpolation Formulas for Equally Spaced Nodes
3.6 Hermite Interpolation
3.7 Spline Interpolation
3.7.1 Linear Spline
3.7.2 Quadratic Spline
3.7.3 Cubic Spline

To unleash the topics of this Corridor, please delve into the principal book:
Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

http://www.timerenders.com.pk/

38 Simplified Numerical Analysis

Corridor II: ANALYSIS

ozet's think deep

3.8 Error of Interpolation

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

Corridor III: PROGRAMMING ARCADE

otet's do it

3.9 Algorithms and Implementations
The Newton's Divided Difference Interpolation Formula
Built-in MATLAB® Commands

To cross-check the results/output of the computer programs you would execute, please delve into
the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/

Polynomial Interpolation 39

3.9 Algorithms and Implementations

Question 21: Write down an algorithm (pseudo code) to interpolate or extrapolate the function
at a point using the nth-degree Newton'’s Divided difference interpolating polynomial.

Algorithm: Given n + 1 data points, approximate f(x) at x = xp with B,(xp) .

n: an integer as the degree of interpolating polynomial

x;,0 < i < n:real values as the aribrary nodes

fi,0 < i < n:real values as the function values corresponding to x; nodes
xp: real values as the entries

INPUTS:

OUTPUT: fxp:areal number as an interpolated value at x = xp

Step 1 Receive the inputs as stated above

Step2 fori=0,1,:-,n
ddfio = fi (Computing zeroth divided differences, f[x;] = f;)

Step 3 (Computing the divided differences of order 1 to n)

forj=1,2,---,n

fori =0,1,---,n—j f[xi""'xiﬂ'] -
ddf,; = [ddfi+1.j—1 - ddfi.j—l] f[xi+1' ""xi+j] - f[xi: '":xi+j—1]
l’] - . . —_— .
[xH'] xl] Xitj — Xi

Step 4 (Evaluating the interpolation polynomial at xp)

Setpro = 1

Set fxp = ddfyo n k-1

fork: 1'2'.-.'11_ (Pn=f[x0]+z f[xO!'”!xk] n(xp_xt)l>
pro = pro X (xp — x_1) =t =0
fxp = fxp+proxddfy,

Step 5 Print the output: fxp

STOP.

40

Simplified Numerical Analysis

Problem 15: Write a MATLAB® program for the second order Newton’s Divided Difference

Interpolation.
1 clc, clear;
2
3 Y%----mmmmmmmmmm e Input Section -----------=--=----mmmom oo - %
4
5 n=2; % degree of interpolating polynomial
6 f=1[5 10, 12];
7 x=1[0,1,3];
8
9 fprintf (' The Divided Difference Interpolation. \n')
10 fprintf (' Enter a real value at which the interpolation is to be obtained: \n') ;
11 xp = input ('Enter the real value: ') ;
12
13 Y%-------mmmmmmm e Processing Section -------=-==-==--o-momuu- %
14 % Computing zeroth divided differences,f[x_i] = f_i
15
16 fori=1:n
17 ddf(i, 1) = f(i) ;
18 end
19
20 % Computing the divided differences of order 1 to n
21
22 forj=2:n+1
23 fori = 1:n-j+1
24 ddf(i, j) = (ddf(i+1, j-1) - ddf(i, j-1)) / (x(i+j) - x(i)) ;
25 end
26 end
27
28 % Evaluating the interpolation polynomial at xp
29
30 pro=1; fxp = ddf(0 ,0) ;
31 fork=2:n+1
32 pro = pro * (xp - x(k-1)) ;
33 fxp = fxp + pro * ddf(1, k) ;
34 end
35
36 %Y%o--------m-mmmmmmmmooe- Output Section --------------------mmoom %
37 disp (' The interpolate or extrapolate value of function at x = xp is \n') ;
38 disp(fxp)

Polynomial Interpolation 41

Problem 17: Write a MATLAB® program for the Newton’s Divided Difference Interpolation.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

clc, clear;
Y%o---===mmmmmmmmm oo Input Section -----------=--=----mmmom oo - %
n=10; % degree of interpolating polynomial

fprintf (' The Divided Difference Interpolation. \n')

fprintf (' Enter real values as the arbitrary nodes \n')
fori=1:n
x(i) = input ('Enter the arbitrary nodes: ');

end
end
fprintf (' Enter real values as the function values corresponding to x_i nodes: \n ') ;
fori=1:n

f(i) = input ('Enter the corresponding function values: ') ;
end
fprintf (' Enter a real value at which the interpolation is to be obtained: \n') ;
xp = input ('Enter the real value: ') ;

Y%o--===mmmmmmmmmm oo Processing Section ---------=-=-==-=-------- %
% Computing zeroth divided differences,f[x_i] = f_i

fori=1:n
ddf(i, 1) = f(i) ;
end

% Computing the divided differences of order 1 to n

forj = 2:n+1
fori = 1l:n-j+1
ddf(i, j) = (ddf(i+1, j-1) - ddf(i, j-1)) / (x(i+j) - x(i)) ;
end
end

% Evaluating the interpolation polynomial at xp
pro=1; fxp = ddf(0 ,0) ;

fork = 2:n+1
pro = pro * (xp - x(k-1)) ;

42

Simplified Numerical Analysis

40

fxp = fxp + pro * ddf(1, k) ;

41 end

42

43 Y%-------mmmmmmmmmme oo Output Section ------------=--=----mmum %

44

45 disp (' The interpolate or extrapolate value of function at x = xpis\n') ;
46 disp(fxp)

Question 22: List out some built-in functions/commands of MATLAB® for curve fitting. Also
briefly explain the usage of the commands.

Interpl

Interpl is a built-in function of MATLAB® that is used to interpolate (through
piecewise interpolation in one-deimention) the function on using the given data points.
The general format of using interpl to approximate the function value/s yi
corresponding to the node/s x1i is given by,

yi = interpl(x, y, xi, 'method')

The arguments x and y are the vectors of abscissas and ordinates of the data points to be
given as the input. The size of both vectors must be of the same size. The argument x1i is
the point given as an input to the built-in function where the function is to be
interpolated. The input argument xi can either be a scalar or vector.

The following value can be used for the argument ‘method’: nearest, linear,
cubic, and spline. If no value is given to the argument ‘method’, then by default
MATLAB® takes the 1inear option.

Worked Example: Find the linear interpolation polynomial using cos(0.1) = 0.9950 and
cos(0.3) = 0.9553. Also, interpolate the value of cos(0.2).

> x = [0.1, 0.3];

>> y = [0.9950, 0.9553];

>> xi = [0.2];

>> yi = interpl(x,y,xi,'linear’')

yi = 0.9751

pchip(x, y)(mightalso be used as pchip(x, y, xi)) is another built-in function
of MATLAB® to interpolate using the piecewise cubic Hermite interpolation in one-
deimention.

Polynomial Interpolation 43

spline

spline (x, y)(might also be used as spline(x, y, =xi)) is another built-in
function of MATLAB® to interpolate using the piecewise cubic splines in one-
deimention.

Interp2
Interp2(x, y, Z, xi, yi)isanother built-in function of MATLAB® to interpolate
using the piecewise linear interpolation in two-deimentions (bilinear interpolation).
polyfit

polyfit is a built-in function of MATLAB® for regression, which is used to fit the
polynomial of degree m-1 for the given m data points given. It uses the least-squares
method. The general format of using polyfitis

polyfit (x, y, n)

The arguments x and y are the vectors of abscissas and ordinates of the data points to be
given as the input. The size of both vectors must be of the same size. The input argument
n will be the order of polynomial which is required to fit the polynomial. For an exact fit,
the value of order should be one less than the total number of data points.

Worked Example: Fit the approximate polynomial to the data points: (0.1,0.9950) and

(0.3,0.9553).

> x = [0.1, 0.3];

>> y = [0.9950, 0.9553];

>> p = polyfit(x,y,1)

p= -0.1985 1.0149
polyval

polyval is a built-in function of MATLAB® which is used to evaluate the value of
polynomial at a particular x. The general format of using polyval is

pv = polyval (p, x)

Here the argument p is a vector of coefficients of polynomial given as an input and the
input argument x is the point at which value is to be approximated. x can either be a
scalar or vector.

Worked Example: Evaluate the function f(x) = x5 — 12.1x* + 40.59x3 — 17.015x2 —
71.95x + 35.88atx = 9.

> p = [1 -12.1 40.59 -17.015 -71.95 35.88];

44

Simplified Numerical Analysis

>> pv = polyval(p, 9)
pv = 7.2611le+03

poly is a built-in function of MATLAB®, which is used to find the coefficients of the
polynomial whose roots are given. The general format of using poly is

pc = poly(r)
Here the input argument r is a vector containing the roots of the polynomial.

Worked Example: Find the polynomial whose roots are {6.5000, 4.0000, 2.3000, -
1.2000, 0.5000}

>> r = [6.5000, 4.0000, 2.3000, -1.2000, 0.5000];
>> pc = poly(r)
pc = 1.0000 -12.1000 40.5900 -17.0150 -71.9500 35.8800

Chapter Summary

Curve fitting refers to the process of constructing a curve (a mathematical function) that reasonably
fits the given discrete data points along a continuum. The obtained curve offers a simpler alternative to
the original function (whose values at discrete points were given) that might be used to estimate the
data values at points between the given points (and sometimes beyond the given data points, as well).

Regression and Interpolation are the two basic approaches for curve fitting. Regression is the process
of deriving a single curve that provides for the general trend of the data (and that curve is not required
to pass through any of the data points). Interpolation is the process of fitting a curve (a single function
or a piecewise function) that interpolates (passes through) each of the given data points.

Suppose that the values of a function f at different points x, x4, x5, --+, x,, are given. The points x; are
referred to as nodes or arguments and the n + 1 ordered pairs (xi,f(xi)),i =0,1,2,-+,n, are referred
to as data points of f. Interpolation (or, more precisely, polynomial interpolation) refers to the process
of approximating the value of f at any intermediate point to the given data points.

The interpolation process consists of determining the unique polynomial P, (x) of degree at most n that
interpolates (passes through) the given data points, i.e.,

B(x) = f(x)

Polynomial Interpolation 45

And then, the polynomial P,(x) serves as the formula to approximate the function values at
intermediate points to the given data points and, thus, is referred to as interpolating polynomial. If the
polynomial B,(x) is used approximate the function values at beyond the given data points, then the
process is called extrapolation.

¢ Newton’s Divided Difference Interpolation: For n + 1 arbitrarily spaced data points, (xq, fo), (x4, f1),
-+, (xn, fn), of a function f, the Newton’s Divided Difference interpolation formula for the interpolating
polynomial P, (x) of degree at most n is given by

B(x) = flxo] + flxo, x1](x — x0) + flx0, 1, %21 (x — x0) (x — x1)
+et f[xOrxlerr ,xn](x - xO)(x - xl) (X - xn—l)
or
Pu) = ol +) floo a2 = x)Ce = 1)+ (3 = i)
k=1

Here the kth divided difference of the function f with respect to the nodes x;, x; 1, ", X;+ is denoted
by flx;, Xi+1, -+, Xi+x] and is recursively defined by

Fl%Xir1 Xig2 o Xige) — f[xi/xi+1' ""xi+(k—1)]

Xi+k — Xi

f[xifxi+1""'xi+k] =
with f[x;] = f(x;) = f; as the zeroth divided difference.

e Lagrange Interpolation: For n + 1 arbitrarily spaced data points, (x, fo), (x4, f1), . (xn, fn), of a
function f, the Lagrange interpolation formula for the interpolating polynomial B,(x) of degree at most
n is given by

By (x) Lo()f (x0) + L1 (x)f (x1) + -+ + Ln () f (%)

n

> L) fo)

k=0

Here L, (x) denotes the kth Lagrange coefficient (also called cardinal polynomial) and is defined by

_ (o = 20) (x — 1) -+ (¥ = Xpe—1) (% = Xp41) -+ (x — x) _ - X=X
A e [S FT s s e Bl] e
j*k

and satisfies the Kronecker delta equation:

1 for x = x;,
Ly(x) =
0 for all x, except x = x;,

46

Simplified Numerical Analysis

First Theorem on Interpolation Error: If P, (x) is the polynomial of degree at most n that interpolates
a function f at n + 1 arbitrary nodes xo, x;,,%,, in an interval [a, b] and if f € C™*D[q, b], then for
each x in [a, b], there exists an ¢ in (a, b) for which

ARG

E(x) = fx)-PKx) = (x—xo)(x—xl)---(x—xn)m

Here E (x) is the truncation error of the polynomial interpolation.

A Lagrange interpolation formula can be obtained from the relevant Newton’s Divided Difference
interpolation formula, after some rearrangements.

Suppose that n + 1 data points, (xq, f), (x1,f1), -, (xn, f), of a function f are given on the interval
[a, b] for consecutively arranged and equispaced nodes xg, x4, X5, -, X», such that

a=xg <X <X < <xp_1<Xp=b
with astep size of length h =x; —x;_4, fori=1,2,3,::-,n
and f(x;) = f;

The Newton Forward-Difference Interpolation formula for the interpolating polynomial B,(x) of
degree at most n is given by

P,(x) = fO‘“"M%"‘%Asz-F __+a(a—1)(a—231;..(a—(n—l))AnfO
where
_ X — X
* = Th

Here the kth forward-difference of f at x; is denoted by A*f; and is recursively defined by

A%, = ARTYR) = ARTLf L, — AFTLf fork=2,3,--,n

with Af; = fiv1 — f;

The Newton Backward-Difference Interpolation formula for the interpolating polynomial P,(x) of
degree at most n is given by

P(x) = fot+tpBVf +wvzﬁn +

L BEADE+D) - (B+ (- D)

.y V' fn

where

Here the kth backward-difference of f at x; is denoted by V*f; and is recursively defined by
VEf, = W(VK1f) = kL —vkTlf fork =2,3,-,n

withVf; = fi—fi1

Polynomial Interpolation 47

e There are central difference interpolation formulas also available in the literature, which are more
suited for approximation of a function value around mid of the interval of interpolation. Following are
the examples of some well-known central difference interpolation formulas:

o Gauss Forward Difference Interpolation Formula

o Gauss Backward Difference Interpolation Formula
o Stirling;’s Central Difference Interpolation Formula
o Bessel's Central Difference Interpolation Formula

o Everrett’s Central Difference Interpolation Formula

Chapter Exercises

Exercise 01: Find the linear interpolating polynomial passing through the following set of pairs of the points.

o) {(0.1,sin(0.1)), (0.2,sin(0.2))}
(ii) {(12@) (1.4,(1_#4)2)}
(iii) {7, 24}

(iv) {(1,e‘1), (1.5,e_£_5)}

Exercise 02: Construct the interpolating polynomial to approximate the following functions at x = 0.25. Use
the arguments x, = —0.3,x; = 0, x, = 0.4.

® f(x) =In(1+x)
(i fE=e™
(iii) f(x) = tanx?

) f) ===

Exercise 03: Use the Lagrange Interpolating Polynomial and the Newton’s Divided Difference Interpolating
polynomial of the appropriate degree to interpolate the following:

0 Compute f(1.5), given that, £(0.5) = 0.479, f(1.0) = 0.841, f(2.0) = 0.909
(ii) Compute £(3.6), given that £(3.0) = 0.1506, £(4.0) = 0.3001, £(4.5) = 0.2663, f(4.7) = 0.2346

(iii) Compute f(2/3), given that,
f(1.1) = —0.071812, f(1.3) =—0.024750, f(1.7) =0.334937, f(2.0) =1.101000

48 Simplified Numerical Analysis

Exercise 04: Find the missing value in the following table using the Newton’s Divided Difference
Interpolating polynomial.

x -1 1 2 3
) —21 15 ? 3

Exercise 05: Find the missing value in the following table using Lagrange Interpolating Polynomial

x -2 0 2 4 6
fx) 33 5 9 ? 113

Exercise 06: Find, for what values of x, y attained extreme values using the data given below

x 3 4 5 6 7 8
y 0.205 0.240 0.259 0.262 0.250 0.224

Exercise 07: Use Lagrange Interpolating Polynomial of the appropriate degree to complete the record of the
export of a certain commodity during six years

Year: x 1981 1982 1983 1984 1985 1986
Export: y 43 84 93 ? 105 157

Exercise 08: Use the Newton’s Divided Difference Interpolating Polynomial to obtain an interpolation that
passing through the following points

x 0 0.1 0.3 0.4 0.7 0.8
y -15 —-1.27 —0.98 —0.63 -0.22 0.25

Exercise 09: Find a bound for the error associated with linear polynomial interpolation for the following
function. Use the arguments x, = 0, x; = 0.4.

® f@) =In(1+x)
(iD) fl)=e™

(iii) f(x) = tanx?

) fO) ===

Exercise 10: Find a bound for the error associated with quadratic polynomial interpolation for the following
function. Use the arguments x, = 0, x; = 0.1, x, = 0.4.

0 f(x) =sinx + cosx
(ii) f(x) =xInx
(iii) f(x) =xsinx —x3+2x—1

(iv) f(x) =vx —x?

Polynomial Interpolation

49

Exercise 11: Find a bound for the error associated with cubic polynomial interpolation for the following
function. Use the arguments xo = 1,x; = 1.3,x, = 1.6,x3 = 2.0

O]

(i)
(iif)
(iv)

f(x) =sin(e™ - 1)

f)=Inx—x*+x?>-1

f(x) = x2e™**
[0 = =

Exercise 12: Construct the Newton’s Forward and Backward Difference Interpolating polynomials passes
through the points (0.2,0.9980), (0.4,0.9686), (0.6,0.8443), and (0.8,0.5358).

Exercise 13: Construct the Newton’s Forward and Backward Difference Interpolating polynomials to
approximate the following functions at x = 1.2 and 2.0. Use the arguments xq = 1.1, x; = 1.3,x, = 1.5, x3 =

1.7, x, = 1.9

@

(i)
(iid)
(@iv)

f(x)=In(1+x)

fx) =e™
f(x) = tanx?
fO) ===

Exercise 14: Some data of the speed (V) versus drag coefficient (Cy) of a cricket ball is given in the following
table: Estimate C; atV = 150 km/h.

Vinkm/h Cy
0 0.5

80 0.48
120 0.39
160 0.32

Exercise 15: The mileages covered by a car per liter of fuel at different speeds are shown is the table below:

Using interpolation, approximate the fuel efficiency of the car at the speed of 100 km/h.

Speed in km/h Mileage covered in km/!
60 14.2
75 16.1
90 14.8
105 13.7
120 11.5

50 Simplified Numerical Analysis

Hint for the Solution: Use any interpolation formula, preferable the Newton’s Backward Difference
Interpolation formula.

Exercise 16: Some recorded data of number of deaths due to Novel Coronavirus (2019-nCoV) is given in the
table below. Use interpolation to determine number of deaths on January 29 and 31, 2020.

Date Number of Deaths
Jan. 24 16
Jan. 26 24
Jan. 28 26
Jan. 30 43
Feb. 1 45

Hint for the Solution: The given data spans over 9 days. The function values are given for x = 1,3,5,7,9. Find
an interpolating polynomial and use it to calculate value at x = 6 and x = 8 for the desired solutions.

Exercise 17: The census data of Pakistan is given in the following table (source: Pakistan Bureau of
Statistics):

Census Year Population in thousands
1951 33740
1961 42880
1972 65309
1981 84254
1998 132352
2017 207774

Use interpolation to determine the population for the year 2010.

Hint for the Solution: The given data spans over 67 years. The function values are given for x =
1,11,22,31,48,67. Find an interpolating polynomial and use it to calculate value at x = 60 for the desired
solution.

Exercise 18: Suppose that a table lists the values of the tangent function for the angles ranging from 0° to
450 in increments of 5°. What is the largest error that we would introduce by performing linear interpolation

between successive values in this table?

Chapter 4

Numerical Integration

Cornidor I: BASICS

4.1
4.2
4.3
4.4

otet's ,olan. it

Introduction

The Trapezoidal Rule

The Simpson’s 1/3 Rule

Generalized Closed Newton-Cotes Quadrature

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

http://www.timerenders.com.pk/

52 Simplified Numerical Analysis

Question 12: Tabulate Closed Newton-Cotes Integration formulas with relevant features, for both
the basic and the composite forms, separately.

Suppose that n data points, (xj,fj), where f(xj) = fj, of the integrand f(x) are given on the
interval [a,b] = [x,x;] for consecutively arranged and equispaced nodes x; such that h =

(b — a)/n. The Closed Newton Cotes quadrature formulas for the definite integral = fx’;nf(x) dx

are tabulated below.

Required
Numerical n;lmbfr of llnter]?ollating]
Integration Formula u?c ion polynomial used for
Method values at integral evaluation
€ equidistant (to derive the formula)
points
I=h(fy) (starting-point rule) or
[=h d-point rul
Rectangular) (end-point rule) or one Polynomial of degree 0
Rule I=h(f") (mid-point rule) (constant function)
* _ Xo+Xy
where f* = f (—2)
Trapezoidal . h 0+ £ wo Polynomial of degree 1
Rule S 2 fot 1 (linear polynomial)
Simpson’s 1/3 h Polynomial of degree 2
I==[f, +4f1 + three
Rule 3 Vo + 4/ + f2] (quadratic polynomial)
Simpson’s 3/8 3h Polynomial of degree 3
I=—T[fh+3(fi+f)+ four
Rule 8 Vo + 30+ 12) + £l (cubic polynomial)
Boole’s Rule h f' Pol lofd 4
I=—17fo +32f1 +12f, +32f3+7 ive olynomial of degree
(Milne’s Rule) 45 7o fi f2 f3 +7fal y &
I= Sh 19 75 50 50
Six-Point Rule - ﬁ[fo+ 75f +50f2 + 50f; six Polynomial of degree 5
+75f, + 19f;5]
[= h 41 216 27 272
Weddle’s Rule - E()[fo+ 216/, + 27, + 2725 seven Polynomial of degree 6
+27f, + 216f5 + 41f¢]

Numerical Integration 53
Possible Interpolating
F 1 values of n polynomial
Numerical ormuia (K represents used for
Integration (for n + 1 data points, (xj,fj),j =0,12,-,n, the number of integrfal
Method and n subintervals of equal length h = (x,, — x)/n) multiple evaluation
applications of (to derive the
the formula) formula)
I[=nh[fo+fi+fo ++ fr_1] (starting-point rule) or n=123 Piecewise
Composite | I =h[fi + fo + -+ fa_1 + fn] (end-pointrule) or (ie,n=K pog;g?:;g of
Rectangular | | = h[fy + f; + -+ fy_, + f;] (mid-point rule) couldbeany | e cewise-
Rule s positive constant
* __ J—] . .
where f;* = f (—2),fOI‘j =123,..,n integer) function)
n=123,-" Piecewise
Composite h (ie,n=K polynomial of
Trapezoidal | I = > [fo+2(A+f+ -+ fac) + fil could be any degree 1
Rule positive (piecewise-
integer) linear)
Piecewise
Composite [= h 4 r(li—eZ,n4_, Z'K polynomial of
Simpson’s - §[f0 ta(fit fs ot fud) lvl\‘/he;e ’ degree 2
1/3 Rule +2(+fu+ -+ fae2) + frl K=1,2,3.) (piecewise-
TR quadratic)
Piecewise
Composite I—ﬁ[f 1304+)+ 2(F) + 3 + f) + 2(F,) ?1;3;16_’%'1; polynomial of
Simpson’s g to 12 3 4 TI5 6 lvl\‘/he_re ’ degree 3
3/8 Rule +oot 3(fao + fro) + 1l K=1,23,.) (piecewise-
it cubic)
. 2h
Composite | | = 2(7fy + 320, + fs + fo + =+ fu) n=4812. | oo
oole’s Rule . - iecewise
(Composite +12(f2 + fo + fio + -+ fa-2) (I.L:/.\,/}r:e_r:K, polynomial of
Milne’s +32(fs+f7+ fin+ o+ fud) K=1,2.3,.) degree 4
Rule) + 14+ fo + fra + -+ fooa) + 7] T
5h
I= ﬁ[lgfo +75(fit+fo+ fir+ o+ fuoa)

Composite +50(fz + f7 + fia + -+ fa3) " (:1 g’ 110= 153(Piecewise
Six-Point +50(fs5+ fag+ fiz+ -+ fu2) .v.\,/here ’ polynomial of
Rule + 75y + fo + fia + o+ fact) K=1,23,.) | de8ree’

+38(fs + fio + fis + -+ + fa-s) + 19f4]
h
I= m[41f0 +216(fy + f7 + fiz + -+ + fa-s)

Composite T27(f fo frat o ¥ fuoa) n=6,12,18,.. | . owise
Weddle’s +272(fa+ fo+ fis + ot fuoa) (1.ev.\,,}r11e=re6K, polynomial of
Rule +27(fa + fio + fie + -+ fa-2) K=1,23,.) degree 6
+216(fs + fi1 + fir + -+ fa-1) R

+82(fo + fiz + fis + - + fu-e) + 41f3]

54 Simplified Numerical Analysis

Corridor II: ANALYSIS

otet's think deep

4.5 Truncation Error of the Trapezoidal Rule
4.6 Truncation Error of the Simpson’s 1/3 Rule
4.7 Further Discussions

4.8 The Gaussian Quadrature

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

Corridor III: PROGRAMMING ARCADE

otet's do it

4.9 Algorithms and Implementations
The Composite Trapezoidal Rule
The Composite Simpson’s 1/3 Rul
The Composite Simpson’s 3/8 Rule
Built-in MATLAB® Commands

To cross-check the results/output of the computer programs you would execute, please delve into
the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/

Numerical Integration 55

4.9 Algorithms and Implementations

Question 27: Write down the algorithm (pseudo-code) of the Composite Trapezoidal rule for
numerical integration of definite integrals.

