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Chapter 1 

Preliminary Concepts  

in Numerical Analysis  

1.1     Introduction 

1.2     Number Systems and Representations 

1.3     The Round-off Error 

1.4     The Truncation Error 

 

To unleash the topics of this Chapter, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

Computing Resources 

The numerical methods are devised just to be used on computers. It makes no sense to study a 
numerical method without considering its practicality using some computing tools. A variety of 
numerical computing tools, both freeware and proprietary, are available. The students are advised to 
understand the algorithmic (step-by-step) style of the numerical methods they learn. This book 
suggests the following resources for beginners. 

(1) C++: The numerical methods can be programmed in any programming language, especially 
C++, FORTRAN, and Python. The book discusses a wide variety of C++ programs of the 
numerical methods in this book. One can modify the as per need. Several C++ IDEs 
(Integrated Development Environments) are available, such as Dev-C++, and Code::Blocks for 
Windows and GNU-C++ for Linux operating system. One can even find C++ Apps (apps is an 
acronym for computer application software) for Android or iOS devices. Some online C++ 
IDEs are also available, which can be used for executing C++ programs without installing 
them. 

http://www.timerenders.com.pk/
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(2) Python: There are several free Python IDEs available for the Desktop use (such as Spyder, 
Jupyter, and PyCharm) or On-line use (such as Google Colab). It is quite a pertinent skill of the 
day that the students of computational sciences are familiar with programming in Python. 
The companion website of this book (www.timerender.com.pk) shares a Python Library 
having a variety of codes for the numerical methods discussed in this book. 

(3) MATLAB®: It is a proprietary software, by The MathWorks, Inc., available in both Desktop and 
Online versions. MATLAB® offers a wide variety of built-in functions and programming 
capabilities for mathematical computations (both symbolic and numeric, although more 
suitable and expert for numeric computations), for all modern areas of science and 
engineering. The book discusses a wide variety of MATLAB® programs and MATLAB® built-in 
functions for the numerical methods in this book. 

(4) GNU-Octave: It is an open-source (and freeware) version of MATLAB®, available in both 
Desktop and Online versions. Most of the MATLAB® codes and built-in functions discussed in 
this book can be executed in GNU-Octave and Octave-online. 

(5) MATHEMATICA®: It is a proprietary software by Wolfram Research. It is one of the best 
Computer Algebra Systems (CAS) available. It offers an extensive variety of built-in functions 
and programming capabilities for mathematical computations (both symbolic and numeric), 
for all modern areas of science and engineering. 

(6) MAPLE®: It is a proprietary software by Maplesoft for mathematical computations (both 
symbolic and numeric), for all modern areas of science and engineering.  It is also one of the 
best Computer Algebra Systems (CAS). 

(7) Spread-Sheet: A spread-sheet software (such as Excel by Microsoft®) can be used for 
computations involved in simple numerical methods. The companion website of this book 
(www.timerender.com.pk) may shares a spread-sheet workbook having a variety of sheets 
for most of the numerical methods discussed in this book. 

(8) Various Math Solver Tools: Wolfram|Alpha, Symbolab, and Microsoft® Math Solver are 
three of the advanced tools for math education to be used as calculators. These are 
extensive, feature-rich, online tools, accessible both through the web browser and the 
relevant android/iOS apps. These tools provide automated step by step solutions to algebra 
and calculus problems covering from middle school through college. The premier versions of 
these tools are freely available, whereas professional (pro) versions are not free. 

(9) Various Other Online Tools/Websites: There are various other online tools and websites that 
offer basic computing facilities for numerical and symbolic computations. Examples include: 

• AtoZmath.com [https://atozmath.com/] 

• CalculatorSoup® [https://www.calculatorsoup.com/]. 

• Keisan - CASIO®  [https://keisan.casio.com/] 

∎∎∎ 
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Question 06:  What are the significant figures (or significant digits) of an approximate number? 

Significant figures of a number (that approximates a true value) are the digits that are used to 

express the number meaningfully. The significant figures are counted for a number that 

approximates some other number to express the degree of precision in the approximate number. 

The significant figures begin with the leftmost nonzero digit and end with the rightmost correct 

digit. The rightmost zeros, which are exact, are also significant. That is, 

• All the nonzero digits (i. e. , 1, 2, 3, ⋯ ,9) are significant. 

• Zeroes appearing anywhere between two nonzero digits are significant (e.g., in 

3005.00102 there are nine significant digits). 

• Leading zeros (i.e., left to the first nonzero digit) are not significant (e.g., the number 

0.000081 has only two significant digits, namely 8 and 1). The leading zeros are used to 

fix the decimal place.  

• Trailing zeroes are significant if they are exact with regard to some true value. Trailing 

zeros may or may not be significant. It depends on the context; how the number is 

approximated or obtained by rounding-off some other number. 

∎ 

Remark: The significant figures of a number can easily be identified by using its normalized 

scientific notation. The digits in the fractional part (or mantissa) are regarded as significant 

figures. For example, each of the numbers 42.134, 6.0013, and 0.0015784 has five significant 

figures, which can be identified easily by converting these numbers into their normalized 

scientific notation as: 

42.134 = 0.42134 × 102

6.0013 = 0.60013 × 10
0.0015784 = 0.15784 × 10−2

 

∎ 

Remarks: 

• 6500 has 2 significant figures (i.e., the digits 6 and 5) if it has been obtained by rounding-off a 

number to the nearest 100 (e.g., by rounding-off the numbers 6497 or 6543.88 to the nearest 

hundred). In fact, any number in the interval (6450, 6550) gives 6500, when rounded to the 

nearest 100. 

• 6500 has 3 significant figures (i.e., the digits 6, 5, and the following 0) if it has been obtained 

by rounding-off a number to the nearest 10 (e.g., by rounding-off the numbers 6497 or 

6504.99 to the nearest ten). In fact, any number in the interval [6495, 6505] gives 6500, 

when rounded to the nearest 10. 
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• 6500 has 4 significant figures if it has been obtained by rounding-off a number to the nearest 

whole number (e.g., by rounding-off the numbers 6499.8 or 6500.47 to the nearest whole 

number). In fact, any number in the interval [6499.5, 6500.5] gives 6500, when rounded to 

the nearest whole number. 

• 70500 has at least 3 significant figures (i.e., the digits 7, 5, and the 0 in between these). 

Depending upon the context, as just explained, it may have 3 to 5 significant figures. 

• 0.00364300 has 4 significant figures (i.e., the digits 3, 6, 4, and 3) if it has been obtained by 

rounding-off a number to 4 significant figures (e.g., by rounding-off the numbers 

0.003642859 or 0.0036432099 to 4 significant figures). Usually, in that case, the 

approximate number is written as 0.003643, without any non-significant trailing zero. In fact, 

any number in the interval [0.0036426,0.0036435) gives 0.003643, when rounded to 4 

significant figures. 

• 0.00364300 has 5 significant figures (i.e., the digits 3, 6, 4, 3, and the following 0) if it has 

been obtained by rounding-off a number to 5 significant figures (e.g., by rounding-off the 

numbers 0.003642978001 or 0.003643049 to 5 significant figures). Usually, in that case, the 

approximate number is written as 0.0036430, without any non-significant trailing zero. In 

fact, any number in the interval [0.00364295,0.00364306) gives 0.0036430, when rounded 

to 5 s.f. 

• 0.00364300 has 6 significant figures (i.e., the digits 3, 6, 4, 3, and the following two 0s) if it 

has been obtained by rounding-off a number to 6 significant figures (e.g., by rounding-off the 

numbers 0.003642998001 or 0.003643001 to 6 significant figures). In fact, any number in 

the interval [0.003642995,0.003643006) gives 0.00364300, when rounded to 6 significant 

figures. 

∎ 

Remark:  

An approximation 𝑥∗ to a number 𝑥 is called accurate to 𝑡 significant figures if there are exactly 𝑡 

digits in the mantissa of 𝑥∗ that agree with the first 𝑡 digits of the mantissa of 𝑥, where 𝑥 has the 

same exponent as 𝑥∗. Suppose that the number 𝑥 is represented in the following form 

 𝑥 = ±0. 𝑑1𝑑2𝑑3 ⋯ 𝑑𝑡𝑑𝑡+1 ⋯ × 10𝑒  

Then, the number 𝑥∗ is accurate to 𝑡 significant figures to the number 𝑥 if it can be written in the 

following form 

𝑥∗ = ±0. 𝑑1𝑑2𝑑3 ⋯ 𝑑𝑡𝑑𝑡+1
′ ⋯ × 10𝑒  

∎ 
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Fig. (1.3): According to the IEEE 754 standard, single-precision floating point representation of a 
binary real number 𝑥 = ±1. b2b3b4 ⋯ × 2e is (1 − 2s) × 2c−127 × (1 + f). 

 

Fig. (1.4): According to the IEEE 754 standard, double-precision floating point representation of a 
binary real number x = ±1. b2b3b4 ⋯ × 2e is (1 − 2s) × 2c−1023 × (1 + f). 

Here, 𝑠 is used for the sign of the number (0 means positive, 1 means negative). 𝑐 in the exponent 

is called the biased exponent. 𝑓 is the mantissa minus 1 (the hidden bit). 

 

 

Fig. (1.5): Overflow/Underflow for single-precision floating-point representation 

 

Fig. (1.6): Overflow/Underflow for double-precision floating-point representation 
∎∎∎ 
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Chapter Summary 

• The numerical methods obtain some approximate solution of the problems, usually in the numeric 

form, in contrast to the analytic or exact methods, which obtain the exact solution of the problem. 

• Numerical Analysis is the field of deriving, analyzing, and implementing the numerical methods. 

• The most common approach followed by the numerical methods is the iterative approach. According to 

this, choose an initial approximation or guess to the solution and apply a set of simple computational 

steps to obtain a better approximation. Repeatedly apply the same set of steps to the better 

approximations, ultimately obtaining a sufficiently accurate solution and then stop the repetition. Each 

course of repetition of the set of computational steps is called iteration.  Geometrically, a root of an 

equation 𝑓(𝑥) = 0 is the point where the graph of 𝑓(𝑥) intersects the 𝑥-axis. 

• For selecting a numerical method from several choices, the characteristics of accuracy, 

efficiency, and robustness are taken into consideration. 

• The numerical analysis may be regarded as the “mathematics of scientific computing”. 

• Errors can be quantified as: 

o Absolute Error = |True value − Approximate value| 

o Relative Error =
absolute error

|True value|
=

|True value−Approximate value|

|True value|
 

o Percentage Relative Error =
absolute error

|True value|
× 100 % 

• The errors can be categorized in three major categories in regard to their sources: Data Error or 

Inherent Error (quite unrelated to the numerical methods; occur as blunders, mistakes, model 

simplification, or data uncertainty), Round-off Error (occurs due to number approximation by humans 

and computers), Truncation Error (occurs due to approximation of a mathematical procedure to avoid 

insignificance), and Distcretization error (occurs due to approximation of a continuous function by a 

set of discrete data points). 

• Significant figures of a real number (which is an approximation of the true value) are the digits that 

are used to express the number meaningfully. The significant digits begin with the leftmost nonzero 

digit and end with the rightmost correct digit. The rightmost zeros, which are exact are also significant. 

• An approximation 𝑥∗ to a number 𝑥 is called accurate to 𝑡 significant figures if there are exactly 𝑡 digits 

in the mantissa of 𝑥∗ that agreed with the first 𝑡 digits of the mantissa of 𝑥 having the same exponent or 

characteristics. 

• Accuracy of an approximate value is a measure of how much the approximate value agrees with the 

true value. Precision, on the other hand, has nothing to do with how much the approximate value 

agrees with the true value. Precision is only concerned about the size of the number. 

• The following four are the commonly used number systems, even supported by the computer 

architectures. 
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1. Decimal number system (base 10) 

2. Binary number system (base 2) 

3. Octal number system (base 8) 

4. Hexadecimal number system (base 16) 

• Any nonzero real decimal number 𝑥 can be represented in floating-point form: 𝑥 = ±0. 𝑑1𝑑2𝑑3 ⋯ × 10𝑒. 

Here 𝑑𝑖 , 𝑖 = 1, 2, ⋯ are digits from 0 to 9 with 𝑑1 ≠ 0, called most significant digit and 𝑒 is an integer 

that might be positive, negative or zero, called an exponent or characteristic. The number 0. 𝑑1𝑑2𝑑3 ⋯, 

may be denoted by 𝑚, is called the finite normalized mantissa. For numbers in the decimal system with 

base 10, 
1

10
 ≤ 𝑚 < 1. That is, 𝑚 ∈ [

1

10
, 1). 

• For numbers in the binary system, the floating-point representation of a number 𝑥 can be given by, 

𝑥 = ±0. 𝑏1𝑏2𝑏3 ⋯ × 2𝑒 = ±𝑚 × 2𝑒 , were each of 𝑏𝑖  is a bit, either 0 or 1, with 𝑏1 ≠ 0, and 
1

2
 ≤ 𝑚 < 1. 

• The numbers that are representable precisely in a computer are called machine numbers. The real 

numbers with a non-terminating fractional part (such as 1/3) cannot be represented, precisely. So 

many other numbers (for example, 0.01) also has not a precise representation in computer (i.e., a 

machine number). 

• If the number lies within the allowable range of the possible numbers according to the precision level of 

the computer, then it is rounded to a nearby machine number (incurring the round-off error) for storing 

it. The rounding options involve correct rounding (round to nearest machine number), rounding up, 

rounding down or towards zero, etc. 

• There are commonly two ways to terminate the mantissa of a number to obtain its nearest machine 

number, namely, correct chopping and correct rounding. The chopping or rounding of the number to 

the nearest machine number (representable in a computer) for representation in computers (for 

storage or for using in computations) causes the error in a number called the round-off error. 

• The floating-point form of a number 𝑥 representable in a computer can be regarded as consisting of the 

three parts:  𝑥 = ±𝑚 × 𝛽𝑒 = 𝒔𝒊𝒈𝒏 × 𝒎𝒂𝒏𝒕𝒊𝒔𝒔𝒂 × (𝑏𝑎𝑠𝑒)𝒆𝒙𝒑𝒐𝒏𝒆𝒏𝒕 

The sign is either positive (+) or negative (−), the finite normalized mantissa is from the interval [
1

𝛽
, 1), 

and the integer exponent either positive, negative, or zero as a power of the base. 

• An account on the IEEE Binary Floating-Point Arithmetic Standard 754-1985 for representing the 

real numbers in computers can be found under Question 13 in this chapter. 

• If a number 𝒙∗ is accurate to 𝒕 significant figures in approximating a number 𝒙 then the relative 

error is bounded above by 𝟓 × 𝟏𝟎−𝒕. That is,      
|𝒙−𝒙∗|

|𝒙|
≤ 𝟓 × 𝟏𝟎−𝒕 

• If an iterative process is to be stopped when the successive approximations become accurate to 𝑡 

significant figures, the relative error bound might be set as 5 × 10−𝑡. Thus, the relative error is 

computed after every iteration using the result of the current iteration and that of the previous 

iteration. If the relative error is smaller than the bound of 5 × 10−𝑡, then it ensures that the 

approximation the accurate to 𝑡 significant digits. 

• Whenever two nearly equal numbers are subtracted, some loss of significance might occur. The risk of 

loss of significance can be eliminated by avoiding the subtraction through some mathematical 

manipulation. 
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Chapter Exercises 

Exercise 01: Compute the absolute error 𝐸𝑎 and relative error 𝐸𝑟 in an approximation of 𝑥 by 𝑥∗  

(𝑖) 𝑥 = log10 2 , 𝑥∗ = 0.301 (𝑖𝑖) 𝑥 = 17 6⁄ , 𝑥∗ = 2.8333

(𝑖𝑖𝑖) 𝑥 = √𝜋, 𝑥∗ = 1.77245 (𝑖𝑣) 𝑥 = 𝑒−1, 𝑥∗ = 0.36787
 

Exercise 02: Write the following numbers in floating-point form and identify their mantissa and exponent: 

(𝑖) 𝑥 = −23.500128 (𝑖𝑖) 𝑥 = 658.000012 (𝑖𝑖𝑖) 𝑥 = 0.010023

(𝑖𝑣) 𝑥 = −0.0000782 (𝑣) 𝑥 =
1

234.24
(𝑣𝑖) 𝑥 = 541000

 

Exercise 03: Simplify the following expression by performing the computations  

(a) Exactly 

(b) Using four-digit chopping arithmetic 

(c) Using four-digit rounding arithmetic 

(d) Compute the relative errors 

(𝑖)
7

4
−

5

3
(𝑖𝑖)

5

4
(

2

3
+ 4) (𝑖𝑖𝑖)

𝜋 − 1

4
3

(𝑖𝑣) 10𝜋 − 2𝑒 + 1 (𝑣) (
432 − 0.0012

101
) (𝑣𝑖) (

2

9
) . (

9

7
)

 

Consider 𝜋 and 𝑒 expressed with fifteen significant digits as the exact numbers. 

Exercise 04: Calculate the roundoff error if chopping and rounding is used to write the following numbers 

accurate to four decimal digits: 

(𝑖) 355/113 (𝑖𝑖) √3/142 (𝑖𝑖𝑖) √ln 2
3

 

Exercise 05: We want to round-off each the following numbers to three decimal places. For which number, 

the result of “round-off by chopping” and “round-off by rounding-rule” will be the same: 

(A) 5.5555 (B) 3.3575 (C) 5.5565 (D) 4.4555 

Exercise 06: Find the absolute and relative errors involved in rounding 4.9997 to 5.000. 

Exercise 07: Suppose a real number 𝑥 is represented approximately by 0.6032 with the relative error is at 

most 0.1%. What is 𝑥? 

Exercise 08: Suppose that a number is accurate to 𝑛 significant figures and 𝑎1 is the first significant figure 

than show that the relative error is bounded above by 
1

𝑎1
× 101−𝑛. 

Exercise 09: Show that if a number is rounded off to 𝑛 digits than the relative error is bounded by 
1

2
× 101−𝑛 .  

∎∎∎ 
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Chapter 2 

Solution of a Nonlinear Equation 

  in One Variable 

Corridor I: BASICS 

 Let’s plan it 
 

 

2.1     Introduction 

2.2     Bracketing Methods 

       2.2.1     The Bisection Method (or Bolzano Method) 

       2.2.2     The False-Position Method (or Regula-Falsi Method) 

2.3     Open Methods 

       2.3.1     The Fixed-Point Iteration Method 

       2.3.2     The Newton-Raphson Method 

       2.3.3     The Secant Method 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

  

http://www.timerenders.com.pk/
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Corridor II: ANALYSIS 

Let’s think deep 
 

2.4     Convergence Analysis 

                     The Bisection Method 

                     The Regula-Falsi Method 

                     The Secant Method 

                     The Newton-Raphson Method 

                     The Fixed-Point Iteration Method 

2.5     Further Discussions 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

Corridor III: PROGRAMMING ARCADE 

Let’s do it 
 

2.6     Algorithms and Implementations 

                     The Newton-Raphson Method 

                     The Fixed-Point Iteration Method 

                     The Secant Method 

                     The Bisection Method 

                     The Regula-Falsi Method 

      Built-in MATLAB® Commands 

 

To cross-check the results/output of the computer programs you would execute, please delve into 

the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/
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2.6 Algorithms and Implementations 

 

Question 36: Write down the algorithm (pseudo code) of the Newton’s method to solve 𝑓(𝑥) = 0. The 

algorithm should perform a fixed number of iterations. 

Algorithm: To solve 𝑓(𝑥) = 0 using the following iterative formula (given an initial approximation 𝑥0): 

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)
, for 𝑘 = 1, 2, 3,⋯ 

𝐈𝐍𝐏𝐔𝐓𝐒:   {
𝒙𝟎: a real value as the initial approximation 𝑥0 sufficiently close to the root
𝑵: an integer as the maximum number of iterations

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝒙𝒏: a real value as the approximate solution
(on completing 𝑵 iterations)

 

Step 1 Receive the inputs as stated above 

Step 2 Set 𝒙𝒏 = 𝒙𝟎 (initialize 𝒙𝒏 with the initial approximation) 

Step 3 for 𝒌 = 𝟏, 𝟐, 𝟑,⋯ ,𝑵 perform Steps 4-6 

Step 4   Set 𝒙𝒑 = 𝒙𝒏    {
𝒙𝒑 is to keep a copy of the approximation 𝒙𝒏,
 because 𝒙𝒏 is going to be updated.

 

Step 5 Set 𝒇𝒙𝒑 as the value of 𝑓(𝒙𝒑) 

Set 𝒅𝒇𝒙𝒑 as the value of 𝑓′(𝒙𝒑) 

Step 6  

𝒙𝒏 = 𝒙𝒑 −
𝒇𝒙𝒑

𝒅𝒇𝒙𝒑
{
Computing a new  
approximation to the root

 

end for (Go to Step 4 for the next iteration) 

Step 7 Print the output: 𝒙𝒏                 

 [Additionally, the initial approximation (𝒙𝟎), number of iterations (𝒌), and 𝑓(𝒙𝒏) can be printed] 

STOP. 

 

Remark: In the algorithm, it is assumed that neither any pitfall of the method will occur, nor 𝑓(𝑥) will be 

equal to zero (or the machine-epsilon) in any iteration for the given problem and initial approximation. 
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Problem 19: Write a MATLAB® program to find a real root of 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 using the 

Newton-Raphson method. Take initial approximation as 𝑥0 = 0. Here 𝑓′(𝑥) = 4 + cos 𝑥 − 𝑒𝑥.  The program 

should perform a fixed number of iterations. 

1 clear , clc ;                             

2 N = 100 ;          % maximum number of iterations     

3                                    

4 xn = input(' Enter the initial approximation x0:  ') ;              

5                                    

6 %----------------------- Processing Section -------------------------%       

7                                    

8 for k = 1:1:N                           

9  xp = xn ;                             

10  fxp = 4*xp + sin(xp) – exp(xp) ;                    

11  dfxp = 4 + cos(xp) – exp(xp) ;      
𝑥𝑘 = 𝑥𝑘−1 −

𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)
 

     

12  xn = xp – fxp / dfxp ;               

13 end                                 

14                                    

15 %------------------------ Output Section ----------------------------%       

16                                    

17 fprintf('An approximate root of the given function is %9.6f.\n' , x)      

18 fprintf('\n%i iterations completed.\n' ,N)      
 

Remark: In the program of Problem 19, the code segment of line 17 can be placed just before line 13 to print 

the latest result on completion of each of the iterations. 

Remark: In the program, it is assumed that neither any pitfall of the method will occur, nor 𝑓(𝑥) will be 

equal to zero (or the machine-epsilon) in any iteration. 

Remark: The algorithm in Question 36 (likewise Problem 19) has a shortcoming that on completion of the 

given fixed number of 𝑁 iterations the solutions might not have been converged (the desired accuracy might 

not have been achieved). Moreover, the algorithm has a shortcoming if the convergence has been achieved 

(or divergence has occurred) in few iterations, even then the iterations would not stop immediately; the 

algorithm will complete the fixed number of iterations. These shortcomings in the algorithm can be 

addressed by incorporating the two convergence criteria such that if the convergence is achieved 

(i. e., error < tolerence), then no more iterations will be performed, however, the number of iterations 

would not exceed the maximum limit on the number of iterations. Such an indispensable modification 

regarding the stopping criteria is adopted throughout the subsequent part of the book. 
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Question 37: Write down the algorithm (pseudo code) of the Newton’s method to solve 𝑓(𝑥) = 0. 

Algorithm: To solve 𝑓(𝑥) = 0 using the following iterative formula (given an initial approximation 𝑥0): 

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)
, for 𝑘 = 1, 2, 3,⋯ 

𝐈𝐍𝐏𝐔𝐓𝐒:   {

𝒙𝟎: a real value as the initial approximation 𝑥0 sufficiently close to the root
𝑻𝑶𝑳: a real value as the tolerance (permissible error)
𝑵: an integer as the maximum number of iterations

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝒙𝒏: a real value as the approximate solution
(either on convergence or on completing 𝑵 iterations − whichever happens first)

 

Step 1 Receive the inputs as stated above 

Step 2 Set 𝒙𝒏 = 𝒙𝟎 (initialize 𝒙𝒏 with the initial approximation) 

Step 3 for 𝒌 = 𝟏, 𝟐, 𝟑,⋯ ,𝑵 perform Steps 4-8 

Step 4 Set 𝒙𝒑 = 𝒙𝒏    {
𝒙𝒑 is to keep a copy of the approximation 𝒙𝒏,
 because 𝒙𝒏 is going to be updated.

 

Step 5 Set 𝒇𝒙𝒑 as the value of 𝑓(𝒙𝒑) 

Set 𝒅𝒇𝒙𝒑 as the value of 𝑓′(𝒙𝒑) 

Step 6  

𝒙𝒏 = 𝒙𝒑 −
𝒇𝒙𝒑

𝒅𝒇𝒙𝒑
{
Computing a new  
approximation to the root

 

Step 7 Set 𝒆𝒓𝒓 = |𝒙𝒏 − 𝒙𝒑|                                        (or 𝑒𝑟𝑟 = |𝑥𝑛 − 𝑥𝑝|/|𝑥𝑝|) 

Step 8  

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳) then

Exit/Break the loop 
}

This means that the consecutive 
approximations are nearly the same
Therefore, stop iterations.

. 

end for (Go to Step 4 for the next iteration) 

Step 9 Print the output: 𝒙𝒏                 

 [Additionally, the initial approximation (𝒙𝟎), number of iterations (𝒌), 𝑓(𝒙𝒏), and error (𝒆𝒓𝒓) can be printed] 

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳)  OUTPUT (‘The desired accuracy achieved; Solution converged.’) 

else   OUTPUT (‘The number of iterations exceeded the maximum limit.’)  because 𝒌 > 𝑵 

STOP. 

Remark: In the algorithm, it is assumed that neither any pitfall of the method will occur, nor 𝑓(𝑥) will be 
equal to zero (or the machine-epsilon) in any iteration for the given problem and initial approximation. 

 



14 Simplified Numerical Analysis 

 

Problem 21: Write a MATLAB® program to find a real root of 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 using the 

Newton-Raphson method. Take initial approximation as 𝑥0 = 0. Here 𝑓′(𝑥) = 4 + cos 𝑥 − 𝑒𝑥. The iterations 

of the method should stop when either the approximation is accurate within 10−5, or the number of 

iterations exceed 100, whichever happens first. 

1 clear ; clc ;                             

2 TOL = 0.000001 ;       % error tolerance     

3 N = 100 ;         % maximum number of iterations     

4                                    

5 x0 = input(' Enter the initial approximation x0:  ') ;              

6 xn = x0 ;                             

7                                    

8 %----------------------- Processing Section -------------------------%       

9                                    

10 for  k = 1:1:N                     

11  xp = xn ;                             

12  fxp = 4*xp + sin(xp) – exp(xp) ;                    

13  dfxp = 4 + cos(xp) – exp(xp) ;     
𝑥𝑘 = 𝑥𝑘−1 −

𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)
 

     

14  xn = xp – fxp / dfxp ;             

15  err = abs(xn – xp) ;          Error =  |𝑥𝑘 − 𝑥𝑘−1|      

16                                    

17  fprintf ('After %i iterations, the approximate root = %9.6f ', k-1 , xn)    

18  fprintf ('   f(x)  =  %9.6f,     Error  =  %9.6f. \n' , fxp , err)     

19                                    

20  if (err < TOL)    break;    end                  

21 end                                 

22                                  

23 %------------------------ Output Section ----------------------------%       

24                                    

25 if ( err < TOL )                           

26  fprintf ('The desired accuracy achieved; Solution converged. \n')       

27 else                                

28  fprintf ('The number of iterations exceeded the maximum limit.\n')   

29 end                                 

 

Remark: This program is based on the assumption that neither any pitfall of the method will occur, nor 𝑓(𝑥) 

will be equal to zero (or machine-epsilon) in any iteration for the given problem and data. 

 

Problem 23: Write a MATLAB® program to find a real root of the equation 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 

using the Newton-Raphson method. Take initial approximation as 𝑥0 = 0. Here 𝑓′(𝑥) = 4 + cos 𝑥 − 𝑒𝑥 . Write 

user-defined MATLAB® functions to evaluate 𝑓(𝑥) and 𝑓′(𝑥) at the current approximation. The iterations of 

the method should stop when either the approximation is accurate within 10−5, or the number of iterations 

exceed 100, whichever happens first. 
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1 clear , clc ;                  

2         

3 fval = @ (x)  4*x + sin(x) – exp(x) ;   % Evaluating f(x)     

4         

5 dfval = @ (x)  4 + cos(x) – exp(x) ;  % Evaluating f '(x)      

6             

7 TOL = 0.000001 ;                      % error tolerance     

8 N = 100 ;                  % maximum number of iterations  

9                                    

10 x0 = input(' Enter the initial approximation x0:  ') ;              

11 xn = x0 ;                         

12                                    

13        

14 %----------------------- Processing Section -------------------------%       

15                            

16 for k = 1:1:N                     

17                               

18  xp = xn ;                             

19  fxp = fval(xp) ;                      

20  dfxp = dfval(xp) ;       
𝑥𝑘 = 𝑥𝑘−1 −

𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)
 

     

21  xn = xp – fxp / dfxp ;               

22                   

23  err = abs(x – xp) ;           Error =  |𝑥𝑘 − 𝑥𝑘−1|      

24                                    

25  fprintf ('After %i iterations, the approximate root = %9.6f ', k-1 , xn)    

26  fprintf ('   f(x)  =  %9.6f,     Error  =  %9.6f. \n' , fxp , err)     

27                                    

28  if (err < TOL)                  

29  break;                                

30     end                         

31                                  

32 end                                 

33                                  

34        

35 %------------------------ Output Section ----------------------------%       

36                            

37 if ( err < TOL )                           

38         

39  fprintf ('The desired accuracy achieved; Solution converged.\n')        

40                                 

41 else                                

42      

43  fprintf ('The number of iterations exceeded the maximum limit.\n')     

44           

45 end          
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Question 38: Write down the algorithm (pseudo code) of the Fixed-Point Iteration method to solve 𝑓(𝑥) = 0. 

Algorithm: To solve 𝑓(𝑥) = 0 ⟺ 𝑥 = 𝑔(𝑥), using the following iterative formula (given an initial 

approximation 𝑥0) 

𝑥𝑘 = 𝑔(𝑥𝑘−1), for 𝑘 = 1, 2, 3,⋯ 

𝐈𝐍𝐏𝐔𝐓𝐒:   {

𝒙𝟎: a real value as the initial approximation 𝑥0 sufficiently close to the root
𝑻𝑶𝑳: a real value as the tolerance (permissible error)
𝑵: an integer as the maximum number of iterations

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝒙𝒏: a real value as the approximate solution
(either on convergence or on completing 𝑵 iterations − whichever happens first)

 

Step 1 Receive the inputs as stated above 

Step 2 Set 𝒙𝒏 = 𝒙𝟎 (initialize 𝒙𝒏 with the initial approximation) 

Step 3 for 𝒌 = 𝟏, 𝟐, 𝟑,⋯ ,𝑵 perform Steps 4-7 

Step 4 Set 𝒙𝒑 = 𝒙𝒏    {
𝒙𝒑 is to keep a copy of the approximation 𝒙𝒏,
 because 𝒙𝒏 is going to be updated.

 

Step 5  

Set 𝒙𝒏 as the value of 𝑔(𝒙𝒑) {
Computing a new  
approximation to the root

 

Step 6 Set 𝒆𝒓𝒓 = |𝒙𝒏 − 𝒙𝒑|                              (or 𝑒𝑟𝑟 = |𝑥𝑛 − 𝑥𝑝|/|𝑥𝑝|) 

Step 7  

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳) then

Exit/Break the loop 
}

This means that the consecutive 
approximations are nearly the same
Therefore, stop iterations.