Algorithm: To approximate the definite integral I = fab f(x) dx using the formula:

h
I = E[fo + z(fl +fot+fs+ "'+fn—1) +fn]

a and b: two real values as the endpoints of the interval of integration
INPUTS: e .
n: a positive integer as the number of subintervals
OUTPUT: I: areal number as an approximation to the integral
Step 1 Receive the inputs as stated above
Step 2 Setreal number x0 = a

Setreal number xn = b

Set real number h = (xn — x0)/n

Set real number fx0 as the value f(a)
Set real number fxn as the value f(b)

Step 3 SetI = fx0+ fxn
Step 4 Set real number xc = x0

Set real number sum = 0

forj=1,2,--,n—-1
Setxc=xc+h
Set fxc as the value f(xc)

Set sum = sum + fxc (Forming fi+fo+ -+ fry)
end for
Step 5 Set I = (h/2) x (I + 2Xxsum)
Step 6 Print the output: 1

56

Simplified Numerical Analysis

Problem 17: Write a MATLAB® program to evaluate the integral of f(x) = Vx2 + 1 over [0, 2] with 12
subintervals using the Composite Trapezoidal rule.

OO ~NOOULLESE WN -

NNNNNNNNRRRRRRRRBRR
NoOuUuDWNROWLOWOWNOOOUEWNEREO

clear, clc ;
fprintf('The Composite Trapezoidal Rule.")

x0 = input("\nEnter the lower limit of the integral: ') ;
xn = input("\nEnter the upper limit of the integral: ') ;
n = input("\nEnter the number of subintervals n: ') ;

h=(xn-x0)/n;
fx0 = sqrt(x0*x0 +1) ;
fxn = sqgrt(xn*xn +1) ;
I =fx0 + fxn;

xc = X0 ;

sum = 0.0 ;

forj=1:n-1
XC = XxC + h;
fxc = sqrt(xc*xc + 1) ;
sum = sum + fxc ;

end

I=(h/20)* I+ 2.0 *sum);

fprintf("The approximate integral = %5.5f.\n" ,I)

Numerical Integration 57

Problem 19: Write a MATLAB® program to evaluate the integral of f(x) = Vx2 + 1 over [0,2] with 12
subintervals using the Composite Trapezoidal rule. Define an inline MATLAB® function for evaluating f(x) at
the different nodes (i.e., for finding the values of f at the different nodes).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

clear, clc ;

f=@(x)sqrt(x~*2 + 1) ;
fprintf('The Composite Trapezoidal Rule.")
x0 = input('\nEnter the lower limit of the integral: ') ;

xn = input("\nEnter the upper limit of the integral: ') ;
n = input("\nEnter the number of subintervals n: ') ;

h=(xn-x0)/n;

fx0 = f (x0) ;
fxn = f (xn) ;

I =fx0 + fxn ;

xc = x0 ;
sum = 0.0 ;

forj=1:n-1
XC = XC + h;
fxc = f (xc) ;
sum = sum + fxc ;

end

I=(h/2.0)*(+2.0%*sum);

fprintf('The approximate integral = %5.5f.\n" ,I)

58 Simplified Numerical Analysis

Question 28: Write down the algorithm (pseudo-code) of the Composite Simpson’s 1/3 rule for
numerical integration of definite integrals.

Algorithm: To approximate the definite integral I = f: f(x) dx using the formula:

h
I= g[fo + 4(f1 +fs+- +fn—1) + z(fz +fat +fn—2) + fn]

a and b: two real values as the endpoints of the interval of integration
INPUTS: { L . .
n: a positive even integer as the number of subintervals
OUTPUT: I: areal number as an approximation to the integral
Step 1 Receive the inputs as stated above
Step 2 Setreal number x0 = a
Setreal number xn = b
Set real number h = (xn — x0)/n
Set real number fx0 as the value f(a)
Set real number fxn as the value f(b)
Step 3 SetI = fx0+ fxn
Step 4 Set real number xc = x0
Setreal number sum1 =0
Setreal number sum2 =0
forj=1,2,--,n—1
Setxc=xc+h
Set fxc as the value f(xc)
if jis odd
Set sum1 = sum1l + fxc (Forming f; +fs+ -+ fr_q1)
else
Set sum2 = sum?2 + fxc (Forming fo+f,+ -+ fr2)
end for
Step 5 Set I = (h/3) x (I + 4xsuml + 2Xsum2)
Step 6 Print the output: 1

STOP.

Numerical Integration 59

Problem 21: Write a MATLAB® program to evaluate the integral of f(x) = Vx2 + 1 over [0, 2] with 12
subintervals using the Simpson’s 1/3 rule.

clear, clc ;
fprintf('The Composite Simpson's 1/3 Rule.");

1

2

3

4 x0 = input("\nEnter the lower limit of the integral: ') ;
5 xn = input('\nEnter the upper limit of the integral: ') ;
6

7

8

9

n = input("\nEnter the number of subintervals n: ') ;

10 h=(xn-x0)/n;

11 fx0 = sqgrt(x0*x0 + 1) ;
12 fxn = sqrt(xn*xn + 1) ;
13 I =1fx0 + fxn ;

14 xc = x0 ;

15 suml =0.0; sum2 =0.0;

16

17 forj=1:n-1

18 XC = XC + h;

19 fxc = sqrt(xc*xc + 1) ;

20 if (rem(j,2) ~= 0)

21 suml = suml + fxc ;

22 else

23 sum2 = sum2 + fxc ;

24 end

25 end

26 I=(h/3.0)*(I+4*suml + 2 *sum2) ;
27

288 Yo-------mmmmmmmmemmeeeae Output Section ----==========-mmmmmmmmme o %
29

30 fprintf('The approximate integral = %5.5f.\n"' ,I)

60 Simplified Numerical Analysis

Question 29: Write down the algorithm (pseudo-code) of the Composite Simpson’s 3/8 rule for
numerical integration of definite integrals.

Algorithm: To approximate the definite integral I = fab f(x) dx using the formula:

3h
I = g[fo +3itfatfatfo+ ot oot)+ 2(fs+fo+ -+ faos) + ful
INPUTS: {a and b: two real values as the endpoints of the interval of integration
' n: a positive integer (multiple of 3) as the number of subintervals
OUTPUT: I: areal number as an approximation to the integral
Step 1 Receive the inputs as stated above
Step 2 Setreal number x0 = a
Setreal number xn = b
Set real number h = (xn — x0)/n
Set real number fx0 as the value f(a)
Set real number fxn as the value f(b)
Step 3 SetI = fx0+ fxn
Step 4 Set real number xc = x0
Setreal number sum1 =0
Setreal number sum2 =0
forj=1,2,--,n—-1
Setxc=xc+h
Set fxc as the value f(xc)
if j is divisible by 3
Set sum2 = sum2 + fxc (Forming f3+fs+ -+ fu_3)
else
Forming fi+f+f+fs
Set sum1 = sum1 + fxc ()
f +"'+fn—2+fn—1
end for
Step 5 Set I = (3xh/8) x (I + 3xsuml + 2Xxsum2)
Step 6 Print the output: 1

Numerical Integration

61

Problem 23: Write a MATLAB® program to evaluate the integral of f(x) = Vx2 + 1 over [0, 2] with 12
subintervals using the Simpson’s 3/8 rule.

1
2
3

O oo ~NO U >

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

clear, clc ;
fprintf("'The Composite Simpson's 3/8 Rule.")

x0 = input('\nEnter the lower limit of the integral: ') ;
xn = input("\nEnter the upper limit of the integral: ') ;
n = input("\nEnter the number of subintervals n: ') ;

h=(xn-x0)/n;

fx0 = sqrt(x0*x0 + 1) ;
fxn = sqgrt(xn*xn + 1) ;

I =fx0 + fxn;

Xxc = x0 ;

suml =0.0; sum2 =0.0;

forj=1:n-1
XC = XC + h;
fxc = sqrt(xc*xc + 1) ;
if (rem(j,3) == 0)
sum2 = sum2 + fxc ;
else
suml = suml + fxc ;
end
end
I1=(3.0*h/8.0)*({I+2*sum2 + 3 *suml) ;

fprintf('The approximate integral = %5.5f.\n" ,I)

Remark: Likewise the programs in the solutions of Problem 19, the programmer can modify the
programs in the solutions of Problems 21 and 23 to evaluate the function values at the desired
nodes through the use of user-defined function (in the C++ programs) and inline function (in the
MATLAB® programs).

62

Simplified Numerical Analysis

Question 38: List out some built-in functions/commands of MATLAB® for numerical integration.
Also briefly explain the usage of the commands.

trapz

trapz is a built-in function of MATLAB® which is used to compute the integral of
discrete values using the Composite Trapezoidal rule (multiple-application). The general
format of using trapz is

I = trapz(x , y)

The arguments x and y are the vectors of abscissas and ordinates of the data points to be
given as the input. The size of both vectors must be of the same size.

Worked Example: Approximate the integral fOZ\/x2+1 using the Composite
Trapezoidal rule.
>> x = 0:0.2:2;

>> y = sqgrt(x.”2+1);

> I trapz (x,y)
I =

2.9609

quad is a built-in function of MATLAB® which is used to compute the integral of given
functions using the Adaptive Simpson method of integration. The general format of using
quad is

q = quad(f, a, b)

Here the input argument £ is the function that has to be integrated. The arguments a and
b are the limits of integration to be given as input.

Worked Example: Approximate the integral foz Vx2 + 1 using quad function.
>> q = quad('sqrt(x.”2+1)', 0, 2)
q=

2.9579

quadl is a built-in function of MATLAB® which is used to compute the integral of given
functions using the adaptive Lobatto method of integration which can be more efficient
for high accuracies and smooth integrals. The general format of using quadl is

Numerical Integration 63

q = quadl(f, a, b)

Here the input argument £ is the function that has to be integrated. The arguments a and
b are the limits of integration to be given as input.

Worked Example: Approximate the integral foz Vx? + 1 using quadl function.
>> q = quadl('sqgrt(x.”2+1)', 0, 2)
q =

2.9579

Chapter Summary

e Numerical integration or quadrature refers to the process of numerically approximating the value of
the integral I = f: f(x) dx, by using the values of f at a finite number of sample points. The limits of

integration could be finite, semi-finite, or infinite.

e The integral is approximated by a numerical integration rule or quadrature formula, @, which is a
linear combination of certain function values:

IR

b n
F= [rwar = o = Y e f()
a =0
Here x; are the ordered points, called the quadrature nodes (or simply nodes), taken usually within the
limits of integration at which the function values f(xj) are known and w; are called the weights of the

quadrature formula.

e The quadrature formula satisfies the property that

b
a
where Ey is the truncation error (also called the error term) associated with the quadrature formula.

e The Newton-Cotes integration formulas are based on the approach that n + 1 number of equispaced
and ordered nodes are chosen within the limits of integration and the integrand function is replaced by
an interpolating polynomial of degree at most n by using the nodes, and then the analytic integration of
the polynomial is performed to obtain the formula. A Composite Newton-Cotes integration formula is
obtained by applying the relevant Newton-Cotes formula in each of the different consecutive segments
of the interval of integration and then summing the integrals over all the segments.

64

Simplified Numerical Analysis

The examples of Newton-Cotes integration formulas include Trapezoidal rule, Simpson’s 1/3 rule,

Simpson’s 3/8 rule, Boole’s rule, Six-Point rule, and Weddle’s rule.

The Trapezoidal rule to numerically integrate the function f over the interval [a, b] is

b—-a)

b
1= [rwar = 2701r@+ 1))

The Composite Trapezoidal rule to integrate a function f over the interval [a, b] is given by,

IR

b
h
D= [rwar = U+ 20+ ot et fa) + £

b —
where h = ==, fi=f(xj)) and x;=x+jh forj=0,1,2,--

n n

The Simpson’s 1/3 rule to integrate a function f over the interval [a, b] is given by,

b
h
| = J-f(x)dx = §[fo+4f1+fz]

b—a x;,—xg . .
where h = =T szf(x]-) and x; =xy+jh forj=0,1,2

The Composite Simpson’s 1/3 rule to integrate a function f over the interval [a, b] is given by,

b
h
I = ff(x)dx = §[f0+4(f1+f3+"‘+fn—1)+2(f2+f4+"'+fn—2)+fn]

b—a x,—Xxg

where h = =) fi=f(xj)) and x; =x,+jh forj=0,1,2,--

n n

n

A comprehensive summary of the Newton-Cotes formulas and the Composite Newton-Cotes formulas

can be found under Question 12 (page 252).

The error term E; of order 0(h3) associated with the Trapezoidal rule in approximating I = ff f(x)dx

is given by,
1 3

for some appropriate point ¢ in (a,b) andh = b — a.

The error term E¢y of order O(h?) associated with the Composite Trapezoidal rule in approximating I =

f: f(x) dx is given by,

b—a
Eer = ———h2f" (),

for some appropriate point 1 in (a,b) and h = (b — a)/n, where n is the number of subintervals of

[a, b].

Numerical Integration 65

e The error term Egof order O(h%) associated with the Simpson’s 1/3 rule in approximating I =
f: f(x) dx is given by,

1
Es = —55h*f®(®,

for some appropriate point ¢ in (a,b) and h = (b — a)/2.

e The error term Eg of order O(h*) associated with the Composite Simpson’s 1/3 rule in approximating
1= f: f(x) dx is given by,

b—a
= "htr@®
Ecs 180 R ()
for some appropriate point 1 in (a,b) and h = (b — a)/n, where n is the number of subintervals of
[a, b].
e Suppose I, denotes the approximate integral using a quadrature formula with step size h, and Ej
denotes the associated error. Then, the exact integral = I;, + Ej,

Similarly, suppose I/, denotes the approximate integral using the same quadrature formula with a step
size h/2, and Ej,, denotes the associated error. Then, the exact integral = I/, + Ej»

According to the interval halving method, for a Newton-Cotes integration formula with an error of order
O(h") an estimate of the error Ej, , is given by,

- 1
En;, = m(lh/z —1Ip)
This leads to a better approximation of the integral as below:
1
I = Iy, + —ZN_l(Ih/z—Ih)

This corresponds to a special process called Richardson Extrapolation, in which two estimates of the
solution are used to obtain a third approximation, which is a more accurate one. This approach for
numerical integration forms an initial stage of a relatively broader way of numerical integration, called
Romberg Integration. Recall that for the Composite Trapezoidal rule N = 2, and for the Composite
Simpson’s 1/3 rule N = 4.

e There could be several approaches for improving the estimates of the integrals:
o Using smaller step size (or larger number of subintervals)
o Using higher-order formula (e.g., using the Simpson’s rule instead of the Trapezoidal rule)
o Using Richardson’s extrapolation (i.e., using two less accurate estimates to obtain a more

accurate estimate).

o The degree of precision, also referred to as the order of accuracy, of a quadrature formula is p if and
only if the associated truncation error is zero for all polynomials of degree less than or equal to p, and
the error is not zero for some polynomial of degree greater than p. Note that the Trapezoidal rule is
based on the interpolating polynomial of degree 1 (linear polynomial). Therefore, it produces the exact

Simplified Numerical Analysis

result while integrating a polynomial of degree 1. Hence it has the degree of precision as 1. The
Simpson’s 1/3 rule might be expected to have a degree of precision as 2 because it is based on
interpolating polynomial of degree 2 (quadratic polynomial). However, it produces the exact result
while integrating a polynomial of degree 2, as well as degree 3. Hence, it has the degree of precision as 3.
This fact is also evident while deriving the error term for the Simpson’s 1/3 rule. This property,
together with certain other reasons, makes the Composite Simpson’s 1/3 rule often the best choice
among the Newton-Cotes integration formulas.

A concise description of the error terms associated with the Newton-Cotes formulas and relevant
degrees of precision can be found under Question 23 (page 276).

The Gaussian Quadrature is an advanced numerical integration technique in which the quadrature
nodes are selected in the interval of integration using the roots of some special polynomial to obtain an
optimal approximation of the integral.

EEE

Chapter Exercises

Exercise 01: Approximate the integral f: f(x)dx for the following functions over the interval [0, 1] using the

Trapezoidal, Simpson’s 1/3 and Simpson’s 3/8 rules.

@ fO)=x*+x-1 (i) f(x)=In(1+x) @@ fl) = T+ 22
@) G0 = cos (%) @))=
T Vx? 4+ 4

Exercise 02: Approximate the integral f; f (x)dx for the following functions over the interval [0, 1] using the

Composite Trapezoidal, Simpson’s 1/3, and Simpson’s 3/8 rules with h = 0.1.

) f)=x*+x-1 @) f(x)=In(1+x) (i) f(x) =
(v) f(x) = cos (g) W) fl)=

1+ x2

1
Nre

Exercise 03: Approximate the integral

16
_nxd
jsme
4

using the Composite Trapezoidal rule with h = 1 and five-digit rounding arithmetic.

Exercise 04: Find an approximate value of the integral f02(2+sin(2ﬁ))dx using the Composite

Trapezoidal rule for n = 10 and five-digit rounding arithmetic.

Numerical Integration 67

Exercise 05: Approximate the arc length of the following functions over the interval [0, 7]

4+ x
@ fx) = sin’x @ f@ = (=)
using the Composite Simpson’s 1/3 rule for h = % and four-digit rounding arithmetic.

Exercise 06: Find the approximate value of the integral f:(f(x))zdx using the Composite Simpson’s 1/3

rule, given that

f(xj) 0.205 0.240 0.259 0.262 0.250 0.224 0.220

Exercise 07: Approximate the area of a surface of revolution of the following curves:
@ x=4y
(ii) x=tany

about the y —axis from 0 <y <1 using the Composite Simpson’s 3/8 rule forn = 10 and four-digit
rounding arithmetic.

Exercise 08: Find the approximate value of the integral

3

f(")=fxzxﬁd"

0

using the Composite Boole’s rule with step size h = 0.25 and five-digit rounding arithmetic.

Exercise 09: Find the approximate value of the integral

5

fx) = fln(x— 1) dx

2

using the Composite Six-Point rule with step size h = 0.3 and five-digit rounding arithmetic.

Exercise 10: Find the approximate value of the integral

4

flx) = fsinh(xz) dx

1

using the Composite Weddle’s rule with step size h = 0.25 and five-digit rounding arithmetic.

68 Simplified Numerical Analysis

Exercise 11: Suppose that f(0) =1, f(0.5) = 2.5, f(1) = 2 and f(0.25) = f(0.75) = a. Find « if the
Composite Trapezoidal rule with n = 4 gives the value 1.75 for folf(x)dx.

Exercise 12: Suppose that f(4) = 0.240, f(6) = 0.262, f(8) = 0.224,f(3) = f(5) = f(7) = a,and f(9) =
0.220 Find « if the Composite Simpson’s 1/3 Rule gives the value 1.473 for

9
I=1 f(x)dx
/

Exercise 13: Suppose that f(0.2) = 1.56, f(0.4) = 2.00, f(0.6) = 3.01, f(0.1) = £(0.3) = f(0.5) = a, and
f(0.7) = 3.32 Find « if the Composite Simpson’s 3/8 rule gives the value 1.30312 for

0.7

I=ff(x)dx

0.1

Exercise 14: To approximate the integral of f(x) over the interval [0, 1] with an absolute error less than
%x 1074, how many subintervals are needed, in case of (a) the Composite Trapezoidal rule, (b) the

Composite Simpson’s 1/3 rule, and (c) the Composite Simpson’s 3/8 rule? Given that,

O fO=x*+x-1 (i) f(x)=mn1+x) @) f@) =10
, X 1
(iv) f(x) = cos (E) W) fx)= Nrrar

Exercise 15: Suppose we wish to evaluate the integral
flx) = fon sin(Vx)dx

numerically, with an error of magnitude less than 10~5. How many subintervals are needed if we wish to use
the Composite Trapezoidal and Composite Simpson 1/3 rules?

Exercise 16: Find the number of subintervals n or step length h so that the error E; . for the Composite
Trapezoidal rule and error Eg. for the Composite Simpson’s 1/3 rule is less than 5 X 10~* for numerically

integrating the Legendre polynomial,

6 3
A2 2
P,(x) =x 7x +35

over the interval [—1, 1].
Exercise 17: Obtain an upper bound on the absolute error when the Chebyshev polynomial of degree four,
Tu(x) = 8x* —8x2 +1

is integrated over the interval [—1, 1] by means of the Composite Simpson'’s 3/8 rule.

Numerical Integration 69

Exercise 18: Obtain an upper bound on the absolute error when the Laguerre polynomial of degree four
Ly(x) = x* —16x3 + 72x? — 96x + 24
is integrated over the interval [—1, 1], by means of the Composite Simpson'’s 3/8 rule.

Exercise 19: A car travels the loop of the racing track in 65 seconds. The speed of the car in meter/second is
recorded after every 5 seconds as shown in the following table:

Time 0 5110|1520 (25|30 | 35|40 | 45|50 | 55| 60 | 65

Speed 0 |40 | 62|70 |72 | 65|71 |79 75|72 |68 | 63| 75|82

Estimate the length of the loop of the racing track?

Hint for the Solution:

Clearly, the speed say S is shown to be a function of time, say t, and its values S(t) for different time instants
t are given. Obtain the estimate of the integral distance = f:s S(t) dt using any appropriate numerical
integration rule with the data given in the Table.

Exercise 20: The prime number theorem states that the number of primes in an interval a < x < bis

approximately
b1
[La
e Inx

Estimate the number of primes existing in [50,150].

Hint for the Solution: Numerically evaluate the given integral for a = 50 and b = 150 using different values
of f(x) = ﬁ at equispaced nodes in [50,150], separated by step length h = 10 or 20.

Exercise 21: The depths D (in meters) of a 80 meters wide river at different horizontal distances s from the
bank is given in the following table.

s 0 10 20 30 40 50 60 70 80

D 0 3.5 6 12 10 15 9 5 0

Estimate the area of the cross-section of the river.

Hint for the Solution: Clearly, D is shown to be a function of s and its values D(s) for different points s are
given. Obtain the estimate of the integral, area = foso D(s) ds using any appropriate numerical integration
rule with the data given in the Table.

70 Simplified Numerical Analysis

Exercise 22: A rectangular swimming pool is 35 feet wide and 60 feet long. At different positions P in feet
along the length of the pool, the depths D in feet are shown in the following Table. Estimate the volume of
the pool using numerical integration.

P 0 6 12 18 24 30 36 42 48 54 60

Hint for the Solution:

Clearly, D is shown to be a function of P and its values D(P) for different points P are given. Obtain the
estimate of the integral w = fOGOD(P) dP using any appropriate numerical integration rule with the data

given in the Table. Note that w is the estimated area of one side-wall of the pool along the length. Multiplying
it with the width of 35 feet will give the volume of the pool.

Exercise 23: We know that

1
1 T
f T2 dx =tan"x|} =tan"11 = "
0

This means that the value of m can be obtained evaluating the above integral and then multiplying the
answer by 4. Suppose that we want to approximate m to four decimal places. This means absolute error must
be less than 5.0 X 1075, This means that the error in approximating the integral must be less than

ix (5.0 x 1075) = 1.25 x 1073, Use the Composite Simpson’s 1/3 rule to approximate the value of 7. For

this, first determine that what should be the minimum number of subintervals that would keep the error less
than the tolerance.

Exercise 24: The number of subintervals required to apply the Composite Simpson’s 1/3 rule should be
(A) Multiple of 1 (B) Multiple of 2
(C) Multiple of 3 (D) unconditionally many (E) None of above

Exercise 25: The Simpson’s 1/3 rule is based on the integration of interpolating polynomial of degree 2. The
Simpson’s 1/3 rule can accurately integrate the polynomials of degree

(A)upto 1 (B) up to 2
(Qupto3 (D)up toany (E) None of above

Exercise 26: The Gaussian quadrature is different from the Newton’s Cotes Integration in regards to
(A) selection of polynomial degree (B) selection of quadrature nodes
(C) problem dependence (D) None of above

Chapter 5

Numerical Differentiation

Cornidor I: BASICS

otet's ,olan. it

5.1 Introduction

5.2 Finite Difference Approximations of Derivatives using the Taylor Series
5.2.1 First Order Derivatives
5.2.2 Second Order Derivatives

5.3 Listing of the Derivative Formulas

To unleash the topics of this Corridor, please delve into the principal book:
Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

irj +1

ij i+ 1,) i,j

http://www.timerenders.com.pk/

72

Simplified Numerical Analysis

jm1,j

i—1.]

i,j

P+1

e

K
1]

R

ij+1

Gj—1

Chapter 6

Direct Linear Solvers

Corridor I: BASICS

otet's ,olan. it

6.1 Introduction to Linear Systems
6.2 Solving Linear Systems using the Gaussian Elimination Method
6.3 Pivoting Strategies
Partial Pivoting
Scaled Partial Pivoting
Complete Pivoting
6.4 The Gauss-Jordan Method
6.5 Solving Linear Systems using the LU Factorization Method
6.5.1 The Doolittle’s Method
6.5.2 The Crout’s Method
6.5.3 The Cholesky’s Method

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

http://www.timerenders.com.pk/

74 Simplified Numerical Analysis

Methods for
Solution of
Linear Systems
|
I [S
Direct Iterative
Methods Methods
Methods for | | | .| [. T Non-
Elimination Factorization Stationary -
very small Stationary

systems | - Methods (Methods - Methods ‘ ‘ Methods
[N Naive- LU- [B Conjugate |

Invgsshbaésed Gaussian Factorization Gauss-Jacobi Gradient

e Elimination methods: methods
— —\ M Doolittle's — — | — —

. Gaussian
Gra]i}l:lcgl Elimination method; Gauss-Seidel GMtl;E(Si
R with Pivoting: Crout's e
method

[| |Partial; - - Successive || | . more_

Cramer's rule Scaled Partial; Cholesky's Over- metgo ds

Complete method Relaxation

Gauss-Jordan

Fig. (6.3): A classification chart of linear solvers.

Corridor ITI: ANALYSIS

otet's think deep

6.6 Operation Count Analysis
6.7 Matrix Inversion

To unleash the topics of this Corridor, please delve into the principal book:
Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

http://www.timerenders.com.pk/

Direct Linear Solvers 75

Corridor III: PROGRAMMING ARCADEL

otet's do it

C <)

People have been communicating and interconnecting since the beginning, but in

this era the communications and interconnections without modern technologies
(like phones, networks, internet, radio, and television) stand nowhere in regards
to possibility or survival- Likewise, people have been doing mathematics since early
ages, but in this modern era the mathematical applicability without making use
of the computers stands nowhere: Let’s modernize “OUR” culture of doing

mathematics so that [t can be useful for all the disciplines of science and

engineering- It’s time to lead the frontiers of the knowledge and its applicability,
. 9,

Remark: Suggestion: Before this Section, study, Corridor III of Chapter 07 to cope the difficulty level.

6.8 Algorithms and Implementations
The Gaussian Elimination Method with Partial Pivoting
Solving AX = B using the Doolittle's Method
Solving AX = B using the Crout's Method
Solving AX = B using the Cholesky's Method
Performing Operation Count Analysis
Built-in MATLAB® Commands

To cross-check the results/output of the computer programs you would execute, please delve into
the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

6.8 Algorithms and Implementations

http://www.timerenders.com.pk/

76 Simplified Numerical Analysis

Question 20: Write down an algorithm (pseudo code) to solve a linear system AX = B using the Gaussian
Elimination method with partial pivoting.

Algorithm: To solve AX = B.

n: an integer as the number of equations and unknowns
INPUTS: A= (a,-,-), 1 <i,j < n:areal valued square matrix as the coefficient matrix

B = [by, by, -, b,]T: a real valued vector as the vector of right hand side constants

- T. ;
OUTPUTS: {X [x1, %2, x,]": 2 real valued vector as t}.le solutlor'l vector
or a message that the given system has no unique solution

Step1 Receive the inputs as stated above

Step2 (Forward Elimination Phase)

fori=1,2,---,n—1
Setr =i
forj=i+1,::-,n

(Searching largest absolute coefﬁcient)
if (layl < |az]) r=j

in ith column for partial pivoting

if (a,; = 0) OUTPUT (‘The given system has no unique solution’) and STOP

else
if (r # i), then interchange the ith row with rth row, and b; with b,

fork=i+1,i+2,---,n
. Ai
multiplier = —
i row replacement in the
augmented matrix for
eliminating the coefficients

below the pivot

forj=i+1,i+2,,n
ayj = ap; — multiplier X a;;

by = b, — multiplier X b;

Step3 if (a,, =0) OUTPUT (‘The given system has no unique solution’) and STOP

else go to step 4

Step 4 (Back Substitution Phase)

b,

Xp =—
" ann
fori=n-1,---,2,1

sum =10

forj=i+1,i+2,,n] 1 n

sum:sum+ai]-xxj$ x;=—|b; — Z a;jx;
_ [b; — sum] J Gii j=i+1
e a;;

Step5 Print the output: X = [xq, x5, ..., x,]T and STOP.

Direct Linear Solvers 77

Problem 17: Write a MATLAB® program to solve the following linear system using the Gaussian
Elimination method with partial pivoting. For simplification, specify the linear system within the program.

© 00N O U1 B W N -

W W WWWwWWNNNNNNNNNNRRRRRRRPRP P P
O D WNPOWOU®WNOUDRNWNROWOONOGOUDNWNLIERO

1.7x1 + 2.3x2 — 1.5x3 = 2.35
11x, + 1l6x, — 19x; = —094
2.7x1 — Z.sz + 1.5x3 = 2.70
clc, clear;
n=3;

fprintf ("'The Gauss Elimination Method with partial pivoting.\n')

a=[17,23,-15;1.1,16,-1.9;2.7,-2.2,1.5];
b=[2.35,-0.94,2.70];
Y%o--===mmmmmmmmmm oo Processing Section ---------=-=-==-=-------- %
% Forward Elimination Phase
% Searching largest absolute coefficient in the ith column for partial pivoting

fori=1:n-1
r=i;
forj =i+1:n
if (abs(a(r,i)) < abs(a(j,i)))
r=j;
end
end

if a(r,i) ==0
fprintf (' The given system has no unique solution')
break ;
else
ifr~=i
forj=1:n
temp = a(i, j) ;
a(i, j) = a(r, j) ;
a(r, j) = temp ;
end
end
end

templ = b(i) ;
b(i) = b(r) ;
b(r) = temp1l

78 Simplified Numerical Analysis
37 fork = i+1:n
38 multiplier = a(k,i)/ a(i,i) ;
39 forj = i+1:n row replacement in the
40 a(k,j) = a(k,j) - multiplier * a(i,j) ; GG R 0T
eliminating the coef ficient
41 end below the pivot
42 b(k) = b(k) — multiplier * b(i)
43 end
44 end
45 ifa(n,n) ==0
46 fprintf ("The system has no unique solution')
47 break;
48 else
49 x(n) = b(n) / a(n,n) ;
50 end
51
52 fori=n-1:-1:1
53 sum = 0.0 ;
54 forj =i+1:n n
.. . 1
55 sum = sum + a(i,j) * x(@) ; (xi =— b; — Z aijij
56 end t j=i+1
57 x(i) = (b(i) - sum) / a(i,i) ;
58 end
59
BON Yo-------=====-=mmmemeeee Output Section ----===========mmmmmmm oo %
61 disp ('The solution of the given system is \n')
62 disp (x)

Remark: The MATLAB® programs in Problem 17 can be modified to receive the linear system at
the execution time (instead of fixing in the code). For this, lines 6 and 7 in the solution of Problem
17 should be replaced by the following code segment:

fprintf(Enter the coefficient matrix row-wise: %i unknowns.\n', n)
fori=1:n

forj=1:n
a(i,j) = input('Enter the element of matrix: ') ;
end
end

fprintf('Enter the elements of constant vector B: \n')
fori=1:n
b(i) = input('Enter the element of constant vector: ') ;
end

Direct Linear Solvers 79

Question 21: Write down an algorithm (pseudo code) to solve a linear system using the Doolittle’s method.

Algorithm: To solve a linear system AX = B, for which the factorization A = LU is possible.

n: an integer as the number of equations and unknowns
INPUTS: A= (ai]-), 1 <i,j < n:areal valued square matrix as the coefficient matrix

B = [by, by, -+, b,]T: a real valued vector as the vector of right hand side constants

L= (li]-), 1 < i,j < n: areal valued square matrix as the lower triangular matrix
OUTPUTS: (U = (u,-]-), 1 < i,j < n:areal valued square matrix as the upper triangular matrix

X = [x4,%3,,%,]T: areal valued vector as the solution vector

Step1 (Formation of L and U as factors of 4, i.e, A = LU)

fori=1,2,---,n

Set lii =1
Forj=1i,i+1,-,n
sum =0 .
fors=1,2,---,i—1
sum = sum + lig X ug; Uij = Qi — Z Lisus;
5=

u,-]- = aij — sum

forj=i+1,i+2,n

sum =0
fors=1,2,-,i—1 1 i-1
sum = sum + ljg X ug; lij=—|a; — z Lisug;
[aj; — sum] i s=1
Ui;

Step2 (Forward substitution phase for solving LY = B)

y1=by
fori =2,3,---,n
sum =0 i-1
forj=1,2,---,i—1
sum = sum + l; X y; yi=bi - Z Lijyj
j=1
y; = b; —sum

Step 3 (Back Substitution Phase for solving UX =Y)

I
" unn
fori=n-1,---,2,1
sum =0
forj=i+1,i+2,-,n] 1 n
sum=sum+ui]~><xj¥ xXi=—\y; — z Uy X
[yi — sum] J Uit =
Xj=—"—"—
U;j

STOP.

80 Simplified Numerical Analysis

Problem 19: Write a MATLAB® program to solve the following linear system using the Doolittle’s method.
For simplification, specify the linear system within the program.

1.7%; + 23x, — 15x3 = 2.35
11x; + 16x, — 19x3 = -—-094
2.7x, — 22x, + 15x3 = 2.70
1 clc, clear;
2
3 n=3;
4 fprintf ('The Doolittle''s Method. \n')
5
6 a=[1.7,23,-15;1.1,1.6,-1.9;2.7,-2.2,1.57;
7 b=[2.35,-094,2.70];
Bl Vo----=-====mmm—mmm—e e Processing Section ----------===--mommmumu %
9
10 | = zeros(n,n) ;
11 u = zeros(n,n) ;
12 fori=1:n
13 I(,iy =1;
14 forj =i:n
15 sum =0 ;
16 fors = 1:i-1 i1
17 sum = sum + (I(i,s) * u(s,i)) ; wj=a;—) lisug;
18 end s=1
19 u(i,j) = a(i,j) — sum ;
20 end
21
22 forj =i:n
23 sum =0 ;
24 fors=1:i-1 im1
25 sum = sum + (I(j,s) * u(s,i)) ; <ljl— :% aj —lesusiD
26 end “ s=1
27 1G,1) = (a@,i) = sum) / u(i,i) ;
28 end
29 end
30
31 % Forward substitution phase for solving LY=B
32
33 vy = zeros(n,1) ;
34 y(1) =b(1);

w
u

Direct Linear Solvers 81

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

fori=2:n
sum =0 ;
forj = 1:i-1 i-1
sum = sum + I(i,j) * y(j) ; (yi = b, —Zzi]—y,)
end j=1
y(@i) = b(i) - sum ;
end

% Back Substitution Phase for solving UX=Y

x=zeros(n,1) ;
x(n) =y(n) / u(n,n) ;
fori =n-1:-1:1

sum =0 ;

forj =i+1:n

sum = sum + (u(i,j) * x()) ; 1 L
end Ew T Z wij%
x(i) = (y(i) - sum) / u(i,i) ;

end

disp ('The L matrix is ')
disp (1)
disp ('The U matrix is ')
disp (u)
disp ('The required solution is')
disp (x)
[

Remark: Replace the lines 6 and 7 in the solution of Problem 19 with the following code segment
to receive the linear system at the execution time (instead of fixing in the code).

fprintf(Enter the coefficient matrix row-wise: %i unknowns.\n', n)
fori=1:n

forj=1:n
a(i,j) = input('Enter the element of matrix: ') ;
end
end

fprintf('Enter the elements of constant vector B: \n')
fori=1:n
b(i) = input('Enter the element of constant vector: ') ;
end

82 Simplified Numerical Analysis

Question 22: Write down an algorithm (pseudo code) to solve a linear system using the Crout’s method.

Algorithm: To solve a linear system AX = B, for which the factorization A = LU is possible.

n: an integer as the number of equations and unknowns
INPUTS: A= (ai]-), 1 <i,j < n:areal valued square matrix as the coefficient matrix

B = [by, by, -+, b,]T: a real valued vector as the vector of right hand side constants

L= (li]-), 1 < i,j < n: areal valued square matrix as the lower triangular matrix
OUTPUTS: (U = (u,-]-), 1 < i,j < n:areal valued square matrix as the upper triangular matrix

X = [x4,%3,,%,]T: areal valued vector as the solution vector
Step1 (Formation of L and U as factors of 4, i.e, A = LU)

fori=1,2,---,n

Setu; =1
forj=i,i+1,-,n
sum =0 \ -
fors=1,2,---,i—1
sum = sum + lig X ug; } lii = aji =) lisug
lj; = aj; — sum s=1
forj=i+1,i+2,---,n
sum =0
fors=1,2,---,i—1 i-1
sum = sum + ljg X ug; w; = li aj— Z Lisusj
[a;; — sum] i =1
Uy =——7——
u

Step2 (Forward Substitution Phase for solving LY = B)

Y1 = I
fori=2,3,---,n
sum =0
forj=1,2,-,i—1 1 i-1
sum = sum + l; X y; Vi =1, bi_zlij)’j
_ [b; = sum] u =1

L=
Lii

Step 3 (Back Substitution Phase for solving UX =Y)

Xn = Yn
fori=n-1,---,2,1
sum =0 n
forj=i+1,i+2,---,n
sum = sum + u;; X x; X =Yi _]_zp;luinj

X; =Y —sum

STOP.

Direct Linear Solvers 83

Problem 21: Write a MATLAB® program to solve the following linear system using the Crout’s method. For
simplification, specify the linear system within the program.

1.7x;, + 23x, — 15x3 = 2.35
11x; + 1lé6x, — 19x; = —094
2.7x, — 22x, + 15x3 = 2.70
1 clc, clear;
2
3 n=3;
4 fprintf ('The Crout"s Method.\n')
5
6la=[17,23,-15;1.1,16,-19;2.7,-2.2,1.57];
7 b=[2.35,-094,2.70];
8 Yo---mmmmmmmmmmmmm oo Processing Section ----------==-==-=--mo--- %
9
10 | = zeros(n,n) ;
11 u = zeros(n,n) ;
12 fori=1:n
13 u(i,iy=1;
14 forj =i:n
15 sum =0 ;
16 fors = 1:i-1 i1
17 sum = sum + (I(j,s) * u(s,i)) ; (zﬁ = q; —Zz,-suﬂ)
18 end 5=1
19 1(j,i) = a(j,i) - sum;
20 end
21
22 forj =i+1:n
23 sum =0 ;
24 fors=1:i-1 im1
25 sum = sum + (I(i,s) * u(s,i)) ; <ul—j :% a;; —Zlisust
26 end . s=1
27 u(i,j) = (a(i,j) -sum) /I(,i) ;
28 end
29 end
30
31 % Forward substitution phase for solving LY=B
32
33 vy = zeros(n,1) ;
34 y(1) =b(1)/1(1,1);

84 Simplified Numerical Analysis
35 fori=2:n
36 sum =0 ;
37 forj = 1:i-1 i1
. - . 1
38 sum = sum + I(i,j) * y(j) ; (yi == |b _Zl”ny
39 end " =1
40 y(i) = (b(i) - sum) /(i) ;
41 end
42
43 % Back Substitution Phase for solving UX=Y
44
45 x=zeros(n,1) ;
46 x(n) =y(n);
47 fori=n-1:-1:1
48 sum =0 ;
49 forj =i+1:n n
50 sum = sum + (u(i) * x(3)) ; <xi =yi-) ui,.x,)
51 end j=i+1
52 x(i) = y(i) = sum ;
53 end
54
55 Qo-------m-mmmmmmmee oo Output Section --------=--=--=------- %
56
57 disp ('The L matrix is ')
58 disp (I)
59 disp ('The U matrix is ')
60 disp (u)
61 disp ('The required solution is')
62 disp (x)

Remark: Replace the lines 6 and 7 in the solution of Problem 21 with the following code segment
to receive the linear system at the execution time (instead of fixing in the code).

fprintf(Enter the coefficient matrix row-wise: %i unknowns.\n', n)
fori=1:n

forj=1:n
a(i,j) = input('Enter the element of matrix: ') ;
end
end

fprintf('Enter the elements of constant vector B: \n')
fori=1:n
b(i) = input('Enter the element of constant vector: ') ;
end

Direct Linear Solvers 85

Question 23: Write down an algorithm (pseudo code) to solve a linear system using the Cholesky’s method.

Algorithm: To solve a linear system AX = B, for which the factorization A = LLT is possible.

n: an integer as the number of equations and unknowns
INPUTS: A= (a,-j), 1 <i,j < n:areal valued square matrix as the coefficient matrix

B = [by, by, -, b,]T: a real valued vector as the vector of right hand side constants

L= (l,-j), 1 <i,j < n: areal valued square matrix as the lower triangular matrix
OUTPUTS:)
X = [x4, x5, -, x,]T: areal valued vector as the solution vector

Step1 (Formation of L as factors of 4,i.e, A = LLT)

fori=1,2,---,n

sum =0
fork=1,2,---,i—1

/l-- =lay—) I \
sum = sum + Ly, X Uy, k i = | Qi ik)

lii = sqrt(aii — Sum)

forj=i+1,i+2-,n

sum =0
fork=1,2,-,i—1 1 i-1
sum = sum + Ly X Ly L = |- Z Licljk
= [aj; — sum] t k=1
T
u
Step2 (Forward Substitution Phase for solving LY = B)
1= Ly
fori =2,3,--,n
sum =0
forj=1,2,--,i—1 1 i-1
sum = sum + L;; X y; yizl— bi_zliﬂ’j
[b; — sum] i =
o
u
Step3 (Back Substitution Phase for solving LTX = Y)
oI
" Lun
fori=n-1,--,2,1
sum =0)
forj=i+1,i+2,-,n n
1
sum = sum + Lj; X x; xl:l_ yi — Z ljix;
ly; — sum] J t j=it1
Xj=—7-——
Lii

STOP.

86

Simplified Numerical Analysis

Problem 23: Write a MATLAB® program to solve the following positive definite linear system using the
Cholesky’s method. For simplification, specify the linear system within the program.

O 00 N O UL & WN -

W W WWWWNNNNNNNNNNRPRPRRRPERREPPRP R R
N WNP O WVWOWNOUDNWNRPEPO OONOOUDNWNIERLR O

0.4x, + 012x; = 14
0.64x, + 032x; = 1.6
-0.12x; + 032x, + 056x; = 54
clc, clear;
n=3;

fprintf ('The Cholesky''s Method.\n')
a=[0.4,0,60.12; 0, 0.64, 0.32; -0.12, 0.32, 0.56];
b=[1.4,16,54];

| = zeros(n,n) ;

fori=1:n
sum =0 ;
for k = 1:i-1
sum = sum + (I(i,k) * I(i,k)) ;

end ly= laii - lizk\
I(i,i) = sqrt(a(i,i) —sum) ; k=1

forj =i+1:n
sum =0 ;
fork =1:i-1 i1
. . 1
sum = sum + (I(i,k) * I(3,k)) ; <zﬁ == lai- > zikzjkD
end “ k=1
I(3,1) = (a(,i) - sum) /1(i,i) ;
end
end

% Forward substitution phase for solving LY=B

y = zeros(n,1) ;
y(1) = b(1) / I(1,1) ;

fori=2:n

sum =0 ; 1 =
for j = 11i-1 (y‘:l_u bi_Zlijyj]>
=

sum = sum + I(i,j) * y(j) ;

Direct Linear Solvers 87

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

end
y(i) = (b(i) - sum) / I(i,i) ;

end
% Back Substitution Phase for solving UX=Y
x=zeros(n,1) ;

x(n) =y(n) / I(n,n) ;
fori = n-1:-1:1

sum =0 ;
forj =i+1:n n
. G 1) % x(3))+ 1
sum = sum + (1(3,)) * x()) ; e I
end ° j=i+1
x(i) = (y(i) = sum) /1(i,i) ;
end
Yo-===mmmmmmmmmmm oo Output Section ---------=======------ %

disp ('The L matrix is ')

disp (1)

disp ('The required solution is')
disp (x)

Remark: The programs can be modified so that they receive the input linear system at the
execution time (instead of fixing in the code).

88 Simplified Numerical Analysis

Remark: Following are some notations and formulas that might be useful in carrying out
operation count analysis of the algorithms.

Y =) f@
p=1 p=1
DU@+9®] = > f@)+) 9@
p=1 p=1 p=1
Zl = 1+1+++1 = n
p=1
Zl = n—-k+1
p=k
Zp = 1+2+3+-+n = w = %2+0(n)
p=1
sz = 12422+ +n? n(n+1)6(2n+1) = n;+0(n2)

=
1l
_

Question 24: Perform the operation count analysis of the algorithm that involves the following
phases to solve an n X n linear system:

(1) Forward elimination to obtain the upper triangular form using the Gauss Elimination method.
(2) Back substitution to solve the upper triangular system.

(1) The forward elimination phase occurs just after setting the inputs in the algorithm. This phase
contains three nested loops. The first loop, sayi-loop (which ranges fromi=1ton—1),
corresponds to the n — 1 elimination stages of the method. For each row i, the ith element is
considered a pivot element. The second loop, say k-loop (which ranges from k =i + 1 to n),
corresponds to the elements below the pivot element to make them zero. The third loop, say j-
loop (which ranges from j = i + 1 to n) corresponds to the columns after the pivot element.

Note that, for any loop with index ranging from i + 1 to n, the number of passes/iterations will be
n—(i+1)+1 (or simply (n — i) passes). Therefore, each of the k-loop and j-loop has (n — i)
passes.

Each pass of k-loop will perform one division to obtain the multiplier, and one multiplication and
subtraction to update the right-hand side constant, b;. Moreover, in each pass of k-loop, (n — i)

Direct Linear Solvers 89

multiplications and (n — i) subtractions will be performed in j-loop to update the relevant entries
of the coefficient matrix, agj . Thus, in each pass of k -loop, the total number of
multiplications/divisions will be (1 +1+ (- i)) or (n—i+2) and the total number of
additions/subtractions will be (1 + n — i).

As there are (n — i) passes of k-loop in each pass of i-loop, therefore there will be (n — i) X (n —
i + 2) multiplications/divisions and (n — i) X (n — i + 1) additions/subtractions in each pass of i-
loop.

Hence, the total number of multiplications/divisions inn — 1 passes ofi-loop of the forward
elimination phase will be

m-Dn-i+2) = n—-D((n+2)-1i)
2 2
n-1 n-1
- Z[n(n+2)—ni—i(n+2)+i2] - Z[n(n+2)—2i(n+1)+i2]

n-1 n-1 n-1
- n(n+2)21—2(n+1)2i+2i2
i=1 i i=1

=1

= n(n+2)(n-1)-2(n+1) [(" — 1)"] [(n - 1)n(2n - 1)]

= n(n—l)[n+2—n—1+———]

n?> 5n 3

E (nz—n)[E+E] =L 2 Do
3 6 3 2 6 3

Similarly, the total number of additions/subtractions inn — 1 passes of i-loop of the forward
elimination phase will be

n-1 n-1
Ya-dm-i+D = Y @-d(@+1)-1)

- Z[n(n+1)—ni—i(n+1)+i2]

- Z[n(n +1)—i@n+1) + 2]

90 Simplified Numerical Analysis

= n(n+1)nill—(2n+1)nz:1l+ni1
i=1 i=

i=1

= nn+1)(n-1)-2n+1) [(n - 1)n] [(n - 1)n(2n - 1)]

= n(n—l)[n+1—n—%+———]

-)[n+1]_n3 n_n3+0()
- W mWET3] T 3 T3 T3 n

The summary of the operation count of the Gaussian Elimination phase is given as:

Operations
o . " . Total flops
Multiplications/divisions | Additions/subtractions
n® n? 5n nd n 2n3
Forward Elimination _— __Z - 2
37276 33 3 T0m)

(2) The back substitution phase occurs after the forward elimination phase. This phase contains
two nested loops. The first loop, say i-loop (which ranges fromi = n — 1 to 1), corresponds to
n — 1 of the components of the solution vector. The second loop, say j-loop (which ranges from
j =i+ 1ton), corresponds to the columns after the diagonal elements.

Each pass ofi-loop will perform one subtraction and one division to obtain the value of x;.
Moreover, in each pass of i-loop, the number of both of the multiplications and additions will be
n — (i +1) + 1 (or simply (n — i)) in j-loop. Thus, in each pass of i-loop, the total number of both
of the multiplications/divisions and additions/subtractions will be (n — i + 1).

Hence, the total number of the multiplications/divisions in the back substitution phase will be

-1 n—1

B~

-1
X) (n—1n
1+Z(n+1—l) = 1+@EDY 1= = 1+@+ De-D - [
i=1 l=1 i=1
S W S L L T
n? 272 T 272 T 72 "

Similarly, the total number of the additions/subtractions in the back substation phase will be

) n? n?
Z(n+1—z) = 7.|.__1 = 7.|.0(n)

Direct Linear Solvers 91

Finally, the summary of the operation count of the complete algorithm (including the two phases)
is given as:

Operations
L . " . Total flops
Multiplications/divisions | Additions/subtractions
o n® n? 5n nd n 2n® n? 7n
Forward elimination _— - - -
3 2 6 3 3 3 2 6
n? n n? n
Back Substitution — 4= - n?
2 2 2 2
n3 n® n? 5n 2n® 3n? 7n
Totals — 2 __ IR — - 4 -
3773 37276 3 2 6

Question 25: Perform the operation count analysis of the algorithm that involves the following
phases to solve an n X n linear system:

(1) Factorization of the coefficient matrix using the Doolittle’s method.
(2) Forward substitution to solve the lower triangular system.

(3) Back substitution to solve the upper triangular system.

(1) The factorization of the coefficient matrix 4 into the product of the unit lower triangular L and
the upper triangular U matrices occur just after setting the inputs in the algorithm. The
formulation of L and U as the factors of A contains three nested loops. The first loop, say i-loop
(which ranges from i = 1 ton), corresponds to the ith row and column of U and L respectively.
The second loop, say j-loop (ranges from j = i to n), corresponds to the column j of U and (ranges
from j = i + 1 to n), corresponds to the row j of L. The third loop, say s-loop (which ranges from
s =1toi— 1), corresponds to the multiplication of the rows of L and columns of U.

Note that, the j-loop corresponding to column j of U ranging from i to n, the number of
passes/iterations will be n—i+ 1. Similarly, the number of passes/iterations in j-loop,
corresponds to row j of L ranging from i + 1 to n, will be n — (i + 1) 4+ 1 (or simply (n — i)).