. 

end for (Go to Step 4 for the next iteration) 

Step 8 Print the output: 𝒙𝒏                 

 [Additionally, the initial approximation (𝒙𝟎), number of iterations (𝒌), 𝑓(𝒙𝒏), and error (𝒆𝒓𝒓) can be printed] 

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳)  OUTPUT (‘The desired accuracy achieved; Solution converged.’) 

else   OUTPUT (‘The number of iterations exceeded the maximum limit.’) 

STOP. 
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Problem 25: Write a MATLAB® program to find a real root of 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 using the Fixed-

Point Iteration method. Take 𝑥 = 𝑔(𝑥) =
1

4
(𝑒𝑥 − sin 𝑥) and 𝑥0 = 0 as an initial approximation. The iterations 

of the method should stop when either the approximation is accurate within 10−5, or the number of 
iterations exceeds 100, whichever happens first. 

1 clear , clc ;                             

2             

3 TOL = 0.000001 ;       % error tolerance     

4 N = 100 ;         % maximum number of iterations     

5                                    

6 x0 = input(' Enter the initial approximation x0:  ') ;              

7 xn = x0 ;              

8                                    

9                                    

10 %----------------------- Processing Section -------------------------%       

11                                    

12                                    

13 for k = 1:1:N                   

14                               

15  xp = xn ;                             

16      

17  xn = 0.25 * ( exp(xp) – sin(xp) ) ;  % Computing g(x) at the current approx.  

18             

19  err = abs(xn – xp) ;       Error =  |𝑥𝑘 − 𝑥𝑘−1|  

20                                    

21  fprintf ('After %i iterations, the approximate root = %5.5f. \n' , k , xn)    

22                                    

23  if (err < TOL)              

24  break;                                 

25     end                            

26                             

27 end                                 

28                                    

29                                    

30                                    

31 if ( err < TOL )                           

32                            

32      fprintf ('The desired accuracy achieved; Solution converged.')       

33         

33 else                                

34                                 

35      fprintf ('The number of iterations exceeded the maximum limit.')      

36        

37 end                                 
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Question 39: Write down the algorithm (pseudo code) of the Secant method to solve 𝑓(𝑥) = 0. 

Algorithm: To solve 𝑓(𝑥) = 0 using the iterative formula (given the root containing interval): 

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)(𝑥𝑘−1 − 𝑥𝑘−2)

𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−2)
, for 𝑘 = 2, 3, 4,⋯ 

𝐈𝐍𝐏𝐔𝐓𝐒:      {

𝒂 and 𝒃: two real values as the initial approximations sufficiently close to the root
𝑻𝑶𝑳: a real value as the tolerance (permissible error)
𝑵: an integer as the maximum number of iterations

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝒙𝒏: a real value as the approximate solution
(either on convergence or on completing 𝑵 iterations − whichever happens first)

 

Step 1 Receive the inputs as stated above 

Step 2 Set 𝒙𝒏 = 𝒃 (initialize 𝒙𝒏 with any of the two endpoints) 

Step 3 Set 𝒙𝟎 = 𝒂 

 Set 𝒙𝟏 = 𝒃 

Set 𝒇𝒙𝟎 as the value of 𝑓(𝒙𝟎) 

Set 𝒇𝒙𝟏 as the value of 𝑓(𝒙𝟏) 

Step 4 for 𝒌 = 𝟐, 𝟑,⋯ ,𝑵 + 𝟏 perform Steps 5-10 

Step 5  Set 𝒙𝒑 = 𝒙𝒏    {
𝒙𝒑 is to keep a copy of the approximation 𝒙𝒏,
 because 𝒙𝒏 is going to be updated.

 

Step 6  

𝒙𝒏 = 𝒙𝟏 −
𝒇𝒙𝟏(𝒙𝟏 − 𝒙𝟎)

𝒇𝒙𝟏 − 𝒇𝒙𝟎
{
Computing a new  
approximation to the root

 

Step 7 Set 𝒇𝒙𝒏 as the value of 𝑓(𝒙𝒏) 

Step 8 Set 𝒆𝒓𝒓 = |𝒙𝒏 − 𝒙𝒑|/|𝒙𝒑|                                 (or 𝑒𝑟𝑟 = |𝑥𝑛 − 𝑥𝑝|) 

Step 9  

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳) then

Exit/Break the loop 
}

This means that the consecutive 
approximations are nearly the same
Therefore, stop iterations.

. 

else
Set 𝒙𝟎 = 𝒙𝟏
Set 𝒇𝒙𝟎 = 𝒇𝒙𝟏

Set 𝒙𝟏 = 𝒙𝒏
Set 𝒇𝒙𝟏 = 𝒇𝒙𝒏

 

}
 
 

 
 

preparing two approximations
for the next iteration

  

end for (Go to Step 5 for the next iteration) 

Step 10 Print the output: 𝒙𝒏                 

[Additionally, the initial approx. (𝒙𝟎 and 𝒙𝟏), number of iterations (𝒌 − 𝟏), 𝑓(𝒙𝒏), and error (𝒆𝒓𝒓) can be printed] 

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳)  OUTPUT (‘The desired accuracy achieved; Solution converged.’) 

else   OUTPUT (‘The number of iterations exceeded the maximum limit.’) 

STOP. 



Solution of a Nonlinear Equation in One Variable 19 
 

Problem 27: Write a MATLAB® program to find a real root of the equation 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 
using the Secant method. Take initial approximation as 𝑥0 = 0 and 𝑥1 = 1. The iterations of the method 
should stop when either the approximation is accurate within 10−5, or the number of iterations exceeds 100, 
whichever happens first. 

1 clear , clc ;                             

2 TOL = 0.000001 ;                  % error tolerance     

3 N = 100 ;                    % maximum number of iterations  

4                                    

5 x0 = input(' Enter the first initial approximation x0:  ') ;            

6 x1 = input(' Enter the second initial approximation x1:  ') ;          

7                                    

8 %----------------------- Processing Section -------------------------%       

9            

10 xn = x1 ;           

11 fx0 = 4*x0 + sin(x0) – exp(x0) ;    % Evaluating f(x) at x0       

12 fx1 = 4*x1 + sin(x1) – exp(x1) ;    % Evaluating f(x) at x1       

13                                    

14 for k = 2:1:N+1                           

15  xp = xn ;                            

16  xn = x1 – (fx1 * (x1 – x0)) / (fx1 – fx0) ; 
𝑥𝑘 = 𝑥𝑘−1 −

𝑓(𝑥𝑘−1)(𝑥𝑘−1 − 𝑥𝑘−2)

𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−2)
 

 

17  fxn = 4*xn + sin(xn) – exp(xn) ;  

18  err = abs(xn – xp)/abs(xn) ; 
Error =  

|𝑥𝑘 − 𝑥𝑘−1|

|𝑥𝑘|
 

 

19                      

20                                    

21  fprintf ('After %i iterations, the approximate root = %9.6f ', k–1 , xn)  

22  fprintf ('   f(x)  =  %9.6f,     Error  =  %9.6f. \n' , fxp , err)   

23                                    

24  if ( err < TOL )       break ;                   

25  else                              

26    x0 = x1 ;                       

27    fx0 = fx1 ;                       

28    x1 = xn ;                       

29    fx1 = fxn ;                       

30  end                              

31 end                                 

32                                  

33 if ( err < TOL )  fprintf ('The desired accuracy achieved; Solution converged.') 

34 else  fprintf ('The number of iterations exceeded the limit.')      end 

 

Question 40: Write down the algorithm (pseudo code) of the Bisection method to solve 𝑓(𝑥) = 0. 

Algorithm: To solve 𝑓(𝑥) = 0 using the iterative formula (given the root containing interval): 

𝑥𝑘 = 𝑥𝑘−2 +
𝑥𝑘−1 − 𝑥𝑘−2

2
, for 𝑘 = 2, 3, 4,⋯ 
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𝐈𝐍𝐏𝐔𝐓𝐒:      {

𝒂 and 𝒃: two real values as the initial approximations bracketing the root

𝑻𝑶𝑳: a real value as the tolerance (permissible error)
𝑵: an integer as the maximum number of iterations

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝒙𝒏: a real value as the approximate solution
(either on convergence or on completing 𝑵 iterations − whichever happens first)

 

Step 1 Receive the inputs as stated above 

Step 2 Set 𝒙𝒏 = 𝒃 (initialize 𝒙𝒏 with any of the two endpoints) 

Step 3 Set 𝒙𝟎 = 𝒂 

Set 𝒙𝟏 = 𝒃 

Set 𝒇𝒙𝟎 as the value of 𝑓(𝒙𝟎) 

Set 𝒇𝒙𝟏 as the value of 𝑓(𝒙𝟏) 

Step 4 for 𝒌 = 𝟐, 𝟑,⋯ ,𝑵 + 𝟏 perform Steps 5-10 

Step 5 Set 𝒙𝒑 = 𝒙𝒏    {
𝒙𝒑 is to keep a copy of the approximation 𝒙𝒏,
 because 𝒙𝒏 is going to be updated.

 

Step 6  

𝒙𝒏 = 𝒙𝟎 +
𝒙𝟏 − 𝒙𝟎

𝟐
{
Computing a new  
approximation to the root

 

Step 7 Set 𝒇𝒙𝒏 as the value of 𝑓(𝒙𝒏) 

Step 8 Set 𝒆𝒓𝒓𝟏 = |𝒙𝒏 − 𝒙𝒑|/|𝒙𝒏|                              (or 𝑒𝑟𝑟 = |𝑥𝑛 − 𝑥𝑝|) 

 Set 𝒆𝒓𝒓𝟐 = |𝒇𝒙𝒏|                               

 Set 𝒆𝒓𝒓 = 𝒎𝒊𝒏(𝒆𝒓𝒓𝟏, 𝒆𝒓𝒓𝟐)                              

Step 9  

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳 )then

Exit/Break the loop 
}

This means that either 𝒇(𝒙𝒏) is the close to 
zero, or the consecutive approximations are
nearly the same. Therefore, stop iterations.

  

else if (𝒇(𝒙𝟎)𝒇(𝒙𝒏) < 0) then 

Set 𝒙𝟏 = 𝒙𝒏
Set 𝒇𝒙𝟏 = 𝒇𝒙𝒏

else
Set 𝒙𝟎 = 𝒙𝒏
Set 𝒇𝒙𝟎 = 𝒇𝒙𝒏

 

}
 
 

 
 

Adjusting one endpoint 
of the interval such that 
half of the interval will be  
used in the next iteration

  

 end for (Go to Step 5 for the next iteration) 

Step 10 Print the output: 𝒙𝒏                 

[Additionally, the starting interval [𝑎, 𝑏], number of iterations (𝒌 − 𝟏), 𝑓(𝒙𝒏), and error (𝒆𝒓𝒓) can be printed] 

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳)  OUTPUT (‘The desired accuracy achieved; Solution converged.’) 

else   OUTPUT (‘The number of iterations exceeded the maximum limit.’) 

STOP. 
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Remark: While using a bracketing method, there might arise a situation in which the two 

consecutive approximations to the roots are not sufficiently close to each other (i.e., the sequence 

of successive approximations has not converged), but the function values at the approximations 

are sufficiently close to zero (i.e., |𝑓(𝑥𝑘)| < tolerence). Therefore, there is no point to proceed the 

iterations further. The iterations should be stopped. Therefore, the algorithm of a bracketing 

method (the Bisection, or  Regula-Falsi method) should include both of the convergence criteria 

of testing the convergence of the roots, and closeness of the function values to zero. The iterations 

should be terminated on whichever criterion is met first, ensuring the convergence. To 

accommodate this in the algorithm, the two kinds of errors are computed and the minimum of the 

two errors is found to compare with the tolerance: 

Set 𝑒𝑟𝑟1 = |𝑥𝑛 − 𝑥𝑝|/|𝑥𝑛|    (or 𝑒𝑟𝑟 = |𝑥𝑛 − 𝑥𝑝|) 

Set 𝑒𝑟𝑟2 = |𝑓𝑥𝑛|                               

Set 𝑒𝑟𝑟 = 𝑚𝑖𝑛(𝑒𝑟𝑟1, 𝑒𝑟𝑟2)            

∎ 

Problem 29: Write a MATLAB® program to find a real root of 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 in [0, 1] using the 

Bisection method. The two function values at the endpoints of the interval have opposite signs. The 

iterations of the method should stop when either the approximation is accurate within 10−5, or the number 

of iterations exceeds 100, whichever happens first. 

1 clear , clc ;                             

2 TOL = 0.000001 ;                  % error tolerance     

3 N = 100 ;                    % maximum number of iterations  

4                                    

5 x0 = input(' Enter the left endpoint of the starting interval:  ') ;       

6 x1 = input(' Enter the right endpoint of the starting interval:  ') ;       

7                                    

8 %----------------------- Processing Section -------------------------%       

9            

10 xn = x1 ;           

11 fx0 = 4*x0 + sin(x0) – exp(x0) ;    % Evaluating f(x) at x0       

12 fx1 = 4*x1 + sin(x1) – exp(x1) ;    % Evaluating f(x) at x1       

13                                    

14 for k = 2:1:N+1                           

15                            

16  xp = xn ;                            

17  xn = x0 + (x1 – x0) / 2 ; 
𝑥𝑘 = 𝑥𝑘−2 +

𝑥𝑘−1 − 𝑥𝑘−2
2

 
 

18  fxn = 4*xn + sin(xn) – exp(xn) ;  

19                                    

20  err1 = abs(xn – xp)/abs(xn) ;                                  Error 1 =  |𝑥𝑘 − 𝑥𝑘−1|/|𝑥𝑘|  

21  err2 = abs(fxn) ;                                                     Error 2 =  |𝑓(𝑥𝑘)|  
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22  err  = min(err1, err2) ;                                                       

23    

24  fprintf ('After %i iterations, the approximate root = %9.6f ', k–1 , xn)  

25  fprintf ('   f(x)  =  %9.6f,     Error  =  %9.6f. \n' , fxp , err1)   

26                                    

27  if ( err < TOL )                        

28         break ;                   

29  elseif ( fx0*fxn < 0 )                        

30    x1 = xn ;                       

31    fx1 = fxn ;                       

32  else                       

33    x0 = xn ;                       

34    fx0 = fxn ;                       

35  end                              

36                               

37 end                                 

38                                  

39 if ( err < TOL )  fprintf ('The desired accuracy achieved; Solution converged.') 

40 else  fprintf ('The number of iterations exceeded the limit.')      end 

 

 

Question 41: Write down the algorithm (pseudo code) of the Regula-Falsi method to solve 𝑓(𝑥) = 0. 

Algorithm: To solve 𝑓(𝑥) = 0 using the iterative formula (given the root containing interval): 

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)(𝑥𝑘−1 − 𝑥𝑘−2)

𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−2)
, for 𝑘 = 2, 3, 4,⋯ 

𝐈𝐍𝐏𝐔𝐓𝐒:      {

𝒂 and 𝒃: two real values as the initial approximations bracketing the root
𝑻𝑶𝑳: a real value as the absolute error tolerance
𝑵: an integer as the maximum number of iterations

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝒙𝒏: a real value as the approximate solution
(either on convergence or on completing 𝑵 iterations − whichever happens first)

 

Step 1 Receive the inputs as stated above 

Step 2 Set 𝒙𝒏 = 𝒃 (initialize 𝒙𝒏 with any of the two endpoints) 

Step 3 Set 𝒙𝟎 = 𝒂 

Set 𝒙𝟏 = 𝒃 

Set 𝒇𝒙𝟎 as the value of 𝑓(𝒙𝟎) 

Set 𝒇𝒙𝟏 as the value of 𝑓(𝒙𝟏) 

Step 4 for 𝒌 = 𝟐, 𝟑,⋯ ,𝑵 + 𝟏 perform Steps 5-10 

Step 5 Set 𝒙𝒑 = 𝒙𝒏    {
𝒙𝒑 is to keep a copy of the approximation 𝒙𝒏,
 because 𝒙𝒏 is going to be updated.
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Step 6  

𝒙𝒏 = 𝒙𝟏 −
𝒇𝒙𝟏(𝒙𝟏 − 𝒙𝟎)

𝒇𝒙𝟏 − 𝒇𝒙𝟎
{
Computing a new  
approximation to the root

 

Step 7 Set 𝒇𝒙𝒏 as the value of 𝑓(𝒙𝒏) 

Step 8 Set 𝒆𝒓𝒓𝟏 = |𝒙𝒏 − 𝒙𝒑|/|𝒙𝒏|                              (or 𝑒𝑟𝑟 = |𝑥𝑛 − 𝑥𝑝|) 

 Set 𝒆𝒓𝒓𝟐 = |𝒇𝒙𝒏|                               

 Set 𝒆𝒓𝒓 = 𝒎𝒊𝒏(𝒆𝒓𝒓𝟏, 𝒆𝒓𝒓𝟐)                              

Step 9  

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳 )then

Exit/Break the loop 
}

This means that either 𝒇(𝒙𝒏) is the close to
zero, or the consecutive approximations are
nearly the same. Therefore, stop iterations.

  

else if (𝒇(𝒙𝟎)𝒇(𝒙𝒏) < 0) then 

Set 𝒙𝟏 = 𝒙𝒏
Set 𝒇𝒙𝟏 = 𝒇𝒙𝒏

else
Set 𝒙𝟎 = 𝒙𝒏
Set 𝒇𝒙𝟎 = 𝒇𝒙𝒏

 

}
 
 

 
 

Adjusting one endpoint 
of the interval such that 
a shorter interval will be  
used in the next iteration

  

 end for (Go to Step 5 for the next iteration) 

Step 10 Print the output: 𝒙𝒏                 

[Additionally, the starting interval [𝑎, 𝑏], number of iterations (𝒌 − 𝟏), 𝑓(𝒙𝒏), and error (𝒆𝒓𝒓) can be printed] 

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳)  OUTPUT (‘The desired accuracy achieved; Solution converged.’) 

else   OUTPUT (‘The number of iterations exceeded the maximum limit.’) 

STOP. 

 

Problem 31: Write a MATLAB® program to find a real root of 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 in [0, 1] using the 

Regula-Falsi method. The two function values at the endpoints of the interval have opposite signs. The 

iterations of the method should stop when either the approximation is accurate within 10−5, or the number 

of iterations exceeds 100, whichever happens first. 

1 clear , clc ;                             

2 TOL = 0.000001 ;                  % error tolerance     

3 N = 100 ;                    % maximum number of iterations  

4                                    

5 x0 = input(' Enter the left endpoint of the starting interval:  ') ;       

6 x1 = input(' Enter the right endpoint of the starting interval:  ') ;       

7                                    

8 %----------------------- Processing Section -------------------------%       

9            

10 xn = x1 ;           
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11 fx0 = 4*x0 + sin(x0) – exp(x0) ;    % Evaluating f(x) at x0       

12 fx1 = 4*x1 + sin(x1) – exp(x1) ;    % Evaluating f(x) at x1       

13                                    

14 for k = 2:1:N+1                           

15                            

16  xp = xn ;                            

17  xn = x1 – (fx1 * (x1 – x0)) / (fx1 – fx0) ; 
𝑥𝑘 = 𝑥𝑘−1 −

𝑓(𝑥𝑘−1)(𝑥𝑘−1 − 𝑥𝑘−2)

𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−2)
 

 

18  fxn = 4*xn + sin(xn) – exp(xn) ;  

19                                    

20  err1 = abs(xn – xp)/abs(xn) ;                                  Error 1 =  |𝑥𝑘 − 𝑥𝑘−1|/|𝑥𝑘|  

21  err2 = abs(fxn) ;                                                     Error 2 =  |𝑓(𝑥𝑘)|  

22  err  = min(err1, err2) ;                                                       

23    

24  fprintf ('After %i iterations, the approximate root = %9.6f ', k–1 , xn)  

25  fprintf ('   f(x)  =  %9.6f,     Error  =  %9.6f. \n' , fxp , err1)   

26                                    

27  if ( err < TOL )                        

28         break ;                   

29  elseif ( fx0*fxn < 0 )                        

30    x1 = xn ;                       

31    fx1 = fxn ;                       

32  else                       

33    x0 = xn ;                       

34    fx0 = fxn ;                       

35  end                              

36                               

37 end                                 

38                                  

39 if ( err < TOL )  fprintf ('The desired accuracy achieved; Solution converged.') 

 

Problem 33: Write a MATLAB® program to find a real root of 𝑓(𝑥) = 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0 in [0, 1] using the 
Regula-Falsi method. The two function values at the endpoints of the interval have opposite signs. Write 
user-defined MATLAB® function to evaluate 𝑓(𝑥) at any approximation. The iterations of the method should 
stop when either the approximation is accurate within 10−5, or the number of iterations exceeds 100, 
whichever happens first.  

1 clear , clc ;                             

2 TOL = 0.000001 ;                  % error tolerance     

3 N = 100 ;                    % maximum number of iterations  

4                                    

5 fval = @(x) 4*x + sin(x) – exp(x) ;            % A user-defined MATLAB function 

6        

7 x0 = input(' Enter the left endpoint of the starting interval:  ') ;       

8 x1 = input(' Enter the right endpoint of the starting interval:  ') ;       
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9                                    

10 %----------------------- Processing Section -------------------------%       

11            

12 xn = x1 ;           

13 fx0 = fval(x0) ;    % Evaluating f(x) at x0       

14 fx1 = fval(x1)  ;    % Evaluating f(x) at x1       

15                                    

16 for k = 2:1:N+1                           

17                            

18  xp = xn ;                            

19  xn = x1 – (fx1 * (x1 – x0)) / (fx1 – fx0) ; 
𝑥𝑘 = 𝑥𝑘−1 −

𝑓(𝑥𝑘−1)(𝑥𝑘−1 − 𝑥𝑘−2)

𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−2)
 

 

20  fxn = fval(xn);  

21                                    

22  err1 = abs(xn – xp)/abs(xn) ;                                  Error 1 =  |𝑥𝑘 − 𝑥𝑘−1|/|𝑥𝑘|  

23  err2 = abs(fxn) ;                                                     Error 2 =  |𝑓(𝑥𝑘)|  

24  err  = min(err1, err2) ;                                                       

25    

26  fprintf ('After %i iterations, the approximate root = %9.6f ', k–1 , xn)  

27  fprintf ('   f(x)  =  %9.6f,     Error  =  %9.6f. \n' , fxp , err1)   

28                                    

29  if ( err < TOL )                        

30         break ;                   

31  elseif ( fx0*fxn < 0 )                        

32    x1 = xn ;                       

33    fx1 = fxn ;                       

34  else                       

35    x0 = xn ;                       

36    fx0 = fxn ;                       

37  end                              

38                               

39 end                                 

40                                  

41 if ( err < TOL )  fprintf ('The desired accuracy achieved; Solution converged.') 

42 else  fprintf ('The number of iterations exceeded the limit.')      end 
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Question 42: List out some built-in functions/commands of MATLAB® for solving 𝑓(𝑥) = 0. Also 

briefly explain the usage of the commands.  

fzero 

fzero is a built-in function of MATLAB® that is used to locate the zero of a function. 

The general format of using fzero is x = fzero(f, x0) 

Here the argument f is the function whose zero is to be found and the argument x0 

provides some initial approximation of the root. If x0 is a scalar, then fzero first finds 

an interval containing x0 (i.e., on which the function values at the endpoints have 

opposite signs, and then searches in that interval for a zero.  If x0 is a vector of two 

components, i.e., x0=[a,b], then the two points are assumed to bracket the root.  

An optional third argument to fzero could be set to specify the error tolerance.  

Worked Example: Find a real root of the equation cos 𝑥 − 𝑥𝑒𝑥 = 0 in [0,1], by using a 

built-in function of MATLAB®. 

>> f = @(x) (cos(x) - x*exp(x)); 

>> r = fzero(f,[0 1],0.00000001) 

ans = 

     0.5178 

If it is desired to print the result of each of the iterations then optimset option is used 

as follows: 

>> f = @(x) (cos(x) - x*exp(x)); 

>> option = optimset('DISP', 'ITER') 

>> r = fzero(f,[0 1],option) 

ans= 

Func-count     x             f(x)     Procedure 

    2  0                1            initial 

    3        0.314665      0.519871        interpolation 

    4        0.589722     -0.232462        interpolation 

    5        0.504733     0.0391915        interpolation 

    6        0.516994    0.00231933        interpolation 

    7        0.517758  -2.30077e-06        interpolation 

    8        0.517757   1.47021e-09        interpolation 
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    9        0.517757   9.99201e-16        interpolation 

   10        0.517757  -3.33067e-16        interpolation 

 

 Zero found in the interval [0, 1] is given by 

r = 

    0.5178 

roots 

roots is a built-in function of MATLAB® that determines all the roots of a polynomial 

(either real or complex). The general format of using roots is, 

r = roots(p) 

Here the argument p is an input vector of coefficients of the given polynomial in 

descending order.  

Worked Example: Find the roots of the polynomial 

𝑓(𝑥) = 𝑥5 − 12.1𝑥4 + 40.59𝑥3 − 17.015𝑥2 − 71.95𝑥 + 35.88 

>> p = [1 -12.1  40.59 -17.015  -71.95  35.88]; 

>> roots(p) 

ans =  

     6.5000 

     4.0000 

     2.3000 

    -1.2000 

     0.5000 

∎ 

Remark:  An interesting online calculator by CASIO® at https://keisan.casio.com has the 

following webpage to approximate the root of a non-linear equation using different methods. 

https://keisan.casio.com/menu/system/000000001000 

 

∎∎∎ 
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Chapter Summary 

• The root-finding problem refers to find some appropriate value 𝑥 = 𝛼 in the domain of a function 𝑓 such 

that 𝑓(𝛼) = 0. Every such possible value 𝛼 is called a root of the equation 𝑓(𝑥) = 0. 

• Geometrically, a root of an equation 𝑓(𝑥) = 0 is the point where the graph of 𝑓 intersects the 𝑥-axis. 

• An iterative numerical method to approximate the root starts with some appropriate or reasonable 

estimation (also called initial approximation or guess) of the exact root and attempts to refine the 

approximation, iteratively. The iterations are repeated until a desired level of accuracy is achieved.  

• Let 𝑥0 denotes the initial approximation and 𝑥1, 𝑥2, 𝑥3, ⋯ denote the successive iterative solutions to an 

exact root 𝛼 of the equation 𝑓(𝑥) = 0. The sequence {𝑥𝑘}𝑘=0
∞  of the successive approximations is said to 

converge to the exact root 𝛼, if the successive approximations approach 𝛼. In such a case, the iterative 

method is also said to converge. In other words, the iterative method is said to be convergent for a 

given initial approximation if the corresponding sequence of successive approximations is convergent 

to the exact solution. Under certain conditions, it is possible for an iterative method that the sequence of 

successive approximations might diverge from a desired exact root 𝛼. 

• Stopping Criteria: The most common convergence criterion to stop the iterative process is based on 

the comparison of the estimated error with the error tolerance. For this purpose, the current 

approximation is considered as the true solution and the previous approximation is considered as the 

approximate solution for estimating the error and any appropriate one of the following criteria is used, 

(1) |𝑥𝑘 − 𝑥𝑘−1| ≤ 𝜏

(2) |
𝑥𝑘 − 𝑥𝑘−1

𝑥𝑘
| ≤ 𝜏

(3) |
𝑥𝑘 − 𝑥𝑘−1

𝑥𝑘
| × 100 ≤ 𝜏

 

Here 𝑥𝑘 and 𝑥𝑘−1 denote the current and previous approximations, respectively, and 𝜏 denotes the 

tolerance. 

• Another Stopping Criterion: Note that the values of the function 𝑓 tend to zero with the progress of 

the iterative process. Thus, falling of the difference between the function values and zero beyond a 

certain level might also indicate convergence. 

• The numerical methods of finding a root of 𝑓(𝑥) = 0 can be categorized as bracketing methods and 

open methods. 

• Bracketing methods start with an interval containing a root and squeeze down the interval, iteratively. 

Two well-known root bracketing methods are the Bisection method and the Regula-Falsi (False-

Position) method.  
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• Open Methods are those who obtain successive single approximations irrespective of their location at 

any side of the root. Some of the well-known open methods are the Fixed-Point Iteration method, the 

Newton-Raphson method (Newton’s method), and the Secant method. 

• A bracketing method for finding a root/zero of a continuous function 𝑓 starts with an interval [𝑎, 𝑏] 

containing a root. The opposite signs of 𝑓(𝑎) and 𝑓(𝑏) ensure (due to the Intermediate value theorem) 

that there exists a root 𝛼 of 𝑓(𝑥) = 0 in (𝑎, 𝑏). To get closer to the root 𝛼, first a point 𝑐 ∈ (𝑎 + 𝑏) is 

chosen. If 𝑓(𝑐) = 0, then 𝑐 is the exact root. Otherwise, either of the intervals [𝑎, 𝑐] or [𝑐, 𝑏] is chosen as 

the squeezed interval containing the root. The root lies in [𝑎, 𝑐] if 𝑓(𝑎)𝑓(𝑐) < 0, or in [𝑐, 𝑏] if 𝑓(𝑐)𝑓(𝑏) <

0. The selected interval is relabeled as [𝑎, 𝑏] and the process is repeated. This way, a sequence of points 

𝑐1, 𝑐2, 𝑐3 , ⋯, is formed. The iterations are performed until the approximations of the root of 𝑓(𝑥) in two 

consecutive iterations are sufficiently close to each other. 

• The Bisection method selects 𝑐 ∈ (𝑎 + 𝑏), as the midpoint of the interval [𝑎, 𝑏], using the formula 

𝑐 =
(𝑎 + 𝑏)

2
 

• The Regula-Falsi method selects 𝑐 ∈ (𝑎 + 𝑏), as the point where the line segment joining 𝑓(𝑎) and 

𝑓(𝑏) intersects the 𝑥-axis, using the formula 

𝑐 =  𝑏 −
𝑓(𝑏)(𝑏 − 𝑎)

𝑓(𝑏) − 𝑓(𝑎)
 

• For the Bisection method, the error-bound is given by,  

|𝛼 − 𝑐𝑘| ≤
𝑏 − 𝑎

2𝑘
,         for 𝑘 = 1, 2, 3,⋯, 

Here 𝛼 is the exact root of the equation 𝑓(𝑥) = 0 in (𝑎, 𝑏) and 𝑐𝑘 =
 𝑎𝑘−1+𝑏𝑘−1

2
 is the midpoint of the 

interval in 𝑘th iteration. 

• The formula to determine the maximum number of iterations 𝑁 of the Bisection method after which the 

error associated with any point in the squeezed interval is not greater than a given permissible absolute 

error 𝜏𝑎  is as below: 

𝑁 ≥
log(𝑏 − 𝑎) − log(𝜏𝑎)

log(2)
 

This formula tells that, for an interval of unit length, it is sure that after 10, 14, 17, and 20 iterations the 

length of the squeezed interval (or the absolute error) is not greater than 10−3, 10−4 , 10−5, and 10−6, 

respectively.   

• The Fixed-Point Iteration method is an open method that approximates a root of the equation 𝑓(𝑥) =

0 by rearranging the equation 𝑓(𝑥) = 0 to get an appropriate form 𝑥 = 𝑔(𝑥) and generating a sequence 

of successive approximations {𝑥𝑘}𝑘=1
∞  by the iterative formula 𝑥𝑘 = 𝑔(𝑥𝑘−1), for 𝑘 = 1, 2, 3,⋯ . The said 

sequence may  

o converge but could be different for different forms of 𝑥 = 𝑔(𝑥), 
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o converge but could be different for different choices of the initial approximation 𝑥0 for a 

particular form of 𝑥 = 𝑔(𝑥), or 

o diverge for some unsuitable form of 𝑥 = 𝑔(𝑥) or an initial approximation 𝑥0. 