Each pass of j-loop will perform one subtraction to obtain the entry u;; of U. Moreover, in each
pass of j-loop, the number of both of the multiplications and additions will be (i —1) —1+ 1 (or
simply (i—1)) in s-loop. Thus, in each pass of j-loop, the total number of
multiplications/divisions will be (i — 1) and the total number of additions/subtractions will be
(14 i—1) or (i). Similarly, in each pass of j-loop, to obtain the entry [;; of L, the total number of
both of the multiplications and additions will be (i — 1) + 1 (or simply (i)).

92 Simplified Numerical Analysis

As there are (n—i+ 1) passes of j-loop in each pass of i-loop, therefore there will be
(n—1i+1) X (i — 1) multiplications/divisions and (n — i+ 1) X (i) additions/subtractions in
each pass of i-loop for the formulation of row i of U. Similarly, in each pass of i-loop, there will be
(n — i) x (i) multiplications/divisions and (n — i) X (i) additions/subtractions in each pass of i-
loop for the formulation of column i of L.

Hence, the total number of multiplications/divisions in n passes of i-loop for the formulation of
upper triangular matric U will be

Z(n—i+1)(i—1) - Z(n+1—i)(i—1)

n

= Y[+ Di-+1)—i2+i] = Z[(n+2)i—i2—(n+1)]

4

= (n+2)ii—zn:i2—(n+1)zn:1

i=1

- m+2) [n(n2+ 1)]_ n(n+1)6(2n+1) (it Dn
n n 1 n 1

= n(n+1)[5+1—§—g—1] = (n2+n)[g—g

~n n o

= %6 - oW

Similarly, the total number of additions/subtractions in n passes of i-loop for the formulation of
upper triangular matric U will be

3

T M om
66 6 n

Z(n _i+ 1) =
i=1

Moreover, the total number of multiplications/divisions and additions/subtractions in n passes of
i-loop for the formulation of unit lower triangular matric L will be

Zn:(n—i)(i) = Zn:(n—i)(i) = Zn:(m'—iz)

= n

. Z PR [n(n2+ 1)] _ [n(n + 1)6(2n + 1)]

n n
i=1 i=1

Direct Linear Solvers 93

= a0 [p-3-o = mem[i-2
nd n 3
= A = —+00n)

The summary of the operation count of the LU-factorization is given as:

Operations
T . iy : Total flops
Multiplication/Division Addition/Subtraction

Upper Triangular n® n n® n n3

Matrix U 5 6 578 3
Lower Triangular n® n n® n n® n
Matrix L 6 6 6 6 373

3 3

LU-factorization n_n n v n
3 3 3 3 3

(2) The forward substitution phase occurs after the formulation of L and U as factors of the
coefficient matrix for solving the lower triangular system. This phase contains two nested loops.
The first loop, say i-loop (which ranges from i = 2 to n), corresponds to n — 1 of the components
of the intermediate vectorY. The second loop, say j-loop (which ranges fromj=1toi— 1),
corresponds to the columns before the diagonal elements.

Each pass of i-loop will perform one subtraction to obtain the value of y;. Moreover, in each pass
of i-loop, the number of both of the multiplications and additions will be (i —1) —1+ 1 (or
simply (i — 1)) in j-loop. Thus, in each pass of i-loop, the total number of multiplications/divisions
will be (i — 1) and the total number of additions/subtractions will be (1 + i — 1) or ().

Hence, the total number of the multiplications/divisions in the forward substitution phase will be

i(i—l)

n

Zl Zn:l [n(n+1)—1]—(n—2+1)

i=2

2

n
= —+0n)

= Tt a1 = N
2 n -2 2

2

NS

Similarly, the total number of the additions/subtractions in the forward substation phase will be

94 Simplified Numerical Analysis

n

N _ m* n n?

(L) - 7+§—1 7+0(n)
i=2

The summary of the operation count of the Unit Lower triangular system LY = B is given as:

Operations
. o " . Total flops
Multiplication/Division | Addition/Subtraction
Unit Lower 2 2
. n° n n® n 2
triangular system S —4—--1 n?—-1
LY =B 2 2 2 2

(3) The back substitution phase occurs after the solution of the lower triangular system. This
phase contains two nested loops. The first loop, say i-loop (which ranges fromi =n —1to 1),
corresponds to n — 1 of the components of solution vector X. The second loop, say j-loop (which

ranges from j = i + 1 to n), corresponds to the columns after the diagonal elements.

Each pass ofi-loop will perform one subtraction and one division to obtain the value of x;.
Moreover, in each pass of i-loop, the number of both of the multiplications and additions will be
n — (i +1) + 1 (or simply (n — i)) in j-loop. Thus, in each pass of i-loop, the total number of both

of the multiplications/divisions and additions/subtractions will be (n — i + 1).

Hence, the total number of the multiplications/divisions in the back substitution phase will be

n—-1 n—-1 n—-1
1+Z(n+1—i) 1+ m+D Y 1-)
i=1 i=1 i=1
(n—1n
= 1+@+De-D - |[———
= 14+n*-1 2+n = n2+n = n2+0()
n 2 "2 2772 T 72 n

Similarly, the total number of the additions/subtractions in the back substation phase will be

n-1

) n> n n?
Z(n+1_L) = 7+§—1 = 7‘}‘0(71)
i=1

The summary of the operation count of the Upper triangular system UX =Y is given as:

Direct Linear Solvers 95

Operations
. . o . Total flops
Multiplications/Divisions | Additions/Subtractions
Upper triangular n? n n®> n 5 _
system UX =Y 7+§ ?"_5_1 nAn—1

Question 26: Perform the operation count analysis of the algorithm that involves the following
phases to solve an n X n linear system:

(1) Factorization of the coefficient matrix using the Doolittle’s method
(2) Forward substitution to solve the lower triangular system.
(3) Back substitution to solve the upper triangular system.

(1) The factorization of the coefficient matrix A into the product of the lower triangular L and the
unit upper triangular U matrices occur just after setting the inputs in the algorithm. The
formulation of L and U as the factors of 4 contains three nested loops. The first loop, say i-loop
(which ranges from i = 1 to n), corresponds to the ith column of L and ith row of U respectively.
The second loop, say j-loop (ranges from j = i to n), corresponds to the jth row of L and (ranges
from j = i + 1 to n), corresponds to the jth column of U. The third loop, say s-loop (which ranges
from s = 1to i — 1), corresponds to the multiplication of the rows of L and columns of U.

Note that, the j-loop corresponding to row j of L ranging from i to n, the number of
passes/iterations will be n—i+ 1. Similarly, the number of passes/iterations in j-loop,
corresponds to column j of U ranging from i + 1 ton, willbe n — (i + 1) + 1 (or simply (n — ©)).

Each pass of j-loop will perform one subtraction to obtain the entry [;; of L. Moreover, in each
pass of j-loop, the number of both of the multiplications and additions willbe (i —1) —1+ 1 (or
simply (i—1)) in s-loop. Thus, in each pass of j-loop, the total number of
multiplications/divisions will be (i — 1) and the total number of additions/subtractions will be
(14 i—1) or (i). Similarly, in each pass of j-loop, to obtain the entry u;; of U, the total number of
both of the multiplications and additions will be (i — 1) + 1 (or simply (i)).

As there are (n—i+ 1) passes of j-loop in each pass of i-loop, therefore there will be
(n—1i+ 1) x (i —1) multiplications/divisions and (n — i+ 1) X (i) additions/subtractions in
each pass of i-loop for the formulation of column i of L. Similarly, in each pass of i-loop, there will
be (n — i) x (i) multiplications/divisions and (n — i) X (i) additions/subtractions in each pass of
i-loop for the formulation of row i of U.

Hence, the total number of multiplications/divisions in n passes of i-loop for the formulation of
the lower triangular matric L will be

96 Simplified Numerical Analysis

n+1-H@GE-1)

n
= 1

m—i+1E-1)
i=1 i=

= N+ Di-m+1D)—i2+i] = Z[(n+2)i—i2—(n+1)]
i=1 i=1

4

= (n+2)ii—ii2—(n+1)i1
i=1 i=1 i=1

- +2) [n(n2+ 1)]_[n(n+1)6(2n+1) (4D
n n 1 n 1

= Tl(n+1)[z+1—§—g—1] = (Tl2+n)|:g—g

3 n3 n 3 3 0

= %76 - oW

Similarly, the total number of additions/subtractions in n passes of i-loop for the formulation of
the lower triangular matric L will be

n

Z(n i+ D) =

i=1

3

n n
+'g = —+0n)

n3
6 6

Moreover, the total number of multiplications/divisions and additions/subtractions in n passes of
i-loop for the formulation of the unit upper triangular matric U will be

i(n—i)(i) - i(n—ixo - i(m_ﬁ)
i=1 i=1 i=1
_ nii_z":iz _ n[n(n2+ 1)]_[n(n+1)6(2n+1)]

i=1 i=1
_ (+1)[n n 1]_(2+)[n 1
- mn 2376 - WWTV[eTh
n® n 3
= _6__-6 = —+0n)

The summary of the operation count of the LU-factorization is given as:

Direct Linear Solvers 97

Operations
L L o) Total flops
Multiplication/Division Addition/Subtraction
Lower Triangular n® n n® n n3
Matrix L 6 6 6 + 6 3
Upper Triangular n® n n® n n® n
Matrix U 6 6 6 6 3 3
3 3 3
LU-factorization n_n n Zi _n
3 3 3 3 3

(2) The forward substitution phase occurs after the formulation of L and U as factors of the
coefficient matrix for solving the lower triangular system. This phase contains two nested loops.
The first loop, say i-loop (which ranges from i = 2 to n), corresponds to n — 1 of the components
of the intermediate vector Y. The second loop, say j-loop (which ranges fromj=1toi — 1),

corresponds to the columns before the diagonal elements.

Each pass ofi-loop will perform one subtraction and one division to obtain the value of y;.
Moreover, in each pass of i-loop, the number of both of the multiplications and additions will be
(i—1)— 141 (orsimply (i — 1)) in j-loop. Thus, in each pass of i-loop, the total number of both

of the multiplications/divisions and additions/subtractions will be (1 + i — 1) or simply (i).

Hence, the total number of the multiplications/divisions in the forward substitution phase will be

1+Z(i) 1+Zi - 1+[@—1}
i=2 i

_ n2+n 3 n2+n 3 n2+0()
272 T 2ty T oprhwe

2

N _ n* n _n
Z(L) - —+E—1 = 7‘}‘0(71)

The summary of the operation count of the Unit Lower triangular system LY = B is given as:

98 Simplified Numerical Analysis

Operations
L o ") Total flops
Multiplication/Division | Addition/Subtraction
Lower 2 2
. n° n n“ n 5
triangular system — = —4+_--1 n+n-1
LY =B 2 2 2 2

(3) The back substitution phase occurs after the solution of the lower triangular system. This
phase contains two nested loops. The first loop, say i-loop (which ranges fromi =n —1to 1),
corresponds to n — 1 of the components of solution vector X. The second loop, say j-loop (which

ranges from j = i + 1 to n), corresponds to the columns after the diagonal elements.

Each pass of i-loop will perform one subtraction to obtain the value of x;. Moreover, in each pass
of i-loop, the number of both of the multiplications and additions will be n— (i +1) + 1 (or
simply (n — i)) in j-loop. Thus, in each pass of i-loop, the total number of multiplications/divisions

will be (n — i) and the total number of additions/subtractions will be (n — i + 1).

Hence, the total number of the multiplications/divisions in the back substitution phase will be

n-—1 n-—1 n-1
Z(n—i) = n 1—21’ = n(n—l)—[@]
i=1 i=1 i=1
= nz—n—n—2+E = w_n = n—2+0(n)
2 2 2 2 2

Similarly, the total number of the additions/subtractions in the back substation phase will be

n-1

. n> n n?
Z(n+1—z) = 74_5_1 = 7.|.0(n)
i=1

The summary of the operation count of the Upper triangular system UX =Y is given as:

Operations
o . i : Total flops
Multiplications/Divisions | Additions/Subtractions
. 2 2
Upper triangular n°on n° + n_ 1 n?—1
systemUX =Y 2 2 2 2

Direct Linear Solvers 99

Question 27: List out some built-in functions/commands of MATLAB® relevant to the linear
systems. Also briefly explain the usage of the commands.

Solving a linear system using A~ with \ left division operator

The left division operator offers a very powerful mechanism for solving a linear system
AX = B through solving X = A™'B. The general format of using this approach is

X = A\B
The division operator solves the system according to the following procedure:
If (A is a triangular matrix)
then back or forward substitution process is used.

else if (A is a positive definite and symmetric/Hermitian matrix)
then Cholesky’s decomposition is used

else if (A is a simply a square matrix)
then general LU decomposition is used

else if (4 is a dense/full matrix)
then QR decomposition is used

else if (A is a sparse matrix)
then a variant of sparse Gaussian Elimination method is used.

Solving a linear system using A~! through multiplication

The solution of X = A™*B through finding A~* and then multiplying it with the vector B
can also be obtained. Some ways to do so are as follows:

X = inv(A)*B

X

A*(-1)*B

X = (1/a)*B
It may be noted that solving the linear system using the division operator is more robust
and faster than the inverse based solution. The MATLAB® operators \ or / can also be

used to solve the under- and over-determined systems as well as ill-conditioned
matrices.

Solving a linear system using lu

lu is a built-in function of MATLAB® that returns an upper triangular matrix in U and a
unit lower triangular matrix L for a given square matrix A, such that A = LU according to
the Doolittle’s method.

100

Simplified Numerical Analysis

The general format of using 1u is
[L,U] = 1lu(a)

Worked Example: Find the LU decomposition of the coefficient matrix of the following

system,
04x, + Ox, + 0.12x; = 1.4
0x, + 0.64x, + 032x; = 16
012x, + 02x, + 056x; = 5.4

> A =[0.4 0.0 0.12; 0.0 0.64 0.32; 0.12 0.2 0.56];

>> [L,U] = 1lu(a)

L =
1.0000 0 0
0 1.0000 0
0.3000 0.3125 1.0000

U =
0.4000 0 0.1200
0 0.6400 0.3200
0 0 0.4240

Solving a linear system using chol

chol is a built-in function of MATLAB® that can be used to obtain the upper triangular
factor U of the Cholesky’s factorization of a given symmetric (or Hermitian) and positive
definite matrix A such that A = UTU (or the upper triangular factor LT of the Cholesky’s
factorization A = LLT). The lower triangular matrix is the transpose of the upper

triangular matrix. The general format of using chol is
U = chol(a)

If A is not positive definite, an error message is printed. When A is a sparse matrix, the

chol function is typically faster.

Direct Linear Solvers 101

L = chol (A, 'lower') returns the lower triangular matrix L of the factorization A =
LLT.

Worked Example: Find the Cholesky’s decomposition of the coefficient matrix of the

system,
0.4x; + 012x3 = 14
0.64x, + 032x; = 1.6
0.12x; + 032x, + 056x;3; = 54
> A = [0.400.12 ; 0 0.64 0.32 ; 0.12 0.2 0.56];
>> U = chol(a)
U =

0.6325 0 0.1897
0 0.8000 0.4000
0 0 0.6033

Chapter Summary

e A system of linear equations (simply called as linear system) is a set or collection of two or more
linear equations with the same set of variables whose simultaneous solution satisfies all the equations.
Precisely, a linear system can be referred to as a set of simultaneous linear algebraic equations.

e Ifm > n, where m is the number of equations and n is the number of unknowns, then the linear system
is called over-determined. If m < n, then the linear system is called under-determined.

e Alinear system AX = B is called homogenous if B is a zero vector (i.e., B = 0), and non-homogeneous
or inhomogeneous if B # 0.

e A non-homogeneous linear system AX = B is called consistent if it has a unique solution or infinitely
many solutions, and it is called inconsistent if it has no solution.

e IfA™! does not exist, then matrix A is called singular or non-invertible. If A~lexists then A is called
non-singular matrix and is invertible.

102 Simplified Numerical Analysis

e Ifdet(4) = 0, then A~! does not exist and the system AX = B does not have a unique solution; the
system either has no solution or infinitely many solutions.

e Although the steps of the algorithms for the solution of a linear system are elementary in nature, there
might be certain pitfalls. This raises the need of skillful selection and use of an appropriate algorithm for
obtaining the solution.

e In general, methods for the solution of linear systems (also called linear solvers) are evaluated based
on their accuracy, speed of convergence, and computer resource requirements (CPU-requirements,
memory requirements).

e A linear equation in two variables, say x and y, represents a line in xy-plane. If there exists a unique
solution of the system then it is the point where the two lines intersect.

e A linear equation in three variables, say x, y, and z, represents a plane in xyz-space. If there exists a
unique solution of such a system then it is the point where the three planes intersect.

e There are two broad categories of methods to solve linear systems: the direct (also called exact)
methods and iterative methods. The prominent features of these two categories can be found in
Question 5 (Section 6.1).

e Annxnsquare matrix U = (u;) is called the upper triangular matrix ifu;; = 0 wheneveri > j. A
linear system UX =Y is said to be upper triangular system if it's coefficient matrix is an upper
triangular one. It has a unique solution if no diagonal element is zero (i.e., |u;| # 0,fori = 1,2,-:+,n),
otherwise it has either no solution or infinitely many solutions. If there is a unique solution of an upper
triangular system then the solution can easily be obtained by a so-called back substitution process. In
analogy, the said propositions also hold for a lower triangular matrix L = (l,-]-) for whichl;; =0
whenever i < j. The solution of a lower-triangular system can be obtained by a similar so-called
forward substitution process.

e To solve a linear system AX = B, the Gaussian Elimination method aims at obtaining an upper
triangular system UX =Y, equivalent to AX = B. This process may be termed as forward elimination.
The upper triangular system can then be solved by back substitution.

e To guard against the pitfalls of the Gaussian Elimination method, the process of pivoting is performed
while using the method. The pivoting could be any of partial, scaled or complete.

e Pivoting refers to the interchanging of two rows of the augmented matrix so that the diagonal
coefficient (to be used as the pivot element) is of greatest magnitude among the possible ones for the
row under consideration.

e Pivoting must be performed if the main diagonal coefficient is zero (to make the triangular system non-
singular). Pivoting should be performed if the magnitude of the main diagonal element is a smaller one
(to prevent the propagation of the round-off error).

Direct Linear Solvers 103

The Gauss-Jordan method is a variant of the Gaussian Elimination method. It is based on the same
elementary row operations; however, it eliminates all the elements below as well as above the pivot
element (in the same column). Thus it does not produce an upper-triangular system for back-
substitution; rather it obtains a diagonal matrix in which the solution vector is almost readily available.

The LU Factorization or LU Decomposition method is another direct solver. A concise description of this
method (and its variants) can be found in Question 12 (Section 6.5).

The operation count analysis of an algorithm usually refers to the counting of the arithmetic operations
involved. This is useful in determining the execution time required by the algorithm. For numerical
computations, the operation count analysis is mostly considered as the counting of the floating-point
operations (simply called as flops) involved in the algorithm.

The additions/subtractions are considered to be requiring less CPU-time (being lighter operations) as
compared to the multiplications/divisions. Therefore, it might be appropriate to count the two types of
operations separately for the operation count analysis.

EEE

Chapter Exercises

Exercise 01: Solve the following system using the Gaussian Elimination method with back substitution.

le - 3x2 + X3 = -1
4x1 + 4x2 - 3x3 . 3
_le + 3x2 + X3 = 7

Exercise 02: Solve the following system using the Gaussian Elimination method with partial pivoting.

X1 + Xy + X3 = 6
3x1 + 3x2 + X3 = 12
le + Xy + SX3 = 20

Exercise 03: Solve the following system using the Gaussian Elimination method with partial pivoting and
three-digit rounding arithmetic.

2.5x; — 3x, + 4.6x3 = -1.05
—35x; + 2.6x, + 15x3 = —1446
—-6.5x; + —-35x, + 73x3 = -17.735

Exercise 04: Solve the following system using the Gaussian Elimination method with scaled partial pivoting.

Xy + X — 2x3 = 3
4x; — 2x, + x3 =5
3x1 - X7 + 3X3 = 8

Exercise 05: Solve the following system using the Gaussian Elimination method with scaled partial pivoting

and four-digit rounding arithmetic.

104 Simplified Numerical Analysis

3.03x;, — 121x, + 1l4x; = —119
—-3.03x;, + 121x, — 7x3 = 120
6.11x, — 142x, + 21x; = —139

Exercise 06: Solve the following system using the Gaussian Elimination method with complete pivoting.

X, + 2%, + 2x3 = 1
2x; + 6x; + 10x3 = =2
3x; + 1l4x, + 28x3 = -11

Exercise 07: Solve the following system using the Gaussian Elimination method with complete pivoting and
three-digit rounding arithmetic.

1.012x, — 2.132x, + 3.104x; = 1984
—2.132x, + 4.096x, — 7.013x; = —5.049
3.104x, — 7.013x, + 0014x; = —3.895

Exercise 08: Solve the following system using the Gauss-Jordan method

X1 + sz + X3 = 6
le + 3x2 + 4'.X'3 = 12
4x1 + 3x2 + ZX3 = 12

Exercise 09: Solve the following system using the Gauss-Jordan method and three-digit rounding arithmetic.

0.125x, + 0201x, + 0.401x; = 2.306
0.375x, + 0501x, + 0.601x; = 4.806
0.501x, + 0301x, + 0.001x; = 291

Exercise 10: Solve the following linear system AX = B using the Doolittle’s method.

X1 + X + X3 = 3
2x1 — x; + 2x3 = 16
3X1 + X + X3 = =3

Exercise 11: Solve the following linear system AX = B using the Doolittle’s method.

Xy + X + 2x3 + 2x, = 9
2x; + 4x, + 7x3 + 3x4, = 25
-x; — 5x, — 6x3 + 2x, = -17
Xy — X, + 3x3 4+ 8x, = 15

Exercise 12: Solve the following linear system AX = B using the Crout’s method.

8x1 + X7 - X3 = 8
2 + x, + 9x3 = 12
Xy — Txp + 2x3 = —4

Exercise 13: Solve the following linear system AX = B using the Crout’s method.

Xy + x + Ox3 + 3x, = 9
2x, + x3 — x3 + x4 = 5
3¢, — x + x3 + 2x4 = 6
—x; + 2x, + 3x3 — x4 = 4

Exercise 14: Solve the following linear system AX = B using the Cholesky’s method.

Direct Linear Solvers 105

le + 3x2 + 4x3 = 1
3X1 + 8x2 + 5x3 = 6
4X1 + 5x2 + 1OX3 = -1

Exercise 15: Solve the given linear system AX = B using the Cholesky’s method

4x; + x, + x3 + x4 = 9
Xy + 3% — x3 + x4, = 4
Xy — Xy + 2x3 + 0Ox3 = 4
X, + x + Ox3 + 2x, = 6

Exercise 16: The upward velocity of a rocket at three different times after its launching are given as follows:

Time, t in (s) Velocity, v in (m/s)
6 115.7
9 182.5
12 295.6

The velocity data is approximated by a polynomial as
v(t) =ait? tat+a;, 5<t<12
Thus, the coefficients a4, a, and a3 for the above expression are given by
36 6 1][M 115.7
81 9 1f|a2|=[182.5
144 12 1llas 295.6
Find the values of a;,a, and a3 using a linear solver. Then, calculate the velocity at t = 7,8,10,and 11.

Exercise 17: A factory produces three products, say Prod1, Prod2, and Prod3, by using three kinds of raw
materials, say Raw1, Raw2, and Raw3. The units of each of the raw materials needed to produce one unit of
each of the products are shown the table below.

Sectors Raw1l Raw?2 Raw3
Prod1l 5 3 1
Prod2 4 4 3
Prod3 2 1 3

If 335 units of Raw1, 532 units of Raw2, and 440 units of Raw3 are available, then how much each of the
three products can be produced.

Hint for the Solution: Assume that x;, x, and x; represent the quantities of the products: Prod1, Prod2, and
Prod3, respectively. The problem can be represented by a linear system whose solution would provide the
required values.

5x1 + 4x2 + 2x3 = 335
3x1 + 4x2 + X3 = 532
X1 + 3x2 + 3x3 = 440

106 Simplified Numerical Analysis

Exercise 18: Assume that the economy of a country depends on the three sectors: Food, Cloth, and House.
The production of one unit of each of these needs certain units of each of these sectors, as shown in the
following table:

Sectors Food Units Cloth Units House Units
Needed Needed Needed
Food 0.45 0.18 0.15
Cloth 0.25 0.27 0.07
House 0.30 0.40 0.45
The consumer demand is as in the table below:
Sector worth in billion rupees
Food 220
Cloth 185
House 550

For satisfying the above demands, what total output is required from each of the sectors.

Hint for the Solution in MATLAB: Assume that x;, x, and x3 represent the total outputs in units from Food,
Cloth and House sectors, respectively. The problem can be represented by a linear system whose solution
would provide the required values.

Exercise 19: A bakery produces three products: Cake, Pastry, and Muffin. It uses three kinds of materials:
Flour, Milk, and Sugar. The units of each of the raw materials needed to produce one unit of each of the
bakery products are shown the table below.

If 347 units of Flour, 604 units of Milk, and 502 units of Sugar are available, then how much each of the three

Product -> Cake Pastry Muffin
Flour 6 5 3
Milk 4 5 2
Sugar 2 3 3

products can be produced.