• Suppose that 𝑓 is a continuous function and the equation 𝑓(𝑥) = 0 has a real root 𝛼. Suppose that the 

equation 𝑓(𝑥) = 0 can be rearranged in the form 𝑥 = 𝑔(𝑥) such that 𝛼 is a fixed-point of the function 𝑔, 

and 𝑔 and 𝑔’ are continuous in some neighbourhood 𝐼 around 𝛼.  If 

 |𝑔′(𝑥)| ≤ 𝐾 < 1, for all 𝑥 ∈ 𝐼, 

then for any initial approximation 𝑥0 ∈ 𝐼, the sequence {𝑥𝑘}𝑘=1
∞  of successive approximations, generated 

by the iterative formula 𝑥𝑘 = 𝑔(𝑥𝑘−1), for 𝑘 = 1, 2, 3,⋯, converges to the solution 𝛼. 

• To find a root of a non-linear equation 𝑓(𝑥) = 0 the Newton-Raphson method requires an initial 

solution 𝑥0 and considers the 𝑥-intercept of the tangent line to the function 𝑓(𝑥) at 𝑥 = 𝑥0 as the new 

approximation. Then, the 𝑥-intercept of the tangent line to the function at the new approximation is 

considered as the next approximation. This way, the process is repeated with the successive 

approximations until sufficient convergence is achieved. The formula to generate the sequence of 

successive approximations based on the said approach is given by 

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)
, for 𝑘 = 1, 2, 3,⋯ 

• A sufficient condition of convergence for the Newton-Raphson method: Suppose that 𝛼 is a root of the 

equation 𝑓(𝑥) = 0. Suppose that 𝐼 is a neighbourhood of 𝛼 such that 𝑓(𝑥), 𝑓′(𝑥) and 𝑓′′(𝑥) are 

continuous on 𝐼. If |𝑓(𝑥)𝑓′′(𝑥)| ≤ |𝑓′(𝑥)|2, for all 𝑥 ∈ 𝐼, then for an initial approximation 𝑥0 ∈ 𝐼, the 

sequence {𝑥𝑘}𝑘=1
∞  of successive approximations, generated by the Newton’s formula, converges to the 

solution 𝛼. 

• The iterative formula of the Secant method for solving 𝑓(𝑥) = 0 (with 𝑥 = 𝑥0 and 𝑥 = 𝑥1 as the initial 

approximations) is given by 

𝑥𝑘 = 𝑥𝑘−1 −
𝑓(𝑥𝑘−1)(𝑥𝑘−1 − 𝑥𝑘−2)

𝑓(𝑥𝑘−1) − 𝑓(𝑥𝑘−2)
, for 𝑘 = 2, 3, 4,⋯ 

• Comparison of the False-Position method and the Secant method: 

o The False-Position method is a bracketing method, whereas the Secant method is an open method. 

o The False-Position method keeps the root bracketed by selects out the root bracketing subintervals 

out the two subintervals obtains in each of the iterations. On the other hand, the Secant method 

selects the two most recent approximations out of the three available approximations in any 

iteration to proceed to the next iteration.  

o The False-Position method always converges, whereas the Secant method may not converge for 

certain situations.  
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o If the Secant method is convergent, it converges faster than the False-Position method. That is, it 

has a higher convergence rate than that of the False-Position method. 

• The order/rate of convergence of the Bisection method is 1 (i.e., linear) and the asymptotic error 

constant is (1 2⁄ ) 

• The order/rate of convergence of the False-Position or Regula-Falsi method is 1 (i.e., linear) and the 

asymptotic error constant is −
1

2

𝑓′′(𝛼)

𝑓′(𝛼)
𝜀0 

• The order/rate of convergence of the Fixed-Point Iteration method is 1 (i.e., linear) and the asymptotic 

error constant is the maximum value of the function 𝑔′(𝑥) in some neighbourhood around the 

solution 𝛼. 

• The order/rate of convergence of the Newton-Raphson method is 2 (i.e., quadratic) and the asymptotic 

error constant is −
1

2

𝑓′′(𝛼)

𝑓′(𝛼)
 

• The order/rate of convergence of the Secant method is 1.62 (i.e., superlinear). 

• The Newton-Raphson method may fail to converge to a root in different situations including where 

𝑓′(𝑥) or 𝑓′′(𝑥) becomes zero at any approximation. 

• The Newton-Raphson method converges to a multiple root very slowly (instead of exhibiting quadratic 

convergence). 

• The Aitken’s ∆𝟐 method offers a technique for accelerating the convergence of any sequence that is 

linearly convergent. From the given sequence {𝑥𝑘}𝑘=1
∞  that linearly converges to 𝛼, another sequence 

{�̿�𝑘}𝑘=1
∞  that also converges to 𝛼 with possibly improved convergence rate is constructed by using the 

Aitken’s acceleration formula given as 

�̿�𝑘 ≅ 𝑥𝑘 −
  (∆𝑥𝑘)

2

∆2𝑥𝑘
 

∎∎∎ 
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Chapter Exercises 

Exercise 01: Find a real root of the following equations using the Bisection method accurate to 

four decimal places. 

(i) log(𝑥) − cos 𝑥 = 0 

(ii)  𝑒−𝑥 − 10𝑥 = 0 

(iii) 𝑥3 + 𝑥2 − 1 = 0    

Exercise 02: Find a real root of the following equations using the Bisection method accurate to 

three decimal places. 

(i) 𝑥6 − 𝑥4 − 𝑥3 − 1 = 0 

(ii) 𝑥3 − sin 𝑥 + 1 = 0 

(iii) 𝑥 log10 𝑥 = 4.77 

Exercise 03: Approximate the solution of the following equations using the Regula-Falsi method 

accurate to three decimal places. 

(i) 3𝑥 + sin 𝑥 − 𝑒𝑥 = 0 

(ii) 4𝑥3 − 1 − 𝑒(𝑥
2/2) 

(iii) 𝑥2 = (𝑒−2𝑥 − 2)/𝑥 

Exercise 04: Find the approximation to a real root of the equation 2 sin 𝑥 −
𝑒𝑥

4
− 1 = 0 starting 

with [−5, −3] using the Regula-Falsi method. 

Exercise: Find a real root of each of the following equations using (𝑎) the Bisection method, (𝑏) 

the Regula-Falsi method, (𝑐) the Newton’s method, (𝑑) the Secant method. Choose the initial 

approximation/s in the given interval. Assume that the tolerance for the approximate root is 

0.001. The numeric values should not be rounded to less than 5 decimal places. (𝑥 is in radians, 

wherever applicable). 

(𝑖) cos 𝑥 − 𝑥𝑒𝑥 = 0, in [0, 1] 

(𝑖𝑖) cos 𝑥 − 𝑥 + 2 = 0, in [1, 2] 

(𝑖𝑖𝑖) 𝑒𝑥 − 𝑥 − 3 = 0, in [1, 2] 

(𝑖𝑣) ln(𝑥) + 𝑥 − 4 = 0, in [2, 3] 

(𝑣) 4𝑥 + sin 𝑥 − 𝑒𝑥 = 0, in [0, 1]. 

Exercise 06: Find a real root of the Chebyshev polynomial of degree four, 𝑇4(𝑥) = 8𝑥4 − 8𝑥2 + 1 

using the Newton’s method accurate to four decimal places.   
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Exercise 07: Find a root of the Laguerre polynomial of degree four, 𝐿4(𝑥) = 𝑥
4 − 16𝑥3 + 72𝑥2 −

96𝑥 + 24 using the Newton’s method accurate to four decimal places. 

Exercise 08: Find a root of the following equations using the Newton’s method accurate to 4 

decimal places. 

(i) 2𝑥 + 3 cos 𝑥 − 𝑒𝑥 = 0,  

(ii) 𝑥2 − 4𝑥 + 4 − ln 𝑥 = 0 

(iii) tan 𝑥 − 6 = 0 

Exercise 09: Find the roots accurate to within 10−3 of the Legendre polynomial  𝑃4(𝑥) = 𝑥
4 −

6

7
𝑥2 +

3

35
  on each interval, using the Secant method. 

(i) [−1,−0.5]  

(ii) [−0.5, 0] 

(iii) [0, 0.5] 

(iv) [0.5, 1]  

Exercise 10: Approximate the value of √4
3

 using the Secant method accurate to 10−4. 

Exercise 11: Find a real root of the following equations using the Secant method accurate to 10−3 

. 

(i) 𝑥3 − 2𝑥 + 2 = 0 

(ii) 10 − 2𝑥 + sin 𝑥 = 0 

(iii) 2𝑒−3𝑥 + 1 − 3𝑒−3𝑥 = 0 

Exercise 12: Use the Fixed-Point method to find a root of the following, accurate to 3 decimal 

places. 

(i) 𝑒𝑥 − 2𝑥2  for 0 ≤ 𝑥 ≤ 2 

(ii) 𝑥𝑒𝑥 = 0 for 1 ≤ 𝑥 ≤ 2 

(iii) 𝑥2 − sin 𝑥 − 𝑥 = 0 

Exercise 13: Find the solutions of the following equations using the fixed-point method accurate 

to 10−3 . 

(i) 𝑥 = tan 𝑥 

(ii) 𝑥 = cos 𝑥 

(iii) 𝑥 = sin(𝑥 + 2) 

Exercise 14: Find the solution of the equation (relevant to the vibrating beam), 

cos 𝑥 cosh 𝑥 = 1 
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near 𝑥 = −
3

2
𝜋 using the Newton-Raphson method. 

Exercise 15: The velocity 𝑉, in meters per second (𝑚/𝑠), of a free falling sky diver is expressed 
as: 

𝑉 =
𝑔𝑚

𝐷𝑐
(1 − 𝑒𝑥𝑝 (

−𝐷𝑐𝑡

𝑚
)) 

Here 𝑚 is the mass of the falling body in kilograms (𝑘𝑔), 𝐷𝑐  is the drag coefficient in kilogram per 
second (𝑘𝑔/𝑠), 𝑡 is the time in seconds (𝑠), and 𝑔 = 9.8𝑚/𝑠2 is the gravitation acceleration. If the 
velocity of a body of mass 85𝑘𝑔 is 40𝑚/𝑠 after 5 seconds of free fall, then calculate the drag 
coefficient. 

Hint for the Solution: 

Given 𝑚 = 80𝑘𝑔, 𝑉 = 40𝑚/𝑠, 𝑔 = 9.8𝑚/𝑠2, and 𝑡 = 5𝑠, the equation takes the form: 

40 =
(9.8)(85)

𝐷𝑐
(1 − 𝑒𝑥𝑝 (

−5𝐷𝑐
85

)) 

or 

𝑓(𝐷𝑐) = 𝐷𝑐 + 17 ln(1 − 0.04802𝐷𝑐) = 0 

Solve this equation for 𝐷𝑐 , using any appropriate iterative method. To obtain an initial guess of 𝐷𝑐 , 
a trick is to calculate 𝑉 for different assumed values of 𝐷𝑐 . The values of the 𝐷𝑐 , which produce 
values of 𝑉 close to 40, can offer reasonable initial guess of 𝐷𝑐 . While using an iterative method, 
approximate error should be calculated at each iteration. [𝑒𝑥𝑝(𝑥) = 𝑒𝑥] 

Exercise 16: The velocity 𝑉, in meters per second (𝑚/𝑠), of a free falling sky diver is expressed 
as: 

𝑉 =
𝑔𝑚

𝐷𝑐
(1 − 𝑒𝑥𝑝 (

−𝐷𝑐𝑡

𝑚
)) 

Here 𝑚 is the mass of the falling body in kilograms (𝑘𝑔), 𝐷𝑐  is the drag coefficient in kilogram per 
second (𝑘𝑔/𝑠), 𝑡 is the time in seconds (𝑠), and 𝑔 = 9.8𝑚/𝑠2 is the gravitation acceleration. If the 
velocity of a falling body with drag coefficient of 18 𝑘𝑔/𝑠 is 50𝑚/𝑠 after 7 seconds of free fall, then 
calculate the mass 𝑚 of the body, accurate to 0.0001. [𝑒𝑥𝑝(𝑥) = 𝑒𝑥] 

Hint for the Solution: 

Given 𝐷𝑐 = 18𝑘𝑔/𝑠, 𝑉 = 50𝑚/𝑠, 𝑔 = 9.8𝑚/𝑠2, and 𝑡 = 7𝑠, the equation takes the form: 

50 =
(9.8)𝑚

18
(1 − 𝑒𝑥𝑝 (

−126

𝑚
)) 

or 
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𝑓(𝑚) = 𝑚 ln (1 −
91.83673

𝑚
) + 126 = 0 

Solve this equation for 𝑚, using any appropriate iterative method. To obtain an initial guess of 𝑚, 
a trick is to calculate 𝑉 for different assumed values of 𝑚. The values of the 𝑚, which produce 
values of 𝑉 close to 50, can offer reasonable initial guess of 𝑚. While using an iterative method, 
approximate the error at each iteration. 

Exercise 17: The volume 𝑉 of spherical water-tank in cubic meters can be calculated as: 

𝑉 =
𝜋𝐻2(3𝑅 − 𝐻)

3
 

where 𝐻 denotes the height of water level in meters from the base of the tank, and 𝑅 denotes the 
radius of the spherical tank in meters. If the radius 𝑅 of a tank is 2.5 meters, then how much water 
level must be raised in the tank to hold 27 cubic meters of water. 

Hint for the Solution: 

Given 𝑅 = 2.5 and 𝑉 = 27, and taking 𝜋 = 3.14159  the equation takes the form 

27 =
𝜋𝐻2(7.5 − 𝐻)

3
 

or 

𝑓(𝐻) = 3.14159𝐻3 − 23.56193𝐻2 + 81 = 0 

Solve this equation for H, using any appropriate iterative method. Intuitively, appropriate initial 
guesses for 𝐻 can be taken from [0,2𝑅]. While using an iterative method, approximate error 
should be calculated at each iteration. 

Exercise 18: Numerically, compare the convergence of the method: 

𝑥𝑘 = 𝑥𝑘−1 − 2
𝑓(𝑥𝑘−1)

𝑓′(𝑥𝑘−1)
, for 𝑘 = 1, 2, 3,⋯ 

with the Newton-Raphson method on a function with a known double root. 

Exercise 19: The ideal gas equation relates the volume (𝑉 in 𝐿), temperature (𝑇 in 𝐾), pressure 

(𝑃 in 𝑎𝑡𝑚), and the amount of gas (number of moles 𝑛) by: 

𝑃 =
𝑛𝑅𝑇

𝑉
 

where 𝑅 = 0.08206 (𝐿 𝑎𝑡𝑚)/(mol 𝐾) is the gas constant. 

The van der Waals equation gives the relationship between these quantities for a real gas by 

(𝑃 +
𝑛2𝑎

𝑉2
) (𝑉 − 𝑛𝑏) = 𝑛𝑅𝑇 
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where 𝑎 and 𝑏 are constants that are specific for each gas. 

Calculate the volume of 2 mol 𝐶𝑂2 at temperature of 50°C, and pressure of 6 𝑎𝑡𝑚. For 𝐶𝑂2, 𝑎 =

 3.59 (𝐿2 𝑎𝑡𝑚)/𝑚𝑜𝑙2, and b = 0.0427 L/ mol. Because 𝐶𝑂2 is a real gas, so we need to use the 

second equation for the solution. But for solving the second equation for the volume, obtain an 

appropriate guess of the volume from the first equation: ideal gas equation. 

Exercise 20: Golden-ratio corresponds to the order of which method: 

(A) Secant (B) Regula-Falsi (C) Fixed-Point Iteration (D) Newton-Raphson 

  

Exercise 21: Which of the following methods, has an explicit formula that can be used to 

determine the required number of iterations in advance for achieving a given accuracy: 

(A) Bisection    (B) Regula-Falsi     (C) Fixed-Point Iteration   (D) Newton-Raphson    (E) 

Secant 

Exercise 22: The convergence rate of which of the following methods is highest: 

(A) Bisection    (B) Regula-Falsi     (C) Fixed-Point Iteration   (D) Newton-Raphson    (E) 

Secant 

∎∎∎ 
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Chapter 3 

Polynomial Interpolation  

Corridor I: BASICS 

 Let’s plan it 
 

 

3.1     Introduction 

3.2     The Newton’s Divided Difference Interpolation 

3.3     The Lagrange Interpolation 

3.4     Deriving the Lagrange Interpolation Formula from the Newton’s Divided-Difference 

3.5     Interpolation Formulas for Equally Spaced Nodes 

3.6     Hermite Interpolation 

3.7     Spline Interpolation 

        3.7.1     Linear Spline 

        3.7.2     Quadratic Spline 

        3.7.3     Cubic Spline 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

 

 

 

http://www.timerenders.com.pk/
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Corridor II: ANALYSIS 

 Let’s think deep 
 

 

3.8     Error of Interpolation 

 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

 

 

 

Corridor III: PROGRAMMING ARCADE 

 Let’s do it 
 

 

3.9     Algorithms and Implementations 

The Newton's Divided Difference Interpolation Formula 

Built-in MATLAB® Commands 

 

 

To cross-check the results/output of the computer programs you would execute, please delve into 

the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

 

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/
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3.9 Algorithms and Implementations 

Question 21: Write down an algorithm (pseudo code) to interpolate or extrapolate the function 

at a point using the 𝑛th-degree Newton’s Divided difference interpolating polynomial. 

Algorithm: Given 𝒏 + 1 data points, approximate 𝑓(𝑥) at 𝑥 = 𝒙𝒑 with 𝑃𝒏(𝒙𝒑) . 

𝐈𝐍𝐏𝐔𝐓𝐒:   {

𝒏: an integer as the degree of interpolating polynomial
𝒙𝒊, 0 ≤ 𝑖 ≤ 𝒏: real values as the aribrary nodes
𝒇𝒊, 0 ≤ 𝑖 ≤ 𝒏: real values as the function values corresponding to 𝒙𝒊 nodes
𝒙𝒑: real values as the entries 

 

𝐎𝐔𝐓𝐏𝐔𝐓:  𝒇𝒙𝒑: a real number as an interpolated value at 𝒙 = 𝒙𝒑 

Step 1 Receive the inputs as stated above 

Step 2 for 𝑖 = 0, 1,⋯ , 𝒏
𝑑𝑑𝑓𝑖,0 = 𝒇𝒊      (Computing zeroth divided differences, 𝑓[𝒙𝒊] = 𝒇𝒊)  

 

Step 3 (Computing the divided differences of order 1 to 𝒏) 

for 𝑗 = 1, 2,⋯ , 𝒏

for 𝑖 = 0, 1,⋯ , 𝒏 − 𝑗  

𝑑𝑑𝑓𝑖,𝑗 =
[𝑑𝑑𝑓𝑖+1,𝑗−1 − 𝑑𝑑𝑓𝑖,𝑗−1]

[𝑥𝑖+𝑗 − 𝑥𝑖]

}       (

𝑓[𝑥𝑖 , ⋯ , 𝑥𝑖+𝑗] =

𝑓[𝑥𝑖+1, ⋯ , 𝑥𝑖+𝑗] − 𝑓[𝑥𝑖 , ⋯ , 𝑥𝑖+𝑗−1]

𝑥𝑖+𝑗 − 𝑥𝑖

)    

Step 4 (Evaluating the interpolation polynomial at 𝒙𝒑)       

Set 𝑝𝑟𝑜 = 1

Set 𝒇𝒙𝒑 = 𝑑𝑑𝑓0,0

for 𝑘 = 1, 2,⋯ , 𝒏
𝑝𝑟𝑜 = 𝑝𝑟𝑜 × (𝑥𝑝 − 𝒙𝑘−1)

𝒇𝒙𝒑   = 𝒇𝒙𝒑 + 𝑝𝑟𝑜 × 𝑑𝑑𝑓0,𝑘}
 
 

 
 

   (𝑃𝑛 = 𝑓[𝑥0] +∑[𝑓[𝑥0, ⋯ , 𝑥𝑘]∏(𝑥𝑝 − 𝑥𝑡)

𝑘−1

𝑡=0

]

𝑛

𝑘=1

) 

Step 5  Print the output: 𝒇𝒙𝒑 

STOP. 
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Problem 15: Write a MATLAB® program for the second order Newton’s Divided Difference 

Interpolation. 

1 clc , clear ;                              
2                                    
3 %------------------------- Input Section -----------------------------%       
4                                    
5 n = 2 ;           % degree of interpolating polynomial    
6 f = [5, 10, 12] ;         
7 x = [0, 1, 3] ;        
8        
9 fprintf ( ' The Divided Difference Interpolation. \n' )       

10 fprintf ( ' Enter a real value at which the interpolation is to be obtained: \n' ) ;   
11 xp = input ( 'Enter the real value: ' ) ;           
12                                    
13 %----------------------- Processing Section -------------------------%       
14 % Computing zeroth divided differences,f[x_i ] = f_i             
15                                    
16 for i = 1:n                             
17  ddf(i, 1) = f(i) ;                          
18 end                                 
19                                    
20 % Computing the divided differences of order 1 to n             
21                                    
22 for j = 2:n+1                             
23  for i = 1:n-j+1                          
24   ddf(i, j) = ( ddf(i+1, j-1) – ddf(i, j-1) ) / ( x(i+j) – x(i) ) ;        
25  end                                
26 end                                 
27                                    
28 % Evaluating the interpolation polynomial at xp             
29                                    
30 pro = 1 ;      fxp = ddf(0 ,0) ;                       
31 for k = 2:n+1                           
32  pro = pro * ( xp – x(k-1) ) ;                      
33  fxp = fxp + pro * ddf(1, k) ;                      
34 end                                 
35                                    
36 %---------------------- Output Section -------------------------%       
37 disp ( ' The interpolate or extrapolate value of function at x = xp is \n' ) ;     
38 disp(fxp)                               
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Problem 17: Write a MATLAB® program for the Newton’s Divided Difference Interpolation. 

1 clc , clear ;                              
2                                    
3 %------------------------- Input Section -----------------------------%    
4                
5 n = 10 ;           % degree of interpolating polynomial    
6 fprintf ( ' The Divided Difference Interpolation. \n' )        
7        
8 fprintf (' Enter real values as the arbitrary nodes \n')            
9 for i = 1:n                           

10   x(i) = input ( 'Enter the arbitrary nodes: ' );             
11  end                               
12 end                                 
13 fprintf ( ' Enter real values as the function values corresponding to x_i nodes: \n ' ) ; 
14 for i = 1:n                           
15  f(i) = input ( 'Enter the corresponding function values: ' ) ;         
16 end                                 
17 fprintf ( ' Enter a real value at which the interpolation is to be obtained: \n' ) ;   
18 xp = input ( 'Enter the real value: ' ) ;           
19                                    
20 %----------------------- Processing Section -------------------------%       
21 % Computing zeroth divided differences,f[x_i ] = f_i             
22                                    
23 for i = 1:n                             
24  ddf(i, 1) = f(i) ;                          
25 end                                 
26                                    
27 % Computing the divided differences of order 1 to n             
28                                    
29 for j = 2:n+1                             
30  for i = 1:n-j+1                          
31   ddf(i, j) = ( ddf(i+1, j-1) – ddf(i, j-1) ) / ( x(i+j) – x(i) ) ;        
32  end                                
33 end                                 
34                                    
35 % Evaluating the interpolation polynomial at xp             
36                                    
37 pro = 1 ;      fxp = ddf(0 ,0) ;                       
38 for k = 2:n+1                           
39  pro = pro * ( xp – x(k-1) ) ;                      
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40  fxp = fxp + pro * ddf(1, k) ;                      
41 end                                 
42                                    
43 %---------------------- Output Section -------------------------%       
44                                    
45 disp ( ' The interpolate or extrapolate value of function at x = xp is \n' ) ;     
46 disp(fxp)                               

∎∎ 

Question 22: List out some built-in functions/commands of MATLAB® for curve fitting. Also 

briefly explain the usage of the commands.  

Interp1 

Interp1 is a built-in function of MATLAB® that is used to interpolate (through 

piecewise interpolation in one-deimention) the function on using the given data points. 

The general format of using interpl to approximate the function value/s yi 

corresponding to the node/s xi is given by,  

yi = interp1(x, y, xi, 'method') 

The arguments x and y are the vectors of abscissas and ordinates of the data points to be 

given as the input. The size of both vectors must be of the same size. The argument xi is 

the point given as an input to the built-in function where the function is to be 

interpolated. The input argument xi can either be a scalar or vector. 

The following value can be used for the argument ‘method’: nearest, linear, 

cubic, and spline. If no value is given to the argument ‘method’, then by default 

MATLAB® takes the linear option. 

Worked Example: Find the linear interpolation polynomial using cos(0.1) = 0.9950 and 

cos(0.3) = 0.9553. Also, interpolate the value of cos(0.2). 

>> x = [0.1, 0.3]; 

>> y = [0.9950, 0.9553]; 

>> xi = [0.2]; 

>> yi = interp1(x,y,xi,'linear') 

yi =  0.9751 

pchip 

pchip(x, y)(might also be used as pchip(x, y, xi)) is another built-in function 

of MATLAB® to interpolate using the piecewise cubic Hermite interpolation in one-

deimention. 
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spline 

spline(x, y)(might also be used as spline(x, y, xi)) is another built-in 

function of MATLAB® to interpolate using the piecewise cubic splines in one-

deimention. 

Interp2 

Interp2(x, y, Z, xi, yi)is another built-in function of MATLAB® to interpolate 

using the piecewise linear interpolation in two-deimentions (bilinear interpolation). 

polyfit 

polyfit is a built-in function of MATLAB® for regression, which is used to fit the 

polynomial of degree m-1 for the given m data points given. It uses the least-squares 

method. The general format of using polyfit is  

polyfit (x, y, n) 

The arguments x and y are the vectors of abscissas and ordinates of the data points to be 

given as the input. The size of both vectors must be of the same size. The input argument 

n will be the order of polynomial which is required to fit the polynomial. For an exact fit, 

the value of order should be one less than the total number of data points. 

Worked Example: Fit the approximate polynomial to the data points: (0.1, 0.9950) and 

 (0.3, 0.9553). 

>> x = [0.1, 0.3]; 

>> y = [0.9950, 0.9553]; 

>> p = polyfit(x,y,1) 

p =  -0.1985    1.0149 

polyval 

polyval is a built-in function of MATLAB® which is used to evaluate the value of 

polynomial at a particular x. The general format of using polyval is  

pv = polyval(p, x) 

Here the argument p is a vector of coefficients of polynomial given as an input and the 

input argument x is the point at which value is to be approximated. x can either be a 

scalar or vector . 

Worked Example: Evaluate the function 𝑓(𝑥) = 𝑥5 − 12.1𝑥
4 + 40.59𝑥3 − 17.015𝑥2 −

71.95𝑥 + 35.88 at 𝑥 = 9. 

>> p = [1 -12.1  40.59 -17.015  -71.95  35.88]; 
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>> pv = polyval(p, 9) 

pv =  7.2611e+03 

poly 

poly is a built-in function of MATLAB®, which is used to find the coefficients of the 

polynomial whose roots are given. The general format of using poly is  

pc = poly(r) 

Here the input argument r is a vector containing the roots of the polynomial. 

Worked Example: Find the polynomial whose roots are {6.5000, 4.0000, 2.3000, -

1.2000, 0.5000} 

>> r = [6.5000, 4.0000, 2.3000, -1.2000, 0.5000]; 

>> pc = poly(r) 

pc =   1.0000  -12.1000   40.5900  -17.0150  -71.9500   35.8800 

∎∎∎ 

 

Chapter Summary 

• Curve fitting refers to the process of constructing a curve (a mathematical function) that reasonably 

fits the given discrete data points along a continuum. The obtained curve offers a simpler alternative to 

the original function (whose values at discrete points were given) that might be used to estimate the 

data values at points between the given points (and sometimes beyond the given data points, as well). 

• Regression and Interpolation are the two basic approaches for curve fitting. Regression is the process 

of deriving a single curve that provides for the general trend of the data (and that curve is not required 

to pass through any of the data points). Interpolation is the process of fitting a curve (a single function 

or a piecewise function) that interpolates (passes through) each of the given data points. 

• Suppose that the values of a function 𝑓 at different points 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛  are given. The points 𝑥𝑖  are 

referred to as nodes or arguments and the 𝑛 + 1 ordered pairs (𝑥𝑖 , 𝑓(𝑥𝑖)), 𝑖 = 0, 1, 2,⋯ , 𝑛, are referred 

to as data points of 𝑓. Interpolation (or, more precisely, polynomial interpolation) refers to the process 

of approximating the value of 𝑓 at any intermediate point to the given data points.  

• The interpolation process consists of determining the unique polynomial 𝑃𝑛(𝑥) of degree at most 𝑛 that 

interpolates (passes through) the given data points, i.e.,  

𝑃𝑛(𝑥𝑖) = 𝑓(𝑥𝑖) 
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And then, the polynomial 𝑃𝑛(𝑥) serves as the formula to approximate the function values at 

intermediate points to the given data points and, thus, is referred to as interpolating polynomial. If the 

polynomial 𝑃𝑛(𝑥) is used approximate the function values at beyond the given data points, then the 

process is called extrapolation. 

• Newton’s Divided Difference Interpolation: For 𝑛 + 1 arbitrarily spaced data points, (𝑥0, 𝑓0), (𝑥1, 𝑓1),

⋯ , (𝑥𝑛 , 𝑓𝑛), of a function 𝑓,  the Newton’s Divided Difference interpolation formula for the interpolating 

polynomial 𝑃𝑛(𝑥) of degree at most 𝑛 is given by 

𝑃𝑛(𝑥) = 𝑓[𝑥0] + 𝑓[𝑥0, 𝑥1](𝑥 − 𝑥0) + 𝑓[𝑥0, 𝑥1, 𝑥2](𝑥 − 𝑥0)(𝑥 − 𝑥1)

+⋯+ 𝑓[𝑥0, 𝑥1, 𝑥2,⋯ , 𝑥𝑛](𝑥 − 𝑥0)(𝑥 − 𝑥1)⋯ (𝑥 − 𝑥𝑛−1)

or

𝑃𝑛(𝑥) = 𝑓[𝑥0] +∑𝑓[𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑘](𝑥 − 𝑥0)(𝑥 − 𝑥1)⋯(𝑥 − 𝑥𝑘−1)

𝑛

𝑘=1

 

Here the 𝒌th divided difference of the function 𝑓 with respect to the nodes 𝑥𝑖 , 𝑥𝑖+1, ⋯ , 𝑥𝑖+𝑘  is denoted 

by 𝑓[𝑥𝑖 , 𝑥𝑖+1, ⋯ , 𝑥𝑖+𝑘] and is recursively defined by 

𝑓[𝑥𝑖 , 𝑥𝑖+1,⋯ , 𝑥𝑖+𝑘] =
𝑓[ 𝑥𝑖+1, 𝑥𝑖+2, ⋯ , 𝑥𝑖+𝑘] − 𝑓[𝑥𝑖 , 𝑥𝑖+1, ⋯ , 𝑥𝑖+(𝑘−1)]

𝑥𝑖+𝑘 − 𝑥𝑖
 

with 𝑓[𝑥𝑖] = 𝑓(𝑥𝑖) = 𝑓𝑖  as the zeroth divided difference. 

• Lagrange Interpolation: For 𝑛 + 1 arbitrarily spaced data points, (𝑥0, 𝑓0), (𝑥1, 𝑓1),⋯ , (𝑥𝑛, 𝑓𝑛),  of a 

function 𝑓,  the Lagrange interpolation formula for the interpolating polynomial 𝑃𝑛(𝑥) of degree at most 

𝑛 is given by 

𝑃𝑛(𝑥) = 𝐿0(𝑥)𝑓(𝑥0) + 𝐿1(𝑥)𝑓(𝑥1) + ⋯+ 𝐿𝑛(𝑥)𝑓(𝑥𝑛)

= ∑𝐿𝑘(𝑥)

𝑛

𝑘=0

𝑓(𝑥𝑘)
 

Here 𝐿𝑘(𝑥) denotes the 𝒌th Lagrange coefficient (also called cardinal polynomial) and is defined by 

𝐿𝑘(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥1)⋯ (𝑥 − 𝑥𝑘−1)(𝑥 − 𝑥𝑘+1)⋯ (𝑥 − 𝑥𝑛)  

(𝑥𝑘 − 𝑥0)(𝑥𝑘 − 𝑥1)⋯ (𝑥𝑘 − 𝑥𝑘−1)(𝑥𝑘 − 𝑥𝑘+1)⋯ (𝑥𝑘 − 𝑥𝑛)
= ∏

𝑥 − 𝑥𝑗

𝑥𝑘 − 𝑥𝑗

𝑛

𝑗=0
𝑗≠𝑘

 

and satisfies the Kronecker delta equation: 

𝐿𝑘(𝑥) = {
1 for 𝑥 = 𝑥𝑘

0 for all 𝑥, except 𝑥 = 𝑥𝑘
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• First Theorem on Interpolation Error: If 𝑃𝑛(𝑥) is the polynomial of degree at most 𝑛 that interpolates 

a function 𝑓 at 𝑛 + 1 arbitrary nodes 𝑥0, 𝑥1 ,⋯ , 𝑥𝑛 in an interval [𝑎, 𝑏] and if 𝑓 ∈ 𝐶(𝑛+1)[𝑎, 𝑏], then for 

each 𝑥 in [𝑎, 𝑏], there exists an 𝜉 in (𝑎, 𝑏) for which 

𝐸(𝑥) = 𝑓(𝑥) − 𝑃𝑛(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥1)⋯(𝑥 − 𝑥𝑛)
𝑓(𝑛+1)(𝜉) 

(𝑛 + 1)!
 

Here 𝐸(𝑥) is the truncation error of the polynomial interpolation. 

• A Lagrange interpolation formula can be obtained from the relevant Newton’s Divided Difference 

interpolation formula, after some rearrangements.  

• Suppose that 𝑛 + 1 data points, (𝑥0, 𝑓0), (𝑥1, 𝑓1),⋯ , (𝑥𝑛 , 𝑓𝑛), of a function 𝑓 are given on the interval 

[𝑎, 𝑏] for consecutively arranged and equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛, such that 

𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏

with astep size of length ℎ = 𝑥𝑖 − 𝑥𝑖−1, for 𝑖 = 1, 2, 3,⋯ , 𝑛

and 𝑓(𝑥𝑖) = 𝑓𝑖

 

The Newton Forward-Difference Interpolation formula for the interpolating polynomial 𝑃𝑛(𝑥) of 

degree at most 𝑛 is given by 

𝑃𝑛(𝑥) = 𝑓0 + 𝛼∆𝑓0 +
𝛼(𝛼 − 1)

2!
∆2𝑓0 +⋯+

𝛼(𝛼 − 1)(𝛼 − 2)⋯(𝛼 − (𝑛 − 1))

𝑛!
∆𝑛𝑓0 

where 

𝛼 =
𝑥 − 𝑥0
ℎ

 

Here the 𝒌th forward-difference of 𝑓 at 𝑥𝑖  is denoted by  ∆𝑘𝑓𝑖  and is recursively defined by 

∆𝑘𝑓𝑖 = ∆(∆𝑘−1𝑓𝑖) = ∆𝑘−1𝑓𝑖+1 − ∆
𝑘−1𝑓𝑖 for 𝑘 = 2, 3,⋯ , 𝑛  

with ∆𝑓𝑖 = 𝑓𝑖+1 − 𝑓𝑖  

The Newton Backward-Difference Interpolation formula for the interpolating polynomial 𝑃𝑛(𝑥) of 

degree at most 𝑛 is given by 

𝑃𝑛(𝑥) = 𝑓𝑛 + 𝛽∇𝑓𝑛 +
𝛽(𝛽 + 1)

2!
∇2𝑓𝑛 +⋯+

𝛽(𝛽 + 1)(𝛽 + 2)⋯ (𝛽 + (𝑛 − 1))

𝑛!
∇𝑛𝑓𝑛  

where  

𝛽 =
𝑥 − 𝑥𝑛
ℎ

 

Here the 𝒌th backward-difference of 𝑓 at 𝑥𝑖  is denoted by  ∇𝑘𝑓𝑖  and is recursively defined by 

∇𝑘𝑓𝑖 = ∇(∇𝑘−1𝑓𝑖) = ∇𝑘−1𝑓𝑖 − ∇
𝑘−1𝑓𝑖−1 for 𝑘 = 2, 3,⋯ , 𝑛  

with ∇𝑓𝑖 = 𝑓𝑖 − 𝑓𝑖−1 
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• There are central difference interpolation formulas also available in the literature, which are more 

suited for approximation of a function value around mid of the interval of interpolation. Following are 

the examples of some well-known central difference interpolation formulas: 

o Gauss Forward Difference Interpolation Formula 

o Gauss Backward Difference Interpolation Formula  

o Stirling;’s Central Difference Interpolation Formula 

o Bessel’s Central Difference Interpolation Formula 

o Everrett’s Central Difference Interpolation Formula 

∎∎∎ 
 
 

Chapter Exercises 

Exercise 01: Find the linear interpolating polynomial passing through the following set of pairs of the points. 

(i) {(0.1, sin(0.1)), (0.2, sin(0.2))} 

(ii) {(1.2,
1

(1.2)2
) , (1.4,

1

(1.4)2
)} 

(iii) {(1, 7), (2, 4)} 

(iv) {(1, 𝑒−1), (1.5, 𝑒−
1

1.5)} 

Exercise 02: Construct the interpolating polynomial to approximate the following functions at 𝑥 = 0.25. Use 

the arguments 𝑥0 = −0.3, 𝑥1 = 0, 𝑥2 = 0.4. 

(i) 𝑓(𝑥) = ln(1 + 𝑥) 

(ii) 𝑓(𝑥) = 𝑒−𝑥
2
 

(iii) 𝑓(𝑥) = tan 𝑥2 

(iv) 𝑓(𝑥) =
1

√𝑥2−1
 

Exercise 03: Use the Lagrange Interpolating Polynomial and the Newton’s Divided Difference Interpolating 

polynomial of the appropriate degree to interpolate the following: 

(i) Compute 𝑓(1.5), given that, 𝑓(0.5) = 0.479, 𝑓(1.0) = 0.841, 𝑓(2.0) = 0.909 

(ii) Compute 𝑓(3.6), given that 𝑓(3.0) =  0.1506, 𝑓(4.0) = 0.3001, 𝑓(4.5) = 0.2663, 𝑓(4.7) = 0.2346 

(iii) Compute 𝑓(2/3), given that,  

𝑓(1.1) =  −0.071812,     𝑓(1.3) = −0.024750,     𝑓(1.7) = 0.334937,     𝑓(2.0) = 1.101000 



48 Simplified Numerical Analysis 

 

Exercise 04: Find the missing value in the following table using the Newton’s Divided Difference 

Interpolating polynomial. 

𝑥 −1 1 2 3 

𝑓(𝑥) −21 15 ? 3 

Exercise 05: Find the missing value in the following table using Lagrange Interpolating Polynomial 

𝑥 −2 0 2 4 6 

𝑓(𝑥) 33 5 9 ? 113 

Exercise 06: Find, for what values of 𝑥, 𝑦 attained extreme values using the data given below 

𝑥 3 4 5 6 7 8 

𝑦 0.205 0.240 0.259 0.262 0.250 0.224 

Exercise 07: Use Lagrange Interpolating Polynomial of the appropriate degree to complete the record of the 

export of a certain commodity during six years 

Year: 𝑥 1981 1982 1983 1984 1985 1986 

Export: 𝑦 43 84 93 ? 105 157 

Exercise 08: Use the Newton’s Divided Difference Interpolating Polynomial to obtain an interpolation that 

passing through the following points 

𝑥 0 0.1 0.3 0.4 0.7 0.8 

𝑦 −1.5 −1.27 −0.98 −0.63 −0.22 0.25 

Exercise 09: Find a bound for the error associated with linear polynomial interpolation for the following 

function. Use the arguments 𝑥0 = 0, 𝑥1 = 0.4.  

(i) 𝑓(𝑥) = ln(1 + 𝑥) 

(ii) 𝑓(𝑥) = 𝑒−𝑥
2
 

(iii) 𝑓(𝑥) = tan 𝑥2  

(iv) 𝑓(𝑥) =
1

√𝑥2−1
 

Exercise 10: Find a bound for the error associated with quadratic polynomial interpolation for the following 

function. Use the arguments 𝑥0 = 0, 𝑥1 = 0.1, 𝑥2 = 0.4.  

(i) 𝑓(𝑥) = sin 𝑥 + cos 𝑥 

(ii) 𝑓(𝑥) = 𝑥 ln 𝑥 

(iii) 𝑓(𝑥) = 𝑥 sin 𝑥 − 𝑥3 + 2𝑥 − 1  

(iv) 𝑓(𝑥) = √𝑥 − 𝑥2 
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Exercise 11: Find a bound for the error associated with cubic polynomial interpolation for the following 

function. Use the arguments 𝑥0 = 1, 𝑥1 = 1.3, 𝑥2 = 1.6, 𝑥3 = 2.0  

(i) 𝑓(𝑥) = sin(𝑒−𝑥 − 1)  

(ii) 𝑓(𝑥) = ln 𝑥 − 𝑥4 + 𝑥2 − 1 

(iii) 𝑓(𝑥) = 𝑥2𝑒−𝑥
2
 

(iv) 𝑓(𝑥) =
1

√1+𝑥
 

Exercise 12: Construct the Newton’s Forward and Backward Difference Interpolating polynomials passes 

through the points (0.2, 0.9980), (0.4, 0.9686),  (0.6, 0.8443), and (0.8, 0.5358). 

Exercise 13: Construct the Newton’s Forward and Backward Difference Interpolating polynomials to 

approximate the following functions at 𝑥 = 1.2 and 2.0. Use the arguments 𝑥0 = 1.1, 𝑥1 = 1.3, 𝑥2 = 1.5, 𝑥3 =

1.7, 𝑥4 = 1.9 

(i) 𝑓(𝑥) = ln(1 + 𝑥) 

(ii) 𝑓(𝑥) = 𝑒−𝑥
2
 

(iii) 𝑓(𝑥) = tan 𝑥2  

(iv) 𝑓(𝑥) =
1

√𝑥2−1
 

Exercise 14: Some data of the speed (𝑉) versus drag coefficient (𝐶𝑑) of a cricket ball is given in the following 

table: Estimate 𝐶𝑑 at 𝑉 = 150 𝑘𝑚/ℎ. 

𝑉 in 𝑘𝑚/ℎ 𝐶𝑑 

0 0.5 

80 0.48 

120 0.39 

160 0.32 

Exercise 15: The mileages covered by a car per liter of fuel at different speeds are shown is the table below: 

Speed in 𝑘𝑚/ℎ Mileage covered in 𝑘𝑚/𝑙 

60 14.2 

75 16.1 

90 14.8 

105 13.7 

120 11.5 

Using interpolation, approximate the fuel efficiency of the car at the speed of 100 𝑘𝑚/ℎ. 



50 Simplified Numerical Analysis 

 

Hint for the Solution: Use any interpolation formula, preferable the Newton’s Backward Difference 

Interpolation formula. 

Exercise 16: Some recorded data of number of deaths due to Novel Coronavirus (2019-nCoV) is given in the 

table below. Use interpolation to determine number of deaths on January 29 and 31, 2020. 

Date Number of Deaths 

Jan. 24 16 

Jan. 26 24 

Jan. 28 26 

Jan. 30 43 

Feb. 1 45 

Hint for the Solution: The given data spans over 9 days. The function values are given for 𝑥 = 1, 3, 5, 7, 9. Find 

an interpolating polynomial and use it to calculate value at 𝑥 = 6 and 𝑥 = 8 for the desired solutions. 

Exercise 17: The census data of Pakistan is given in the following table (source: Pakistan Bureau of 

Statistics): 

Census Year Population in thousands 

1951 33740 

1961 42880 

1972 65309 

1981 84254 

1998 132352 

2017 207774 

Use interpolation to determine the population for the year 2010. 

Hint for the Solution: The given data spans over 67 years. The function values are given for 𝑥 =

1, 11, 22, 31, 48, 67. Find an interpolating polynomial and use it to calculate value at 𝑥 = 60 for the desired 

solution. 

Exercise 18: Suppose that a table lists the values of the tangent function for the angles ranging from 0o to 

45o in increments of 5o. What is the largest error that we would introduce by performing linear interpolation 

between successive values in this table? 

∎∎∎ 
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Chapter 4 

Numerical Integration  

Corridor I: BASICS 

 Let’s plan it 
 

 

 

4.1     Introduction 

4.2     The Trapezoidal Rule 

4.3     The Simpson’s 1/3 Rule 

4.4     Generalized Closed Newton-Cotes Quadrature 

 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

  

http://www.timerenders.com.pk/
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Question 12: Tabulate Closed Newton-Cotes Integration formulas with relevant features, for both 

the basic and the composite forms, separately. 

Suppose that 𝑛 data points, (𝑥𝑗 , 𝑓𝑗), where 𝑓(𝑥𝑗) = 𝑓𝑗, of the integrand 𝑓(𝑥) are given on the 

interval [𝑎, 𝑏] = [𝑥0, 𝑥1] for consecutively arranged and equispaced nodes 𝑥𝑗  such that ℎ =

(𝑏 − 𝑎)/𝑛. The Closed Newton Cotes quadrature formulas for the definite integral = ∫ 𝑓(𝑥)
𝑥𝑛

𝑥0
𝑑𝑥 

are tabulated below. 

Numerical 
Integration 

Method 

Formula 

Required 
number of 
function 
values at 

equidistant 
points 

Interpolating 
polynomial used for 
integral evaluation  
(to derive the formula) 

Rectangular 

Rule 

I = ℎ(𝑓0)             (starting-point rule) or 

I = ℎ(𝑓1)             (end-point rule) or 

I = ℎ(𝑓∗)            (mid-point rule) 

where 𝑓∗ = 𝑓 (
𝑥0+𝑥1

2
) 

one 
Polynomial of degree 0  

(constant function) 

Trapezoidal 

Rule 
I =

ℎ

2
[𝑓0 + 𝑓1] two 

Polynomial of degree 1  

(linear polynomial) 

Simpson’s 1/3 

Rule 
I =

ℎ

3
[𝑓0 + 4𝑓1 + 𝑓2] three 

Polynomial of degree 2  

(quadratic polynomial) 

Simpson’s 3/8 

Rule 
I =

3ℎ

8
[𝑓0 + 3(𝑓1 + 𝑓2) + 𝑓3] four 

Polynomial of degree 3  

(cubic polynomial) 

Boole’s Rule 

(Milne’s Rule) 
I =

2ℎ

45
[7𝑓0 + 32𝑓1 + 12𝑓2 + 32𝑓3 + 7𝑓4] five Polynomial of degree 4 

Six-Point Rule 
I =

5ℎ

288
[19𝑓0 + 75𝑓1 + 50𝑓2 + 50𝑓3

                                                   +75𝑓4 + 19𝑓5]
 six Polynomial of degree 5 

Weddle’s Rule 
I =

ℎ

140
[41𝑓0 + 216𝑓1 + 27𝑓2 + 272𝑓3

                                      +27𝑓4 + 216𝑓5 + 41𝑓6]
 seven Polynomial of degree 6 
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Numerical 
Integration 

Method 

Formula 

(for 𝑛 + 1 data points, (𝑥𝑗 , 𝑓𝑗), 𝑗 = 0,1,2, ⋯ , 𝑛,  

and 𝑛 subintervals of equal length ℎ = (𝑥𝑛 − 𝑥0) 𝑛⁄ ) 

Possible 
values of 𝒏  

(K represents 
the number of 

multiple 
applications of 

the formula) 

Interpolating 
polynomial 

used for 
integral 

evaluation  

(to derive the 
formula) 

Composite 
Rectangular 

Rule 

I = ℎ[𝑓0 + 𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1]  (starting-point rule) or 

I = ℎ[𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1 + 𝑓𝑛]  (end-point rule) or 

I = ℎ[𝑓1
∗ + 𝑓2

∗ + ⋯ + 𝑓𝑛−1
∗ + 𝑓𝑛

∗]  (mid-point rule) 

where 𝑓𝑗
∗ = 𝑓 (

𝑥𝑗−1+𝑥𝑗

2
) , for 𝑗 = 1,2,3, … , 𝑛 

n = 1, 2, 3, ...  
(i.e., n = K 

could be any 
positive 
integer) 

Piecewise 
polynomial of 

degree 0  
(piecewise-

constant 
function) 

Composite  
Trapezoidal 

Rule 
I =

ℎ

2
[𝑓0 + 2(𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1) + 𝑓𝑛] 

𝑛 =  1, 2, 3, ⋯  
(i.e., n = K 

could be any 
positive 
integer) 

Piecewise 
polynomial of 

degree 1  
(piecewise-

linear) 

Composite 
Simpson’s 
1/3 Rule 

I =
ℎ

3
[𝑓0 + 4(𝑓1 + 𝑓3 + ⋯ + 𝑓𝑛−1)        

+ 2(𝑓2 + 𝑓4 + ⋯ + 𝑓𝑛−2) + 𝑓𝑛] 

n = 2, 4, 6, ...  
(i.e., n = 2K, 

where  
K = 1, 2, 3, ...) 

Piecewise 
polynomial of 

degree 2  
(piecewise-
quadratic) 

Composite 
Simpson’s 
3/8 Rule 

I =
3ℎ

8
[𝑓0 + 3(𝑓1 + 𝑓2) + 2(𝑓3) + 3(𝑓4 + 𝑓5) + 2(𝑓6)

                                                      + ⋯ +  3(𝑓𝑛−2 + 𝑓𝑛−1) + 𝑓𝑛]
 

n = 3, 6, 9, ... 
(i.e., n = 3K, 

where 
K = 1, 2, 3, ...) 

Piecewise 
polynomial of 

degree 3  
(piecewise-

cubic) 

Composite 
Boole’s Rule 
(Composite 

Milne’s 
Rule) 

I =
2ℎ

45
[7𝑓0 + 32(𝑓1 + 𝑓5 + 𝑓9 + ⋯ + 𝑓𝑛−3) 

+ 12(𝑓2 + 𝑓6 + 𝑓10 + ⋯ + 𝑓𝑛−2) 

+ 32(𝑓3 + 𝑓7 + 𝑓11 + ⋯ + 𝑓𝑛−1) 

+ 14(𝑓4 + 𝑓8 + 𝑓12 + ⋯ + 𝑓𝑛−4) + 7𝑓𝑛] 

n = 4, 8, 12, ... 
(i.e., n = 4K, 

where  
K = 1, 2, 3, ...) 

Piecewise 
polynomial of 

degree 4 

Composite   
Six-Point 

Rule 

I =
5ℎ

288
[19𝑓0 + 75(𝑓1 + 𝑓6 + 𝑓11 + ⋯ + 𝑓𝑛−4) 

+ 50(𝑓2 + 𝑓7 + 𝑓12 + ⋯ + 𝑓𝑛−3) 

+ 50(𝑓3 + 𝑓8 + 𝑓13 + ⋯ + 𝑓𝑛−2) 

+ 75(𝑓4 + 𝑓9 + 𝑓14 + ⋯ + 𝑓𝑛−1) 

+ 38(𝑓5 + 𝑓10 + 𝑓15 + ⋯ + 𝑓𝑛−5) + 19𝑓𝑛] 

n = 5, 10, 15, ...  
(i.e., n = 5K, 

where  
K = 1, 2, 3, ...) 

Piecewise 
polynomial of 

degree 5 

Composite 
Weddle’s 

Rule 

I =
ℎ

140
[41𝑓0 + 216(𝑓1 + 𝑓7 + 𝑓13 + ⋯ + 𝑓𝑛−5) 

+ 27(𝑓2 + 𝑓8 + 𝑓14 + ⋯ + 𝑓𝑛−4) 

+ 272(𝑓3 + 𝑓9 + 𝑓15 + ⋯ + 𝑓𝑛−3) 

+ 27(𝑓4 + 𝑓10 + 𝑓16 + ⋯ + 𝑓𝑛−2) 

+ 216(𝑓5 + 𝑓11 + 𝑓17 + ⋯ + 𝑓𝑛−1) 

+ 82(𝑓6 + 𝑓12 + 𝑓18 + ⋯ + 𝑓𝑛−6) + 41𝑓𝑛] 

n = 6, 12, 18, ...  
(i.e., n = 6K, 

where  
K = 1, 2, 3, ...) 

Piecewise 
polynomial of 

degree 6 

∎∎∎ 
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Corridor II: ANALYSIS 

 Let’s think deep 

 

4.5     Truncation Error of the Trapezoidal Rule 

4.6     Truncation Error of the Simpson’s 1/3 Rule 

4.7     Further Discussions 

4.8     The Gaussian Quadrature 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

 

Corridor III: PROGRAMMING ARCADE 

 Let’s do it 
 

 

4.9     Algorithms and Implementations 

The Composite Trapezoidal Rule 

The Composite Simpson’s 1/3 Rul 

The Composite Simpson’s 3/8 Rule 

Built-in MATLAB® Commands 

 

To cross-check the results/output of the computer programs you would execute, please delve into 

the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/
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4.9 Algorithms and Implementations 

Question 27: Write down the algorithm (pseudo-code) of the Composite Trapezoidal rule for 

numerical integration of definite integrals. 

Algorithm:  To approximate the definite integral 𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 using the formula: 

𝐼 =
ℎ

2
[𝑓0 + 2(𝑓1 + 𝑓2 + 𝑓3 + ⋯ + 𝑓𝑛−1) + 𝑓𝑛] 

𝐈𝐍𝐏𝐔𝐓𝐒:           {
𝒂 and 𝒃: two real values as the endpoints of the interval of integration 
𝒏: a positive integer as the number of subintervals

 

𝐎𝐔𝐓𝐏𝐔𝐓:          𝑰: a real number as an approximation to the integral 

Step 1  Receive the inputs as stated above 

Step 2  Set real number 𝒙𝟎 = 𝒂 

Set real number 𝒙𝒏 = 𝒃 

Set real number 𝒉 = (𝒙𝒏 − 𝒙𝟎)/𝒏 

Set real number 𝒇𝒙𝟎 as the value 𝑓(𝒂) 

Set real number 𝒇𝒙𝒏 as the value 𝑓(𝒃) 

Step 3  Set 𝑰 = 𝒇𝒙𝟎 + 𝒇𝒙𝒏 

Step 4  Set real number 𝒙𝒄 = 𝒙𝟎 

Set real number 𝒔𝒖𝒎 = 𝟎 

for 𝑗 = 1, 2, ⋯ , 𝒏 − 1  

  Set 𝒙𝒄 = 𝒙𝒄 + 𝒉 

Set 𝒇𝒙𝒄 as the value 𝑓(𝒙𝒄) 

Set 𝒔𝒖𝒎 = 𝒔𝒖𝒎 + 𝒇𝒙𝒄     (Forming 𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1 )  

 end for 

Step 5  Set 𝑰 = (𝒉 𝟐⁄ ) × (𝑰 + 𝟐 × 𝒔𝒖𝒎) 

Step 6  Print the output: 𝑰 

STOP. 
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Problem 17: Write a MATLAB® program to evaluate the integral of 𝑓(𝑥) = √𝑥2 + 1 over [0, 2] with 12 

subintervals using the Composite Trapezoidal rule.  

 

1 clear, clc ;                             
2 fprintf('The Composite Trapezoidal Rule.')                  
3                                    
4 x0 = input('\nEnter the lower limit of the integral: ') ;             
5 xn = input('\nEnter the upper limit of the integral: ') ;             
6 n = input('\nEnter the number of subintervals n: ') ;             
7                                    
8 %----------------------- Processing Section -------------------------%       
9                                    

10 h = ( xn - x0 ) / n ;                            
11 fx0 = sqrt( x0*x0 +1) ;                          
12 fxn = sqrt( xn*xn +1) ;                         
13 I = fx0 + fxn ;                             
14 xc = x0 ;                               
15 sum = 0.0 ;                               
16                                    
17 for j = 1 : n-1                            
18  xc = xc + h ;                          
19  fxc = sqrt( xc*xc + 1) ;                        
20  sum = sum + fxc ;                         
21 end                                
22                                    
23 I = (h / 2.0) * (I + 2.0 * sum) ;                            
24                                    
25 %------------------------ Output Section ----------------------------%       
26                                    
27 fprintf('The approximate integral = %5.5f.\n' ,I)              
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Problem 19: Write a MATLAB® program to evaluate the integral of 𝑓(𝑥) = √𝑥2 + 1 over [0, 2] with 12 

subintervals using the Composite Trapezoidal rule. Define an inline MATLAB® function for evaluating 𝑓(𝑥) at 

the different nodes (i.e., for finding the values of 𝑓 at the different nodes). 

1 clear, clc ;                             
2                       
3                       
4 f = @(x) sqrt( x^2 + 1) ;                      
5                   
6 fprintf('The Composite Trapezoidal Rule.')                  
7                                    
8 x0 = input('\nEnter the lower limit of the integral: ') ;             
9 xn = input('\nEnter the upper limit of the integral: ') ;             

10 n = input('\nEnter the number of subintervals n: ') ;             
11                                    
12 %----------------------- Processing Section -------------------------%       
13                                    
14 h = ( xn - x0 ) / n ;                            
15                          
16 fx0 = f (x0) ;                          
17 fxn = f (xn) ;                         
18                              
19 I = fx0 + fxn ;                             
20                                
21 xc = x0 ;                               
22 sum = 0.0 ;                               
23                                    
24 for j = 1 : n-1                            
25                             
26  xc = xc + h ;                          
27  fxc = f (xc) ;                        
28  sum = sum + fxc ;                         
29                                 
30 end                                
31                                    
32 I = (h / 2.0) * (I + 2.0 * sum) ;                            
33                                    
34 %------------------------ Output Section ----------------------------%       
35                                    
36 fprintf('The approximate integral = %5.5f.\n' ,I)              
37               
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Question 28: Write down the algorithm (pseudo-code) of the Composite Simpson’s 1/3 rule for 

numerical integration of definite integrals. 

Algorithm:  To approximate the definite integral 𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 using the formula: 

𝐼 =
ℎ

3
[𝑓0 + 4(𝑓1 + 𝑓3 + ⋯ + 𝑓𝑛−1) + 2(𝑓2 + 𝑓4 + ⋯ + 𝑓𝑛−2) + 𝑓𝑛] 

𝐈𝐍𝐏𝐔𝐓𝐒:           {
𝒂 and 𝒃: two real values as the endpoints of the interval of integration 
𝒏: a positive even integer as the number of subintervals

 

𝐎𝐔𝐓𝐏𝐔𝐓:          𝑰: a real number as an approximation to the integral 

Step 1  Receive the inputs as stated above 

Step 2  Set real number 𝒙𝟎 = 𝒂 

Set real number 𝒙𝒏 = 𝒃 

Set real number 𝒉 = (𝒙𝒏 − 𝒙𝟎)/𝒏 

Set real number 𝒇𝒙𝟎 as the value 𝑓(𝒂) 

Set real number 𝒇𝒙𝒏 as the value 𝑓(𝒃) 

Step 3  Set 𝑰 = 𝒇𝒙𝟎 + 𝒇𝒙𝒏 

Step 4  Set real number 𝒙𝒄 = 𝒙𝟎 

Set real number 𝒔𝒖𝒎𝟏 = 𝟎 

Set real number 𝒔𝒖𝒎𝟐 = 𝟎  

for 𝑗 = 1, 2, ⋯ , 𝒏 − 1  

  Set 𝒙𝒄 = 𝒙𝒄 + 𝒉 

Set 𝒇𝒙𝒄 as the value 𝑓(𝒙𝒄) 

  if  𝑗 is odd 

Set 𝒔𝒖𝒎𝟏 = 𝒔𝒖𝒎𝟏 + 𝒇𝒙𝒄  (Forming 𝑓1 + 𝑓3 + ⋯ + 𝑓𝑛−1 )  

   else 

Set 𝒔𝒖𝒎𝟐 = 𝒔𝒖𝒎𝟐 + 𝒇𝒙𝒄  (Forming 𝑓2 + 𝑓4 + ⋯ + 𝑓𝑛−2 ) 

 end for 

Step 5  Set 𝑰 = (𝒉 𝟑⁄ ) × (𝑰 + 𝟒 × 𝒔𝒖𝒎𝟏 + 𝟐 × 𝒔𝒖𝒎𝟐) 

Step 6  Print the output: 𝑰 

STOP.   
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Problem 21: Write a MATLAB® program to evaluate the integral of 𝑓(𝑥) = √𝑥2 + 1 over [0, 2] with 12 

subintervals using the Simpson’s 1/3 rule.  

1 clear, clc ;                             
2 fprintf('The Composite Simpson's 1/3 Rule.');                
3                                    
4 x0 = input('\nEnter the lower limit of the integral: ') ;             
5 xn = input('\nEnter the upper limit of the integral: ') ;             
6 n = input('\nEnter the number of subintervals n: ') ;             
7                                    
8 %----------------------- Processing Section -------------------------%       
9                                    

10 h = ( xn - x0 ) / n ;                            
11 fx0 = sqrt( x0*x0 + 1) ;                          
12 fxn = sqrt( xn*xn + 1) ;                         
13 I = fx0 + fxn ;                             
14 xc = x0 ;                               
15 sum1 = 0.0 ;  sum2 = 0.0 ;                         
16                                    
17 for j = 1 : n-1                            
18  xc = xc + h ;                          
19  fxc = sqrt( xc*xc + 1) ;                        
20  if ( rem(j,2) ~= 0)                          
21   sum1 = sum1 + fxc ;                        
22  else                               
23   sum2 = sum2 + fxc ;                        
24  end                                
25 end                                
26 I = (h / 3.0) * (I + 4 * sum1 + 2 * sum2) ;             
27                                    
28 %------------------------ Output Section ----------------------------%       
29                                    
30 fprintf('The approximate integral = %5.5f.\n' ,I)              
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Question 29: Write down the algorithm (pseudo-code) of the Composite Simpson’s 3/8 rule for 

numerical integration of definite integrals. 