Exercise 20: Pivoting is necessary with the Gaussian elimination if

Exercise 21: Cholesky decomposition for a linear system is not possible, if

(A) the coefficient matrix is singular

(C) the linear system is ill conditioned

(A) the linear system is ill conditioned

(C) the coefficient matrix is asymmetric

(D) None of above

(D) None of above

(B) the linear system is homogenous

(B) the linear system is homogenous

Chapter 7

[terative Linear Solvers

Cornidor I: BASICS

otet's ,olan. it

7.1 Vector Norms and Distances
7.2 Convergence Criteria for Linear Solvers
7.3 Basic Methods

7.3.1 The Jacobi Method

7.3.2 The Gauss-Seidel Method

7.3.3 The SOR Method

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

EER
pE==s= 'lz “““ ® X; r—————————ﬂ ————————— ° X
1 £ 1 s
1 i 1 77
1 ’ 1 2%
: / :
: / al
! 4 A
L(: /) : ’/’/
:
1 a g
! ’
X
E I/ || = l,norm ! |81 = l,norm
L/ lal + 18] = [norm la] + 18] = [norm
X ® lyl = I, norm Iyl = [, norm
(@) (b)

Fig. (7.4): Explanation of the different types of distances between the two vectors.

107

http://www.timerenders.com.pk/

108 Simplified Numerical Analysis

Corridor II: ANALYSIS

ozet's think deep

7.4 Matrix Norms and Conditioning
7.5 lteration Matrix and Matrix Form of a Solver

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

Corridor III: PROGRAMMING ARCADEL

otet's do it

7.6 Algorithms and Implementations
“The Jacobi Method
Modification in the Jacobi Method's algorithm for the Gauss-Seidel Method
Modification in the Jacobi Method's algorithm for the SOR Method

To cross-check the results/output of the computer programs you would execute, please delve into
the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

7.6 Algorithms and Implementations

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/

Iterative Linear Solvers 109

Question 22: Write down an algorithm (pseudo code) to solve a linear system using the Jacobi method.

Algorithm: To solve AX = B, given an initial approximation X(©,

(n: an integer as the number of equations and unknowns
| A= (a,-j), 1 <i,j < n:areal valued square matrix as the coefficient matrix

= T. i i
INPUTS: { B = [bq, by, -+, b,]": areal valued vector as the vector of right hand side constants

X = [x4,x3,-,x,]T: areal valued vector (having initial approximation,X(O))
TOL: areal value as the error tolerance
N: an integer as the maximum number of iterations

OUTPUT: {X = [x4,x32,-,x,]T: areal valued vector as the approximate solution
’ (either on convergence, or on completing N iterations — which ever happens first)

Step 1 Receive the inputs as stated above

Step2 fork=1,2,3,:--,N perform steps 3-6
XP = [xpq,Xp3, -+, XxPy])T is to keep a copy of present

Step3 fori=12,,n Setxp; =x; {approximation X, because X is going to be updated

Step 4 fori=1,2,--,n (compute the components of solution vector X)
sum =0
forj=1,2,--,n 1 n
if #i) sum=sum+ a; x XP; xi(k) =—|b; — Z aijxj(k_l)
[b; — sum] Qii =
Xi = T ay Jj#i
Step5 Compute err = || X — XP|| (orerr = ||X — XP||/|IX]]) Here ||-|| is any suitable norm.
Step 6
if (err < TOL)then This means _that the consecutive
Exit/Break the | } approximations are nearly the same,
xit/Brea € loop Therefore, stop iterations.
end for loop of Step 2 (Go to Step 3)

Step 7 Print the output: X = [xq, x5, ..., x,]T

if (err <TOL) OUTPUT (‘The desired accuracy achieved; Solution converged.”)
else OUTPUT (“The number of iterations exceeded the maximum limit.")

STOP.

110 Simplified Numerical Analysis

Question 23: What modification a programmer needs to make in the algorithm (pseudo code) of
the Jacobi method (as given in the answer of Question 22) to convert it into the Gauss-Seidel
method for solving a linear system.

The algorithm (pseudo code) of the Jacobi method (as given in the answer of Question 22) can be
converted into the algorithm of the Gauss-Seidel method simply by replacing its Step 4 with the
following:

Step4 fori=1,2,---,n (compute the components of solution vector X)

sum =0 -1 n
forj=1,2,,n] /Sum Z x4 Z ax 1)\
1

if #1i) sum=sum+a,—j><xj} =

xi=w J \f”:—[b—sum] /

ajj

Question 24: What modification a programmer needs to make in the algorithm (pseudo code) of
the Jacobi method (as given in the answer of Question 22) to convert it into the Gauss-Seidel
method with over-relaxation (i.e., the SOR method) for solving a linear system.

The algorithm (pseudo code) of the Jacobi method (as given in the answer of Question 22) can be
converted into the algorithm of the SOR method simply by taking one more input:

WF = 1.3: areal value as the over — relaxation / weighting factor

And then replacing Step 4 with the following:

Step 4
fori =1,2,---,m (compute the components of solution vector X)

sum =0
forj=1,2,-,n sum = Za” @ o Z a x(k)
if G#i) sum=sum+ ay;Xx; =
b: —
Xi = w xi(k) = — [bl — sum]
a;; Qii
x; = WFxx; + (1-WF)XP; (apply over — relaxation)

Iterative Linear Solvers

Problem 18: Write a MATLAB® program to solve the following linear system using the Jacobi method. Take
initial approximate solution as: X(® = [0, 0, 0]7. The iterations of the method should stop when either
the approximation is accurate within 1076, or the number of iterations exceeds 200, whichever happens

first.

OCONOOUDRWN -

5x1 + 3x2 + ZX3 = 17
3X1 + 4'x2 - X3 = 8
—X1 + X - 3X3 = -8
clc ; clear ;
n=3; % number of unknowns
TOL = 0.000001 ; % error tolerance
N = 200 ; % maximum number of iterations

fprintf("The Gauss-Jacobi Method for solving a system of %i unknowns.\n', n)

fork = 1:1:N

fori=1:n
xp(i) = x(i) ;
end

fori=1:n
sum =0 ; "
forj=1:n K1
if (j ~=1) Zaiij()
sum = sum + a(i,j) * xp(j) ;
end
end

j=1
J#i

x(i) = (b(i) - sum) / a(i,i) ; 77 = i[bi — sum]
end it

sum = 0.0 ;

fori=1:n _
sum = sum + ((x(i) = xp(i)) * (x(i) = xp(i))) ; Computing

end l, — norm

err = sgrt(sum) ;

if (err < TOL) break ; end

end

112 Simplified Numerical Analysis

EMl %0---------mmmmmmm e Output Section ----==========-mmmmmemom %
42

43 fprintf('The latest approximate solution vector is given by: ')

44 disp(x)

45

46 if (err < TOL)

47 fprintf("\nThe desired accuracy achieved; Solution converged.')
48 else

49 fprintf("\nThe number of iterations exceeded the maximum limit.")
50 end

Remark: Replacing xp[j] by X[j] in line 24 of the MATLAB® program in Problem 18 would
convert the program for the Gauss-Seidel method, because it would then correspond to

computing:
i-1 n
sum = Z ai]'xj(k) + Z aijxj(k_l)
j=1

j=i+1

Remark: In the program of Problem 18, the code segment of lines 43-44 can be placed just before
line 39 to print the latest result on completion of each of the iterations.

Problem 20: Write a MATLAB® program to solve the following linear system using the Gauss-Seidel
method with over-relaxation (the SOR method). Take initial approximate solution as: X(® =[0, 0, 0]”
and over-relaxation factor as 1.2. The iterations of the method should stop when either the approximation is
accurate within 10~%, or the number of iterations exceeds 200, whichever happens first.

5¢4 + 3x, + 2x3 = 17
3x; + 4x, — x3 = 8
-x; + x, — 3x3 = -8
1 clc; clear;
2
3 n=3; % number of unknowns
4 TOL = 0.000001 ; % error tolerance
5 N =200; % maximum number of iterations
6 WF=1.2 % over-relaxation factor
7
8 fprintf('The Gauss-Seidel method with over-relaxation for solving a system.") ;
©
10 a=[5,3,2;3,4,-1;-1,1,-3];
11 | b=1[17, 8, -8];
12
13
14 | x(1:n) = 0.0 ; % setting initial approximation as zero vector

Iterative Linear Solvers 113

16 %--------------mmmme oo Processing Section ------=======-==cmmmuuuuu %

17

18 fork =1:1:N

19

20 fori=1:n

21 xp(i) = x(i) ;

22 end

23

24 fori=1:n

25 sum =0 ;

g? forn]: (; i: i) Z a;; X (latest value oij)
28 sum = sum + a(i,j) * x(j) ; =

29 end

30 end

31 1

32 x(i) = (b(i) - sum) / a(i,i) ; x® = —[b; — sum]
33 Qi

34

35 x(i) = WF * x(i) + (1 - WF) * xp(i); x; = WFxx; + (1 —WF)XP;
36 end

37

38 sum = 0.0 ;
39 fori=1:n

40 sum = sum + ((x(i) = xp(i)) * (x(i) - xp(i))) ; Computing
41 end l, —norm
42 err = sqrt(sum) ;

43

44 if (err < TOL) break ; end

45

46 end

47

48 Oo-----mmmmmmmmmm e Output Section ------=-=====-—=-—cmmmmo- %

49

50 fprintf('The latest approximate solution vector is given by: ')

51 disp(x)

52

53 if (err < TOL)

54 fprintf("\nThe desired accuracy achieved; Solution converged.')

55 else

56 fprintf("\nThe number of iterations exceeded the maximum limit.")

57 end

Remark: Note that setting the weighting factor of over-relaxation (WF) as 1.0 in the solutions of
Problem 20 would make the programs for the Gauss-Seidel method.

Remark: In the program of Problem 20, the code segment of lines 50-51 can be placed just before
line 46 to print the latest result on completion of each of the iterations.

114 Simplified Numerical Analysis

Remark: The MATLAB® programs in Problem 18 and 20 can be modified to receive the linear
system at the execution time (instead of fixing in the code). For this, the lines 7-8 in the program
of Problem 18 and lines 10-11 in the program of Problem 20 should be replaced by the following
code segment:

fprintf(Enter the coefficient matrix row-wise: %i unknowns.\n', n)
fori=1:n
forj=1:n
a(i,j) = input('Enter the element of matrix: ') ;
end
end

fprintf('Enter the elements of constant vector B: \n')

fori=1:n
b(i) = input('Enter the element of constant vector: ') ;
end

Chapter Summary

e The norm of a vector is a real-valued function that provides a measure of “size”, “length”, or
“magnitude” of the vector. Let R denotes the set of real numbers, and R" denotes the space of
n-dimensional real-valued column vectors. A norm of a vector on R" is a function, ||-|| : R" -
R, with the following properties,

1. |IX|]| =0, forall X € R"

2. ||X|l = 0,ifand only if X = 0 in R"

3. |laX]|| = |all|X]|, foralla € Rand X € R"
4. [IX+Y| <|IXI[+ Y], forall X,Y € R"

e The vector norm definitions, as well as the concerning illustrations, can be found in Question
01 (Section 7.1).

e The norm of a vector gives a measure for the distance between an arbitrary vector and the
zero vector, just as the absolute value of a real number is its distance from 0.

o The distance between two vectors is defined as the norm of the “difference vector” of the
two vectors, just as the distance between two real numbers is the absolute value of their
difference. The definitions of different vector distances, as well as the concerning
illustrations, can be found in Question 02 (Section 7.1).

Iterative Linear Solvers 115

e To determine the convergence of an iterative solution, the norm of the difference vector of
every two consecutive approximations is ensured to be smaller than a pre-specified error
tolerance 7, i.e.,

5 -xeb] < <

e Asquare matrix, say 4 = (aif)an' is said to be diagonally dominant if, fori = 1,2,-,n

n

lag| = Z|aij|v

Jj=1
JE

e A linear system is said to be diagonally dominant if its coefficient matrix is diagonally
dominant (i.e., the magnitude of the diagonal entry in a row is greater than or equal to the
sum of the magnitudes of all other entries in that row).

e If “>” is replaced by “>”" in the above equation, then 4 is said to be strictly diagonally
dominant. A strictly diagonally dominant matrix is always non-singular.

e Ifalinear system is not diagonally dominant, then a rearrangement of its rows might make it
diagonally dominant.

e The Gauss-Jacobi, Gauss-Seidel, and SOR methods must converge if the linear system to be
solved is diagonally dominant.

e Suppose that AX = Bis an X nlinear system to be solved such thatA4 = (aif)nxn is the

coefficient matrix, B = (b;),x1 is the vector of right-hand side constants, and X = (x;),x is
the vector of unknowns.

» The Jacobi method can be written in a compact form as

k) _ (k—-1) P
x; = - Zau X; , fori=1,2,---,n
ii

]¢l

» The Gauss-Seidel method can be written in a compact form as

1

k) _ (k) (k 1) L

X; = - b; — E a;jX; + E a;jX; , fori=1,2,---,n
i

j= j=i+1

» The successive over-relaxation (SOR) method can be written in a compact form as

i-1

) 1
J?l(k) = a_ bi_ Zal]](k)+ Z al]](k K ’ fori = 1,2,"',71
i

j= j=it+1

116 Simplified Numerical Analysis

x® = wx® 4 1- a))xi(k_l) (for 1 < w < 2, usually the best is around 1.2)

Here k = 1,2, 3, -, represents the iterations and xl.(k) represents the kth approximation of the

ith unknown. The iterative procedure is started with an initial approximation vector X(® =

T o
[xl(o), xéo), xéo), . x,(lo)] and produces a sequence of successive approximations {X(k)}k=1 ,
T
such that X® = [xl(k), xék), xgk), e, xr(lk)] . The sequence is anticipated to refine/improve

the approximate solution gradually and ultimately converge to the exact solution vector
(theoretically). In practice, the iterations of the method are stopped when a sufficient level of
accuracy is achieved.

e The norm of a matrix is a real-valued function that provides a measure of “size”, “length”, or
“magnitude” of the matrix. Let R denotes the set of real numbers, and M" denotes the set of
n X n real-valued matrices. The norm of a matrix on M" is a function, [|-]| : M™ - R, with the
following properties:

1. ||Al| =0, forall A e M"

2. ||A|l = 0,ifand only if A = 0 in M"

3. ||ad]| = |a]||A]|, foralla € Rand A € M"
4. ||A+ BJl < |All + ||B]|, for all 4, B € M"
5. |IAB]|| < ||Alll|B]|, for all A, B € M™

e The matrix norm definitions can be found in Question 11 (Section 7.4).

e The distance between two matrices A and B with respect to a certain norm ||-|| is defined as
the norm of the “difference matrix” of the two matrices, i.e., ||A — B]|.

e The condition number of a non-singular matrix A with respect to a matrix norm [|-|| is
defined as
K(A) = lAllllA~Y], (and X(4) = 1)

o The condition number of a linear system is the condition number of its coefficient matrix.

e A computational problem is called ill-conditioned (or ill-posed) if small changes in the data
(the input) cause large changes in the solution (the output). On the other hand, a problem is
called well-conditioned (or well-posed) if small changes in the data cause only small changes
in the solution.

e The main issue while solving an ill-conditioned problem is that the round-off errors can cause
production of wide range worthless solutions (which appear to be original ones because they
approximately satisfy the given problem). Therefore, minimizing the round-off errors
becomes more relevant for the ill-conditioned problems.

Iterative Linear Solvers 117

e IfAX = B is an ill-conditioned linear system then the solution of its perturbed system (the
one which is obtained by making small changes in the original system, either through small
changes in 4, or in B) is much different from that of the original linear system. In that case,
the matrix A is said to be an ill-conditioned matrix. The determinant of an ill-conditioned
matrix A4 is usually close to zero (NOT the zero). Remind that if the determinant is exactly
zero then a relevant linear system AX = B has either no solution, or an infinite number of
solutions.

e There is no strict line between the well-conditioning and ill-conditioning of a system, as these
concepts are qualitative. A linear system whose condition number (i.e., the condition number
of its coefficient matrix) is close to 1 is well-conditioned, whereas a condition number
significantly larger than 1 indicates that the linear system is ill-conditioned. If the condition
number is below 100, it is usually not a reason for concern. However, a condition number of
more than 100 calls for caution. It may be noted that a coefficient matrix, having magnitudes
of diagonal elements larger than that of other elements in each of the rows, indicates well-
conditioning of the linear system.

e In general, an iterative linear solver involves a process that converts an n X n system AX = B
into an equivalent system of the form X = TX + C for some fixed matrix T and vector C. After
the initial vector X(® is selected, the sequence of approximate solution vectors, X, X,
X®), ... is generated by computing

X® =1x&-D 41 for k=123,

The matrix T is called the iteration matrix of the iterative method, and the relation is called
the matrix form of the iterative method.

o The iterative linear solvers for which the iteration matrix remains unchanged (or fixed)
during the iterative process are said to be stationary solvers, whereas the iterative linear
solvers for which the iteration matrix changes from iteration to iteration are referred to as
non-stationary solvers.

e Examples of stationary solvers include simple methods like the Jacobi, Gauss-Seidel, and SOR
methods. Examples of the non-stationary solvers include more sophisticated methods like the
Krylov subspace methods: especially, Conjugate Gradient (CG) methods, Minimal Residual
methods (especially GMRES), and many more.

118

Simplified Numerical Analysis

Chapter Exercises

Exercise 01: Workout first three iterations of (i) the Jacobi method, (ii) the Gauss-Seidel method, and (iii)
the Gauss-Seidel method with successive over-relaxation factor w = 1.2 and w = 1.5 for solving the
following systems for any initial approximation. Perform computations with a precision of 4 decimal digits,
at least. Assume the error tolerance as 0.0001.

@

(®)

©

(d)

(e

x; — 025x, — 025x3 = 9
—-0.25x; + x, — 025x; = 4
—-0.25x;, — 0.25x, + x3 = —1
4'x1 + X, - X3 + Xy = 2.5
X1 + 4x2 - X3 — Xy = 0.5
—X1 - X + 5x3 + Xy = 5
Xy - X + X3 + 3x4 4
2x1 - X + X3 = -3
2x1 + 4x2 + 2x3 = 8
—X1 - X + 2x3 = 1
Xy - 0.25x2 - 0.25x3 + OX4 =5 11
_0.25x1 + X + OX3 - O.ZSX4 =5 7
_0.25x1 + 0x2 + X3 — O.ZSX4 =5 3
Ox; — 0.25x, — 0.25x3 + x, = -1
0.2x1 + 0.3x2 + 0x3 = 01
0.3x1 + Oxz + 0.2x3 = 01
0x1 + O.sz + 0.3x3 = 0.8
8X1 + 4x2 + 0x3 + 0x4 = 10
4X1 + 12x2 + 2x3 + 0x4 = 12
OX1 + sz + 7x3 + 25x4 = 9.25

Chapter 8

Eigenvalues and Eigenvectors

Corridor I: BASICS

otet's ,olan. it

8.1 Basic Definitions and Concepts
8.2 General Approach of Finding Eigenvalues and Eigenvectors
8.3 Some Numerical Methods for Eigenvalues

The Power Method

The Householder Method

The QR Factorization Method

The Sturm Method

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

Corridor ITI: ANALYSIS

otet's think clee,o

8.4 Further Discussions
The Power Theorem
The Gerschgorin Circle Theorems
The Singular Value Decomposition (SVD)

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

119

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/

120 Simplified Numerical Analysis

Corndor III: PROGRAMMING ARCADE
otet's do it

8.5 Algorithms and Implementations
Built-in MATLAB® Commands
The Power Method

To cross-check the results/output of the computer programs you would execute, please delve into
the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

8.5 Algorithms and Implementations

Question 11: List out some built-in functions/commands of MATLAB® relevant to the eigen
values of a square matrix.

MATLAB® provides built-in functions for finding eigenvalues and eigenvectors as part of the core
MATLAB® functionality. These functions do not require any additional toolboxes. Here are the
main core MATLAB® functions for eigenvalue and eigenvector computations:

1. eig(): This function computes the eigenvalues of a square matrix. It can also compute
the corresponding eigenvectors if requested. The syntax is: [V, D] = eig(A)

Here, A is the input matrix, V contains the eigenvectors as columns, and D is a diagonal
matrix with the eigenvalues on the main diagonal.

2. eigs(): This function computes a few eigenvalues and, optionally, eigenvectors of a
square matrix. It's useful for finding a subset of eigenvalues (e.g., the largest or smallest)
or eigenvalues close to a target value. The syntaxis: [V, D] = eigs (A, k)

Here, A is the input matrix, k is the number of eigenvalues to compute, and V and D have
the same meaning as in the eig () function.

These core functions are part of the basic MATLAB® package and do not require any additional
toolboxes. For general eigenvalue and eigenvector computations, the core MATLAB® functions
eig() and eigs () should be sufficient. If any specialized functionality or additional tools
needed for eigenvalue problems in specific contexts, the following toolboxes may be considered:

e Linear Algebra Toolbox
e Partial Differential Equation Toolbox
e Control System Toolbox.

http://www.timerenders.com.pk/

Eigenvalues and Eigenvectors 121

Question 12: Write down an algorithm (pseudo code) to find dominant eigenvalue and a corresponding
eigenvector of a matrix using the Power method.

Algorithm: To approximate the dominant eigenvalue and associated eigenvector of an n X n matrix 4, given
a nonzero normalized vector X (i.e.,, having 1 as the largest component) as the initial approximation.

n: an integer as the length of the vector X
X = [x4,%3,-,x,]T: areal valued vector (as a normalised initial approximation)
INPUTS: A= (a,-,-), 1 <i,j < n: areal valued square matrix whose eigenvalue is to be obtained

TOL: areal value as the tolerance
N: an integer as the maximum number of iterations

B: a real value as the approximate eigenvalue
OUTPUT: { r . . .

X = [xq1,%3,-,X,]": a normalized vector as the eigenvector corresponding to B
Step 1 Receive the inputs as stated above
Step 2 fork=1,2,3,::-,N perform steps 3-6

XP = [xpy, Xp3, -+, Xp,]T is to keep a copy of present

fori=1,2,- i = X
Step3 fori=1,2,,n Setxp;=x {approximation X, because X is going to be updated

Step4 (Compute the vector such that X = Ax*-1)

fori=1,2,--,n

sum = 0 n
forj=1,2,---,n -
J © xi(k) _ Z a; MCES))
sum = sum + a;; X xXp; = J
X; = sum =
Step5 (Approximate the eigenvalue B and normalize the vector X)
Sett =1 Finding the element of X with
fori=1,2,---,n
(x> oD r=1 the largest absolute value
: T and then setting it as B
set B = x,.
fori=1,2,--,n
x; = x;/B (Normalizing the vector X)
Step 6
if (erT < TOL)then This means .that the consecutive
Exit,/Break the loo approximations are nearly the same,
p Therefore, stop iterations.
end for loop of Step 2 (Go to Step 3)
Step 9 Print the output: eigenvalue B, and eigenvector X = [x1, x5, , x,]7

if (err <TOL) OUTPUT (“The desired accuracy achieved; Solution converged.”)
else OUTPUT (“The number of iterations exceeded the maximum limit.")
STOP.

122 Simplified Numerical Analysis

Problem 11: Write a MATLAB® program to solve find the dominant eigenvalue of the following matrix
using the Power method. For simplification, specify the matrix within the program. Take X =[1, 1, 1]T
as the initial approximation. Take X@ = [1, 1, 1]7 as the initial approximation. The iterations of the
method should stop when either the approximation is accurate within 10~5, or the number of iterations
exceeds 100, whichever happens first.

4 1 0
A = [2 5 Ol
7 2 1
1 clc, clear;
2 n=4; % number of components
3 TOL = 0.00001 ; % error tolerance
4 N=100; % maximum number of iterations
5
6 fprintf ('The Power Method. \n')
7 a=[4,1,0 ; 2,5,0; 7,2,1]; % the problem matrix
8 x=[1,1,117; % initial approx. to the dominant eigenvector
9
10 %-------------mmm oo Processing Section -------=--=-----cmmemuu- %
11
12 fork =1:1:N
13
14 fori=1:1:n
15 xp(i) = x(i) ;
16 end
17

18 % Computing the vector X~ (k) = A * X~ (k-1)
19 fori=1:1:n

20 sum = 0.0 ;

21 forj =1:n n
22 sum = sum + a(i,j) * xp(j) ; x® =Za,-]- x Y
23 end =
24 x(i) = sum ;

25 end

26

27 % Approximating the eigenvalue B and normalizing the vector X

28 r=1;

29 fori=2:1:n

30 if (abs(x[i]) > abs(x[r]))

31 r=i;

32 end

33 end

34

35 B = x[r];

36

37 fori=1:n

38 x(i) =x(i)/ B;

39 end

Eigenvalues and Eigenvectors 123

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

% Computing the error as L2-norm

suml = 0.0 ;

fori=1:1:n Computing
suml = suml + (x(i) =xp(i)) * (x(i) = xp(i)) ; [y —

end

err = sqrt(sum1l) ;
if (terr < TOL) break; end

end

disp ('The approximate dominant eigenvalue is ')
disp (B)

disp ('The approximate corresponding eigenvector is ')
disp (x)

if(err<TOL)

fprintf("\nThe desired accuracy achieved; Solution converged.')
else

fprintf("\nThe number of iterations exceeded the maximum limit.")
end

Remark: In the program of Problem 11, the code segment of lines 54-58 can be placed just before

line 50 to print the latest results on completion of each of the iterations.

Remark: The MATLAB® program in Problem 11 can be modified to receive the square matrix
and the initial approximation of the Eigenvector at the execution time (instead of fixing in the
code). For this, the code segment at lines 7 and 8 in the program of Problem 11 should be
replaced by the following code segment:

fprintf(Enter the matrix row-wise: \n')
fori=1:n
forj=1:n
a(i,j) = input('Enter the element of matrix: ') ;
end
end

fprintf('Enter the elements of the initial approximation\n')

fori=1:n
b(i) = input('Enter the element of constant vector: ') ;
end

124

Simplified Numerical Analysis

Chapter Summary

An eigenvalue of a square matrix A = (ai}-)nxnis a number 4 such that the vector equation
AX =X

has a non-zero solution vector X. The solution vector X is then called an eigenvector of the matrix A
corresponding to the eigenvalue A. The set of all eigenvalues of a matrix is called the spectrum of the
matrix. An eigenvalue is also called a characteristic value or latent root. Likewise, an eigenvector is also
called a characteristic vector or latent vector.