Algorithm:  To approximate the definite integral 𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 using the formula: 

𝐼 =
3ℎ

8
[𝑓0 + 3(𝑓1 + 𝑓2 + 𝑓4 + 𝑓5 + ⋯ + 𝑓𝑛−2 + 𝑓𝑛−1) + 2(𝑓3 + 𝑓6 + ⋯ + 𝑓𝑛−3) + 𝑓𝑛] 

𝐈𝐍𝐏𝐔𝐓𝐒:            {
𝒂 and 𝒃: two real values as the endpoints of the interval of integration 

𝒏: a positive integer (multiple of 3) as the number of subintervals
 

𝐎𝐔𝐓𝐏𝐔𝐓:          𝑰: a real number as an approximation to the integral 

Step 1  Receive the inputs as stated above 

Step 2  Set real number 𝒙𝟎 = 𝒂 

Set real number 𝒙𝒏 = 𝒃 

Set real number 𝒉 = (𝒙𝒏 − 𝒙𝟎)/𝒏 

Set real number 𝒇𝒙𝟎 as the value 𝑓(𝒂) 

Set real number 𝒇𝒙𝒏 as the value 𝑓(𝒃) 

Step 3  Set 𝑰 = 𝒇𝒙𝟎 + 𝒇𝒙𝒏 

Step 4  Set real number 𝒙𝒄 = 𝒙𝟎 

Set real number 𝒔𝒖𝒎𝟏 = 𝟎 

Set real number 𝒔𝒖𝒎𝟐 = 𝟎 

for 𝑗 = 1, 2, ⋯ , 𝒏 − 1  

Set 𝒙𝒄 = 𝒙𝒄 + 𝒉 

Set 𝒇𝒙𝒄 as the value 𝑓(𝒙𝒄) 

if  𝑗 is divisible by 3 

Set 𝒔𝒖𝒎𝟐 = 𝒔𝒖𝒎𝟐 + 𝒇𝒙𝒄  (Forming 𝑓3 + 𝑓6 + ⋯ + 𝑓𝑛−3 ) 

else 

Set 𝒔𝒖𝒎𝟏 = 𝒔𝒖𝒎𝟏 + 𝒇𝒙𝒄   (
Forming 𝑓1 + 𝑓2 + 𝑓4 + 𝑓5

+ ⋯ + 𝑓𝑛−2 + 𝑓𝑛−1
) 

end for 

Step 5  Set 𝑰 = (𝟑 × 𝒉 𝟖⁄ ) × (𝑰 + 𝟑 × 𝒔𝒖𝒎𝟏 + 𝟐 × 𝒔𝒖𝒎𝟐) 

Step 6  Print the output: 𝑰 

STOP. 
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Problem 23: Write a MATLAB® program to evaluate the integral of 𝑓(𝑥) = √𝑥2 + 1 over [0, 2] with 12 

subintervals using the Simpson’s 3/8 rule.  

1 clear, clc ;                             
2 fprintf('The Composite Simpson's 3/8 Rule.')                
3                                    
4 x0 = input('\nEnter the lower limit of the integral: ') ;             
5 xn = input('\nEnter the upper limit of the integral: ') ;             
6 n = input('\nEnter the number of subintervals n: ') ;             
7                                    
8 %----------------------- Processing Section -------------------------%       
9                                    

10 h = ( xn - x0 ) / n ;                            
11 fx0 = sqrt( x0*x0 + 1) ;                          
12 fxn = sqrt( xn*xn + 1) ;                         
13 I = fx0 + fxn ;                             
14 xc = x0 ;                               
15 sum1 = 0.0 ;  sum2 = 0.0 ;                       
16                                    
17 for j = 1 : n-1                            
18  xc = xc + h ;                          
19  fxc = sqrt( xc*xc + 1) ;                        
20  if ( rem(j,3) == 0)                          
21   sum2 = sum2 + fxc ;                        
22  else                               
23   sum1 = sum1 + fxc ;                        
24  end                                
25 end                                
26 I = (3.0 * h / 8.0) * (I + 2 * sum2 + 3 * sum1) ;             
27                                    
28 %------------------------ Output Section ----------------------------%       
29                                    
30 fprintf('The approximate integral = %5.5f.\n' ,I)              

Remark: Likewise the programs in the solutions of Problem 19, the programmer can modify the 

programs in the solutions of Problems 21 and 23 to evaluate the function values at the desired 

nodes through the use of user-defined function (in the C++ programs) and inline function (in the 

MATLAB® programs). 
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Question 38: List out some built-in functions/commands of MATLAB® for numerical integration. 

Also briefly explain the usage of the commands.  

trapz 

trapz is a built-in function of MATLAB® which is used to compute the integral of 

discrete values using the Composite Trapezoidal rule (multiple-application). The general 

format of using trapz is  

I = trapz(x , y) 

The arguments x and y are the vectors of abscissas and ordinates of the data points to be 

given as the input. The size of both vectors must be of the same size.  

Worked Example: Approximate the integral ∫ √𝑥2 + 1
2

0
 using the Composite 

Trapezoidal rule. 

>> x = 0:0.2:2; 

>> y = sqrt(x.^2+1); 

>> I = trapz(x,y) 

I = 

 2.9609 

quad 

quad is a built-in function of MATLAB® which is used to compute the integral of given 

functions using the Adaptive Simpson method of integration. The general format of using 

quad is  

q = quad(f, a, b) 

Here the input argument f is the function that has to be integrated. The arguments a and 

b are the limits of integration to be given as input.   

Worked Example: Approximate the integral ∫ √𝑥2 + 1
2

0
 using quad function. 

>> q = quad('sqrt(x.^2+1)', 0, 2) 

q = 

 2.9579 

quadl 

quadl is a built-in function of MATLAB® which is used to compute the integral of given 

functions using the adaptive Lobatto method of integration which can be more efficient 

for high accuracies and smooth integrals.  The general format of using quadl is  
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q = quadl(f, a, b) 

Here the input argument f is the function that has to be integrated. The arguments a and 

b are the limits of integration to be given as input.   

Worked Example: Approximate the integral ∫ √𝑥2 + 1
2

0
 using quadl function. 

>> q = quadl('sqrt(x.^2+1)', 0, 2) 

q = 

 2.9579 

∎∎∎ 

 

Chapter Summary 

• Numerical integration or quadrature refers to the process of numerically approximating the value of 

the integral 𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥, by using the values of 𝑓 at a finite number of sample points. The limits of 

integration could be finite, semi-finite, or infinite. 

• The integral is approximated by a numerical integration rule or quadrature formula, 𝑄𝑓, which is a 

linear combination of certain function values: 

𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 ≅ 𝑄𝑓 = ∑ 𝜔𝑗 ∙ 𝑓(𝑥𝑗)

𝑛

𝑗=0

 

Here 𝑥𝑖  are the ordered points, called the quadrature nodes (or simply nodes), taken usually within the 

limits of integration at which the function values 𝑓(𝑥𝑗) are known and 𝜔𝑗  are called the weights of the 

quadrature formula. 

• The quadrature formula satisfies the property that  

𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = 𝑄𝑓 + 𝐸𝑓, 

where 𝐸𝑓 is the truncation error (also called the error term) associated with the quadrature formula. 

• The Newton-Cotes integration formulas are based on the approach that 𝑛 + 1 number of equispaced 

and ordered nodes are chosen within the limits of integration and the integrand function is replaced by 

an interpolating polynomial of degree at most 𝑛 by using the nodes, and then the analytic integration of 

the polynomial is performed to obtain the formula. A Composite Newton-Cotes integration formula is 

obtained by applying the relevant Newton-Cotes formula in each of the different consecutive segments 

of the interval of integration and then summing the integrals over all the segments.  
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• The examples of Newton-Cotes integration formulas include Trapezoidal rule, Simpson’s 1/3 rule, 

Simpson’s 3/8 rule, Boole’s rule, Six-Point rule, and Weddle’s rule. 

• The Trapezoidal rule to numerically integrate the function 𝑓 over the interval [𝑎, 𝑏] is 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≅
(𝑏 − 𝑎)

2
[𝑓(𝑎) + 𝑓(𝑏)] 

• The Composite Trapezoidal rule to integrate a function 𝑓 over the interval [𝑎, 𝑏] is given by, 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≅
ℎ

2
[𝑓0 + 2(𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1) + 𝑓𝑛] 

where ℎ =
𝑏 − 𝑎

𝑛
=

𝑥𝑛 − 𝑥0

𝑛
, 𝑓𝑗 = 𝑓(𝑥𝑗) and 𝑥𝑗 = 𝑥0 + 𝑗ℎ for 𝑗 = 0, 1, 2, ⋯ , 𝑛 

• The Simpson’s 1/3 rule to integrate a function 𝑓 over the interval [𝑎, 𝑏] is given by, 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≅
ℎ

3
[𝑓0 + 4𝑓1 + 𝑓2] 

where ℎ =
𝑏 − 𝑎

2
=

𝑥2 − 𝑥0

2
, 𝑓𝑗 = 𝑓(𝑥𝑗) and 𝑥𝑗 = 𝑥0 + 𝑗ℎ for 𝑗 = 0, 1, 2 

• The Composite Simpson’s 1/3 rule to integrate a function 𝑓 over the interval [𝑎, 𝑏] is given by, 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≅
ℎ

3
[𝑓0 + 4(𝑓1 + 𝑓3 + ⋯ + 𝑓𝑛−1) + 2(𝑓2 + 𝑓4 + ⋯ + 𝑓𝑛−2) + 𝑓𝑛] 

where ℎ =
𝑏 − 𝑎

𝑛
=

𝑥𝑛 − 𝑥0

𝑛
, 𝑓𝑗 = 𝑓(𝑥𝑗) and 𝑥𝑗 = 𝑥0 + 𝑗ℎ for 𝑗 = 0, 1, 2, ⋯ , 𝑛 

• A comprehensive summary of the Newton-Cotes formulas and the Composite Newton-Cotes formulas 

can be found under Question 12 (page 252). 

• The error term 𝐸𝑇 of order 𝒪(ℎ3) associated with the Trapezoidal rule in approximating 𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 

is given by, 

𝐸𝑇 = −
 1

12
ℎ3𝑓′′(𝜉), 

for some appropriate point 𝜉 in (𝑎, 𝑏) and ℎ = 𝑏 − 𝑎. 

• The error term 𝐸𝐶𝑇 of order 𝒪(ℎ2) associated with the Composite Trapezoidal rule in approximating 𝐼 =

∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 is given by, 

𝐸𝐶𝑇 = −
𝑏 − 𝑎

12
ℎ2𝑓′′(𝜂), 

for some appropriate point 𝜂 in (𝑎, 𝑏) and ℎ = (𝑏 − 𝑎)/𝑛, where 𝑛 is the number of subintervals of 

[𝑎, 𝑏]. 
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• The error term 𝐸𝑆 of order 𝒪(ℎ5) associated with the Simpson’s 1/3 rule in approximating 𝐼 =

∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 is given by, 

𝐸𝑆 = −
 1

90
ℎ5𝑓(4)(𝜉), 

for some appropriate point 𝜉 in (𝑎, 𝑏) and ℎ = (𝑏 − 𝑎)/2. 

• The error term 𝐸𝐶𝑆 of order 𝒪(ℎ4) associated with the Composite Simpson’s 1/3 rule in approximating 

𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 is given by, 

𝐸𝐶𝑆 = −
𝑏 − 𝑎

180
ℎ4𝑓(4)(𝜂) 

for some appropriate point 𝜂 in (𝑎, 𝑏) and ℎ = (𝑏 − 𝑎)/𝑛, where 𝑛 is the number of subintervals of 

[𝑎, 𝑏]. 

• Suppose 𝐼ℎ denotes the approximate integral using a quadrature formula with step size ℎ, and 𝐸ℎ 

denotes the associated error. Then, the exact integral = 𝐼ℎ + 𝐸ℎ 

Similarly, suppose 𝐼ℎ 2⁄  denotes the approximate integral using the same quadrature formula with a step 

size ℎ 2⁄ , and 𝐸ℎ 2⁄  denotes the associated error. Then, the exact integral = 𝐼ℎ 2⁄ + 𝐸ℎ 2⁄  

According to the interval halving method, for a Newton-Cotes integration formula with an error of order 

𝒪(ℎ𝑁) an estimate of the error 𝐸ℎ 2⁄  is given by,  

𝐸ℎ 2⁄ ≅
1

2𝑁 − 1
(𝐼ℎ 2⁄ − 𝐼ℎ) 

This leads to a better approximation of the integral as below: 

𝐼 ≅ 𝐼ℎ 2⁄ +
1

2𝑁 − 1
(𝐼ℎ 2⁄ − 𝐼ℎ) 

This corresponds to a special process called Richardson Extrapolation, in which two estimates of the 

solution are used to obtain a third approximation, which is a more accurate one. This approach for 

numerical integration forms an initial stage of a relatively broader way of numerical integration, called 

Romberg Integration. Recall that for the Composite Trapezoidal rule 𝑁 = 2, and for the Composite 

Simpson’s 1/3 rule 𝑁 = 4. 

• There could be several approaches for improving the estimates of the integrals: 

o Using smaller step size (or larger number of subintervals)  

o Using higher-order formula (e.g., using the Simpson’s rule instead of the Trapezoidal rule) 

o Using Richardson’s extrapolation (i.e., using two less accurate estimates to obtain a more 

accurate estimate). 

• The degree of precision, also referred to as the order of accuracy, of a quadrature formula is 𝑝 if and 

only if the associated truncation error is zero for all polynomials of degree less than or equal to 𝑝, and 

the error is not zero for some polynomial of degree greater than 𝑝. Note that the Trapezoidal rule is 

based on the interpolating polynomial of degree 1 (linear polynomial). Therefore, it produces the exact 
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result while integrating a polynomial of degree 1. Hence it has the degree of precision as 1. The 

Simpson’s 1/3 rule might be expected to have a degree of precision as 2 because it is based on 

interpolating polynomial of degree 2 (quadratic polynomial). However, it produces the exact result 

while integrating a polynomial of degree 2, as well as degree 3. Hence, it has the degree of precision as 3. 

This fact is also evident while deriving the error term for the Simpson’s 1/3 rule. This property, 

together with certain other reasons, makes the Composite Simpson’s 1/3 rule often the best choice 

among the Newton-Cotes integration formulas. 

• A concise description of the error terms associated with the Newton-Cotes formulas and relevant 

degrees of precision can be found under Question 23 (page 276). 

• The Gaussian Quadrature is an advanced numerical integration technique in which the quadrature 

nodes are selected in the interval of integration using the roots of some special polynomial to obtain an 

optimal approximation of the integral. 

∎∎∎ 

 

Chapter Exercises 

Exercise 01: Approximate the integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 for the following functions over the interval [0, 1] using the 

Trapezoidal, Simpson’s 1/3 and Simpson’s 3/8 rules. 

(𝑖) 𝑓(𝑥) = 𝑥2 + 𝑥 − 1 (𝑖𝑖) 𝑓(𝑥) = ln(1 + 𝑥) (𝑖𝑖𝑖) 𝑓(𝑥) =
1

1 + 𝑥2

(𝑖𝑣) 𝑓(𝑥) = cos (
𝑥

𝜋
) (𝑣) 𝑓(𝑥) =

1

√𝑥2 + 4

 

Exercise 02: Approximate the integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 for the following functions over the interval [0, 1] using the 

Composite Trapezoidal, Simpson’s 1/3, and Simpson’s 3/8 rules with ℎ = 0.1. 

(𝑖) 𝑓(𝑥) = 𝑥2 + 𝑥 − 1 (𝑖𝑖) 𝑓(𝑥) = ln(1 + 𝑥) (𝑖𝑖𝑖) 𝑓(𝑥) =
1

1 + 𝑥2

(𝑖𝑣) 𝑓(𝑥) = cos (
𝑥

𝜋
) (𝑣) 𝑓(𝑥) =

1

√𝑥2 + 4

 

Exercise 03: Approximate the integral  

∫ sin (
𝜋√𝑥

4
) 𝑑𝑥

16

4

 

using the Composite Trapezoidal rule with ℎ = 1 and five-digit rounding arithmetic. 

Exercise 04: Find an approximate value of the integral ∫ (2 + sin(2√𝑥))𝑑𝑥
2

0
 using the Composite 

Trapezoidal rule for 𝑛 = 10 and five-digit rounding arithmetic. 
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Exercise 05: Approximate the arc length of the following functions over the interval [0, 𝜋] 

(𝑖) 𝑓(𝑥) = sin2 𝑥 (𝑖𝑖) 𝑓(𝑥) = ln (
4 + 𝑥

𝜋
) 

using the Composite Simpson’s 1/3 rule for ℎ =
𝜋

6
 and four-digit rounding arithmetic. 

Exercise 06: Find the approximate value of the integral ∫ (𝑓(𝑥))
2

𝑑𝑥
8

3
 using the Composite Simpson’s 1/3 

rule, given that 

𝑥𝑗  3 4 5 6 7 8 9 

𝑓(𝑥𝑗) 0.205 0.240 0.259 0.262 0.250 0.224 0.220 

Exercise 07: Approximate the area of a surface of revolution of the following curves: 

(𝑖)   𝑥 = 4𝑦 

(𝑖𝑖)    𝑥 = tan 𝑦 

about the 𝑦 − 𝑎𝑥𝑖𝑠 from 0 ≤ 𝑦 ≤ 1 using the Composite Simpson’s 3/8 rule for 𝑛 = 10 and four-digit 

rounding arithmetic. 

Exercise 08: Find the approximate value of the integral 

𝑓(𝑥) = ∫
𝑥

𝑥2 + 3

3

0

𝑑𝑥 

using the Composite Boole’s rule with step size ℎ = 0.25 and five-digit rounding arithmetic.  

Exercise 09: Find the approximate value of the integral 

𝑓(𝑥) = ∫ ln(𝑥 − 1)

5

2

𝑑𝑥 

using the Composite Six-Point rule with step size ℎ = 0.3 and five-digit rounding arithmetic.  

Exercise 10: Find the approximate value of the integral 

𝑓(𝑥) = ∫ sinh(𝑥2)

4

1

𝑑𝑥 

using the Composite Weddle’s rule with step size ℎ = 0.25 and five-digit rounding arithmetic.  
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Exercise 11: Suppose that 𝑓(0) = 1, 𝑓(0.5) = 2.5, 𝑓(1) = 2 and 𝑓(0.25) = 𝑓(0.75) = 𝛼. Find 𝛼 if the 

Composite Trapezoidal rule with 𝑛 = 4 gives the value 1.75 for ∫ 𝑓(𝑥)𝑑𝑥
1

0
. 

Exercise 12: Suppose that 𝑓(4) = 0.240, 𝑓(6) = 0.262, 𝑓(8) = 0.224, 𝑓(3) = 𝑓(5) = 𝑓(7) = 𝛼, and 𝑓(9) =

0.220 Find 𝛼 if the Composite Simpson’s 1/3 Rule gives the value 1.473 for 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

9

3

 

Exercise 13: Suppose that 𝑓(0.2) = 1.56, 𝑓(0.4) = 2.00, 𝑓(0.6) = 3.01, 𝑓(0.1) = 𝑓(0.3) = 𝑓(0.5) = 𝛼, and 

𝑓(0.7) = 3.32 Find 𝛼 if the Composite Simpson’s 3/8 rule gives the value 1.30312 for 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

0.7

0.1

 

Exercise 14: To approximate the integral of 𝑓(𝑥) over the interval [0, 1] with an absolute error less than 
1

2
× 10−4, how many subintervals are needed, in case of (𝑎) the Composite Trapezoidal rule, (𝑏) the 

Composite Simpson’s 1/3 rule, and (𝑐) the Composite Simpson’s 3/8 rule? Given that, 

(𝑖) 𝑓(𝑥) = 𝑥2 + 𝑥 − 1 (𝑖𝑖) 𝑓(𝑥) = ln(1 + 𝑥) (𝑖𝑖𝑖) 𝑓(𝑥) =
1

1 + 𝑥2

(𝑖𝑣) 𝑓(𝑥) = cos (
𝑥

𝜋
) (𝑣) 𝑓(𝑥) =

1

√𝑥2 + 4

 

Exercise 15: Suppose we wish to evaluate the integral 

 𝑓(𝑥) = ∫ sin(√𝑥)𝑑𝑥
𝜋

0
  

numerically, with an error of magnitude less than 10−5. How many subintervals are needed if we wish to use 
the Composite Trapezoidal and Composite Simpson 1/3 rules? 

Exercise 16: Find the number of subintervals 𝑛 or step length ℎ so that the error 𝐸𝑇𝐶  for the Composite 
Trapezoidal rule and error 𝐸𝑆𝐶  for the Composite Simpson’s 1/3 rule is less than 5 × 10−4 for numerically 
integrating the Legendre polynomial, 

 𝑃4(𝑥) = 𝑥4 −
6

7
𝑥2 +

3

35
 

over the interval [−1, 1].  

Exercise 17: Obtain an upper bound on the absolute error when the Chebyshev polynomial of degree four, 

𝑇4(𝑥) = 8𝑥4 − 8𝑥2 + 1 

is integrated over the interval [−1, 1] by means of the Composite Simpson’s 3/8 rule. 
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Exercise 18: Obtain an upper bound on the absolute error when the Laguerre polynomial of degree four 

𝐿4(𝑥) = 𝑥4 − 16𝑥3 + 72𝑥2 − 96𝑥 + 24 

is integrated over the interval [−1, 1], by means of the Composite Simpson’s 3/8 rule. 

Exercise 19: A car travels the loop of the racing track in 65 seconds. The speed of the car in meter/second is 
recorded after every 5 seconds as shown in the following table:  

Time 0 5 10 15 20 25 30 35 40 45 50 55 60 65 

Speed 0 40 62 70 72 65 71 79 75 72 68 63 75 82 

Estimate the length of the loop of the racing track? 

Hint for the Solution: 

Clearly, the speed say 𝑆 is shown to be a function of time, say 𝑡, and its values 𝑆(𝑡) for different time instants 

𝑡 are given. Obtain the estimate of the integral distance = ∫ 𝑆(𝑡)
65

0
𝑑𝑡 using any appropriate numerical 

integration rule with the data given in the Table. 

Exercise 20: The prime number theorem states that the number of primes in an interval 𝑎 ≤ 𝑥 ≤ 𝑏 is 
approximately 

∫
1

ln 𝑥

𝑏

𝑎

𝑑𝑥 

Estimate the number of primes existing in [50,150]. 

Hint for the Solution: Numerically evaluate the given integral for 𝑎 = 50 and 𝑏 = 150 using different values 

of 𝑓(𝑥) =
1

ln 𝑥
 at equispaced nodes in [50,150], separated by step length ℎ = 10 or 20. 

Exercise 21: The depths D (in meters) of a 80 meters wide river at different horizontal distances 𝑠 from the 
bank is given in the following table.  

𝑠 0 10 20 30 40 50 60 70 80 

𝐷 0 3.5 6 12 10 15 9 5 0 

Estimate the area of the cross-section of the river. 

Hint for the Solution: Clearly, 𝐷 is shown to be a function of 𝑠 and its values 𝐷(𝑠) for different points 𝑠 are 

given. Obtain the estimate of the integral,  𝑎𝑟𝑒𝑎 = ∫ 𝐷(𝑠)
80

0
𝑑𝑠 using any appropriate numerical integration 

rule with the data given in the Table. 
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Exercise 22: A rectangular swimming pool is 35 feet wide and 60 feet long. At different positions 𝑃 in feet 
along the length of the pool, the depths 𝐷 in feet are shown in the following Table. Estimate the volume of 
the pool using numerical integration.  

𝑃 0 6 12 18 24 30 36 42 48 54 60 

𝐷 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 

Hint for the Solution: 

Clearly, 𝐷 is shown to be a function of 𝑃 and its values 𝐷(𝑃) for different points 𝑃 are given. Obtain the 

estimate of the integral  𝑤 = ∫ 𝐷(𝑃)
60

0
𝑑𝑃 using any appropriate numerical integration rule with the data 

given in the Table. Note that 𝑤 is the estimated area of one side-wall of the pool along the length. Multiplying 
it with the width of 35 feet will give the volume of the pool. 

Exercise 23: We know that 

∫
1

1 + 𝑥2

1

0

𝑑𝑥 = tan−1𝑥|0
1 = tan−1 1 =

𝜋

4
 

This means that the value of 𝜋 can be obtained evaluating the above integral and then multiplying the 
answer by 4. Suppose that we want to approximate 𝜋 to four decimal places. This means absolute error must 
be less than 5.0 × 10−5. This means that the error in approximating the integral must be less than 
1

4
× (5.0 × 10−5) = 1.25 × 10−5. Use the Composite Simpson’s 1/3 rule to approximate the value of 𝜋. For 

this, first determine that what should be the minimum number of subintervals that would keep the error less 
than the tolerance. 

Exercise 24: The number of subintervals required to apply the Composite Simpson’s 1/3 rule should be 

(A) Multiple of 1  (B) Multiple of 2  

(C) Multiple of 3                (D) unconditionally many      (E) None of above 

Exercise 25: The Simpson’s 1/3 rule is based on the integration of interpolating polynomial of degree 2. The 

Simpson’s 1/3 rule can accurately integrate the polynomials of degree 

(A) up to 1  (B) up to 2  

(C) up to 3  (D) up to any      (E) None of above 

Exercise 26: The Gaussian quadrature is different from the Newton’s Cotes Integration in regards to 

(A) selection of polynomial degree  (B) selection of quadrature nodes 

(C) problem dependence   (D) None of above 

∎∎∎ 
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Chapter 5 

Numerical Differentiation 

Corridor I: BASICS 

 Let’s plan it 
 

 

5.1     Introduction 

5.2     Finite Difference Approximations of Derivatives using the Taylor Series 

       5.2.1     First Order Derivatives 

       5.2.2     Second Order Derivatives 

5.3     Listing of the Derivative Formulas 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

  

 

http://www.timerenders.com.pk/
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∎∎∎ 
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Chapter 6 

Direct Linear Solvers  

Corridor I: BASICS 

 Let’s plan it 

 

 

6.1     Introduction to Linear Systems 

6.2     Solving Linear Systems using the Gaussian Elimination Method 

6.3     Pivoting Strategies 

                      Partial Pivoting 

                      Scaled Partial Pivoting 

                      Complete Pivoting 

6.4     The Gauss-Jordan Method 

6.5     Solving Linear Systems using the LU Factorization Method 

       6.5.1     The Doolittle’s Method 

       6.5.2     The Crout’s Method 

       6.5.3     The Cholesky’s Method 

 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

 

http://www.timerenders.com.pk/
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Fig. (6.3): A classification chart of linear solvers. 

Corridor II: ANALYSIS 

 Let’s think deep 

 

6.6     Operation Count Analysis 

6.7     Matrix Inversion 

 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎    

http://www.timerenders.com.pk/
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Corridor III: PROGRAMMING ARCADE 

 Let’s do it 

 

Remark: Suggestion: Before this Section, study, Corridor III of Chapter 07 to cope the difficulty level. 

6.8     Algorithms and Implementations 

The Gaussian Elimination Method with Partial Pivoting 

Solving AX = B using the Doolittle's Method 

Solving AX = B using the Crout's Method 

Solving AX = B using the Cholesky's Method 

Performing Operation Count Analysis 

Built-in MATLAB® Commands 

 

To cross-check the results/output of the computer programs you would execute, please delve into 

the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

6.8 Algorithms and Implementations 

People have been communicating and interconnecting since the beginning, but in 

this era the communications and interconnections without modern technologies 

(like phones, networks, internet, radio, and television) stand nowhere in regards 

to possibility or survival. Likewise, people have been doing mathematics since early 

ages, but in this modern era the mathematical applicability without making use 

of the computers stands nowhere. Let’s modernize “OUR” culture of doing 

mathematics so that it can be useful for all the disciplines of science and 

engineering. It’s time to lead the frontiers of the knowledge and its applicability, 

http://www.timerenders.com.pk/
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Question 20: Write down an algorithm (pseudo code) to solve a linear system 𝑨𝑿 = 𝑩 using the Gaussian 

Elimination method with partial pivoting. 

Algorithm: To solve 𝑨𝑿 = 𝑩. 

𝐈𝐍𝐏𝐔𝐓𝐒:        {

𝒏: an integer as the number of equations and unknowns

𝑨 = (𝒂𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the coefficient matrix

𝑩 = [𝒃𝟏, 𝒃𝟐, ⋯ , 𝒃𝒏]
𝑻: a real valued vector as the vector of right hand side constants

 

𝐎𝐔𝐓𝐏𝐔𝐓𝐒: {
𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]

𝑻: a real valued vector as the solution vector
or a message that the given system has no unique solution

 

Step 1 Receive the inputs as stated above 

Step 2 (Forward Elimination Phase) 

for 𝑖 = 1,2,⋯ , 𝒏 − 𝟏 

Set 𝑟 = 𝑖
for 𝑗 = 𝑖 + 1,⋯ , 𝒏 

if (|𝒂𝒓𝒊| < |𝒂𝒋𝒊|)   𝑟 = 𝑗
}  (

Searching largest absolute coefficient
in 𝑖th column for partial pivoting

) 

if (𝒂𝒓𝒊 = 0) OUTPUT (‘The given system has no unique solution’) and STOP 

else 

if (𝑟 ≠ 𝑖), then interchange the 𝑖𝑡ℎ row with 𝑟𝑡ℎ row, and 𝑏𝑖  with 𝑏𝑟 

for 𝑘 = 𝑖 + 1, 𝑖 + 2,⋯ , 𝒏 

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 =
𝒂𝒌𝒊
𝒂𝒊𝒊

for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ ,𝒏

𝒂𝒌𝒋 = 𝒂𝒌𝒋 −𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × 𝒂𝒊𝒋

𝒃𝒌 = 𝒃𝒌 −𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 × 𝒃𝒊 }
 
 
 

 
 
 

     (

row replacement in the 
augmented matrix for
 eliminating the coefficients
 below the pivot

) 

Step 3 if (𝒂𝒏𝒏 = 0) OUTPUT (‘The given system has no unique solution’) and STOP 

 else go to step 4  

Step 4 (Back Substitution Phase) 

𝒙𝒏 =
𝒃𝒏
𝒂𝒏𝒏

 

for 𝑖 = 𝒏 − 1,⋯ ,2, 1 
𝑠𝑢𝑚 = 0
for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ ,𝒏 

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒂𝒊𝒋 × 𝒙𝒋

𝒙𝒊 =
[𝒃𝒊 − 𝑠𝑢𝑚]

𝒂𝒊𝒊 }
 
 

 
 

     (𝑥𝑖 =
1

𝑎𝑖𝑖
[𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=𝑖+1

]) 

Step 5 Print the output: 𝑿 = [𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏]
𝑻 and STOP. 
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Problem 17: Write a MATLAB® program to solve the following linear system using the Gaussian 

Elimination method with partial pivoting. For simplification, specify the linear system within the program. 
1.7𝑥1 + 2.3𝑥2 − 1.5𝑥3 = 2.35

1.1𝑥1 + 1.6𝑥2 − 1.9𝑥3 = −0.94

2.7𝑥1 − 2.2𝑥2 + 1.5𝑥3 = 2.70

 

1 clc , clear ;                              
2                                    
3 n = 3 ;                                
4 fprintf ( 'The Gauss Elimination Method with partial pivoting.\n' )        
5                                    
6 a = [ 1.7, 2.3, -1.5 ; 1.1, 1.6, -1.9 ; 2.7, -2.2, 1.5 ];             
7 b = [ 2.35, -0.94, 2.70 ] ;                          
8 %----------------------- Processing Section -------------------------%       
9  % Forward Elimination Phase                   

10  % Searching largest absolute coefficient in the ith column for partial pivoting 

11                                    
12 for i = 1:n-1                           
13  r = i ;                               
14  for j = i+1:n                          
15   if ( abs( a(r,i) ) < abs( a(j,i) ) )                  
16    r = j ;                            
17   end                               
18  end                                
19                                    
20  if a(r,i) == 0                             
21   fprintf (' The given system has no unique solution' )          
22   break ;                              
23  else                               
24   if r ~= i                            
25    for j = 1:n                        
26     temp = a(i, j) ;                        
27     a(i, j) = a(r, j) ;                        
28     a(r, j) = temp ;                       
29    end                             
30   end                              
31  end                                
32                                    
33  temp1 = b(i) ;                           
34  b(i) = b(r) ;                             
35  b(r) = temp1                             
36                                    
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37  for k = i+1:n              

𝑟𝑜𝑤 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 
𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑜𝑟 
𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 
𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑒 𝑝𝑖𝑣𝑜𝑡 

 
38   multiplier = a(k,i )/ a(i,i) ;         
39   for j = i+1:n            
40    a(k,j) = a(k,j) - multiplier * a(i,j) ;    
41   end                   
42   b(k) = b(k) – multiplier  * b(i)        
43  end                    
44 end                                 
45 if a(n,n) == 0                             
46  fprintf ( 'The system has no unique solution' )               
47  break;               
48 else                                 
49  x(n) = b(n) / a(n,n) ;                    
50 end                                 
51                                    
52 for i = n-1:-1:1                

(𝑥𝑖 =
1

𝑎𝑖𝑖
[𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=𝑖+1

]) 

 
53  sum = 0.0 ;                  
54  for j = i+1:n                
55   sum = sum + a(i,j) * x(j) ;          
56  end                     
57  x(i) =  (b(i) - sum ) / a(i,i) ;          
58 end                      
59                                    
60 %------------------------ Output Section ----------------------------%     
61 disp ( 'The solution of the given system is \n' )               
62 disp (x)                              

Remark: The MATLAB® programs in Problem 17 can be modified to receive the linear system at 

the execution time (instead of fixing in the code). For this, lines 6 and 7 in the solution of Problem 

17 should be replaced by the following code segment: 

 %------------------------- Input Section -----------------------------%       

        

 fprintf(Enter the coefficient matrix row-wise: %i unknowns.\n', n)       
  for i = 1:n                             
   for j = 1:n                           
    a(i,j) = input('Enter the element of matrix: ') ;             
   end                               
  end                                

                                    
 fprintf('Enter the elements of constant vector B: \n')             
  for i = 1:n                             
   b(i) = input('Enter the element of constant vector: ') ;           
  end                                
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Question 21: Write down an algorithm (pseudo code) to solve a linear system using the Doolittle’s method. 

Algorithm: To solve a linear system 𝑨𝑿 = 𝑩, for which the factorization 𝑨 = 𝑳𝑼 is possible. 

𝐈𝐍𝐏𝐔𝐓𝐒:        {

𝒏: an integer as the number of equations and unknowns

𝑨 = (𝒂𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the coefficient matrix

𝑩 = [𝒃𝟏, 𝒃𝟐, ⋯ , 𝒃𝒏]
𝑻: a real valued vector as the vector of right hand side constants

 

𝐎𝐔𝐓𝐏𝐔𝐓𝐒: {

𝑳 = (𝒍𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the lower triangular matrix

𝑼 = (𝒖𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the upper triangular matrix

𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻: a real valued vector as the solution vector

 

Step 1 (Formation of 𝑳 and 𝑼 as factors of 𝑨, i.e., 𝑨 = 𝑳𝑼) 

for 𝑖 = 1, 2,⋯ , 𝒏 

Set 𝒍𝒊𝒊 = 1 

 For 𝑗 = 𝑖, 𝑖 + 1,⋯ , 𝒏 
𝑠𝑢𝑚 = 0
for 𝑠 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒔 × 𝒖𝒔𝒋
𝒖𝒊𝒋 = 𝒂𝒊𝒋 − 𝑠𝑢𝑚

}   (𝑢𝑖𝑗 = 𝑎𝑖𝑗 −∑𝑙𝑖𝑠𝑢𝑠𝑗

𝑖−1

𝑠=1

) 

for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ ,𝒏 
𝑠𝑢𝑚 = 0
for 𝑠 = 1, 2,⋯ , 𝑖 − 1 

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒋𝒔 × 𝒖𝒔𝒊

𝒍𝒋𝒊 =
[𝒂𝒋𝒊 − 𝑠𝑢𝑚]

𝒖𝒊𝒊 }
 
 

 
 

   (𝑙𝑗𝑖 =
1

𝑢𝑖𝑖
[𝑎𝑗𝑖 −∑𝑙𝑗𝑠𝑢𝑠𝑖

𝑖−1

𝑠=1

]) 

Step 2 (Forward substitution phase for solving 𝑳𝒀 = 𝑩) 

𝒚𝟏 = 𝒃𝟏 

                for 𝑖 = 2, 3,⋯ , 𝒏 
𝑠𝑢𝑚 = 0
for 𝑗 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒋 × 𝒚𝒋
𝒚𝒊 = 𝒃𝒊 − 𝑠𝑢𝑚 }

 

 
 (𝑦𝑖 = 𝑏𝑖 −∑𝑙𝑖𝑗𝑦𝑗

𝑖−1

𝑗=1

) 

Step 3 (Back Substitution Phase for solving 𝑼𝑿 = 𝒀) 

𝒙𝒏 =
𝒚𝒏
𝒖𝒏𝒏

 

for 𝑖 = 𝒏 − 1,⋯ ,2, 1 
𝑠𝑢𝑚 = 0
for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ , 𝒏 

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒖𝒊𝒋 × 𝒙𝒋

𝒙𝒊 =
[𝒚𝒊 − 𝑠𝑢𝑚]

𝒖𝒊𝒊 }
 
 

 
 

  (𝑥𝑖 =
1

𝑢𝑖𝑖
[𝑦𝑖 − ∑ 𝑢𝑖𝑗𝑥𝑗

𝑛

𝑗=𝑖+1

]) 

STOP. 
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Problem 19: Write a MATLAB® program to solve the following linear system using the Doolittle’s method. 

For simplification, specify the linear system within the program. 

1.7𝑥1 + 2.3𝑥2 − 1.5𝑥3 = 2.35

1.1𝑥1 + 1.6𝑥2 − 1.9𝑥3 = −0.94

2.7𝑥1 − 2.2𝑥2 + 1.5𝑥3 = 2.70

 

1 clc , clear ;                              
2                                    
3 n = 3 ;                                
4 fprintf ( 'The Doolittle''s Method. \n' )        
5                                    
6 a = [ 1.7, 2.3, -1.5 ; 1.1, 1.6, -1.9 ; 2.7, -2.2, 1.5 ] ;             
7 b = [ 2.35, -0.94, 2.70 ] ;                          
8 %----------------------- Processing Section -------------------------%       
9                                    

10 l = zeros(n,n) ;                             
11 u = zeros(n,n) ;                             
12 for i = 1:n                             
13  l(i,i) = 1 ;                            
14  for j = i:n               

(𝑢𝑖𝑗 = 𝑎𝑖𝑗 −∑𝑙𝑖𝑠𝑢𝑠𝑗

𝑖−1

𝑠=1

) 

 
15   sum = 0 ;                  
16   for s = 1:i-1              
17    sum = sum + ( l(i,s) * u(s,j) ) ;     
18   end                    
19   u(i,j) = a(i,j) – sum ;             
20  end                    
21                              
22  for j = i:n                

(𝑙𝑗𝑖 =
1

𝑢𝑖𝑖
[𝑎𝑗𝑖 −∑𝑙𝑗𝑠𝑢𝑠𝑖

𝑖−1

𝑠=1

]) 

 
23   sum = 0 ;                  
24   for s = 1: i-1              
25    sum = sum + ( l(j,s) * u(s,i) ) ;       
26   end                    
27   l(j,i) = ( a(j,i) – sum ) / u(i,i) ;        
28  end                    
29 end                                 
30                                    
31 % Forward substitution phase for solving LY=B               
32                              
33 y = zeros(n,1) ;                             
34 y(1) = b(1) ;                             
35                              
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36 for i = 2:n               

(𝑦𝑖 = 𝑏𝑖 −∑𝑙𝑖𝑗𝑦𝑗

𝑖−1

𝑗=1

) 

 
37  sum = 0 ;                
38  for j = 1:i-1               
39   sum = sum + l(i,j) * y(j) ;           
40  end                     
41  y(i) = b(i) – sum ;                
42 end                      
43                                    
44 % Back Substitution Phase for solving UX=Y           
45                                    
46 x=zeros(n,1) ;                            
47 x(n) = y(n) / u(n,n) ;                        
48 for i = n-1:-1:1                 
49  sum = 0 ;               

(𝑥𝑖 =
1

𝑢𝑖𝑖
[𝑦𝑖 − ∑ 𝑢𝑖𝑗𝑥𝑗

𝑛

𝑗=𝑖+1

]) 

 
50  for j = i+1:n              
51   sum = sum + ( u(i,j) * x(j) ) ;        
52  end                     
53  x(i) = ( y(i) – sum ) / u(i,i) ;          
54 end                      
55                                    
56 %---------------------- Output Section ----------------------%           
57                                    
58 disp ( 'The L matrix is ' )                         
59 disp (l)                               
60 disp ( 'The U matrix is ' )                         
61 disp (u)                              
62 disp ( 'The required solution is' )                      
63 disp (x)                                

∎ 

Remark: Replace the lines 6 and 7 in the solution of Problem 19 with the following code segment 

to receive the linear system at the execution time (instead of fixing in the code). 

 fprintf(Enter the coefficient matrix row-wise: %i unknowns.\n', n)       

  for i = 1:n                             
   for j = 1:n                           

    a(i,j) = input('Enter the element of matrix: ') ;             
   end                               
  end                                
                                    
 fprintf('Enter the elements of constant vector B: \n')             
  for i = 1:n                             

   b(i) = input('Enter the element of constant vector: ') ;           
  end                                
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Question 22: Write down an algorithm (pseudo code) to solve a linear system using the Crout’s method. 

Algorithm: To solve a linear system 𝑨𝑿 = 𝑩, for which the factorization 𝑨 = 𝑳𝑼 is possible. 

𝐈𝐍𝐏𝐔𝐓𝐒:        {

𝒏: an integer as the number of equations and unknowns

𝑨 = (𝒂𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the coefficient matrix

𝑩 = [𝒃𝟏, 𝒃𝟐, ⋯ , 𝒃𝒏]
𝑻: a real valued vector as the vector of right hand side constants

 

𝐎𝐔𝐓𝐏𝐔𝐓𝐒: {

𝑳 = (𝒍𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the lower triangular matrix

𝑼 = (𝒖𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the upper triangular matrix

𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻: a real valued vector as the solution vector

 

Step 1 (Formation of 𝑳 and 𝑼 as factors of 𝑨, i.e., 𝑨 = 𝑳𝑼) 

for 𝑖 = 1, 2,⋯ , 𝒏 

Set 𝒖𝒊𝒊 = 1 

 for 𝑗 = 𝑖, 𝑖 + 1,⋯ , 𝒏 
𝑠𝑢𝑚 = 0
for 𝑠 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒋𝒔 × 𝒖𝒔𝒊
𝒍𝒋𝒊 = 𝒂𝒋𝒊 − 𝑠𝑢𝑚 }

 

 

    (𝑙𝑗𝑖 = 𝑎𝑗𝑖 −∑𝑙𝑗𝑠𝑢𝑠𝑖

𝑖−1

𝑠=1

) 

for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ ,𝒏    
𝑠𝑢𝑚 = 0
for 𝑠 = 1, 2,⋯ , 𝑖 − 1 

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒔 × 𝒖𝒔𝒋

𝒖𝒊𝒋 =
[𝒂𝒊𝒋 − 𝑠𝑢𝑚]

𝒍𝒊𝒊 }
 
 

 
 

  (𝑢𝑖𝑗 =
1

𝑙𝑖𝑖
[𝑎𝑖𝑗 −∑𝑙𝑖𝑠𝑢𝑠𝑗

𝑖−1

𝑠=1

]) 

Step 2 (Forward Substitution Phase for solving 𝑳𝒀 = 𝑩) 

𝒚𝟏 =
𝒃𝟏
𝒍𝟏𝟏

 

                for 𝑖 = 2, 3,⋯ , 𝒏 
𝑠𝑢𝑚 = 0
for 𝑗 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒋 × 𝒚𝒋

𝒚𝒊 =
[𝒃𝒊 − 𝑠𝑢𝑚]

𝒍𝒊𝒊 }
 
 

 
 

          (𝑦𝑖 =
1

𝑙𝑖𝑖
[𝑏𝑖 −∑𝑙𝑖𝑗𝑦𝑗

𝑖−1

𝑗=1

]) 

Step 3 (Back Substitution Phase for solving 𝑼𝑿 = 𝒀) 

𝒙𝒏 = 𝒚𝒏 

for 𝑖 = 𝒏 − 1,⋯ ,2, 1 
𝑠𝑢𝑚 = 0
for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ , 𝒏 

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒖𝒊𝒋 × 𝒙𝒋
𝒙𝒊 = 𝒚𝒊 − 𝑠𝑢𝑚

}     (𝑥𝑖 = 𝑦𝑖 − ∑ 𝑢𝑖𝑗𝑥𝑗

𝑛

𝑗=𝑖+1

) 

STOP. 



Direct Linear Solvers 83 

 

 
 

Problem 21: Write a MATLAB® program to solve the following linear system using the Crout’s method. For 

simplification, specify the linear system within the program. 

1.7𝑥1 + 2.3𝑥2 − 1.5𝑥3 = 2.35

1.1𝑥1 + 1.6𝑥2 − 1.9𝑥3 = −0.94

2.7𝑥1 − 2.2𝑥2 + 1.5𝑥3 = 2.70

 

1 clc , clear ;                              
2                                    
3 n = 3 ;                                
4 fprintf ( 'The Crout''s Method.\n' )        
5                                    
6 a = [ 1.7, 2.3, -1.5 ; 1.1, 1.6, -1.9 ; 2.7, -2.2, 1.5 ];             
7 b = [ 2.35, -0.94, 2.70 ] ;                          
8 %----------------------- Processing Section -------------------------%       
9                                    

10 l = zeros(n,n) ;                             
11 u = zeros(n,n) ;                             
12 for i = 1:n                             
13  u(i,i) = 1 ;                            
14  for j = i:n               

(𝑙𝑗𝑖 = 𝑎𝑗𝑖 −∑𝑙𝑗𝑠𝑢𝑠𝑖

𝑖−1

𝑠=1

) 

 
15   sum = 0 ;                  
16   for s = 1:i-1              
17    sum = sum + (l(j,s) * u(s,i) ) ;     
18   end                    
19   l(j,i) = a(j,i) - sum;             
20  end                    
21                              
22  for j = i+1:n                

(𝑢𝑖𝑗 =
1

𝑙𝑖𝑖
[𝑎𝑖𝑗 −∑𝑙𝑖𝑠𝑢𝑠𝑗

𝑖−1

𝑠=1

]) 

 
23   sum = 0 ;                  
24   for s = 1: i-1              
25    sum = sum + ( l(i,s) * u(s,j) ) ;       
26   end                    
27   u(i,j) = ( a(i,j) – sum ) / l(i,i) ;        
28  end                    
29 end                                 
30                                    
31 % Forward substitution phase for solving LY=B               
32                
33 y = zeros(n,1) ;                             
34 y(1) = b(1) / l(1,1) ;                          
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35 for i = 2:n               

(𝑦𝑖 =
1

𝑙𝑖𝑖
[𝑏𝑖 −∑𝑙𝑖𝑗𝑦𝑗

𝑖−1

𝑗=1

]) 

 
36  sum = 0 ;                
37  for j = 1:i-1               
38   sum = sum + l(i,j) * y(j) ;           
39  end                     
40  y(i) = ( b(i) - sum) / l(i,i) ;           
41 end                      
42                                    
43 % Back Substitution Phase for solving UX=Y           
44                                    
45 x=zeros(n,1) ;                            
46 x(n) = y(n) ;                        
47 for i = n-1:-1:1               

(𝑥𝑖 = 𝑦𝑖 − ∑ 𝑢𝑖𝑗𝑥𝑗

𝑛

𝑗=𝑖+1

) 

 
48  sum = 0 ;                
49  for j = i+1:n              
50   sum = sum + ( u(i,j) * x(j) ) ;        
51  end                     
52  x(i) = y(i) – sum ;          
53 end                      
54                                    
55 %---------------------- Output Section ----------------------%           
56                                    
57 disp ( 'The L matrix is ' )                         
58 disp (l)                               
59 disp ( 'The U matrix is ' )                         
60 disp (u)                              
61 disp ( 'The required solution is' )                      
62 disp (x)                                

∎ 

Remark: Replace the lines 6 and 7 in the solution of Problem 21 with the following code segment 

to receive the linear system at the execution time (instead of fixing in the code). 

 fprintf(Enter the coefficient matrix row-wise: %i unknowns.\n', n)       

  for i = 1:n                             
   for j = 1:n                           

    a(i,j) = input('Enter the element of matrix: ') ;             
   end                               
  end                                
                                    
 fprintf('Enter the elements of constant vector B: \n')             
  for i = 1:n                             

   b(i) = input('Enter the element of constant vector: ') ;           
  end                                
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Question 23: Write down an algorithm (pseudo code) to solve a linear system using the Cholesky’s method. 

Algorithm: To solve a linear system 𝑨𝑿 = 𝑩, for which the factorization 𝑨 = 𝑳𝑳𝑻 is possible. 

𝐈𝐍𝐏𝐔𝐓𝐒:        {

𝒏: an integer as the number of equations and unknowns

𝑨 = (𝒂𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the coefficient matrix

𝑩 = [𝒃𝟏, 𝒃𝟐, ⋯ , 𝒃𝒏]
𝑻: a real valued vector as the vector of right hand side constants

 

𝐎𝐔𝐓𝐏𝐔𝐓𝐒: {
𝑳 = (𝒍𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the lower triangular matrix

𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻: a real valued vector as the solution vector

 

Step 1 (Formation of 𝑳 as factors of 𝑨, i.e., 𝑨 = 𝑳𝑳𝑻) 

for 𝑖 = 1, 2,⋯ , 𝒏 

𝑠𝑢𝑚 = 0
for 𝑘 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒌 × 𝒍𝒊𝒌
𝒍𝒊𝒊 = 𝒔𝒒𝒓𝒕(𝒂𝒊𝒊 − 𝑠𝑢𝑚)

}        

(

 
 
𝑙𝑖𝑖 = [𝑎𝑖𝑖 −∑ 𝑙𝑖𝑘

2
𝑖−1

𝑘=1

]

1
2

)

 
 

 

for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ ,𝒏 
𝑠𝑢𝑚 = 0
for 𝑘 = 1, 2,⋯ , 𝑖 − 1 

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒌 × 𝒍𝒋𝒌

𝒍𝒋𝒊 =
[𝒂𝒋𝒊 − 𝑠𝑢𝑚]

𝒍𝒊𝒊 }
 
 

 
 

           (𝑙𝑗𝑖 =
1

𝑙𝑖𝑖
[𝑎𝑗𝑖 −∑ 𝑙𝑖𝑘𝑙𝑗𝑘

𝑖−1

𝑘=1

]) 

Step 2 (Forward Substitution Phase for solving 𝑳𝒀 = 𝑩) 

𝒚𝟏 =
𝒃𝟏
𝒍𝟏𝟏

 

                for 𝑖 = 2, 3,⋯ , 𝒏 
𝑠𝑢𝑚 = 0
for 𝑗 = 1, 2,⋯ , 𝑖 − 1

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒊𝒋 × 𝒚𝒋

𝒚𝒊 =
[𝒃𝒊 − 𝑠𝑢𝑚]

𝒍𝒊𝒊 }
 
 

 
 

      (𝑦𝑖 =
1

𝑙𝑖𝑖
[𝑏𝑖 −∑𝑙𝑖𝑗𝑦𝑗

𝑖−1

𝑗=1

]) 

Step 3 (Back Substitution Phase for solving 𝑳𝑻𝑿 = 𝒀) 

𝒙𝒏 =
𝒚𝒏
𝒍𝒏𝒏

 

for 𝑖 = 𝒏 − 1,⋯ ,2, 1 
𝑠𝑢𝑚 = 0
for 𝑗 = 𝑖 + 1, 𝑖 + 2,⋯ ,𝒏 

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒍𝒋𝒊 × 𝒙𝒋

𝒙𝒊 =
[𝒚𝒊 − 𝑠𝑢𝑚]

𝒍𝒊𝒊 }
 
 

 
 

  (𝑥𝑖 =
1

𝑙𝑖𝑖
[𝑦𝑖 − ∑ 𝑙𝑗𝑖𝑥𝑗

𝑛

𝑗=𝑖+1

]) 

STOP. 
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Problem 23: Write a MATLAB® program to solve the following positive definite linear system using the 

Cholesky’s method. For simplification, specify the linear system within the program. 

0.4𝑥1 + 0.12𝑥3 = 1.4

0.64𝑥2 + 0.32𝑥3 = 1.6

−0.12𝑥1 + 0.32𝑥2 + 0.56𝑥3 = 5.4

 

1 clc , clear ;                              
2 n = 3 ;                                
3 fprintf ( 'The Cholesky''s Method.\n' )        
4 a = [ 0.4, 0, 0.12 ; 0, 0.64, 0.32 ; -0.12, 0.32, 0.56 ];             
5 b = [ 1.4, 1.6, 5.4 ] ;                          
6 %----------------------- Processing Section -------------------------%       
7                                    
8 l = zeros(n,n) ;                             
9                              

10 for i = 1:n                             
11  sum = 0 ;                            
12  for k = 1:i-1               

(

 
 
𝑙𝑖𝑖 = [𝑎𝑖𝑖 −∑𝑙𝑖𝑘

2

𝑖−1

𝑘=1

]

1
2

)

 
 

 

 
13    sum = sum + ( l(i,k) * l(i,k) ) ;     
14  end                    
15  l(i,i) = sqrt( a(i,i) – sum ) ;          
16                      
17                              
18  for j = i+1:n                

(𝑙𝑗𝑖 =
1

𝑙𝑖𝑖
[𝑎𝑗𝑖 −∑ 𝑙𝑖𝑘𝑙𝑗𝑘

𝑖−1

𝑘=1

]) 

 
19   sum = 0 ;                  
20   for k = 1: i-1              
21    sum = sum + ( l(i,k) * l(j,k) ) ;       
22   end                    
23   l(j,i) = ( a(j,i) – sum ) / l(i,i) ;        
24  end                    
25 end                                 
26                                    
27 % Forward substitution phase for solving LY=B               
28                
29 y = zeros(n,1) ;                             
30 y(1) = b(1) / l(1,1) ;                          
31                           
32 for i = 2:n               

(𝑦𝑖 =
1

𝑙𝑖𝑖
[𝑏𝑖 −∑𝑙𝑖𝑗𝑦𝑗

𝑖−1

𝑗=1

]) 

 
33  sum = 0 ;                
34  for j = 1:i-1               
35   sum = sum + l(i,j) * y(j) ;           
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36  end                     
37  y(i) = ( b(i) - sum) / l(i,i) ;           
38 end                      
39                                    
40 % Back Substitution Phase for solving UX=Y           
41                                    
42 x=zeros(n,1) ;                            
43 x(n) = y(n) / l(n,n) ;                        
44 for i = n-1:-1:1               

(𝑥𝑖 =
1

𝑙𝑖𝑖
[𝑦𝑖 − ∑ 𝑙𝑗𝑖𝑥𝑗

𝑛

𝑗=𝑖+1

]) 

 
45  sum = 0 ;                
46  for j = i+1:n              
47   sum = sum + ( l(j,i) * x(j) ) ;        
48  end                     
49  x(i) = ( y(i) – sum ) / l(i,i) ;          
50 end                      
51                                    
52 %---------------------- Output Section ----------------------%           
53                                    
54 disp ( 'The L matrix is ' )                         
55 disp (l)                               
56 disp ( 'The required solution is' )                      
57 disp (x)                                

 

∎ 

Remark: The programs can be modified so that they receive the input linear system at the 

execution time (instead of fixing in the code). 

∎ 
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Remark: Following are some notations and formulas that might be useful in carrying out 

operation count analysis of the algorithms. 

 

∑ 𝑐𝑓(𝑝)

𝑛

𝑝=1

= 𝑐∑𝑓(𝑝)

𝑛

𝑝=1

∑[𝑓(𝑝) + 𝑔(𝑝)]

𝑛

𝑝=1

= ∑𝑓(𝑝) +∑𝑔(𝑝)

𝑛

𝑝=1

𝑛

𝑝=1

∑1

𝑛

𝑝=1

= 1 + 1 +⋯+ 1 = 𝑛

∑1

𝑛

𝑝=𝑘

= 𝑛 − 𝑘 + 1

∑𝑝

𝑛

𝑝=1

= 1 + 2 + 3 +⋯+ 𝑛 =
𝑛(𝑛 + 1)

2
=

𝑛2

2
+ 𝒪(𝑛)

∑𝑝2
𝑛

𝑝=1

= 12 + 22 +⋯+ 𝑛2 =
𝑛(𝑛 + 1)(2𝑛 + 1)

6
=

𝑛3

3
+ 𝒪(𝑛2)

 

Question 24: Perform the operation count analysis of the algorithm that involves the following 

phases to solve an 𝑛 × 𝑛 linear system: 

(1) Forward elimination to obtain the upper triangular form using the Gauss Elimination method. 

(2) Back substitution to solve the upper triangular system. 

(1) The forward elimination phase occurs just after setting the inputs in the algorithm. This phase 

contains three nested loops. The first loop, say 𝑖-loop (which ranges from 𝑖 = 1 to 𝑛 − 1), 

corresponds to the 𝑛 − 1 elimination stages of the method. For each row 𝑖, the 𝑖th element is 

considered a pivot element.  The second loop, say 𝑘-loop (which ranges from 𝑘 = 𝑖 + 1 to 𝑛), 

corresponds to the elements below the pivot element to make them zero. The third loop, say 𝑗-

loop (which ranges from 𝑗 = 𝑖 + 1 to 𝑛) corresponds to the columns after the pivot element.  

Note that, for any loop with index ranging from 𝑖 + 1 to 𝑛, the number of passes/iterations will be 

𝑛 − (𝑖 + 1) + 1 (or simply (𝑛 − 𝑖) passes). Therefore, each of the 𝑘-loop and 𝑗-loop has (𝑛 − 𝑖) 

passes.  

Each pass of 𝑘-loop will perform one division to obtain the multiplier, and one multiplication and 

subtraction to update the right-hand side constant,  𝑏𝑘. Moreover, in each pass of 𝑘-loop, (𝑛 − 𝑖) 
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multiplications and (𝑛 − 𝑖) subtractions will be performed in 𝑗-loop to update the relevant entries 

of the coefficient matrix, 𝑎𝑘𝑗 . Thus, in each pass of 𝑘 -loop, the total number of 

multiplications/divisions will be (1 + 1 + (𝑛 − 𝑖))  or (𝑛 − 𝑖 + 2)  and the total number of 

additions/subtractions will be (1 + 𝑛 − 𝑖). 

As there are (𝑛 − 𝑖) passes of 𝑘-loop in each pass of 𝑖-loop, therefore there will be (𝑛 − 𝑖) × (𝑛 −

𝑖 + 2) multiplications/divisions and (𝑛 − 𝑖) × (𝑛 − 𝑖 + 1) additions/subtractions in each pass of 𝑖-

loop. 

Hence, the total number of multiplications/divisions in 𝑛 − 1 passes of 𝑖-loop of the forward 

elimination phase will be 

∑(𝑛 − 𝑖)(𝑛 − 𝑖 + 2)

𝑛−1

𝑖=1

= ∑(𝑛 − 𝑖)((𝑛 + 2) − 𝑖)

𝑛−1

𝑖=1

 

= ∑[𝑛(𝑛 + 2) − 𝑛𝑖 − 𝑖(𝑛 + 2) + 𝑖2]

𝑛−1

𝑖=1

  =    ∑[𝑛(𝑛 + 2) − 2𝑖(𝑛 + 1) + 𝑖2]

𝑛−1

𝑖=1

 

= 𝑛(𝑛 + 2)∑1 − 2(𝑛 + 1)

𝑛−1

𝑖=1

∑𝑖

𝑛−1

𝑖=1

+∑ 𝑖2
𝑛−1

𝑖=1

 

= 𝑛(𝑛 + 2)(𝑛 − 1) − 2(𝑛 + 1) [
(𝑛 − 1)𝑛

2
] + [

(𝑛 − 1)𝑛(2𝑛 − 1)

6
] 

= 𝑛(𝑛 − 1) [𝑛 + 2 − 𝑛 − 1 +
𝑛

3
−
1

6
] 

= (𝑛2 − 𝑛) [
𝑛

3
+
5

6
] =

𝑛3

3
+
𝑛2

2
−
5𝑛

6
=

𝑛3

3
+ 𝒪(𝑛2) 

Similarly, the total number of additions/subtractions in 𝑛 − 1 passes of 𝑖-loop of the forward 

elimination phase will be 

∑(𝑛 − 𝑖)(𝑛 − 𝑖 + 1)

𝑛−1

𝑖=1

= ∑(𝑛 − 𝑖)((𝑛 + 1) − 𝑖)

𝑛−1

𝑖=1

 

= ∑[𝑛(𝑛 + 1) − 𝑛𝑖 − 𝑖(𝑛 + 1) + 𝑖2]

𝑛−1

𝑖=1

 

= ∑[𝑛(𝑛 + 1) − 𝑖(2𝑛 + 1) + 𝑖2]

𝑛−1

𝑖=1
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= 𝑛(𝑛 + 1)∑1 − (2𝑛 + 1)

𝑛−1

𝑖=1

∑𝑖

𝑛−1

𝑖=1

+∑ 𝑖2
𝑛−1

𝑖=1

 

= 𝑛(𝑛 + 1)(𝑛 − 1) − (2𝑛 + 1) [
(𝑛 − 1)𝑛

2
] + [

(𝑛 − 1)𝑛(2𝑛 − 1)

6
] 

= 𝑛(𝑛 − 1) [𝑛 + 1 − 𝑛 −
1

2
+
𝑛

3
−
1

6
] 

= (𝑛2 − 𝑛) [
𝑛

3
+
1

3
] =

𝑛3

3
−
𝑛

3
=

𝑛3

3
+ 𝒪(𝑛) 

The summary of the operation count of the Gaussian Elimination phase is given as: 

 
Operations 

Total flops 
Multiplications⁄divisions Additions⁄subtractions 

Forward Elimination 
𝑛3

3
+
𝑛2

2
−
5𝑛

6
 

𝑛3

3
−
𝑛

3
 

2𝑛3

3
+ 𝒪(𝑛2) 

(2) The back substitution phase occurs after the forward elimination phase. This phase contains 

two nested loops.  The first loop, say 𝑖-loop (which ranges from 𝑖 = 𝑛 − 1 to 1), corresponds to 

𝑛 − 1 of the components of the solution vector. The second loop, say 𝑗-loop (which ranges from 

𝑗 = 𝑖 + 1 to 𝑛), corresponds to the columns after the diagonal elements. 

Each pass of 𝑖-loop will perform one subtraction and one division to obtain the value of 𝑥𝑖 . 

Moreover, in each pass of 𝑖-loop, the number of both of the multiplications and additions will be  

𝑛 − (𝑖 + 1) + 1 (or simply (𝑛 − 𝑖)) in 𝑗-loop. Thus, in each pass of 𝑖-loop, the total number of both 

of the multiplications/divisions and additions/subtractions will be (𝑛 − 𝑖 + 1). 