A concise account of the results and techniques relevant to the eigenvalues and eigenvectors is given in
Section 8.1.

The theorem of the Power method: Suppose that an n X n matrix A has n eigenvalues 44, 4,, -+, 1,and
associated n linearly independent eigenvectors, V;, Vs, -+, V,. Further, suppose that X is a normalized
vector (i.e., a vector having maximum absolute value as 1) in the space of the said eigenvectors. The

sequence of normalized vectors {X(k)};land the sequence of scalars {8 }5~, generated recursively by

x© = Ly

K
where Y® = AX®D, and B, =y* such that |Yr(k)| =v®],,

will converge to the dominant eigenvector and eigenvalue, respectively.

In the Power method, both the sequences of the scalars {8, };-; and the normalized vectors {X(k)}:)=1

converge linearly to the dominant eigenvalue 1, and a corresponding eigenvector V;, respectively. Thus,
the order of convergence of the Power method is linear.

Aitken’s A% method offers a technique for accelerating the convergence of any sequence that is linearly
convergent. Using a given sequence, say {f}r-,, which converges linearly to A;, another sequence

{Ek}:;l (that also converges to A1; with possibly improved convergence rate) is constructed by using the

Aitken’s A? process as:

5 Brer1 — Bi)? (AB)?
O 7 ey O
Suppose that A is a non-zero eigenvalue of a square matrix A and X is an eigenvector corresponding to A.
Then, 1/1is an eigenvalue of A~! and the same X is an eigenvector corresponding to 1/4. Thus, the
reciprocal of all the non-zero eigenvalues of a square matrix A are the eigenvalues of A~! (having the
same set of eigenvectors). Hence, the largest of the absolute eigenvalues of A is the smallest of the
eigenvalues of A~! (and vice-versa). Thus, the Power method can be used to obtain the largest
eigenvalue of A~! and then taking its reciprocal gives the smallest eigenvalue of A.

EEE

Eigenvalues and Eigenvectors 125

Chapter Exercises

Exercise 01: Find all the eigenvalues and eigenvectors of the following matrices using the characteristic
equations. Also find the spectrum, spectral radius, trace, and determinant of the given matrix.

3 2 -1 3 -2 05 2 0 0

0) [2 6 4} (i) [—1 -2 1.5] (iii) [—6 8 —14]
-1 4 5 -4 0 4 0 0 -6
-155 —10 10 45 0 15

(iv) [3 45 —3] W) [—6 9 6]
-17 =10 115 15 0 45

Exercise 02: Apply the Power method to find the dominant eigenvalue and corresponding eigenvector of the
given matrices.

3 2 -1 3 -2 05 2 0 0
0 [2 6 4} (i) [—1 -2 1.5] (iii) [—6 8 —14]
-1 4 5 -4 0 4 0 0 -6
-155 —-10 10 45 0 1.5
(iv) [3 4.5 —3]) [—6 9 6]
-17 -10 11.5 15 0 45

Exercise 03: Apply the Power method to find the dominant eigenvalue and corresponding eigenvector of the
given matrices.

8 1 0 0 1 10 6 -6
. 0 7 0 0) 0O -9 0 0
® 2 1 10 0 (i) 05 165 7.5 05

4 -1 4 6 —65 105 65 15

Exercise 04: Use Householder’s method to place the following matrices in tridiagonal form.

101 1 2 -1 -1
0 110 (ii) [—1 2 —1]

10 1 1 -1 2

5 -2 —05 15 2 -1 -1 0
2 5 15 -05 . 1 3 0 0
(iii) —05 15 5 2 () 1 0 4 1

15 —05 -2 &5 0o -2 2 3

126 Simplified Numerical Analysis

Exercise 05: Apply two iterations of the QR Factorization method without shifting the following matrices.

4 -1 0 310
0] -1 3 -1 (ii) 1 4 2
L0 -1 2 0 2 1
[4 2 0 O [05 025 O 0
(i) 2 4 2 0 (iv) 025 08 04 O
0 2 4 2 0 04 06 0.1
0 0 2 4 L 0 0 01 1

Exercise 06: Determine a singular value decomposition for the following matrices.

(1 1 0 (2 1

@ -1 0 1} (i) -1 1]
[0 1 -1 1 1
1 1 0 2 1

(iii) 10 1} (iv) 1 0]
0 1 1 0 1

Chapter 9

Numerical Solution of

Ordinary Differential Equations (ODEs)

Cornidor I: BASICS

9.1
9.2

aﬁet'.‘s plan it

Introduction
Solving IVPs using Single Step Methods and Multistep Methods
The Euler Method
The Mid-point Method (an RK2 method of Order 2)
The Modified/Improved Euler Method (an RK2 method of Order 2)
The RK Method of order 4 (RK4)
Solving IVPs using Predictor-Corrector Methods
The Adams-Bashforth-Moulton Method of Order 4
Solving Systems of ODEs and Higher Order ODEs
Using the Classical RK4 Method
Solving Linear BVPs using the Finite Difference Method

To unleash the topics of this Corridor, please delve into the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

127

http://www.timerenders.com.pk/

128 Simplified Numerical Analysis

Corridor II: ANALYSIS

otet'b think dee,o

9.6 Some Theoretical Concepts and Error Analysis

To unleash the topics of this Corridor, please delve into the principal book:
Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

m< Truncation Error > FDE

Exact
Solution
of MDE

Exact
Solution
of FDE

<Discretization Error (D.E.)>

Round-off Error
|

Computed
Solution

of FDE

Figure: The connection between various terms related to MDE (Model Differential Equation/s -
ODE/PDE) and the related FDE (Finite Difference Equation/s).

http://www.timerenders.com.pk/

Numerical Solution of Ordinary Differential Equations (ODEs) 129

Corridor III: PROGRAMMING ARCADL

oﬁet'b think dee,o

9.7 Algorithms and Implementations
Euler method
Mid-point method
Modified/Improved Euler method
RK method of order 4 (RK4)
Adams-Bashforth method of order 4
Adams-Bashforth-Moulton method of order 4
RK4 method for a system of two ODEs
RK4 method for a system of three ODEs
RK4 method for Second Order ODE
RK4 method for Third Order ODE
Linear FDM for BVP
Built-in MATLAB® Commands

To cross-check the results/output of the computer programs you would execute, please delve into
the principal book:

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk)

http://www.timerenders.com.pk/

130 Simplified Numerical Analysis

9.7 Algorithms and Implementations

Question 16: Write down an algorithm (pseudo code) to solve a first-order ODE using the Explicit
Euler’s method (the Taylor method of order 1).

Algorithm: To solve y' = f(x,y), for a < x < b and y(a) = a by approximating y = y(x) at
(m + 1) equispaced nodes xg, X1, X5, ", X, such thata = x; < x; <x, < <xp, =b,h=(b—
a)/m and y(x;) = y; using the Explicit Euler’'s method (the Taylor method of order 1): For i =
1,2,3,---,m

wi = Wi +hXf(1,Yi)

a, b: real values as the endpoints of the interval: x € [a, b]

m: an integer as the number of nodes (other than a) in the x direction
alpha: a real value as the initial condition y(a)

A definition of the function f(x, y) in an appropriate way

INPUTS: {

W = [wy, Wy, -, Wy,]7: a real valued vector as the approximate solution w(x;)

OUTPUT: {
at the nodes xg, x1, X3, ***, X

h: a real value as the step length in x direction such thath = (b — a)/m

Auxiliary Variables: { .
y x = (x;) fori =0,1,--,m: areal valued vector to represent x;s

Step 1 Receive the inputs as stated above
Step 2 Seth=(b—a)/m
Setx(0) =a
Setx(m) =b
Step 3 fori=1,2,---,m—1
Setx(i) =x(0)+ixh (Constructing interior mesh points, x;)
end for
Step 4 Setw(0) = alpha (Setting the initial condition)
Step 5 fori=1,2,---,m
fral = f(X@G-1),w(i-1)) (Computing the value f(x;_y, yi_l))
w(@) = w(@—-1) + hX fval
end for

Step 6 Print the output: W = [wo, Wy, Wy,]" ;

STOP.

Numerical Solution of Ordinary Differential Equations (ODEs) 131

Problem 09: Write down a MATLAB® program to solve the IVP, y’ = 4y + 4x2? + 3x,for 0 < x <
1, with initial condition y(0) = @ = 1/2, using the Explicit Euler’'s method (the Taylor method of
order 1). Computer the solution for 10 steps. At each step, compare the approximate solution with

. . 5 5 13 . . g
the exact solution, to be obtained by y(x) = —x% — Xt 1—69‘“‘, by finding the relative error

between the two solutions.

clear; clc ;

% Constants

a=0.0; % starting point of domain
b=1.0; % ending point of domain
alpha = 0.5 % initial condition

m = 10 ; % number of steps

% Inline function definitions
fval = @(Xx,y) 4*y + 4*x"2 + 3*x;
fexact = @(x) -x~2 - 1.2*x - (5.0/16.0) + (13.0/16.0) * exp(4*x) ;

h=(b-a)/m;

x = zeros(1, m+1) ;
y = zeros(1l, m+1) ;

X(1) =a;
fori=2:m+1

x(i) = x(i-1) + h;
end

y(1) = alpha ;

% Computing solutions with the Euler method

fori =2:m+1
fv = fval(x(i-1), y(i-1)) ;
y(i) = y(i-1) + h*fv;
end

132 Simplified Numerical Analysis

% Printing Solutions
fori =1:m+1
fprintf('Node= %?2d\t', i-1) ;
fprintf('x= %8.6f\t', x(i)) ;
fprintf('y= %8.6f\t', y(i)) ;
sol = fexact(x(i)) ;
fprintf('Exact sol= %8.6f\t', sol) ;
err = abs(sol - y(i)) / abs(sol) ;
fprintf('Relative Error= %38.6f\n’', err) ;
end
|

The above program can be written in a better way that a MATLAB® function for the Euler method
is formed to compute the solution. This makes the program better manageable and modular. The
new program is given as follows.

clear; clc ;

% Constants

a=20.0; % starting point of domain
b=1.0; % ending point of domain
alpha = 0.5; % initial condition

m = 10 ; % number of steps

% Inline function definitions
fval = @(x,y) 4*y + 4*x"2 + 3*x ;
fexact = @(x) -x~2 - 1.2*x - (5.0/16.0) + (13.0/16.0)*exp(4*x) ;

h=(b-a)/ m; % computing step size

x = zeros(1, m+1) ;
y = zeros(1l, m+1) ;
x(1) =a;

fori=2:m+1
x(i) = x(i-1) + h;
end

y(1) = alpha ; % setting initial condition

y = euler(x, y, h, fval) ; % Call to the function

Numerical Solution of Ordinary Differential Equations (ODEs) 133
% Printing Solutions
fori=1:m+1
fprintf('Node= %?2d\t', i-1) ;
fprintf('x= %8.6f\t', x(i)) ;
fprintf('y= %8.6f\t', y(i)) ;
sol = fexact(x(i)) ;
fprintf('Exact sol= %8.6f\t', sol) ;
err = abs(sol - y(i)) / abs(sol) ;
fprintf('Relative Error= %38.6f\n’', err) ;
end
% User-defined function for the Euler method
function y = euler(x, y, h, fval)
for i = 2:numel(x)
fv = fval(x(i-1), y(i-1)) ;
y(i) = y(i-1) + h*fv; % computing next solution
end
end
]

The results are shown in the following table.

Steps . Nume.rical Exact solution Error of computer
Node x(i) solution 1
i Wy = w(x) v = y(x) program solution
0 0 0.5 0.5 0
1 0.1 0.7 0.769608 0.0904455
2 0.2 1.014 1.21575 0.165948
3 0.3 1.4956 1.93509 0.227118
4 0.4 2.21984 3.07184 0.277358
5 0.5 3.29178 4.84111 0.320037
6 0.6 4.85849 7.56383 0.357669
7 0.7 7.12588 11.7188 0.391926
8 0.8 10.3844 18.0202 0.423855
9 0.9 15.0311 27.5336 0.45408
10 1.0 21.6376 41.8485 0.482954

134 Simplified Numerical Analysis

Question 17: Write down an algorithm (pseudo code) to solve a first-order ODE using the
Midpoint method (which is an RK method of order 2).

Algorithm: To solve y' = f(x,y), for a < x < b and y(a) = a by approximating y = y(x) at
(m + 1) equispaced nodes xg, X1, X5, ", X, such thata = x; < x; <x, < <xp, =b,h=(b—
a)/m and y(x;) = y; using the Midpoint method: For i = 1,2,3,---,m

_ h
»w o= Yyt 5 X f(Xi—1,Yi-1)

h _
Yi = Vi1 +h><f(xi—1 +§:371)

a, b: real values as the endpoints of the interval: x € [a, b]

m: an integer as the number of nodes (other than a) in the x direction
alpha: a real value as the initial condition y(a)

A definition of the function f(x, y) in an appropriate way

INPUTS: {

= T. i i .
OUTPUT: {W = [wy, wy, -+, Wy, |": a real valued vector as the approximate solution w(x;)
at the nodes xg, x1, X2, ***, X
h:areal value as the step length in x direction such thath = (b — a)/m

Auxili iables:
uxiliary Variables {X = (x;) fori = 0,1,---,m: areal valued vector to represent x;s

Step 1 Receive the inputs as stated above
Step 2 Seth=(b—a)/m
Setx(0) =a
Setx(m) =b
Step 3 fori=1,2,---,m—1
Setx(i) =x(0)+ixh (Constructing interior mesh points, x;)
end for
Step 4 Setw(0) = alpha (Setting the initial condition)
Step 5 fori=1,2,---,m
frall = f(x(-1),wi-1)) (Computing the value f(x;_1,y;_1))
aux = w(—1) + (h/2) X fvall
fval2 = fx(@—-1)+ (h/2),aux) (Computing f(x;_, + h/2,aux))
w@) = w(—1) +hXfrval2
end for
Step 6 Print the output: W = [wg, wy, -+, Wy, |7

STOP.

Numerical Solution of Ordinary Differential Equations (ODEs) 135

Problem 10: Write down a MATLAB® program to solve the IVP,y' = 4y + 4x% + 3x,for0 < x <
1, with initial condition y(0) = @ = 1/2, using the Midpoint method (which is an RK method of
order 2). Computer the solution for 10 steps. At each step, compare the approximate solution with

. . 5 5 13 . . g
the exact solution, to be obtained by y(x) = —x% — Xt 1—69‘“‘, by finding the relative error
between the two solutions.

clear; clc ;

% Constants

a=0.0; % starting point of domain
b=1.0; % ending point of domain
alpha = 0.5 % initial condition

m = 10 ; % number of steps

% Inline function definitions
fval = @(x,y) 4*y + 4*x"2 + 3*x ;
fexact = @(x) -x~2 - 1.2*x - (5.0/16.0) + (13.0/16.0)*exp(4*x) ;

h=(b-a)/ m; % computing step size

x = zeros(1, m+1) ;
y = zeros(1, m+1) ;

x(1) =a;

fori=2:m+1
x(i) = x(i-1) + h;
end

y(1) = alpha ; % setting initial condition

y = eulermid(x, y, h, fval) ; % Call to the function

% Printing Solutions
fori=1:m+1
fprintf('Node= %?2d\t', i-1);
fprintf('x= %8.6f\t', x(i));
fprintf('y= %8.6f\t', y(i));
sol = fexact(x(i));
fprintf('"Exact sol= %8.6f\t', sol);
err = abs(sol - y(i)) / abs(sol);
fprintf('Relative Error= %38.6f\n', err) ;
end

136 Simplified Numerical Analysis

% User-defined function for the Mid-point method
function y = eulermid(x, y, h, fval)

for i = 2:numel(x)
fv = fval(x(i-1), y(i-1)) ;
yhalf = y(i-1) + (h/2.0)*fv ;
xmid = x(i-1) + (h/2.0) ;
fv = fval(xmid, yhalf) ;
y(i) = y(i-1) + h*fv;

end

end

The results are shown in the following table.

Ste‘ps Node x(2) sﬂi&?ﬁ?L Exact solution Error of compgter
i w(x) vi = y(x) program solution
0 0 0.5 0.5 0
1 0.1 0.756 0.769608 0.0176812
2 0.2 1.17968 1.21575 0.0296705
3 0.3 1.86113 1.93509 0.0382248
4 0.4 2.93367 3.07184 0.0449802
5 0.5 4.59463 4.84111 0.0509141
6 0.6 7.13605 7.56383 0.0565563
7 0.7 10.9902 11.7188 0.0621758
8 0.8 16.7966 18.0202 0.0678992
9 0.9 25.5022 27.5336 0.0737776

10 1.0 38.5081 41.8485 0.0798221

Numerical Solution of Ordinary Differential Equations (ODEs) 137

Question 18: Write down an algorithm (pseudo code) to solve a first-order ODE using the RK
method of order 2 (also known as the Modified or Improved Euler’s method).

Algorithm: To solve y' = f(x,y), for a < x < b and y(a) = a by approximating y = y(x) at
(m + 1) equispaced nodes xg, X1, X5, ", X, such thata = x; < x; <x, < <xp, =b,h=(b—
a)/m and y(x;) = y; using the Modified Euler’s method of order 2: Fori = 1,2,3,:-,m,

Ki = hXf(xi_1,Yi-1)

K, = hXxf(x,yi-1+Kp)
1

Yi = Vi1t > X [K; + K]

a, b: real values as the endpoints of the interval: x € [a, b]

m: an integer as the number of nodes (other than a) in the x direction
alpha: a real value as the initial condition y(a)

A definition of the function f(x, y) in an appropriate way

INPUTS: {

= T. i i .
OUTPUT: {W = [wy, wy, -+, Wy, |": a real valued vector as the approximate solution w(x;)
at the nodes xg, x1, X3, ***, X
h:areal value as the step length in x direction such thath = (b — a)/m

Auxili iables:
uxiliary Variables {X = (x;) fori = 0,1,---,m: areal valued vector to represent x;s

Step 1 Receive the inputs as stated above
Step 2 Seth=(b—a)/m
Setx(0) =a
Setx(m) =b
Step 3 fori=1,2,---,m—1
Setx(i) =x(0)+ixh (Constructing interior mesh points, x;)
end for
Step 4 Setw(0) = alpha (Setting the initial condition)
Step 5 fori=1,2,---,m
k1 = hxf(x(i-1),w@i-1))
k2 = hxf(x@,w(i-1)+k1)
w(@) = w(@—-1) + 05x (kl1+k2)
end for
Step 6 Print the output: W = [wg, wy, -+, Wy, |7

STOP.

138 Simplified Numerical Analysis

Problem 11: Write down a MATLAB® program to solve the IVP, y' = 4y + 4x% + 3x, for0 < x <
1, with initial condition y(0) = @ = 1/2, using the RK method of order 2 (also known as the
Modified or Improved Euler’'s method). Computer the solution for 10 steps. At each step, compare

5 13
+—e*,
16

: : . : . 5
the approximate solution with the exact solution, to be obtained by y(x) = —x?2 — X%

by finding the relative error between the two solutions.

clear ; clc;

% Constants

a=0.0; % starting point of domain
b=1.0; % ending point of domain
alpha = 0.5 % initial condition

m = 10 ; % number of steps

% Inline function definitions
fval = @(x,y) 4*y + 4*x"2 + 3*x ;
fexact = @(x) -x~2 - 1.2*x - (5.0/16.0) + (13.0/16.0)*exp(4*x) ;

h=(b-a)/ m; % computing step size

x = zeros(1l, m+1) ;
y = zeros(1, m+1) ;
x(1) = a;

fori=2:m+1
x(i) = x(i-1) + h;
end

y(1) = alpha ; % setting initial condition

y = eulerimp(x, y, h, fval) ; % Call to the function

% Printing Solutions
fori=1:m+1
fprintf('Node= %?2d\t', i-1) ;
fprintf('x= %8.6f\t', x(i)) ;
fprintf('y= %8.6f\t', y(i)) ;
sol = fexact(x(i)) ;
fprintf('"Exact sol= %8.6f\t', sol) ;
err = abs(sol - y(i)) / abs(sol) ;
fprintf('Relative Error= %8.6f\n', err) ;
end

Numerical Solution of Ordinary Differential Equations (ODEs) 139
% User-defined function for the Improved Euler method
function y = eulerimp(x, y, h, fval)
for i = 2:numel(x)
fv = fval(x(i-1), y(i-1)) ;
k1l = h*fv ;
ynext = y(i-1) + k1 ;
fv = fval(x(i), ynext) ;
k2 = h*fv ;
y(i) = y(i-1) + 0.5*(k1+k2) ;
end
end
]

The results are shown in the following table.

Ste‘ps Node x(i) Sé\llll;;ir:;ri‘;?l: Exact solution Error of compgter
i w(x) yi = v(x) program solution
0 0 0.5 0.5 0
1 0.1 0.757 0.769608 0.0163818
2 0.2 1.18216 1.21575 0.0276306
3 0.3 1.8658 1.93509 0.0358113
4 0.4 2.94158 3.07184 0.0424044
5 0.5 4.60734 4.84111 0.0482887
6 0.6 7.15586 7.56383 0.0539372
7 0.7 11.0205 11.7188 0.0595885
8 0.8 16.8425 18.0202 0.0653535
9 0.9 25.5711 27.5336 0.0712755

10 1.0 38.611 41.8485 0.0773618

140 Simplified Numerical Analysis

Question 19: Write down an algorithm (pseudo code) to solve a first-order ODE using the RK
method of order 4.

Algorithm: To solve y' = f(x,y), for a < x < b and y(a) = a by approximating y = y(x) at
(m + 1) equispaced nodes xg, X1, X5, ", X, such thata = x; < x; <x, < <xp, =b,h=(b—
a)/m and y(x;) = y; using the RK method of order 4: Fori = 1,2,3,--,m

Ky = hxf(xi-1,Yi-1)

KZ = h X f(xi_l + O.Sh, yi—l + O.SK]_)
K3 = h X f(xi_l + O.Sh, Vi1 + O.SKz)
Ky = hxf(x,yi1+Ks3)

1
Vv, = yi1+=X[K; + 2K, + 2K; + K,]

6

(@ b: real values as the endpoints of the interval: x € [a, b]
m: an integer as the number of nodes (other than a) in the x direction
INPUTS: N o
alpha: a real value as the initial condition y(a)
A definition of the function f(x,y) in an appropriate way

W = [wy, Wy, ++, Wy,]T: a real valued vector as the approximate solution y(x;)

OUTPUT: {
at the nodes xg, xq, X2, ***, X

h: a real value as the step length in x direction such thath = (b — a)/m

Auxiliary Variables: {X = (x;) fori = 0,1,---,m: areal valued vector to represent x;s

Step 1 Receive the inputs as stated above
Step 2 Seth=(b—a)/m
Setx(0) =a
Setx(m) =b
Step 3 fori=1,2,---,m—1
Setx(i) =x(0)+ixh (Constructing interior mesh points, x;)
end for
Step4 Setw(0) = alpha (Setting the initial condition)
Step 5 fori=1,2,---,m

k1 = hxf(x@i-1,w(-1))

k2 = hxf(x(@—1)+05xhw(—1)+0.5xkl)
k3 = hxf(x(@—-1)+05xhw(—1)+0.5x%k2)
kd = hxfe@),w(i—1)+k3)
w(i@) = w(@—-1) + (k1+2xk2+2x%xk3+k4)/6
end for
Step 6 Print the output: W = [wg, wy, -+, Wy, |7

STOP.

Numerical Solution of Ordinary Differential Equations (ODEs) 141

Problem 12: Write down a MATLAB® program to solve the IVP,y' = 4y + 4x% + 3x, for0 < x <
1, with initial condition y(0) = @ = 1/2, using the RK method of order 4. Computer the solution for
10 steps. At each step, compare the approximate solution with the exact solution, to be obtained by

5 5 13 e . .
y(x) = —x? — Xt Ee‘“‘, by finding the relative error between the two solutions.

clear ; clc;

% Constants

a=0.0; % starting point of domain
b=1.0; % ending point of domain
alpha = 0.5 ; % initial condition

m = 10 ; % number of steps

% Inline function definitions
fval = @(x,y) 4*y + 4*x"2 + 3*x ;
fexact = @(x) -x~2 - 1.2*x - (5.0/16.0) + (13.0/16.0)*exp(4*x) ;

h=(b-a)/ m; % computing step size

x = zeros(1l, m+1) ;
y = zeros(1, m+1) ;
X(1) =a;

fori=2:m+1
x(i) = x(i-1) + h;
end

y(1) = alpha ; % setting initial condition

y = rk4(x, y, h, fval) ; % Call to the function

% Printing Solutions
fori=1:m+1
fprintf('Node= %?2d\t', i-1) ;
fprintf('x= %8.6f\t', x(i)) ;
fprintf('y= %8.6f\t', y(i)) ;
sol = fexact(x(i)) ;
fprintf('"Exact sol= %8.6f\t', sol) ;
err = abs(sol - y(i)) / abs(sol) ;
fprintf('Relative Error= %8.6f\n', err) ;
end

142

Simplified Numerical Analysis

% User-defined function for the RK4 method

function y = rk4(x, vy, h, fval)

for i = 2:numel(x)
k1l = h * fval(x(i-1), y(i-1)) ;

end
end

k2 = h * fval(x(i-1) + h*0.5, y(i-1) + k1*0.5)
k3 = h * fval(x(i-1) + h*0.5, y(i-1) + k2*0.5)
k4 = h * fval(x(i), y(i-1) + k3) ;

y(i) = y(i-1) + (k1+ 2*k2 + 2*k3 + k4)/6.0 ;

The results are shown in the following table.