Hence, the total number of the multiplications/divisions in the back substitution phase will be 

1 +∑(𝑛 + 1 − 𝑖)

𝑛−1

𝑖=1

= 1 + (𝑛 + 1)∑1

𝑛−1

𝑖=1

−∑ 𝑖

𝑛−1

𝑖=1

= 1 + (𝑛 + 1)(𝑛 − 1) − [
(𝑛 − 1)𝑛

2
]

= 1 + 𝑛2 − 1 −
𝑛2

2
+
𝑛

2
=

𝑛2

2
+
𝑛

2
=

𝑛2

2
+ 𝒪(𝑛)

 

Similarly, the total number of the additions/subtractions in the back substation phase will be 

∑(𝑛 + 1 − 𝑖)

𝑛−1

𝑖=1

=
𝑛2

2
+
𝑛

2
− 1 =

𝑛2

2
+ 𝒪(𝑛) 
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Finally, the summary of the operation count of the complete algorithm (including the two phases) 

is given as: 

 
Operations 

Total flops 
Multiplications⁄divisions Additions⁄subtractions 

Forward elimination 
𝑛3

3
+
𝑛2

2
−
5𝑛

6
 

𝑛3

3
−
𝑛

3
 

2𝑛3

3
+
𝑛2

2
−
7𝑛

6
 

Back Substitution 
𝑛2

2
+
𝑛

2
 

𝑛2

2
−
𝑛

2
 𝑛2 

Totals 
𝑛3

3
+ 𝑛2 −

𝑛

3
 

𝑛3

3
+
n2

2
−
5𝑛

6
 

2𝑛3

3
+
3𝑛2

2
−
7𝑛

6
 

Question 25: Perform the operation count analysis of the algorithm that involves the following 

phases to solve an 𝑛 × 𝑛 linear system: 

(1) Factorization of the coefficient matrix using the Doolittle’s method. 

(2) Forward substitution to solve the lower triangular system. 

(3) Back substitution to solve the upper triangular system. 

(1) The factorization of the coefficient matrix 𝐴 into the product of the unit lower triangular 𝐿 and 

the upper triangular 𝑈 matrices occur just after setting the inputs in the algorithm. The 

formulation of 𝐿 and 𝑈 as the factors of 𝐴 contains three nested loops. The first loop, say 𝑖-loop 

(which ranges from 𝑖 = 1 to 𝑛), corresponds to the 𝑖th row and column of 𝑈 and 𝐿 respectively. 

The second loop, say 𝑗-loop (ranges from 𝑗 = 𝑖 to 𝑛), corresponds to the column 𝑗 of 𝑈 and (ranges 

from 𝑗 = 𝑖 + 1 to 𝑛), corresponds to the row 𝑗 of 𝐿. The third loop, say 𝑠-loop (which ranges from 

𝑠 = 1 to 𝑖 − 1), corresponds to the multiplication of the rows of 𝐿 and columns of 𝑈.  

Note that, the 𝑗-loop corresponding to column 𝑗  of 𝑈  ranging from 𝑖  to 𝑛 , the number of 

passes/iterations will be 𝑛 − 𝑖 + 1 . Similarly, the number of passes/iterations in 𝑗 -loop, 

corresponds to row 𝑗 of 𝐿 ranging from 𝑖 + 1 to 𝑛, will be 𝑛 − (𝑖 + 1) + 1 (or simply (𝑛 − 𝑖)).  

Each pass of 𝑗-loop will perform one subtraction to obtain the entry 𝑢𝑖𝑗  of 𝑈. Moreover, in each 

pass of 𝑗-loop, the number of both of the multiplications and additions will be  (𝑖 − 1) − 1 + 1 (or 

simply (𝑖 − 1) ) in s-loop. Thus, in each pass of j-loop, the total number of 

multiplications/divisions will be (𝑖 − 1) and the total number of additions/subtractions will be 

(1 + 𝑖 − 1) or (𝑖). Similarly, in each pass of 𝑗-loop, to obtain the entry 𝑙𝑗𝑖  of 𝐿, the total number of 

both of the multiplications and additions will be  (𝑖 − 1) + 1 (or simply (𝑖)).  
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As there are (𝑛 − 𝑖 + 1)  passes of 𝑗-loop in each pass of 𝑖 -loop, therefore there will be 

(𝑛 − 𝑖 + 1) × (𝑖 − 1)  multiplications/divisions and (𝑛 − 𝑖 + 1) × (𝑖)  additions/subtractions in 

each pass of 𝑖-loop for the formulation of row 𝑖 of 𝑈. Similarly, in each pass of 𝑖-loop, there will be 

(𝑛 − 𝑖) × (𝑖) multiplications/divisions and (𝑛 − 𝑖) × (𝑖) additions/subtractions in each pass of 𝑖-

loop for the formulation of column 𝑖 of 𝐿.  

Hence, the total number of multiplications/divisions in 𝑛 passes of 𝑖-loop for the formulation of 

upper triangular matric 𝑈 will be 

∑(𝑛 − 𝑖 + 1)(𝑖 − 1)

𝑛

𝑖=1

= ∑(𝑛 + 1 − 𝑖)(𝑖 − 1)

𝑛

𝑖=1

 

= ∑[(𝑛 + 1)𝑖 − (𝑛 + 1) − 𝑖2 + 𝑖]

𝑛

𝑖=1

= ∑[(𝑛 + 2)𝑖 − 𝑖2 − (𝑛 + 1)]

𝑛

𝑖=1

 

= (𝑛 + 2)∑𝑖

𝑛

𝑖=1

−∑𝑖2
𝑛

𝑖=1

− (𝑛 + 1)∑1

𝑛

𝑖=1

 

= (𝑛 + 2) [
𝑛(𝑛 + 1)

2
] − [

𝑛(𝑛 + 1)(2𝑛 + 1)

6
] − (𝑛 + 1)𝑛 

= 𝑛(𝑛 + 1) [
𝑛

2
+ 1 −

𝑛

3
−
1

6
− 1] = (𝑛2 + 𝑛) [

𝑛

6
−
1

6
] 

=
𝑛3

6
−
𝑛

6
=

𝑛3

6
+ 𝒪(𝑛) 

Similarly, the total number of additions/subtractions in 𝑛 passes of 𝑖-loop for the formulation of 

upper triangular matric 𝑈 will be 

∑(𝑛 − 𝑖 + 1)(𝑖)

𝑛

𝑖=1

=
𝑛3

6
+
𝑛

6
=

𝑛3

6
+ 𝒪(𝑛) 

Moreover, the total number of multiplications/divisions and additions/subtractions in 𝑛 passes of 

𝑖-loop for the formulation of unit lower triangular matric 𝐿 will be 

∑(𝑛 − 𝑖)(𝑖) 

𝑛

𝑖=1

= ∑(𝑛 − 𝑖)(𝑖)

𝑛

𝑖=1

= ∑(𝑛𝑖 − 𝑖2)

𝑛

𝑖=1

 

= 𝑛∑𝑖

𝑛

𝑖=1

−∑𝑖2
𝑛

𝑖=1

= 𝑛 [
𝑛(𝑛 + 1)

2
] − [

𝑛(𝑛 + 1)(2𝑛 + 1)

6
] 
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= 𝑛(𝑛 + 1) [
𝑛

2
−
𝑛

3
−
1

6
] = (𝑛2 + 𝑛) [

𝑛

6
−
1

6
] 

=
𝑛3

6
−
𝑛

6
=

𝑛3

6
+ 𝒪(𝑛) 

The summary of the operation count of the 𝐿𝑈-factorization is given as: 

 
Operations 

Total flops 
Multiplication/Division Addition/Subtraction 

Upper Triangular 
Matrix 𝑈  

𝑛3

6
−
𝑛

6
 

𝑛3

6
+
𝑛

6
 

𝑛3

3
 

Lower Triangular 
Matrix 𝐿 

𝑛3

6
−
𝑛

6
 

𝑛3

6
−
𝑛

6
 

𝑛3

3
−
𝑛

3
 

𝐿𝑈-factorization 
𝑛3

3
−
𝑛

3
 

𝑛3

3
 

2𝑛3

3
−
𝑛

3
 

(2) The forward substitution phase occurs after the formulation of 𝐿 and 𝑈 as factors of the 

coefficient matrix for solving the lower triangular system. This phase contains two nested loops.  

The first loop, say 𝑖-loop (which ranges from 𝑖 = 2 to 𝑛), corresponds to 𝑛 − 1 of the components 

of the intermediate vector 𝑌. The second loop, say 𝑗-loop (which ranges from 𝑗 = 1 to 𝑖 − 1), 

corresponds to the columns before the diagonal elements. 

Each pass of 𝑖-loop will perform one subtraction to obtain the value of 𝑦𝑖 . Moreover, in each pass 

of 𝑖-loop, the number of both of the multiplications and additions will be  (𝑖 − 1) − 1 + 1 (or 

simply (𝑖 − 1)) in j-loop. Thus, in each pass of i-loop, the total number of multiplications/divisions 

will be (𝑖 − 1) and the total number of additions/subtractions will be (1 + 𝑖 − 1) or (𝑖). 

Hence, the total number of the multiplications/divisions in the forward substitution phase will be 

∑(𝑖 − 1)

𝑛

𝑖=2

= ∑𝑖

𝑛

𝑖=2

−∑1

𝑛

𝑖=2

= [
𝑛(𝑛 + 1)

2
− 1] − (𝑛 − 2 + 1)

=
𝑛2

2
+
𝑛

2
− 1 − 𝑛 + 1 =

𝑛2

2
−
𝑛

2
=

𝑛2

2
+ 𝒪(𝑛)

 

Similarly, the total number of the additions/subtractions in the forward substation phase will be 
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∑(𝑖)

𝑛

𝑖=2

=
𝑛2

2
+
𝑛

2
− 1 =

𝑛2

2
+ 𝒪(𝑛) 

The summary of the operation count of the Unit Lower triangular system 𝐿𝑌 = 𝐵 is given as: 

 
Operations 

Total flops 
Multiplication/Division Addition/Subtraction 

Unit Lower  
triangular system 
𝐿𝑌 = 𝐵  

𝑛2

2
−
𝑛

2
 

𝑛2

2
+
𝑛

2
− 1 𝑛2 − 1 

(3) The back substitution phase occurs after the solution of the lower triangular system. This 

phase contains two nested loops.  The first loop, say 𝑖-loop (which ranges from 𝑖 = 𝑛 − 1 to 1), 

corresponds to 𝑛 − 1 of the components of solution vector 𝑋. The second loop, say 𝑗-loop (which 

ranges from 𝑗 = 𝑖 + 1 to 𝑛), corresponds to the columns after the diagonal elements. 

Each pass of 𝑖-loop will perform one subtraction and one division to obtain the value of 𝑥𝑖 . 

Moreover, in each pass of 𝑖-loop, the number of both of the multiplications and additions will be  

𝑛 − (𝑖 + 1) + 1 (or simply (𝑛 − 𝑖)) in 𝑗-loop. Thus, in each pass of 𝑖-loop, the total number of both 

of the multiplications/divisions and additions/subtractions will be (𝑛 − 𝑖 + 1). 

Hence, the total number of the multiplications/divisions in the back substitution phase will be 

1 +∑(𝑛 + 1 − 𝑖)

𝑛−1

𝑖=1

= 1 + (𝑛 + 1)∑1

𝑛−1

𝑖=1

−∑ 𝑖

𝑛−1

𝑖=1

= 1 + (𝑛 + 1)(𝑛 − 1) − [
(𝑛 − 1)𝑛

2
]

= 1 + 𝑛2 − 1 −
𝑛2

2
+
𝑛

2
=

𝑛2

2
+
𝑛

2
=

𝑛2

2
+ 𝒪(𝑛)

 

Similarly, the total number of the additions/subtractions in the back substation phase will be 

∑(𝑛 + 1 − 𝑖)

𝑛−1

𝑖=1

=
𝑛2

2
+
𝑛

2
− 1 =

𝑛2

2
+ 𝒪(𝑛) 

The summary of the operation count of the Upper triangular system 𝑈𝑋 = 𝑌 is given as: 
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Operations 

Total flops 
Multiplications/Divisions Additions/Subtractions 

Upper triangular 
system 𝑈𝑋 = 𝑌 

𝑛2

2
+
𝑛

2
 

𝑛2

2
+
𝑛

2
− 1 𝑛2 + 𝑛 − 1 

Question 26: Perform the operation count analysis of the algorithm that involves the following 

phases to solve an 𝑛 × 𝑛 linear system: 

(1) Factorization of the coefficient matrix using the Doolittle’s method 

(2) Forward substitution to solve the lower triangular system. 

(3) Back substitution to solve the upper triangular system. 

(1) The factorization of the coefficient matrix 𝐴 into the product of the lower triangular 𝐿 and the 

unit upper triangular 𝑈 matrices occur just after setting the inputs in the algorithm. The 

formulation of 𝐿 and 𝑈 as the factors of 𝐴 contains three nested loops. The first loop, say 𝑖-loop 

(which ranges from 𝑖 = 1 to 𝑛), corresponds to the 𝑖th column of 𝐿 and 𝑖th row of 𝑈 respectively. 

The second loop, say 𝑗-loop (ranges from 𝑗 = 𝑖 to 𝑛), corresponds to the 𝑗th row of 𝐿 and (ranges 

from 𝑗 = 𝑖 + 1 to 𝑛), corresponds to the 𝑗th column of 𝑈. The third loop, say 𝑠-loop (which ranges 

from 𝑠 = 1 to 𝑖 − 1), corresponds to the multiplication of the rows of 𝐿 and columns of 𝑈.  

Note that, the 𝑗 -loop corresponding to row 𝑗  of 𝐿  ranging from 𝑖  to 𝑛 , the number of 

passes/iterations will be 𝑛 − 𝑖 + 1 . Similarly, the number of passes/iterations in 𝑗 -loop, 

corresponds to column 𝑗 of 𝑈 ranging from 𝑖 + 1 to 𝑛, will be 𝑛 − (𝑖 + 1) + 1 (or simply (𝑛 − 𝑖)).  

Each pass of 𝑗-loop will perform one subtraction to obtain the entry 𝑙𝑗𝑖  of 𝐿. Moreover, in each 

pass of 𝑗-loop, the number of both of the multiplications and additions will be  (𝑖 − 1) − 1 + 1 (or 

simply (𝑖 − 1) ) in s-loop. Thus, in each pass of j-loop, the total number of 

multiplications/divisions will be (𝑖 − 1) and the total number of additions/subtractions will be 

(1 + 𝑖 − 1) or (𝑖). Similarly, in each pass of 𝑗-loop, to obtain the entry 𝑢𝑖𝑗  of 𝑈, the total number of 

both of the multiplications and additions will be  (𝑖 − 1) + 1 (or simply (𝑖)).  

As there are (𝑛 − 𝑖 + 1)  passes of 𝑗-loop in each pass of 𝑖 -loop, therefore there will be 

(𝑛 − 𝑖 + 1) × (𝑖 − 1)  multiplications/divisions and (𝑛 − 𝑖 + 1) × (𝑖)  additions/subtractions in 

each pass of 𝑖-loop for the formulation of column 𝑖 of 𝐿. Similarly, in each pass of 𝑖-loop, there will 

be (𝑛 − 𝑖) × (𝑖) multiplications/divisions and (𝑛 − 𝑖) × (𝑖) additions/subtractions in each pass of 

𝑖-loop for the formulation of row 𝑖 of 𝑈.  

Hence, the total number of multiplications/divisions in 𝑛 passes of 𝑖-loop for the formulation of 

the lower triangular matric 𝐿 will be 



96 Simplified Numerical Analysis 

 

∑(𝑛 − 𝑖 + 1)(𝑖 − 1)

𝑛

𝑖=1

= ∑(𝑛 + 1 − 𝑖)(𝑖 − 1)

𝑛

𝑖=1

 

= ∑[(𝑛 + 1)𝑖 − (𝑛 + 1) − 𝑖2 + 𝑖]

𝑛

𝑖=1

= ∑[(𝑛 + 2)𝑖 − 𝑖2 − (𝑛 + 1)]

𝑛

𝑖=1

 

= (𝑛 + 2)∑𝑖

𝑛

𝑖=1

−∑𝑖2
𝑛

𝑖=1

− (𝑛 + 1)∑1

𝑛

𝑖=1

 

= (𝑛 + 2) [
𝑛(𝑛 + 1)

2
] − [

𝑛(𝑛 + 1)(2𝑛 + 1)

6
] − (𝑛 + 1)𝑛 

= 𝑛(𝑛 + 1) [
𝑛

2
+ 1 −

𝑛

3
−
1

6
− 1] = (𝑛2 + 𝑛) [

𝑛

6
−
1

6
] 

=
𝑛3

6
−
𝑛

6
=

𝑛3

6
+ 𝒪(𝑛) 

Similarly, the total number of additions/subtractions in 𝑛 passes of 𝑖-loop for the formulation of 

the lower triangular matric 𝐿 will be 

∑(𝑛 − 𝑖 + 1)(𝑖)

𝑛

𝑖=1

=
𝑛3

6
+
𝑛

6
=

𝑛3

6
+ 𝒪(𝑛) 

Moreover, the total number of multiplications/divisions and additions/subtractions in 𝑛 passes of 

𝑖-loop for the formulation of the unit upper triangular matric 𝑈 will be 

∑(𝑛 − 𝑖)(𝑖) 

𝑛

𝑖=1

= ∑(𝑛 − 𝑖)(𝑖)

𝑛

𝑖=1

= ∑(𝑛𝑖 − 𝑖2)

𝑛

𝑖=1

 

= 𝑛∑𝑖

𝑛

𝑖=1

−∑𝑖2
𝑛

𝑖=1

= 𝑛 [
𝑛(𝑛 + 1)

2
] − [

𝑛(𝑛 + 1)(2𝑛 + 1)

6
] 

= 𝑛(𝑛 + 1) [
𝑛

2
−
𝑛

3
−
1

6
] = (𝑛2 + 𝑛) [

𝑛

6
−
1

6
] 

=
𝑛3

6
−
𝑛

6
=

𝑛3

6
+ 𝒪(𝑛) 

The summary of the operation count of the 𝐿𝑈-factorization is given as: 
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Operations 

Total flops 
Multiplication/Division Addition/Subtraction 

Lower Triangular 
Matrix 𝐿  

𝑛3

6
−
𝑛

6
 

𝑛3

6
+
𝑛

6
 

𝑛3

3
 

Upper Triangular 
Matrix 𝑈 

𝑛3

6
−
𝑛

6
 

𝑛3

6
−
𝑛

6
 

𝑛3

3
−
𝑛

3
 

𝐿𝑈-factorization 
𝑛3

3
−
𝑛

3
 

𝑛3

3
 

2𝑛3

3
−
𝑛

3
 

(2) The forward substitution phase occurs after the formulation of 𝐿 and 𝑈 as factors of the 

coefficient matrix for solving the lower triangular system. This phase contains two nested loops.  

The first loop, say 𝑖-loop (which ranges from 𝑖 = 2 to 𝑛), corresponds to 𝑛 − 1 of the components 

of the intermediate vector 𝑌. The second loop, say 𝑗-loop (which ranges from 𝑗 = 1 to 𝑖 − 1), 

corresponds to the columns before the diagonal elements. 

Each pass of 𝑖-loop will perform one subtraction and one division to obtain the value of 𝑦𝑖 . 

Moreover, in each pass of 𝑖-loop, the number of both of the multiplications and additions will be  

(𝑖 − 1) − 1 + 1 (or simply (𝑖 − 1)) in 𝑗-loop. Thus, in each pass of 𝑖-loop, the total number of both 

of the multiplications/divisions and additions/subtractions will be (1 + 𝑖 − 1) or simply (𝑖). 

Hence, the total number of the multiplications/divisions in the forward substitution phase will be 

1 +∑(𝑖)

𝑛

𝑖=2

= 1 +∑𝑖

𝑛

𝑖=2

= 1 + [
𝑛(𝑛 + 1)

2
− 1]

=
𝑛2

2
+
𝑛

2
=

𝑛2

2
+
𝑛

2
=

𝑛2

2
+ 𝒪(𝑛)

 

Similarly, the total number of the additions/subtractions in the forward substation phase will be 

∑(𝑖)

𝑛

𝑖=2

=
𝑛2

2
+
𝑛

2
− 1 =

𝑛2

2
+ 𝒪(𝑛) 

The summary of the operation count of the Unit Lower triangular system 𝐿𝑌 = 𝐵 is given as: 
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Operations 

Total flops 
Multiplication/Division Addition/Subtraction 

Lower  
triangular system 
𝐿𝑌 = 𝐵  

𝑛2

2
+
𝑛

2
 

𝑛2

2
+
𝑛

2
− 1 𝑛2 + 𝑛 − 1 

(3) The back substitution phase occurs after the solution of the lower triangular system. This 

phase contains two nested loops.  The first loop, say 𝑖-loop (which ranges from 𝑖 = 𝑛 − 1 to 1), 

corresponds to 𝑛 − 1 of the components of solution vector 𝑋. The second loop, say 𝑗-loop (which 

ranges from 𝑗 = 𝑖 + 1 to 𝑛), corresponds to the columns after the diagonal elements. 

Each pass of 𝑖-loop will perform one subtraction to obtain the value of 𝑥𝑖 . Moreover, in each pass 

of 𝑖-loop, the number of both of the multiplications and additions will be  𝑛 − (𝑖 + 1) + 1 (or 

simply (𝑛 − 𝑖)) in j-loop. Thus, in each pass of i-loop, the total number of multiplications/divisions 

will be (𝑛 − 𝑖) and the total number of additions/subtractions will be (𝑛 − 𝑖 + 1). 

Hence, the total number of the multiplications/divisions in the back substitution phase will be 

∑(𝑛 − 𝑖)

𝑛−1

𝑖=1

= 𝑛∑1

𝑛−1

𝑖=1

−∑ 𝑖

𝑛−1

𝑖=1

= 𝑛(𝑛 − 1) − [
(𝑛 − 1)𝑛

2
]

= 𝑛2 − 𝑛 −
𝑛2

2
+
𝑛

2
=

𝑛2

2
−
𝑛

2
=

𝑛2

2
+ 𝒪(𝑛)

 

Similarly, the total number of the additions/subtractions in the back substation phase will be 

∑(𝑛 + 1 − 𝑖)

𝑛−1

𝑖=1

=
𝑛2

2
+
𝑛

2
− 1 =

𝑛2

2
+ 𝒪(𝑛) 

The summary of the operation count of the Upper triangular system 𝑈𝑋 = 𝑌 is given as: 

 
Operations 

Total flops 
Multiplications/Divisions Additions/Subtractions 

Upper triangular 
system 𝑈𝑋 = 𝑌 

𝑛2

2
−
𝑛

2
 

𝑛2

2
+
𝑛

2
− 1 𝑛2 − 1 

∎∎∎ 
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Question 27: List out some built-in functions/commands of MATLAB® relevant to the linear 

systems. Also briefly explain the usage of the commands.  

Solving a linear system using 𝑨−𝟏 with \ left division operator 

The left division operator offers a very powerful mechanism for solving a linear system 

𝐴𝑋 = 𝐵 through solving 𝑋 = 𝐴−1𝐵. The general format of using this approach is  

X = A\B 

The division operator solves the system according to the following procedure:  

If (𝐴 is a triangular matrix) 

 then back or forward substitution process is used. 

else if (𝐴 is a positive definite and symmetric/Hermitian matrix) 

then Cholesky’s decomposition is used 

else if (A is a simply a square matrix) 

then general LU decomposition is used 

else if (𝐴 is a dense/full matrix) 

then QR decomposition is used 

else if (𝐴 is a sparse matrix) 

then a variant of sparse Gaussian Elimination method is used.  

Solving a linear system using 𝑨−𝟏 through multiplication 

The solution of 𝑋 = 𝐴−1𝐵  through finding 𝐴−1 and then multiplying it with the vector B 

can also be obtained. Some ways to do so are as follows: 

X = inv(A)*B 

X = A^(-1)*B 

X = (1/A)*B 

It may be noted that solving the linear system using the division operator is more robust 

and faster than the inverse based solution. The MATLAB® operators \ or / can also be 

used to solve the under- and over-determined systems as well as ill-conditioned 

matrices. 

Solving a linear system using lu  

lu is a built-in function of MATLAB® that returns an upper triangular matrix in U and a 

unit lower triangular matrix L for a given square matrix A, such that 𝐴 = 𝐿𝑈 according to 

the Doolittle’s method. 
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The general format of using lu is  

[L,U] = lu(A) 

Worked Example: Find the LU decomposition of the coefficient matrix of the following 

system, 

0.4𝑥1 + 0𝑥2 + 0.12𝑥3 = 1.4

0𝑥1 + 0.64𝑥2 + 0.32𝑥3 = 1.6

0.12𝑥1 + 0.2𝑥2 + 0.56𝑥3 = 5.4

 

>> A = [0.4 0.0 0.12; 0.0 0.64 0.32; 0.12 0.2 0.56]; 

>> [L,U] = lu(A) 

L = 

1.0000 0 0
0 1.0000 0

0.3000 0.3125 1.0000
 

U = 

0.4000 0 0.1200
0 0.6400 0.3200
0 0 0.4240

 

Solving a linear system using chol 

chol is a built-in function of MATLAB® that can be used to obtain the upper triangular 

factor U of the Cholesky’s factorization of a given symmetric (or Hermitian) and positive 

definite matrix A such that 𝐴 = 𝑈𝑇𝑈 (or the upper triangular factor 𝐿𝑇of the Cholesky’s 

factorization 𝐴 = 𝐿𝐿𝑇). The lower triangular matrix is the transpose of the upper 

triangular matrix.  The general format of using chol is  

U = chol(A) 

If A is not positive definite, an error message is printed. When A is a sparse matrix, the 

chol function is typically faster. 



Direct Linear Solvers 101 

 

 
 

L = chol(A,'lower') returns the lower triangular matrix L of the factorization 𝐴 =

𝐿𝐿𝑇 . 

Worked Example: Find the Cholesky’s decomposition of the coefficient matrix of the 

system,  

0.4𝑥1 + 0.12𝑥3 = 1.4

0.64𝑥2 + 0.32𝑥3 = 1.6

0.12𝑥1 + 0.32𝑥2 + 0.56𝑥3 = 5.4

 

>> A = [0.4 0 0.12 ; 0 0.64 0.32 ; 0.12 0.2 0.56]; 

>> U = chol(A) 

U = 

0.6325 0 0.1897
0 0.8000 0.4000
0 0 0.6033

 

∎∎∎ 

 

Chapter Summary 

• A system of linear equations (simply called as linear system) is a set or collection of two or more 

linear equations with the same set of variables whose simultaneous solution satisfies all the equations. 

Precisely, a linear system can be referred to as a set of simultaneous linear algebraic equations. 

• If 𝑚 > 𝑛, where 𝑚 is the number of equations and 𝑛 is the number of unknowns, then the linear system 

is called over-determined. If 𝑚 < 𝑛, then the linear system is called under-determined. 

• A linear system 𝐴𝑋 = 𝐵 is called homogenous if 𝐵 is a zero vector (i.e., 𝐵 = �̅�), and non-homogeneous 

or inhomogeneous if 𝐵 ≠ �̅�. 

• A non-homogeneous linear system 𝐴𝑋 = 𝐵 is called consistent if it has a unique solution or infinitely 

many solutions, and it is called inconsistent if it has no solution. 

• If 𝐴−1 does not exist, then matrix 𝐴 is called singular or non-invertible. If 𝐴−1exists then 𝐴 is called 

non-singular matrix and is invertible. 
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• If det(𝐴) = 0, then 𝐴−1 does not exist and the system 𝐴𝑋 = 𝐵 does not have a unique solution; the 

system either has no solution or infinitely many solutions. 

• Although the steps of the algorithms for the solution of a linear system are elementary in nature, there 

might be certain pitfalls. This raises the need of skillful selection and use of an appropriate algorithm for 

obtaining the solution. 

• In general, methods for the solution of linear systems (also called linear solvers) are evaluated based 

on their accuracy, speed of convergence, and computer resource requirements (CPU-requirements, 

memory requirements). 

• A linear equation in two variables, say 𝑥 and 𝑦, represents a line in 𝑥𝑦-plane. If there exists a unique 

solution of the system then it is the point where the two lines intersect. 

• A linear equation in three variables, say 𝑥, 𝑦, and 𝑧, represents a plane in 𝑥𝑦𝑧-space. If there exists a 

unique solution of such a system then it is the point where the three planes intersect. 

• There are two broad categories of methods to solve linear systems: the direct (also called exact) 

methods and iterative methods. The prominent features of these two categories can be found in 

Question 5 (Section 6.1). 

• An 𝑛 × 𝑛 square matrix 𝑈 = (𝑢𝑖𝑗) is called the upper triangular matrix if 𝑢𝑖𝑗 = 0 whenever 𝑖 > 𝑗. A 

linear system 𝑈𝑋 = 𝑌 is said to be upper triangular system if it's coefficient matrix is an upper 

triangular one. It has a unique solution if no diagonal element is zero (i.e., |𝑢𝑖𝑖| ≠ 0, for 𝑖 = 1,2,⋯ , 𝑛), 

otherwise it has either no solution or infinitely many solutions. If there is a unique solution of an upper 

triangular system then the solution can easily be obtained by a so-called back substitution process. In 

analogy, the said propositions also hold for a lower triangular matrix 𝐿 = (𝑙𝑖𝑗) for which 𝑙𝑖𝑗 = 0 

whenever 𝑖 < 𝑗. The solution of a lower-triangular system can be obtained by a similar so-called 

forward substitution process. 

• To solve a linear system 𝐴𝑋 = 𝐵, the Gaussian Elimination method aims at obtaining an upper 

triangular system 𝑈𝑋 = 𝑌, equivalent to 𝐴𝑋 = 𝐵. This process may be termed as forward elimination. 

The upper triangular system can then be solved by back substitution. 

• To guard against the pitfalls of the Gaussian Elimination method, the process of pivoting is performed 

while using the method. The pivoting could be any of partial, scaled or complete. 

• Pivoting refers to the interchanging of two rows of the augmented matrix so that the diagonal 

coefficient (to be used as the pivot element) is of greatest magnitude among the possible ones for the 

row under consideration.  

• Pivoting must be performed if the main diagonal coefficient is zero (to make the triangular system non-

singular). Pivoting should be performed if the magnitude of the main diagonal element is a smaller one 

(to prevent the propagation of the round-off error). 
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• The Gauss-Jordan method is a variant of the Gaussian Elimination method. It is based on the same 

elementary row operations; however, it eliminates all the elements below as well as above the pivot 

element (in the same column). Thus it does not produce an upper-triangular system for back-

substitution; rather it obtains a diagonal matrix in which the solution vector is almost readily available. 

• The 𝐿𝑈 Factorization or 𝐿𝑈 Decomposition method is another direct solver. A concise description of this 

method (and its variants) can be found in Question 12 (Section 6.5). 

• The operation count analysis of an algorithm usually refers to the counting of the arithmetic operations 

involved. This is useful in determining the execution time required by the algorithm. For numerical 

computations, the operation count analysis is mostly considered as the counting of the floating-point 

operations (simply called as flops) involved in the algorithm. 

• The additions/subtractions are considered to be requiring less CPU-time (being lighter operations) as 

compared to the multiplications/divisions. Therefore, it might be appropriate to count the two types of 

operations separately for the operation count analysis. 

∎∎∎ 

 

Chapter Exercises 

Exercise 01: Solve the following system using the Gaussian Elimination method with back substitution.  

2𝑥1 − 3𝑥2 + 𝑥3 = −1
4𝑥1 + 4𝑥2 − 3𝑥3 = 3

−2𝑥1 + 3𝑥2 + 𝑥3 = 7

 

Exercise 02: Solve the following system using the Gaussian Elimination method with partial pivoting.  