I

4

Steps . Nume.rical Exact solution Error of computer
Node x(i) solution .

i Wi = wixp) y; = y(x;) program solution

0 0 0.5 0.5 0

1 0.1 0.764547 0.769608 0.00657595
2 0.2 1.20556 1.21575 0.00838021
3 0.3 1.91966 1.93509 0.00797517
4 0.4 3.05096 3.07184 0.00679678
5 0.5 4.81444 484111 0.00550804
6 0.6 7.53081 7.56383 0.00436537
7 0.7 11.6785 11.7188 0.00343964
8 0.8 17.9711 18.0202 0.00272617
9 0.9 27.4731 27.5336 0.00219447
10 1.0 41.7728 41.8485 0.0018091

Question 20: Write down an algorithm (pseudo code) to solve a first-order ODE using the Adams-

Bashforth method of order 4.

Algorithm: To solve y' = f(x,y), for a < x < b and y(a) = a by approximating y = y(x) at
(m + 1) equispaced nodes xg, xq, X3, **, Xp,Such that a = x5 < x; < x, <+ <x,, =b, h=(b —
a)/m and y(x;) = y;. Having y(x,) = ap, y(x;) = ay, y(x2) = a3, and y(x3) = a3, compute y;

using the 4-step explicit Adams-Bashforth method of order 4: Fori = 4,5,6,-:-,m,

Numerical Solution of Ordinary Differential Equations (ODEs) 143

h
Yi = Vit 52 % [55f (xi—1, ¥i-1) = 59f (xi—2, ¥i—2) + 37f (Xi—3,¥i—3) — f (Xi—0, Yi-4)]

a, b: real values as the endpoints of the interval: x € [a, b]
m: an integer as the number of nodes (other than a) in the x direction

INPUTS: alpha: a real value as the initial condition y(a)
A definition of the function f(x,y) in an appropriate way
= T. i i .
OUTPUT: {W = [wy, Wy, -+, Wy, |": a real valued vector as the approximate solution w(x;)
at the nodes xg, x1, X3, ***, X

h:areal value as the step length in x direction such thath = (b — a)/m

Auxili iables:
uxiliary Variables {X = (x;) fori = 0,1,---,m: areal valued vector to represent x;s

Step 1 Receive the inputs as stated above
Step 2 Seth=(b—a)/m
Setx(0) =a
Setx(m) =b
Step 3 fori=1,2,---,m—1
Setx(i) =x(0)+ixh (Constructing interior mesh points, x;)
end for
Step 4 Set w(0) = alpha (Setting the initial condition)
Step 5 Obtain or compute (using some other basic method for ODEs) the following:

w(1) = alphal
w(2) = alpha2
w(3) = alpha3

Step 5 fori =4,5,6,---,m
frl = f(x(i - 1,w(i - 1)) (Computing the value f(xi_l,yi_l))
frz = f(x@i-2),w(i-2)) (Computing the value f(x;_5,¥;_»))
fr3 = f(x(@-3),w(i-3)) (Computing the value f(x;_3,¥;_3))
frd = f(x(i —4),w(i — 4)) (Computing the value f(x;_y, yi_4))

h
wi) = wi-1) + (ﬁ) x (55fv1 — 59fv2 + 37fv3 — 9fv4)
end for
Step 6 Print the output: W = [wg, wy, -+, wp, |7

STOP.

144 Simplified Numerical Analysis

Problem 13: Write down a MATLAB® program to solve the IVP, y' = 4y + 4x% + 3x, for 0 < x <
1, with initial condition y(0) = @ = 1/2, using the Adams-Bashforth method of order 4. Compute
the solution for 10 steps. For computing the approximate solution at the first three steps, use the
RK4 method. At each step, compare the approximate solution with the exact solution, to be obtained

5 5 . : :
by y(x) = —x?% — Xt Ee‘“‘, by finding the relative error between the two solutions.

clear ; clc ;

% Constants

a=0.0; % starting point of domain
b=1.0; % ending point of domain
alpha = 0.5; % initial condition

m =10 ; % number of steps

% Inline function definitions
fval = @(x,y) 4*y + 4*x"2 + 3*x;
fexact = @(x) -x~2 - 1.2*x - (5.0/16.0) + (13.0/16.0)*exp(4*x) ;

h=(b-a)/m; % computing step size
x = zeros(1l, m+1) ;

y = zeros(1, m+1) ;

X(1) =a;

fori=2:m+1
x(i) = x(i-1) + h;

end

y(1) = alpha ; % setting initial condition

y = rk4(x, y, h, fval) ; % Call to the function RK4
y = ab4(x, y, h, fval) ; % Call to the function ab4

% Printing Solutions
fori=1:m+1
fprintf('Node= %?2d\t', i-1) ;
fprintf('x= %38.6f\t', x(i)) ;
fprintf('y= %8.6f\t', y(i)) ;
sol = fexact(x(i)) ;
fprintf('Exact sol= %8.6f\t', sol) ;
err = abs(sol - y(i)) / abs(sol) ;
fprintf('Relative Error= %38.6f\n', err) ;
end

Numerical Solution of Ordinary Differential Equations (ODEs) 145

% User-defined function for the Adams-Bashforth method (order 4)

function y = ab4(x, vy, h, fval)
for i = 5:numel(x)

k1l = fval(x(i-1), y(i-1)) ;

k2 = fval(x(i-2), y(i-2))
k3 = fval(x(i-3), y(i-3))
k4 = fval(x(i-4), y(i-4))

I
A

I

y(i) = y(i-1) + (h/24.0)*(55*k1 - 59*k2 + 37*k3 - 9*%k4) ;
end
end

% User-defined function for the RK4 method

function y = rk4(x, y, h, fval)
fori=2:4
k1l = h * fval(x(i-1), y(i-1)) ;
k2 = h * fval(x(i-1) + h*0.5, y(i-1) + k1*0.5) ;
k3 = h * fval(x(i-1) + h*0.5, y(i-1) + k2*¥0.5) ;
k4 = h * fval(x(i), y(i-1) + k3) ;

y(i) = y(i-1) + (k1+ 2*k2 + 2*k3 + k4)/6.0 ;

end
end

The results are shown in the following table.

Steps . Nurperical Exact solution Error of computer
i Node x(i) solution w; = .
i wixy) yi = y(x;) program solution
0 0 0.5 0.5 0
1 0.1 0.764547 0.769608 0.00657595
2 0.2 1.20556 1.21575 0.00838021
3 0.3 1.91966 1.93509 0.00797517
4 0.4 3.04469 3.07184 0.00883945
5 0.5 4.79306 484111 0.00992469
6 0.6 7.48205 7.56383 0.0108119
7 0.7 11.5814 11.7188 0.011726
8 0.8 17.7896 18.0202 0.0127952
9 0.9 27.1477 27.5336 0.0140137
10 1.0 41.2059 41.8485 0.0153558

146 Simplified Numerical Analysis

Question 21: Write down an algorithm (pseudo code) to solve a first-order ODE using the Adams-
Bashforth-Moulton method of order 4.

Algorithm: To solve y' = f(x,y), for a < x < b and y(a) = a by approximating y = y(x) at
(m + 1) equispaced nodes xg,xy, X,,**, X, such thata = xy < x; < x, <+ <xp, =b, h=(b—
a)/m and y(x;) = y;. Having y(x,) = ap, y(x;) = @y, y(x2) = a3, and y(x3) = a3, compute y;
using

(1) the 4-step explicit Adams-Bashforth method of order 4 as the predictor:

h
Yi = Vit 52 % [55f (xi—1, ¥i-1) = 59f (xi—2, ¥i—2) + 37f (Xi-3,¥i-3) — f (Xi—0, Yi-4)]

(2) the 3-step implicit Adams-Moulton method of order 4 as the corrector:

h
Yi = Yiai Tt 22 % [9f (xi ¥i) + 19f (xi—1, ¥i—1) — 5f (xi—2, ¥i—2) + f(Xi—3,Yi-3)]

fori =4,5,6,:--,m.

(@ b: real values as the endpoints of the interval: x € [a, b]
m: an integer as the number of nodes (other than a) in the x direction
INPUTS: N o
alpha: a real value as the initial condition y(a)
A definition of the function f(x,y) in an appropriate way

= cee T' i i .
OUTPUT: {W = [wg, Wy, -+, Wy,]": a real valued vector as the approximate solution y(x;)
at the nodes xg, xq, X3, ***, X
h: a real value as the step length in x direction such thath = (b — a)/m

Auxiliary Variables: {X = (x;) fori =0,1,---,m: areal valued vector to represent x;s

Step 1 Receive the inputs as stated above
Step 2 Seth=(b—a)/m
Setx(0) =a
Setx(m) =b
Step 3 fori=1,2,---,m—1
Setx(i) =x(0)+ixh (Constructing interior mesh points, x;)
end for
Step 4 Set w(0) = alpha (Setting the initial condition)
Step 5 Obtain or compute (using some other basic method for ODEs) the following:

w(1) = alphal
w(2) = alpha?2
w(3) = alpha3

Numerical Solution of Ordinary Differential Equations (ODEs) 147

Step 5 fori =4,5,6,---,m
frl = f(x(@-1,w(i-1) (Computing the value f(x;_1,¥;_1))
fr2 = f(x@i—-2),w(-2)) (Computing the value f(x;_5,¥;_3))
fr3 = f(x(i —-3),w(i — 3)) (Computing the value f(xi_3,yi_3))
frd = f(x(i —4),w(i — 4)) (Computing the value f(x;_,, yi_4))
wid = wi—1) + (2—}2) x (55fv1 — 59fv2 + 37fv3 — 9fvd)
fv = f(x(i), w(i)) (Computing the value f(x;_,, yi_4))
wi) = w(i@-1) + (2—};) X (9fv +19fvl — 5fv2 + fv3)

end for
Step 6 Print the output: W = [wg, wy, -+, Wy |7
STOP.

Problem 14: Write down a MATLAB® program to solve the IVP, y' = 4y + 4x2 + 3x, for0 < x <
1, with initial condition y(0) = @ = 1/2, using the Adams-Bashforth-Moulton method of order 4.
Compute the solution for 10 steps. For computing the approximate solution at the first three steps,
use the RK4 method. At each step, compare the approximate solution with the exact solution, to be

. 5 5 13 . . :
obtained by y(x) = —x? — Xt e**, by finding the relative error between the two solutions.
clear ; clc;

% Constants

a=20.0; % starting point of domain
b=1.0; % ending point of domain
alpha = 0.5; % initial condition

m = 10 ; % number of steps

% Inline function definitions
fval = @(Xx,y) 4*y + 4*x"2 + 3*x ;
fexact = @(x) -x~2 - 1.2*x - (5.0/16.0) + (13.0/16.0)*exp(4*x) ;

>
1l

(b -a)/ m; % computing step size

x = zeros(1, m+1) ;
= zeros(1, m+1) ;

<
|

148 Simplified Numerical Analysis

x(1)

aj;

fori =2:m+1
x(i) = x(i-1) + h;

end
y(1) = alpha ; % setting initial condition
y = rk4(x, y, h, fval) ; % Call to the function RK4

y = ab4m3(x, y, h, fval) ; % Call to the function ab4m3

% Printing Solutions
fori=1:m+1
fprintf('Node= %?2d\t', i-1) ;
fprintf('x= %8.6MA\t', x(i)) ;
fprintf('y= %8.6f\t', y(i)) ;
sol = fexact(x(i)) ;
fprintf('Exact sol= %8.6f\t', sol) ;
err = abs(sol - y(i)) / abs(sol) ;
fprintf('Relative Error= %8.6f\n', err) ;
end

% User-defined function for the Adams-Bashforth-Moulten method (order 4)
function y = ab4m3(x, vy, h, fval)
for i = 5:numel(x)
fvl = fval(x(i-1) , y(i-1)
fv2 = fval(x(i-2) , y(i-2)

fv3 = fval(x(i-3) , y(i-3)
fv4 = fval(x(i-4) , y(i-4)

4

I
4

N N N

y(i) = y(i-1) + (h/24.0)*(55*fvl - 59*fv2 + 37*fv3 - 9*fv4) ;
fv = fval(x(i) , y(i)) ;
y(i) = y(i-1) + (h/24.0)*(9*fv + 19*fvl - 5*fv2 + fv3) ;

end
end

Numerical Solution of Ordinary Differential Equations (ODEs) 149
% User-defined function for the RK4 method
function y = rk4(x, vy, h, fval)
fori=2:4
k1 = h * fval(x(i-1), y(i-1)) ;
k2 = h * fval(x(i-1) + h*0.5, y(i-1) + k1*0.5) ;
k3 = h * fval(x(i-1) + h*0.5, y(i-1) + k2*0.5) ;
k4 = h * fval(x(i), y(i-1) + k3) ;
y(i) = y(i-1) + (k14 2*k2 + 2*k3 + k4)/6.0 ;
end
end
[]

The results are shown in the following table.

Steps i Nur}lerlcal Exact solution Error of computer
i Node x(i) solution w; =)
i w(x) y; = y(x;) program solution
0 0 0.5 0.5 0
1 0.1 0.764547 0.769608 0.00657595
2 0.2 1.20556 1.21575 0.00838021
3 0.3 1.91966 1.93509 0.00797517
4 0.4 3.05087 3.07184 0.00682605
5 0.5 4.81417 4.84111 0.00556428
6 0.6 7.53021 7.56383 0.0044448
7 0.7 11.6773 11.7188 0.00354036
8 0.8 17.9689 18.0202 0.00284706
9 0.9 27.4693 27.5336 0.00233489
10 1.0 41.7661 41.8485 0.00196874

Problem 15: Write a MATLAB® program to solve the following system of two ODEs for the
functions y; = y;(x) and y, = y,(x), where x € [0,1]:

With initial conditions:

Vi =1y, — 2
Vs =2y1 - Y3

¥1(0) = 2.0
¥2(0) = 0.3

Use the RK4 method of order 4 for 5 steps.

150 Simplified Numerical Analysis

For 5 steps the domain is discretized as

b—a 10-00
m 5 -

h=

Xo=0, x; =02,x, =04,x3 =0.6,x, = 0.8, x5 = 1.0.
According to the initial conditions:
Wio = Y10 = Y1(%0) = ¥,1(0) = 2.0
Wao = Y20 = ¥2(x0) = y2(0) = 0.3

The problem is to find approximations wy; to y;; = y,(x;) and wy; to y,; = y,(x;), for i = 1,2,3,4,5.

The MATLAB® program for the solution is as follows.

clear ; clc;

% Constants

a=20.0; % starting point of domain

b=1.0; % ending point of domain

alphal = 2.0 ; % initial condition for first variable yl1=y1(x)
alpha2 = 0.3 ; % initial condition for second variable y2=y2(x)
m=5; % number of steps

% Inline function definitions
fl = @(x,y1,y2) yl*y2 -2;
f2 = @(x, y1, y2) 2*yl - y2°3;

h=(b-a)/ m; % computing step size
x = zeros(1l, m+1) ;

wl = zeros(1, m+1) ;
w2 = zeros(1, m+1) ;

x(1) = a;
x(m+1) =b;
fori=2:m

x(i) = x(i-1) + h;
end

wl(1l) = alphal ; % setting initial condition for y1
w2(1) = alpha2 ; % setting initial condition for y2

Numerical Solution of Ordinary Differential Equations (ODEs) 151

% Call to the solver of ODEs system of 2 equations

[wl, w2] = rkdsystem2(x, wl, w2, h, f1, f2) ;

% Printing Solutions

fori =1:m+1

end

fprintf('Node= %3d\t', i-1) ;
fprintf('x= %8.6f\t', x(i)) ;
fprintf('wl= %8.6f\t', wi(i)) ;
fprintf('w2= %8.6f\n', w2(i)) ;

% User-defined function for ODE system of 2 equations using RK4

function [wl, w2] = rkd4system2(x, wl, w2, h, f1, f2)

end

for i = 2:numel(x)

end

kil = h * f1(x(i-1), wi(i-1), w2(i-1)) ;
k21 = h * f2(x(i-1), wi(i-1), w2(i-1)) ;

k12 = h * f1(x(i-1)+0.5%h, w1(i-1)+0.5%k11, w2(i-1) + 0.5%k21) ;
k22 = h * f2(x(i-1) + 0.5*h, wi(i-1) + 0.5%k11, w2(i-1) +
0.5%k21) ;

k13 = h * f1(x(i-1) + 0.5%h, wi(i-1) + 0.5%k12, w2(i-1) +
0.5%k22) ;
k23 = h * f2(x(i-1) + 0.5%h, wi(i-1) + 0.5%k12, w2(i-1) +
0.5%k22) ;

k14 = h * f1(x(i-1) + h, wi(i-1) + k13, w2(i-1) + k23) ;
k24 = h * f2(x(i-1) + h, wi(i-1) + k13, w2(i-1) + k23) ;

wi(i) = wi(i-1) + (k11 + 2*k12 + 2*k13 + k14) / 6.0 ;
w2(i) = w2(i-1) + (k21 + 2*k22 + 2*k23 + k24) / 6.0 ;

152

Simplified Numerical Analysis

The results are shown in the following table.

Steps Numel'"ical Nume'rical
i Node x(i) solution solution
' wy; = wy (x;) wa; = wy(x;)
0 0.0 2 0.3
1 0.2 1.815132 0.985522
2 0.4 1.90079 1.36485
3 0.6 2.08065 1.52571
4 0.8 2.38251 1.62306
5 1.0 2.85383 1.72393

Problem 16: Write a MATLAB® program to solve the following
functions y; = y;(x), y, = y,(x), and y; = y;(x), where x € [0,1]:

X

yi =y +3y; —3y; +e”

X

Y2 =2y, +y; —3e”
X

yi=y1+2y;+e”

With initial conditions:

y:1(0) =25
y,(0) =—-15
y3(0) = -1.0

Use the RK4 method of order 4 for 10 steps.

For 10 steps, the domain is discretized as

b—a 1.0-00
m 10

h =

0.

1

system of two ODEs for the

Xo=0,%=01x,=02,x3 =03,x4, =04,x5 = 0.5 x5 =0.6,x;, = 0.7, xg = 0.8, xg = 0.9, x;, = 1.0.

According to the initial conditions:

Wio = Y10 = ¥1(%0) =1(0) = 2.5

Wi = Y20 = ¥2(%0) = ¥,(0) = —1.5
W30 = Y30 = ¥3(xp) = ¥3(0) = —1.0

The problem is to find approximations wy; to y;; = y;(x;), Wa; t0 yo; = ¥,(x;), and wy; to y5; =
y3(xi)l for l = 1I2l oty 10

Numerical Solution of Ordinary Differential Equations (ODEs) 153

The MATLAB® program for the solution is as follows.

clear ; clc;

% Constants

a=0.0; % starting point of domain

b=1.0; % ending point of domain

alphal = 2.5 ; % initial condition for first variable y1=y1(x)
alpha2 = -1.5 ; % initial condition for second variable y2=y2(x)
alpha3 =-1.0; % initial condition for third variable y3=y3(x)
m = 10 ; % number of steps

% Inline function definitions

fl = @(x, yl,y2,y3) yl + 3*y2 - 3*y3 + exp(-x) ;
f2 = @(x, y1,y2, y3) 2*y2 + y3 - 3*exp(-x) ;

f3 = @(x, y1,y2,y3) y1 + 2*y2 + exp(-X) ;

h=(b-a)/ m; % computing step size

x = zeros(1, m+1) ;

wl = zeros(1, m+1) ;
w2 = zeros(1l, m+1) ;
w3 = zeros(1, m+1) ;

X(1) =a;
x(m+1) =b;
fori=2:m

x(i) = x(i-1) + h;
end

wl(1) = alphal ; 9% setting initial condition for y1

w2(1) = alpha2 ; % setting initial condition for y2

w3(1) = alpha3 ; % setting initial condition for y3

% Call to the solver of ODEs system of 3 equations

[wl, w2, w3] = rk4system3(x, wl, w2, w3, h, f1, f2, f3) ;
% Printing Solutions

fori=1:m+1

fprintf('Node= %3d\t', i-1) ;
fprintf('x= %38.6f\t', x(i)) ;

154

Simplified Numerical Analysis

end

fprintf('wl= %8.6f\t', wi(i)) ;
fprintf('w2= %8.6f\t', w2(i)) ;
fprintf('w3= %8.6f\n', w3(i)) ;

% User-defined function for ODE system of 3 equations using RK4

function [wl, w2, w3] = rkd4system3(x, wl, w2, w3, h, f1, f2, f3)

end

for i = 2:numel(x)

kil = h * f1(x(i-1), wi(i-1), w2(i-1), w3(i-1)) ;
k21 = h * £2(x(i-1), wi(i-1), w2(i-1), w3(i-1)) ;
k31 = h * £3(x(i-1), wi(i-1), w2(i-1), w3(i-1)) ;

k12 = h * f1(x(i-1) + 0.5*h, wi(i-1) + 0.5%k11, w2(i-1) + 0.5%k21, w3(i-

1) + 0.5%k31) ;

k22 = h * f2(x(i-1) + 0.5*h, wi(i-1) + 0.5%k11, w2(i-1) + 0.5%k21, w3(i-

1) + 0.5%k31) ;

k32 = h * f3(x(i-1) + 0.5%h, wi(i-1) + 0.5%k11, w2(i-1) + 0.5%k21, w3(i-

1) + 0.5%k31) ;

k13 = h * f1(x(i-1) + 0.5%h, wi(i-1) + 0.5%k12, w2(i-1) + 0.5%k22, w3(i-

1) + 0.5%k32) ;

k23 = h * f2(x(i-1) + 0.5*h, wi(i-1) + 0.5%k12, w2(i-1) + 0.5%k22, w3(i-

1) + 0.5%k32) ;

k33 = h * f3(x(i-1) + 0.5%h, wi(i-1) + 0.5%k12, w2(i-1) + 0.5%k22, w3(i-

1) + 0.5%k32) ;
k14
k24
k34

wi(i) = wi(i-1) + (k11 + 2*%k12 + 2*k13 + k14)
w2(i) = w2(i-1) + (k21 + 2*¥k22 + 2%k23 + k24)
w3(i) = w3(i-1) + (k31 + 2*k32 + 2*k33 + k34)

end

/ 6.0
/6.0
/ 6.0

h * f1(x(i-1) + h, wi(i-1) + k13, w2(i-1) + k23, w3(i-1) + k33) ;
h * f2(x(i-1) + h, wi(i-1) + k13, w2(i-1) + k23, w3(i-1) + k33) ;
h * £3(x(i-1) + h, wi(i-1) + k13, w2(i-1) + k23, w3(i-1) + k33) ;

4
A

4

Numerical Solution of Ordinary Differential Equations (ODEs) 155

The results are shown in the following table.

Steps Numerical Numerical Numerical

; Node x(i) solution solution solution
wy; = wy (x;) W = Wy (x;) ws; = ws(x;)

0 0.0 2.5 -1.5 -1.0
1 0.2 2.45262 -3.16688 -1.22125
2 0.4 1.43325 -5.68432 -2.39815
3 0.6 -0.713292 -9.79838 -5.20827
4 0.8 -4.26124 -16.8302 -10.7742
5 1.0 -9.74139 -29.1044 -21.007

Problem 17: Write a MATLAB® program to find the numerical solution of the ODE, xy"' —y’ +
8x3y3 = 0 with initial condition y(1) = 0.5 and y'(1) = —0.5 for y(1.1). Consider the step size of
h = 0.1, thus only step is required. i.e., m = 1. Use the exact solution, y = 1/(1 + x?), to find the
error in the numerical solution.

For the solution, consider
y = z
Then, the given ODE becomes

(z - 8x°y®)
x

z =

Thus, the second-order IVP is essentially converted to the problem of a first-order system of ODEs
of comprising the two equations subject to the initial conditions:

y(x) = y(1) = 05
z(xy) = z(1) = -05

The problem is to find approximations wy, to y; = y(x;) and wy, to z; = z(x,).

Wio = Yo
Wy = 2o =

The MATLAB® program for the solution is easy to form now. The approximate results are shown
in the following table.

Steps Numerical Numerical
i Node x(i) solution solution
wy; = wi(x;) wo; = wo(x;)

0 1 0.5 -0.5

1 1.02 0.4897000998 -0.5299800347
2 1.04 0.4788015942 -0.5598407786
3 1.06 0.4673080456 -0.5894651108
4 1.08 0.4552253218 -0.618739865
5 1.1 0.4425615 -0.6475575603

156

Simplified Numerical Analysis

Problem 18: Solve the ODE y"' = —y" + 3y’ + 3y for y = y(x) in x € [0,2] with the initial

conditions: y(0) = 2.0, y'(0) = —1.0, and y"'(0) = 8.0. Solve it for 10 steps.

Given the equation,

ylll - _yll + 3yl + 3y

For y = y(x) in x € [0,2] with the initial conditions:

y(0) = 2.0
y'(0) = —1.0
y"(0) = 8.0

consider

y'o= 71 = z
Then, the given third-order Eq. (1) becomes

zZ; = —zZ+3z;+3y

-- -

---@
---0

)

Thus, the third-order IVP is essentially converted to the problem of a first-order system of ODEs of

comprising the three equations (2) - (4) subject to the initial conditions:

y(0) = 2.0
2(0) = —1.0
z,(0) = 8.0

For 10 steps, the domain is discretized as

L - b—a _ 20-00 02
T om 10 -

X =0, =02,x,=04,x3 =06,x, =08, x5 =1.0,xg = 1.2, x;, = 1.4, x5 = 1.6, xg = 1.8, x;, = 2.0.