𝑥1 + 𝑥2 + 𝑥3 = 6
3𝑥1 + 3𝑥2 + 𝑥3 = 12
2𝑥1 + 𝑥2 + 5𝑥3 = 20

 

Exercise 03: Solve the following system using the Gaussian Elimination method with partial pivoting and 

three-digit rounding arithmetic. 

2.5𝑥1 − 3𝑥2 + 4.6𝑥3 = −1.05
−3.5𝑥1 + 2.6𝑥2 + 1.5𝑥3 = −14.46
−6.5𝑥1 + −3.5𝑥2 + 7.3𝑥3 = −17.735

 

Exercise 04: Solve the following system using the Gaussian Elimination method with scaled partial pivoting. 

𝑥1 + 𝑥2 − 2𝑥3 = 3
4𝑥1 − 2𝑥2 + 𝑥3 = 5
3𝑥1 − 𝑥2 + 3𝑥3 = 8

 

Exercise 05: Solve the following system using the Gaussian Elimination method with scaled partial pivoting 

and four-digit rounding arithmetic. 
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3.03𝑥1 − 12.1𝑥2 + 14𝑥3 = −119
−3.03𝑥1 + 12.1𝑥2 − 7𝑥3 = 120
6.11𝑥1 − 14.2𝑥2 + 21𝑥3 = −139

 

Exercise 06: Solve the following system using the Gaussian Elimination method with complete pivoting. 

𝑥1 + 2𝑥2 + 2𝑥3 = 1
2𝑥1 + 6𝑥2 + 10𝑥3 = −2
3𝑥1 + 14𝑥2 + 28𝑥3 = −11

 

Exercise 07: Solve the following system using the Gaussian Elimination method with complete pivoting and 

three-digit rounding arithmetic. 

1.012𝑥1 − 2.132𝑥2 + 3.104𝑥3 = 1.984
−2.132𝑥1 + 4.096𝑥2 − 7.013𝑥3 = −5.049
3.104𝑥1 − 7.013𝑥2 + 0.014𝑥3 = −3.895

 

Exercise 08: Solve the following system using the Gauss-Jordan method  

𝑥1 + 2𝑥2 + 𝑥3 = 6
2𝑥1 + 3𝑥2 + 4𝑥3 = 12
4𝑥1 + 3𝑥2 + 2𝑥3 = 12

 

Exercise 09: Solve the following system using the Gauss-Jordan method and three-digit rounding arithmetic. 

0.125𝑥1 + 0.201𝑥2 + 0.401𝑥3 = 2.306
0.375𝑥1 + 0.501𝑥2 + 0.601𝑥3 = 4.806
0.501𝑥1 + 0.301𝑥2 + 0.001𝑥3 = 2.91

 

Exercise 10: Solve the following linear system 𝐴𝑋 = 𝐵 using the Doolittle’s method. 

𝑥1 + 𝑥2 + 𝑥3 = 3

2𝑥1 − 𝑥2 + 2𝑥3 = 16

3𝑥1 + 𝑥2 + 𝑥3 = −3

 

Exercise 11: Solve the following linear system 𝐴𝑋 = 𝐵 using the Doolittle’s method. 

𝑥1 + 𝑥2 + 2𝑥3 + 2𝑥4 = 9
2𝑥1 + 4𝑥2 + 7𝑥3 + 3𝑥4 = 25
−𝑥1 − 5𝑥2 − 6𝑥3 + 2𝑥4 = −17
𝑥1 − 𝑥2 + 3𝑥3 + 8𝑥4 = 15

 

Exercise 12: Solve the following linear system 𝐴𝑋 = 𝐵 using the Crout’s method. 

8𝑥1 + 𝑥2 − 𝑥3 = 8
2𝑥1 + 𝑥2 + 9𝑥3 = 12
𝑥1 − 7𝑥2 + 2𝑥3 = −4

 

Exercise 13: Solve the following linear system 𝐴𝑋 = 𝐵 using the Crout’s method. 

𝑥1 + 𝑥2 + 0𝑥3 + 3𝑥4 = 9
2𝑥1 + 𝑥2 − 𝑥3 + 𝑥4 = 5
3𝑥1 − 𝑥2 + 𝑥3 + 2𝑥4 = 6
−𝑥1 + 2𝑥2 + 3𝑥3 − 𝑥4 = 4

 

Exercise 14: Solve the following linear system 𝐴𝑋 = 𝐵 using the Cholesky’s method. 
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2𝑥1 + 3𝑥2 + 4𝑥3 = 1

3𝑥1 + 8𝑥2 + 5𝑥3 = 6

4𝑥1 + 5𝑥2 + 10𝑥3 = −1

 

Exercise 15: Solve the given linear system 𝐴𝑋 = 𝐵 using the Cholesky’s method 

4𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 9
𝑥1 + 3𝑥2 − 𝑥3 + 𝑥4 = 4
𝑥1 − 𝑥2 + 2𝑥3 + 0𝑥3 = 4
𝑥1 + 𝑥2 + 0𝑥3 + 2𝑥4 = 6

 

Exercise 16: The upward velocity of a rocket at three different times after its launching are given as follows: 

Time, 𝑡 in (𝑠) Velocity, 𝑣 in (𝑚/𝑠) 

6 115.7 

9 182.5 

12 295.6 

The velocity data is approximated by a polynomial as 

 𝑣(𝑡) = 𝑎1𝑡
2 + 𝑎2𝑡 + 𝑎3,      5 ≤ 𝑡 ≤ 12 

Thus, the coefficients 𝑎1, 𝑎2 and 𝑎3 for the above expression are given by  

[
36 6 1
81 9 1
144 12 1

] [

𝑎1
𝑎2
𝑎3
] = [

115.7
182.5
295.6

] 

Find the values of 𝑎1,𝑎2 and 𝑎3 using a linear solver. Then, calculate the velocity at  𝑡 = 7, 8, 10, and 11. 

Exercise 17: A factory produces three products, say Prod1, Prod2, and Prod3, by using three kinds of raw 

materials, say Raw1, Raw2, and Raw3. The units of each of the raw materials needed to produce one unit of 

each of the products are shown the table below. 

Sectors Raw1 Raw2 Raw3 

Prod1 5 3 1 

Prod2 4 4 3 

Prod3 2 1 3 

If 335 units of Raw1, 532 units of Raw2, and 440 units of Raw3 are available, then how much each of the 

three products can be produced. 

Hint for the Solution: Assume that 𝑥1, 𝑥2 and 𝑥3 represent the quantities of the products: Prod1, Prod2, and 

Prod3, respectively. The problem can be represented by a linear system whose solution would provide the 

required values. 

5𝑥1 + 4𝑥2 + 2𝑥3 = 335

3𝑥1 + 4𝑥2 + 𝑥3 = 532

𝑥1 + 3𝑥2 + 3𝑥3 = 440
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Exercise 18: Assume that the economy of a country depends on the three sectors: Food, Cloth, and House. 

The production of one unit of each of these needs certain units of each of these sectors, as shown in the 

following table: 

Sectors 
Food Units 

Needed 
Cloth Units 

Needed 
House Units 

Needed 

Food 0.45 0.18 0.15 

Cloth 0.25 0.27 0.07 

House 0.30 0.40 0.45 

The consumer demand is as in the table below: 

Sector worth in billion rupees 

Food 220 

Cloth 185 

House 550 

For satisfying the above demands, what total output is required from each of the sectors. 

Hint for the Solution in MATLAB: Assume that 𝑥1, 𝑥2 and 𝑥3 represent the total outputs in units from Food, 
Cloth and House sectors, respectively. The problem can be represented by a linear system whose solution 
would provide the required values. 

Exercise 19: A bakery produces three products: Cake, Pastry, and Muffin. It uses three kinds of materials: 
Flour, Milk, and Sugar. The units of each of the raw materials needed to produce one unit of each of the 
bakery products are shown the table below.  

Product -> Cake Pastry Muffin 

Flour 6 5 3 

Milk 4 5 2 

Sugar 2 3 3 

If 347 units of Flour, 604 units of Milk, and 502 units of Sugar are available, then how much each of the three 

products can be produced. 

Exercise 20: Pivoting is necessary with the Gaussian elimination if 

(A) the coefficient matrix is singular  (B) the linear system is homogenous 

(C) the linear system is ill conditioned (D) None of above 

Exercise 21: Cholesky decomposition for a linear system is not possible, if 

(A) the linear system is ill conditioned (B) the linear system is homogenous 

(C) the coefficient matrix is asymmetric (D) None of above 

∎∎∎ 
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Chapter 7 

Iterative Linear Solvers  

Corridor I: BASICS 

 Let’s plan it 
 

7.1     Vector Norms and Distances 

7.2     Convergence Criteria for Linear Solvers 

7.3     Basic Methods 

       7.3.1     The Jacobi Method 

       7.3.2     The Gauss-Seidel Method 

       7.3.3     The SOR Method 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

Fig. (7.4): Explanation of the different types of distances between the two vectors. 

http://www.timerenders.com.pk/
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Corridor II: ANALYSIS 

 Let’s think deep 
 

 

7.4     Matrix Norms and Conditioning 

7.5     Iteration Matrix and Matrix Form of a Solver 

 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

 

 

Corridor III: PROGRAMMING ARCADE 

 Let’s do it 
 

 

7.6     Algorithms and Implementations 

`The Jacobi Method 

Modification in the Jacobi Method's algorithm for the Gauss-Seidel Method 

Modification in the Jacobi Method's algorithm for the SOR Method 

 

To cross-check the results/output of the computer programs you would execute, please delve into 

the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

 

7.6 Algorithms and Implementations 

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/
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Question 22: Write down an algorithm (pseudo code) to solve a linear system using the Jacobi method. 

Algorithm: To solve 𝐴𝑋 = 𝐵, given an initial approximation 𝑋(0). 

𝐈𝐍𝐏𝐔𝐓𝐒:      

{
  
 

  
 
𝒏: an integer as the number of equations and unknowns

𝑨 = (𝒂𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix as the coefficient matrix

𝑩 = [𝒃𝟏, 𝒃𝟐, ⋯ , 𝒃𝒏]
𝑻:  a real valued vector as the vector of right hand side constants

𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻:  a real valued vector (having initial approximation, 𝑋(0))

𝑻𝑶𝑳:  a real value as the error tolerance
𝑵: an integer as the maximum number of iterations

 

𝐎𝐔𝐓𝐏𝐔𝐓:    {
𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]

𝑻:  a real valued vector as the approximate solution
(either on convergence, or on completing 𝑵 iterations − which ever happens first)

 

Step 1 Receive the inputs as stated above 

Step 2 for 𝒌 = 𝟏, 𝟐, 𝟑,⋯ ,𝑵  perform steps 3-6 

Step 3      for 𝑖 = 1, 2,⋯ , 𝒏 Set 𝒙𝒑𝒊 = 𝒙𝒊 {
𝑿𝑷 = [𝒙𝒑𝟏, 𝒙𝒑𝟐, ⋯ , 𝒙𝒑𝒏]

𝑻 is to keep a copy of present
approximation 𝑿, because 𝑿 is going to be updated

 

Step 4       for 𝑖 = 1, 2,⋯ ,𝒏   (compute the components of solution vector 𝑿) 

𝑠𝑢𝑚 = 0
for 𝑗 = 1, 2,⋯ , 𝒏 

𝑖𝑓 (𝒋 ≠ 𝒊) 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒂𝒊𝒋 × 𝑿𝑷𝒋

𝒙𝒊 =
[𝒃𝒊 − 𝑠𝑢𝑚]

𝒂𝒊𝒊 }
 
 

 
 

(

 
 
𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[
 
 
 
 

𝑏𝑖 −∑𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=1
𝑗≠𝑖 ]

 
 
 
 

)

 
 

 

Step 5      Compute 𝒆𝒓𝒓 = ‖𝑿 − 𝑿𝑷‖           (or 𝒆𝒓𝒓 = ‖𝑿 − 𝑿𝑷‖/‖𝑿‖)  Here ‖∙‖ is any suitable norm. 

Step 6  

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳 )then

Exit/Break the loop 
}

This means that the consecutive 
approximations are nearly the same
Therefore, stop iterations.

. 

end for loop of Step 2  (Go to Step 3) 

Step 7  Print the output: 𝑿 = [𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏]
𝑻  

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳)  OUTPUT (‘The desired accuracy achieved; Solution converged.’) 

else   OUTPUT (‘The number of iterations exceeded the maximum limit.’) 

STOP. 
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Question 23: What modification a programmer needs to make in the algorithm (pseudo code) of 

the Jacobi method (as given in the answer of Question 22) to convert it into the Gauss-Seidel 

method for solving a linear system. 

The algorithm (pseudo code) of the Jacobi method (as given in the answer of Question 22) can be 

converted into the algorithm of the Gauss-Seidel method simply by replacing its Step 4 with the 

following: 

 

Step 4 for 𝑖 = 1, 2,⋯ , 𝒏   (compute the components of solution vector 𝑿) 

𝑠𝑢𝑚 = 0
for 𝑗 = 1, 2,⋯ ,𝒏 

𝑖𝑓 (𝒋 ≠ 𝒊) 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒂𝒊𝒋 × 𝒙𝒋

𝒙𝒊 =
[𝒃𝒊 − 𝑠𝑢𝑚]

𝒂𝒊𝒊 }
 
 

 
 

  

(

 
 
𝑠𝑢𝑚 =∑𝑎𝑖𝑗𝑥𝑗

(𝑘)

𝑖−1

𝑗=1

+ ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=𝑖+1

𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[𝑏𝑖 − 𝑠𝑢𝑚] )

 
 

 

∎ 

Question 24: What modification a programmer needs to make in the algorithm (pseudo code) of 

the Jacobi method (as given in the answer of Question 22) to convert it into the Gauss-Seidel 

method with over-relaxation (i.e., the SOR method) for solving a linear system. 

The algorithm (pseudo code) of the Jacobi method (as given in the answer of Question 22) can be 

converted into the algorithm of the SOR method simply by taking one more input: 

𝑾𝑭 = 1.3:    a real value as the over − relaxation / weighting factor 

And then replacing Step 4 with the following: 

Step 4   

              for 𝑖 = 1, 2,⋯ , 𝒏  (compute the components of solution vector 𝑿) 

𝑠𝑢𝑚 = 0
for 𝑗 = 1, 2,⋯ ,𝒏 

𝑖𝑓 (𝒋 ≠ 𝒊) 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝒂𝒊𝒋 × 𝒙𝒋

𝒙𝒊 =
[𝒃𝒊 − 𝑠𝑢𝑚]

𝒂𝒊𝒊 }
 
 

 
 

  

(

 
 
𝑠𝑢𝑚 =∑𝑎𝑖𝑗𝑥𝑗

(𝑘)

𝑖−1

𝑗=1

+ ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=𝑖+1

𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[𝑏𝑖 − 𝑠𝑢𝑚] )

 
 

𝒙𝒊 = 𝑾𝑭 × 𝒙𝒊 + (1 −𝑾𝑭)𝑿𝑷𝒊 (apply over − relaxation)

 

∎ 
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Problem 18: Write a MATLAB® program to solve the following linear system using the Jacobi method. Take 

initial approximate solution as: 𝑋(0) = [0, 0, 0]𝑇 . The iterations of the method should stop when either 

the approximation is accurate within 10−6, or the number of iterations exceeds 200, whichever happens 

first. 

5𝑥1 + 3𝑥2 + 2𝑥3 = 17

3𝑥1 + 4𝑥2 − 𝑥3 = 8

−𝑥1 + 𝑥2 − 3𝑥3 = −8

 

1 clc ; clear ;                              
2 n = 3 ;             % number of unknowns         
3 TOL = 0.000001 ;         % error tolerance          

4 N = 200 ;          % maximum number of iterations    
5 fprintf('The Gauss-Jacobi Method for solving a system of %i unknowns.\n', n)   

6                                    
7 a = [ 5, 3, 2 ; 3, 4, -1 ; -1, 1, -3] ;                 
8 b = [17, 8, -8] ;                         
9                              

10 x(1:n) = 0.0 ;       % setting initial approximation as zero vector  
11                                    
12 %----------------------- Processing Section -------------------------%       

13                             
14 for k = 1:1:N                      
15                               
16  for i = 1:n                             

17   xp(i) = x(i) ;                          
18  end                                
19                                    

20  for i = 1:n                             
21   sum = 0 ;                     

∑𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=1
𝑗≠𝑖

 

 
22   for j = 1:n                     
23    if (j ~= i)                     
24     sum = sum + a(i,j) * xp(j) ;            
25    end                       

26   end                       
27                        

𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[𝑏𝑖 − 𝑠𝑢𝑚] 

 
28   x(i) = ( b(i) - sum) / a(i,i) ;            
29  end                       
30                                    

31  sum = 0.0 ;                             
32  for i = 1:n                      

Computing 
𝑙2 − 𝑛𝑜𝑟𝑚 

 

33   sum = sum + ( ( x(i) – xp(i) ) * ( x(i) – xp(i) ) ) ;      
34  end                          
35  err = sqrt(sum) ;                    
36                                    
37  if ( err < TOL )     break ;   end                     
38                       
39 end                                 

40        
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41 %------------------------ Output Section ----------------------------%       
42        
43 fprintf('The latest approximate solution vector is given by: ')          
44 disp( x )                              

45                                    
46 if ( err < TOL)                            
47  fprintf('\nThe desired accuracy achieved; Solution converged.')     
48 else                                 
49  fprintf('\nThe number of iterations exceeded the maximum limit.')      
50 end                                 

∎ 

Remark: Replacing xp[j] by x[j] in line 24 of the MATLAB® program in Problem 18 would 

convert the program for the Gauss-Seidel method, because it would then correspond to 

computing: 

𝑠𝑢𝑚 =∑𝑎𝑖𝑗𝑥𝑗
(𝑘)

𝑖−1

𝑗=1

+ ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=𝑖+1

 

Remark: In the program of Problem 18, the code segment of lines 43-44 can be placed just before 

line 39 to print the latest result on completion of each of the iterations. 

∎ 

Problem 20: Write a MATLAB® program to solve the following linear system using the Gauss-Seidel 

method with over-relaxation (the SOR method). Take initial approximate solution as: 𝑋(0) = [0, 0, 0]𝑇 

and over-relaxation factor as 1.2. The iterations of the method should stop when either the approximation is 

accurate within 10−6, or the number of iterations exceeds 200, whichever happens first. 

5𝑥1 + 3𝑥2 + 2𝑥3 = 17
3𝑥1 + 4𝑥2 − 𝑥3 = 8
−𝑥1 + 𝑥2 − 3𝑥3 = −8

 

1 clc ; clear ;                              
2                       
3 n = 3 ;             % number of unknowns         

4 TOL = 0.000001 ;         % error tolerance          

5 N = 200 ;          % maximum number of iterations    
6 WF = 1.2          % over-relaxation factor    
7    
8 fprintf('The Gauss-Seidel method with over-relaxation for solving a system.') ;   
9                                    

10 a = [ 5, 3, 2 ; 3, 4, -1 ; -1, 1, -3] ;                 

11 b = [17, 8, -8] ;                         
12                              
13                              
14 x(1:n) = 0.0 ;       % setting initial approximation as zero vector  
15                                    
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16 %----------------------- Processing Section -------------------------%       
17                             
18 for k = 1:1:N                      
19                               

20  for i = 1:n                             
21   xp(i) = x(i) ;                          
22  end                                
23                                    
24  for i = 1:n                             
25   sum = 0 ;                  

∑𝑎𝑖𝑗 × (latest value of 𝑥𝑗)

𝑛

𝑗=1
𝑗≠𝑖

 

 
26   for j = 1:n                  

27    if (j ~= i)                  
28     sum = sum + a(i,j) * x(j) ;         

29    end                    
30   end                       
31                        

𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[𝑏𝑖 − 𝑠𝑢𝑚] 

 
32   x(i) = ( b(i) - sum) / a(i,i) ;            

33               
34                 
35   x(i) = WF * x(i)  + (1 – WF) * xp(i);    𝑥𝑖  =  𝑊𝐹 × 𝑥𝑖  +  (1 −𝑊𝐹)𝑋𝑃𝑖  
36  end                         
37                                    
38  sum = 0.0 ;                             
39  for i = 1:n                      

Computing 
𝑙2 − 𝑛𝑜𝑟𝑚 

 

40   sum = sum + ( ( x(i) – xp(i) ) * ( x(i) – xp(i) ) ) ;      
41  end                          

42  err = sqrt(sum) ;                    
43                                    
44  if ( err < TOL )     break ;   end                     
45                       
46 end                                 

47        
48 %------------------------ Output Section ----------------------------%       
49        
50 fprintf('The latest approximate solution vector is given by: ')          
51 disp( x )                              
52                                    

53 if ( err < TOL)                            
54  fprintf('\nThe desired accuracy achieved; Solution converged.')     
55 else                                 

56  fprintf('\nThe number of iterations exceeded the maximum limit.')      
57 end                                 

∎ 

Remark: Note that setting the weighting factor of over-relaxation (WF) as 1.0 in the solutions of 

Problem 20 would make the programs for the Gauss-Seidel method. 

Remark: In the program of Problem 20, the code segment of lines 50-51 can be placed just before 

line 46 to print the latest result on completion of each of the iterations. 
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Remark: The MATLAB® programs in Problem 18 and 20 can be modified to receive the linear 

system at the execution time (instead of fixing in the code). For this, the lines 7-8 in the program 

of Problem 18 and  lines 10-11 in the program of Problem 20 should be replaced by the following 

code segment: 

 fprintf(Enter the coefficient matrix row-wise: %i unknowns.\n', n)       

  for i = 1:n                             
   for j = 1:n                           
    a(i,j) = input('Enter the element of matrix: ') ;             
   end                               
  end                                
                                    

 fprintf('Enter the elements of constant vector B: \n')             

  for i = 1:n                             
   b(i) = input('Enter the element of constant vector: ') ;           
  end                                

∎∎∎ 

Chapter Summary 

• The norm of a vector is a real-valued function that provides a measure of “size”, “length”, or 

“magnitude” of the vector. Let ℝ denotes the set of real numbers, and ℝ𝑛 denotes the space of 

n-dimensional real-valued column vectors. A norm of a vector on ℝ𝑛 is a function, ‖∙‖ ∶ ℝ𝑛 →

ℝ, with the following properties, 

1. ‖𝑋‖ ≥ 0, for all  𝑋 ∈ ℝ𝑛 

2. ‖𝑋‖ = 0, if and only if 𝑋 = 𝟎 in ℝ𝑛 

3. ‖α𝑋‖ = |α|‖𝑋‖, for all α ∈ ℝ and 𝑋 ∈ ℝ𝑛 

4. ‖𝑋 + 𝑌‖ ≤ ‖𝑋‖ + ‖𝑌‖, for all 𝑋, 𝑌 ∈ ℝ𝑛 

• The vector norm definitions, as well as the concerning illustrations, can be found in Question 

01 (Section 7.1).  

• The norm of a vector gives a measure for the distance between an arbitrary vector and the 

zero vector, just as the absolute value of a real number is its distance from 0.  

• The distance between two vectors is defined as the norm of the “difference vector” of the 

two vectors, just as the distance between two real numbers is the absolute value of their 

difference. The definitions of different vector distances, as well as the concerning 

illustrations, can be found in Question 02 (Section 7.1).  
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• To determine the convergence of an iterative solution, the norm of the difference vector of 

every two consecutive approximations is ensured to be smaller than a pre-specified error 

tolerance 𝜏, i.e., 

‖𝑋(𝑘) − 𝑋(𝑘−1)‖ < 𝜏 

• A square matrix, say 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 , is said to be diagonally dominant if, for 𝑖 = 1, 2,⋯ , 𝑛 

|𝑎𝑖𝑖| ≥ ∑|𝑎𝑖𝑗|

𝑛

𝑗=1
𝑗≠𝑖

, 

• A linear system is said to be diagonally dominant if its coefficient matrix is diagonally 

dominant (i.e., the magnitude of the diagonal entry in a row is greater than or equal to the 

sum of the magnitudes of all other entries in that row). 

• If “≥” is replaced by “>” in the above equation, then 𝐴 is said to be strictly diagonally 

dominant. A strictly diagonally dominant matrix is always non-singular. 

• If a linear system is not diagonally dominant, then a rearrangement of its rows might make it 

diagonally dominant. 

• The Gauss-Jacobi, Gauss-Seidel, and SOR methods must converge if the linear system to be 

solved is diagonally dominant. 

• Suppose that 𝐴𝑋 = 𝐵 is a 𝑛 × 𝑛 linear system to be solved such that 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 is the 

coefficient matrix, 𝐵 = (𝑏𝑖)𝑛×1 is the vector of right-hand side constants, and 𝑋 = (𝑥𝑖)𝑛×1 is 

the vector of unknowns.  

➢ The Jacobi method can be written in a compact form as 

𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[
 
 
 

𝑏𝑖 −∑𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=1
𝑗≠𝑖 ]

 
 
 

, for 𝑖 = 1, 2,⋯ , 𝑛 

➢ The Gauss-Seidel method can be written in a compact form as 

𝑥𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[𝑏𝑖 − (∑𝑎𝑖𝑗𝑥𝑗

(𝑘)

𝑖−1

𝑗=1

+ ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=𝑖+1

)] , for 𝑖 = 1, 2,⋯ , 𝑛 

➢ The successive over-relaxation (SOR) method can be written in a compact form as 

�̿�𝑖
(𝑘)

=
1

𝑎𝑖𝑖
[𝑏𝑖 − (∑𝑎𝑖𝑗𝑥𝑗

(𝑘)

𝑖−1

𝑗=1

+ ∑ 𝑎𝑖𝑗𝑥𝑗
(𝑘−1)

𝑛

𝑗=𝑖+1

)] , for 𝑖 = 1, 2,⋯ , 𝑛 



116 Simplified Numerical Analysis 

 

𝑥𝑖
(𝑘)

= 𝜔�̿�𝑖
(𝑘)
+ (1 − 𝜔)𝑥𝑖

(𝑘−1) (for 1 ≤ 𝜔 ≤ 2,   usually the best is around 1.2 ) 

Here 𝑘 = 1, 2, 3,⋯, represents the iterations and 𝑥𝑖
(𝑘)

 represents the kth approximation of the 

ith unknown. The iterative procedure is started with an initial approximation vector 𝑋(0) =

[𝑥1
(0), 𝑥2

(0), 𝑥3
(0), ⋯ , 𝑥𝑛

(0)
]
𝑻

and produces a sequence of successive approximations {𝑋(𝑘)}
𝑘=1

∞
 , 

such that 𝑋(𝑘) = [𝑥1
(𝑘), 𝑥2

(𝑘), 𝑥3
(𝑘), ⋯ , 𝑥𝑛

(𝑘)
]
𝑻

. The sequence is anticipated to refine/improve 

the approximate solution gradually and ultimately converge to the exact solution vector 

(theoretically). In practice, the iterations of the method are stopped when a sufficient level of 

accuracy is achieved. 

• The norm of a matrix is a real-valued function that provides a measure of “size”, “length”, or 

“magnitude” of the matrix. Let ℝ denotes the set of real numbers, and 𝕄𝑛 denotes the set of 

𝑛 × 𝑛 real-valued matrices. The norm of a matrix on 𝕄𝑛 is a function, ‖∙‖ ∶ 𝕄𝑛 → ℝ, with the 

following properties: 

1. ‖𝐴‖ ≥ 0, for all  𝐴 ∈ 𝕄𝑛 

2. ‖𝐴‖ = 0, if and only if 𝐴 = 𝟎 in 𝕄𝑛 

3. ‖α𝐴‖ = |α|‖𝐴‖, for all α ∈ ℝ and 𝐴 ∈ 𝕄𝑛  

4. ‖𝐴 + 𝐵‖ ≤ ‖𝐴‖ + ‖𝐵‖, for all 𝐴, 𝐵 ∈ 𝕄𝑛  

5. ‖𝐴𝐵‖ ≤ ‖𝐴‖‖𝐵‖, for all 𝐴, 𝐵 ∈ 𝕄𝑛 

• The matrix norm definitions can be found in Question 11 (Section 7.4). 

• The distance between two matrices 𝐴 and 𝐵 with respect to a certain norm ‖∙‖ is defined as 

the norm of the “difference matrix” of the two matrices, i.e., ‖𝐴 − 𝐵‖. 

• The condition number of a non-singular matrix 𝐴 with respect to a matrix norm ‖∙‖ is 

defined as 

𝒦(𝐴) = ‖𝐴‖‖𝐴−1‖,    (and 𝒦(𝐴)  ≥ 1) 

• The condition number of a linear system is the condition number of its coefficient matrix. 

• A computational problem is called ill-conditioned (or ill-posed) if small changes in the data 

(the input) cause large changes in the solution (the output). On the other hand, a problem is 

called well-conditioned (or well-posed) if small changes in the data cause only small changes 

in the solution. 

• The main issue while solving an ill-conditioned problem is that the round-off errors can cause 

production of wide range worthless solutions (which appear to be original ones because they 

approximately satisfy the given problem). Therefore, minimizing the round-off errors 

becomes more relevant for the ill-conditioned problems. 
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• If 𝐴𝑋 = 𝐵 is an ill-conditioned linear system then the solution of its perturbed system (the 

one which is obtained by making small changes in the original system, either through small 

changes in 𝐴, or in 𝐵) is much different from that of the original linear system. In that case, 

the matrix 𝐴 is said to be an ill-conditioned matrix. The determinant of an ill-conditioned 

matrix 𝐴 is usually close to zero (NOT the zero). Remind that if the determinant is exactly 

zero then a relevant linear system 𝐴𝑋 = 𝐵 has either no solution, or an infinite number of 

solutions. 

• There is no strict line between the well-conditioning and ill-conditioning of a system, as these 

concepts are qualitative. A linear system whose condition number (i.e., the condition number 

of its coefficient matrix) is close to 1 is well-conditioned, whereas a condition number 

significantly larger than 1 indicates that the linear system is ill-conditioned. If the condition 

number is below 100, it is usually not a reason for concern. However, a condition number of 

more than 100 calls for caution. It may be noted that a coefficient matrix, having magnitudes 

of diagonal elements larger than that of other elements in each of the rows, indicates well-

conditioning of the linear system. 

• In general, an iterative linear solver involves a process that converts an 𝑛 × 𝑛 system 𝐴𝑋 = 𝐵 

into an equivalent system of the form 𝑋 = 𝑇𝑋 + 𝐶 for some fixed matrix 𝑇 and vector 𝐶. After 

the initial vector 𝑋(0) is selected, the sequence of approximate solution vectors, 𝑋(1),  𝑋(2),

𝑋(3), ⋯, is generated by computing 

𝑋(𝑘) = 𝑇𝑋(𝑘−1) + 𝐶,       for  𝑘 = 1, 2, 3,⋯  

The matrix 𝑇 is called the iteration matrix of the iterative method, and the relation is called 

the matrix form of the iterative method. 

• The iterative linear solvers for which the iteration matrix remains unchanged (or fixed) 

during the iterative process are said to be stationary solvers, whereas the iterative linear 

solvers for which the iteration matrix changes from iteration to iteration are referred to as 

non-stationary solvers.  

• Examples of stationary solvers include simple methods like the Jacobi, Gauss-Seidel, and SOR 

methods. Examples of the non-stationary solvers include more sophisticated methods like the 

Krylov subspace methods: especially, Conjugate Gradient (CG) methods, Minimal Residual 

methods (especially GMRES), and many more. 

∎∎∎ 
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Chapter Exercises 

Exercise 01: Workout first three iterations of (