According to the initial conditions:

wio = Yo = Y(x) = y(0) = 20
Wy = 2z = z1(xy) = z(0) = -1.0
Wi = Zyp = Z(x%) = 2z,(0) = 80

The problem is to find approximations wy; to y; = y(x;), wy; to zy; = z,(x;), and wy; to zy; =

z,(x;), fori = 1,2,---,10.

The MATLAB® program for the solution is easy to form now. The approximate results are shown in

the following table.

Numerical Solution of Ordinary Differential Equations (ODEs)

Numerical Numerical Numerical

Steps , . . .

; Node x(i) solution solution solution

wy; = wy (x;) Wi = Wy (x;) ws; = ws(x;)

0 0.0 2 -1 8

1 0.4 2.2144 2.0592 7.984

2 0.8 3.75537152 5.92358144 12.16498688

3 1.2 7.317856436 12.5913347 22.55617331

4 1.6 14.62815413 25.4339096 44.2884481

5 2.0 29.29652369 50.88508966 88.1604031

Question 22: Write down an algorithm (pseudo code) to solve a second-order linear ODE (BVP)
with Dirichlet boundary condition using the finite difference method of second-order accuracy. The
algorithm should follow the Gauss-Seidel approach to solve the linear system resulted after
discretization of the model equation.

Algorithm: To solve y' = f(x,y,¥) = p(x)y + q(x)y + r(x), for a <x < b subject to the
Dirichlet boundary conditions: y(a) = « and y(b) = by approximating y = y(x) at (m + 2)
equispaced nodes xg, X1, X5, ==, X, Xy, SUCh that a = xg < x; < x, < <Xy, < Xppyq = b, h =
(b —a)/m and y(x;) = y; using the finite difference method based on the central difference of
second-order accuracy.

a, b: real values as the endpoints of the interval: x € [a, b]

m: an integer as the number of interior nodes in the x direction

alpha: a real value as the boundary condition y(a)

INPUTS: < beeta: a real value as the boundary condition y(b)

N: an integer as the maximum number of iterations

TOL: areal value as the error tolerance

\Definitions of the functions p(x), g(x), and r(x) in an appropriate way

Z =20,21,"", Zy» Zms1] " : a real valued vector as the approximate values of y(x;)

OUTPUT:
at the nodes x, x1, x5, **

» X Xm+41
h: a real value as the step length in x direction: h = (b — a)/(m + 1)

X = (xl-) fori =0,1,---,m,m+ 1: areal valued vector to represent x;s

T
ZP = [zpo, Zpy, 2P, me+1] : areal valued vector to keep a copy of Z
err: areal number to hold the value of error norm in each iteration

B = [by, by, -+, b,,|": areal valued vector to hold right hand side constants
=
=

[lo,1;,++,1,]": areal valued vector to hold lower diagonal entries

Auxiliary Variables: <

do,dq, -,]T: areal valued vector to hold diagonal entries
Ug, Uy, **+, Uy, |": a real valued vector to hold upper diagonal entries

158 Simplified Numerical Analysis

Step 1 Receive the inputs as stated above
Step 2 Seth=(b—a)/(m+1)
Setx(0) =a

Setx(m+1)=5»>

Step 3 fori=1,2,---,m
Setx(i) =x(0)+ixh (Constructing interior mesh points, x;)
end for
Step 4 (Applying the boundary conditions)

Set w(0) = alpha
Setw(m + 1) = beeta

Step 5 (Setting the initial conditions on interior nodes)
fori =1,2,---,m
Setw(i) =0 (Constructing interior mesh points, x;)
end for
Step 6 fori =1,2,---,m

Set B(i) = —h X h X r(x(i)) ; end for

fori =1,2,---,m
Set D(i)=2+hXxhxXx q(x(i)) ; end for

fori=1,2,---,m
Set U(i))=—-1+hXx0.5x% p(x(i)) ; end for

fori=1,2,---,m
Set L(i)=—-1—-hXx05x p(x(i)) ; end for

Step 7 fork=1,2,3,---,N perform steps 8-11
Step 8

fori=1,2,--,m SetZP(i) =W (keeping a copy of Z in ZP for taking the norm)

Step 9
fori=1,2,---,m (compute the components of solution vector Z)
. B@O-LOxw@-1D-U@)xwi+1
w(i) = .
D(1)

end for

Numerical Solution of Ordinary Differential Equations (ODEs) 159

Step 10 Compute err = ||W — ZP||
(orerr = ||X — XP||/||X|]) Here ||-|| is any suitable norm.

Step 11
if (err < TOL)then This mc-eans .that the consecutive
Exit/Break the | approximations are nearly the same,
xit/Break the loop Therefore, stop iterations.
end for loop of Step 7 (Go to Step 8)

Step 12 Print the output: W = [wy, wy, -+, wy,,]7

STOP.

Problem 19: Write a MATLAB® program that uses a second-order accurate Finite Difference
method to solve the following boundary value problem:

S

y' = y' +2y+cos(x), fory=y(x), where 0<x< 5

subject to the following Dirichlet boundary conditions: y(0) = —0.3 and y (g) = —0.1.

N N g g g T
For domain discretization, take step sizes as h = Ax = 5

To form the computational domain, the physical domain [0, %] is discretized by considering that it

consists of a number of equispaced discrete points or nodes, x;, fori =0,1,2,---,m + 1. For the
given problem,

Number of interiornodes = m = 3
p(x) =1
qlx) =2

r(x) = cos(x)

The target is to obtain the approximations w; to the function values y; = y(x;) at the interior
nodes x;, for i = 1, 2, 3. The values of the solution function are known at x, and x, due to Dirichlet
boundary conditions:

wo = y(x) = —0.3
wy =y(x,) = 0.1

A MATLAB® program that uses the Gauss-Seidel approach for the stated solution is as follows.

160 Simplified Numerical Analysis

clear ; clc ;

% Constants

a=0.0; % starting point of domain

b = pi/2.0; % ending point of domain

alpha = -0.3 ; % Dirichlet boundary; Function value at x=a
beta = -0.1 ; % Dirichlet boundary; Function value at x=b
m=3; % number of interior nodes

N = 200 ; % maximum number of iterations

TOL = 0.0000001 ; % permissible error / tolerance for convergence test

% Inline function definitions
p=@(x)1.0;

g = @(x) 2.0 ;

r= @(x) cos(x) ;

h =(b-a)/(m+1);
x = zeros(1l, m+2) ;
w = zeros(1l, m+2) ;
wp = zeros(1l, m+2) ;
B = zeros(1, m+1) ;
D = zeros(1, m+1) ;
U = zeros(1, m+1) ;
L = zeros(1, m+1) ;

X(1) =a;
x(m+2) =b;

fori=2:m+1
x(i) = x(i-1) + h;
fprintf("\tnodes %.2f\n', x(i)) ;
end

w(1l) = alpha ;
w(m+2) = beta ;

fori=1:m
B(i) = -h~2 * r(x(i+1)) ;
D(i) = 2 + h~2 * g(x(i+1)) ;
U(i) = -1 + (h*0.5) * p(x(i+1)) ;
L(i) = -1 - (h*0.5) * p(x(i+1)) ;
end

k=0;
fprintf('%4d: w= %3.2f ', k, w(1)) ;

Numerical Solution of Ordinary Differential Equations (ODEs) 161

fori=2:m+1

fprintf('%.8f ', w(i)) ;
end
fprintf('%3.2f\n', w(m+2)) ;

% Call to the solver function
w = egs(w, B, D, U, L, h, N, TOL) ;

% User-defined function for Gauss-Seidel Solver
function w = egs(w, B, D, U, L, h, N, TOL)
for k = 1:N % Iterations loop

% Making a copy of the solution vector before updating it
Wp =W

% Updating the solution vector

for i = 2:numel(w)-1
w(i) = (B(i-1) - L(i-1)*w(i-1) - U(i-1)*w(i+1)) / D(i-1) ;
end

% Printing the latest solution vector

fprintf("%4d: w= %3.2f ', k, w(1)) ;
fori = 2:numel(w)-1
fprintf('%.8f ', w(i)) ;
end
fprintf('%3.2f\n', w(end)) ;

% Finding the error as the L2-norm
sum =0 ;
for i = 2:numel(w)-1
sum = sum + (w(i)-wp(i))"2 / (w(i)N2) ;
end
err = sqrt(sum) ;
% Testing the convergence
if err < TOL
break;
end
end
end

162 Simplified Numerical Analysis

The above code is using explicit loops, to make the things a bit easier or clearer to understand.
However, the use of implied loops makes the programs concise in appearance and efficient in
execution. A code with implied loops given below.

clear ; clc;

% Constants

a=0.0; % starting point of domain

b = pi/2.0; % ending point of domain

alpha = -0.3; % Dirichlet boundary; Function value at x=a
beta = -0.1 ; % Dirichlet boundary; Function value at x=b
m=3; % number of interior nodes

N = 200 ; % maximum number of iterations

TOL = 0.0000001 ; % permissible error / tolerance for convergence test

% Inline function definitions
p=@(x)1.0;

g = @(x) 2.0 ;

r= @(x) cos(x) ;

h = (b-a) / (m+1) ;
x = zeros(1, m+2) ;
w = zeros(1l, m+2) ;
wp = zeros(1l, m+2) ;
B = zeros(1, m+1) ;
D = zeros(1, m+1) ;
U = zeros(1, m+1) ;
L = zeros(1, m+1) ;

X(1) =a;
x(m+2) =b;

x=a+h*(0:m+1);

w(1l) = alpha ;
w(m+2) = beta ;

fori=1:m
B(i) = -h~2 * r(x(i+1)) ;
D(i) = 2 + h~2 * g(x(i+1)) ;
U(i) = -1 + (h*0.5) * p(x(i+1)) ;
L(i) = -1 - (h*0.5) * p(x(i+1)) ;
end

Numerical Solution of Ordinary Differential Equations (ODEs)

163

k=0;

fprintf('%4d: w= %3.2f ', k, w(1));
fprintf('%.8f ', w(2:m+1));
fprintf('%3.2f\n', w(m+2));

% Call to the solver function
w = egs(w, B, D, U, L, h, N, TOL) ;

% User-defined function for Gauss-Seidel Solver

function w = egs(w, B, D, U, L, h, N, TOL)

mm = numel(w)-2 ;
for k = 1:N % Iterations loop
% Making a copy of the solution vector before updating it
wWp =w;
% Updating the solution vector
w(2:mm+1l) = (B(l:mm) - L(l:mm) .* w(l:mm) - U(1l:mm)
.* w(3:mm+2)) ./ D(1l:mm);
% Printing the latest solution vector
fprintf('%4d: w= %3.2f ', k, w(1));
fprintf('%.8f ', w(2:m+1));
fprintf('%3.2f\n', w(m+2));
% Finding the error as the L2-norm
err = sqrt(sum((w(2:mm+1l) - wp(2:mm+1)) .42
./ (w(2:mm+1) .”2)));
% Testing the convergence
if err < TOL
break;
end
end

end

164 Simplified Numerical Analysis

Question 23: List out some built-in functions/commands of MATLAB® relevant to the ODEs (IVPS
and BVPs).

MATLAB® provides several core functions for numerically solving ordinary differential equations
(ODESs). These functions are part of the base MATLAB® package and can be used without additional
toolboxes. Here are the main core MATLAB® functions for numerical ODE solving:

1. ode45: This function uses the Runge-Kutta Fehlberg method to solve ordinary
differential equations. It is a fourth-order method that is accurate and stable. The
syntax is:

[t, y] = oded5(odefun, tspan, yO0)

Here, odefun is a function handle representing the ODE system, tspan is the time span of
integration, and yO is the initial condition.

2. ode23: his function uses the Runge-Kutta Cash-Karp method to solve ordinary

differential equations. It is a third-order method that is accurate and stable. The
syntax is similar to ode45:

[t, y] = ode23 (odefun, tspan, yO0)

3. odel5s: This function is designed for stiff ODEs. It uses a variable-step, variable-order
BDF (backward differentiation formula) method. The syntax is the same as ode45:

[t, Y] = odel5s(odefun, tspan, yO0)

4. odell3: This function uses a variable-step, variable-order Adams-Bashforth-Moulton

method. It's generally efficient for medium-accuracy solutions. The syntax is similar to
ode45:

[t, Y] = odell3(odefun, tspan, yO0)

The provided syntax for each function is a simplified version. The actual usage may involve
specifying additional options or providing the ODE function in the appropriate format. Besides the
stated the MATLAB® Core Functions, ODE Toolbox, PDE Toolbox, and Simulink available in
MATLAB® can be considered depending upon the need.

Numerical Solution of Ordinary Differential Equations (ODEs) 165

Chapter Summary

e The numerical solution of an ODE is not a definition of y = y(x). The numerical solution of
the ODE is a set of numbers w; that are approximations to the function values y(x;) at
some pre-specified discrete values x; € [a, b]. Thatis, w; = y; = y(x,).

e To solve an initial-value problem consisting of a single first-order ODE in y = y(x) fora <
x < b and an initial-value y(a) = «, first the domain [a, b] is discretized by selecting
(m + 1) equispaced nodes x,, X1, X, =+, Xy, in [, b] such that a = x5 < x; < x, < -+ <
Xm = b, and h = (b — a)/m. Then, approximations w; to the values y; = y(x;) for i =
1,2,::+,m are obtained with wy=y(a). For simplicity, y(x;) is denoted by y;.

e There is a wide variety of methods for finding numerical solutions of the ODEs involved in
initial value problems (IVPs) and boundary value problems (BVPs).

e Methods for IVPs include single step methods and multi-step methods, each category
having explicit and implicit methods. A hybrid method, i.e., predictor-corrector method,
involves a combination of explicit and implicit formulas.

e Methods for BVPs are so versatile and involve much richer mathematical constructs.

e Theaccuracy of the approximate solution can be improved either by using a larger number
of steps (a smaller step size), or by using a better numerical method.

e The prime characteristics (or considerations) associated with a finite difference scheme to
determine its quality include

Stability

Local Truncation Error
Consistency (Compatibility)
Discretization Error
Convergence

YV V V VY

Chapter Exercises

Exercise 01: Find the numerical solution of the ODE, y' = 3 — 3y — e~ %% for 0 < x < 2, with initial condition
y(0) = 1.0. Consider the step size of 0.5. Use the exact solution, y(x) = %(6_6)‘ — e~3* 4+ 3), to find the error

in the numerical solution.

166 Simplified Numerical Analysis

Exercise 02: Find the numerical solution of the ODE, y' = 1 + (x — y)?, for 2 < x < 3, with initial condition
vy(2) = 1.0. Consider the step size of 0.5. Use the exact solution, y(x) = x + 1/(1 — x), to find the error in the
numerical solution.

Exercise 03: Find the numerical solution of the ODE,y’ = 2 + (x — y)z, for 2 < x < 3, with initial condition
y(2) = 1.5. Consider the step size of 0.5. Use the exact solution, y(x) = x — tan(—x + 2.463), to find the

Exercise 04: Find the numerical solution of the ODE, y' = (1 +x)/(1+y), for 0 < x <1, with initial
condition y(0) = 2.0. Consider the step size of 0.5. Use the exact solution, y(x) = Vx2 + 2x + 9 — 1, to find
the error in the numerical solution.

Exercise 05: For the functions y; = y;(x) and y, = y,(x), where x € [0,1], solve the following system of two
ODEs:

Yi = Yiy2—2

y; = 2n-y3
With initial conditions:

y1(0) = 2.0 y,(0) = 0.3
Use the RK4 method of order 4 for 5 steps.

HINT: For 5 steps the domain is discretized as

b—a 1.0-0.0
m 5

Xg = 0, X = 0.2, Xy = 0.4’, X3 = 0.6, Xg4 = 0.8, X5 = 1.0.

According to the initial conditions:

wio = Yo = ¥ilx) = y»(0) = 20
Wy = Y20 y2(x) = y,(0) = 03

The problem is to find approximations wy; to y;; = y;(x;) and wy; to y,; = y,(x;), fori = 1,2,3,4,5.

Exercise 06: For the functions y; = y;(x), y, = y,(x), and y; = y3(x), where x € [0,1], solve the following
system of three ODEs:

yi = ¥1+3y;—3y;+e”*
Y2 = 2y,+y;—3e”*
3 = nit2yte™

with initial conditions:

y1(0) = 25 y,(0) = -15 y3(0) = -1.0
Use the RK4 method of order 4 for 10 steps.
HINT: For 10 steps, the domain is discretized as

W - b—a _ 10-00 _ o1
T oom 10 -

Xg = 0, X1 = 01, Xy = 02, X3 = 03, Xg = 04’, X5 = 05, X = 06, X7 = 07, Xg = 08, Xg = 09, X109 = 1.0.

Numerical Solution of Ordinary Differential Equations (ODEs) 167

According to the initial conditions:

wio = Yo = Yilx) = y(0) = 25
Woo = Yo = Yalxe) = y,(0) = -15
wio = Y30 = y3lxp) = y3(0) = -1.0

The problem is to find approximations wy; to y;; = y1(x;), Wy; to y5; = y,(x;), and ws; to y3; = y3(x;), fori =
1,2,-+,10.

Exercise 07: Find the numerical solution of the IVP, y"" — 8y’ + 7y = 16e~* for 0 < x < 1, with initial
condition y(0) = 4.0 and y'(0) = 4.0. Also find y(1.1). Consider the step size of 0.1. Use the exact solution,
y = (1/3)(e”* + 8e* + 3e~%), to find the error in the numerical solution.

HINT: Given the equation,

y'=8y'+7y = 16e7* ———
For the solution, consider

y = z -—-—(2)
Then, the given second-order Eq. (1) becomes

Z = 4z-3y+7e* ---3

Thus, the second-order IVP is essentially converted to the problem of a first-order system of ODEs of
comprising the two equations (2) and (3) subject to the initial conditions:

y(0) = 3.0 z(0) = 3.0
For 10 steps, the domain is discretized as

h - b-—a 10-00 o1
T oom 10 -

Xg = 0, X, = 0.1, Xy = 0.2, X3 = 0.3, Xg4 = 0.4’, X5 = 0.5, Xg = 0.6, X7 = 0.7, Xg = 0.8, Xg = 0.9, X109 = 1.0.
According to the initial conditions:

wi = Yo = yxo) = y0) = 30
Wy = 2o = z(xy) = z(0) = 3.0

The problem is to find approximations wy; to y; = y;(x;) and wy; to z; = z(x;), fori = 1,2, -+, 10.
Exercise 08: Solve the ODE y"” = 4y’ — 3y + 7e™* for y = y(x) in x € [0,1] with the initial conditions: y(0) =
3.0 and y'(0) = 3.0. Solve it for 10 steps.

Exercise 09: Find the numerical solution of the BVP,y" — 9y’ + y = x for 0 < x < 1, with initial condition
y(0) = 0.0 and y'(1) = 6.0. Consider the step size of 0.1.

Exercise 10: Find the numerical solution of the ODE, x2y" + 3xy' + 3y = 0, with initial condition y(1) = 1
1

and y'® = —5 for y(1.1). The exact solution is, y = Z (cos(\/fln x) + (% - 5) sin(\/f In x))

Exercise 11: Find the numerical solution of the ODE, y"' — 6y’ 4+ 9y = x2e3*, with initial condition y(0) = 2
and y'(0) = 6 for y(1.1). The exact solution is, y = 2e3* + 1—12x4e3".

168 Simplified Numerical Analysis

Exercise 12: Solve the ODE y"' = —y"” 4+ 3y’ 4+ 3y for y = y(x) in x € [0,2] with the initial conditions:
y(0) = 2.0,y'(0) = —1.0,and y"'(0) = 8.0. Solve it for 10 steps.

HINT: Given the equation,

y" = —y"+3y +3y -—-—-
Fory = y(x) in x € [0,2] with the initial conditions:

y(0) = 20 y'(0) = —1.0 y"(0) = 8.0
Solve it for 10 steps.
For the solution, consider

y =z ---@

y'o= 7y = z -—-3)
Then, the given third-order Eq. (1) becomes

zy = —z;+3z;+3y el)
Thus, the third-order IVP is essentially converted to the problem of a first-order system of ODEs of comprising
the three equations (2) - (4) subject to the initial conditions:

y(0) = 2.0 z;(0) = -1.0 z,(0) = 8.0

R . b- 2.0-0.0
For 10 steps, the domain is discretizedas h = Ta = 0 = 0.2

X9 =0, =02,%x,=04,x3 =0.6,x4 =08, x5 =1.0,x =1.2,x; = 1.4, x5 = 1.6, xg = 1.8, x15 = 2.0.

According to the initial conditions:

wie = Yo = Y(xo) = y(0) = 20
Wy = zi9 = z1(x) = z(0) = -1.0
W3 = Zzg = Zy(xg) = 2z(0) = 80

The problem is to find approximations wy; to y; = y(x;), Wy; to zy; = z;(x;), and wy; to z; = z,(x;), for i =
1,2,--+,10.

Exercise 13: Using a second-order accurate Finite Difference method, solve the following BVP:
y' = 9y —y+x, fory=y(x), where 0<x<1

subject to the following Dirichlet boundary conditions: y(0) = 0 and y(1) = 6.

For domain discretization, take step sizes as h = Ax = 0.25.

Exercise 141: Using a second-order accurate Finite Difference method, solve the following BVP:

y" = -5y —8y+x? fory=7y(x), where 1<x<2

subject to the following Dirichlet boundary conditions: y(1) = 0 and y(2) = 24.
For domain discretization, take step sizes as h = Ax = 0.25.

169

Bibliography

10.

11.

12.

13.

14.

Richard L. Burden &]. Douglas Faires, (2011), Numerical Analysis, (9t Edition), USA,
Brooks/Cole Pub. Co.

Steven C. Chapra & Raymond P. Canale, (2006), Numerical Methods for Engineers, (5t
Edition), NY, USA, McGraw-Hill Co.

David R. Kincaid & E. Ward Cheney, (2002), Numerical Analysis: Mathematics of Scientific
Computing, (314 Edition), USA, Brooks/Cole Pub. Co.

E. Ward Cheney & David R. Kincaid, (2013), Numerical Mathematics and Computing, (7t
Edition), New-Delhi India, Cengage Learning India Pvt. Ltd.

Brian Bradie, (2005), A Friendly Introduction to Numerical Analysis, Pearson.

John H. Mathews & Kurtis D. Fink, (2015), Numerical Methods using MATLAB, (4t
Edition), India, Pearson India Education Services Pvt. Ltd.

M. K. Jain, S. R. K. Iyengar & R. K. Jain, (2012), Numerical Methods for Scientific and
Engineering Computation, (6t Edition), New-Delhi India, New Age International Pvt. Ltd.

George R. Lindfield & John E. T. Penny, (2013), Numerical Methods using MATLAB, (3™
Edition), USA, Academic Press, An imprint of Elsevier.

Amos Gillat, (2011), MATLAB: An Introduction with Applications, (4t Edition), USA, John
Wiley & Sons, Inc.

Laurene V. Fausett, (2009), Applied Numerical Analysis using MATLAB, (2rd Edition),
India, PEARSON Education Inc.

Babu ram, (2010), Numerical Methods, India, PEARSON Education Inc.

Francis Schied, (1990), 2000 Solved Problems in Numerical Analysis, (International
Edition), NY, USA, McGraw-Hill Co.

P. Siva Ramakrishna Das & C. Vijayakumari, (2004), Numerical Analysis, (1st Edition),
India, Dorling Kindersley Pvt. Ltd.

Saeed Akhtar Bhatti & Naveed Akhtar Bhatti, (2008), A First Course in Numerical
Analysis with C++, (5t Edition), Lahore, Pakistan, A-ONE Publishers.

15.

16.

17.

18.

19.

20.

21.

22.

23.

170
Mohammad Igbal, (1990), An Introduction to Numerical Analysis, Urdu Bazar Lahore,
Pakistan, Ilmi Kitab Khana.

Fiaz Ahmad & Muhammad Afzal Rana, (1995), Elements of Numerical Analysis,
Islamabad, Pakistan, National Book Foundation

Amjad Pervez, (1996), An Introduction to Numerical Analysis, Urdu Bazar Lahore,
Pakistan, A.H. Publishers.

Germund Dahlquist & Ake Bjorck, (2003), Numerical Methods, New Jersey, USA, Prentice-
Hall Inc.

Erwin Kreyszig, (2011), Advanced Engineering Mathematics, (10%* Edition), USA, John
Wiley & Sons, Inc.

S. S. Sastry, (2019), Introductory Methods of Numerical Analysis, (Fifth Edition), PHI
Learning Private Limited.

Curtis F. Gerald & Patrick O. Wheatley, (2003), Applied Numerical Analysis, (7t Edition),
India, PEARSON Education Inc.

K. Sankara Rao, (2009), Numerical Methods for Scientists and Engineers, (Third Edition),
PHI Learning Private Limited.

Lal Din Baig, (2014), Numerical Analysis, Ilmi Kitab Khana, Lahore.

	matlab4_0_Front.pdf
	matlab4_1_Preface.pdf
	matlab4_2_Chapter1NumericalPreliminaries.pdf
	matlab4_3_Chapter2RootFinding.pdf
	matlab4_4_Chapter3Interpolation.pdf
	matlab4_5_Chapter4Integration.pdf
	matlab4_6_Chapter5Differentiation.pdf
	matlab4_7_Chapter6DirectLinearSolvers.pdf
	matlab4_8_Chapter7IterativeLinearSolvers.pdf
	matlab4_9_Chapter8EigenValuesandEigenVectors.pdf
	matlab4_10_Chapter9NSODEs.pdf
	matlab4_11_Bibliography.pdf

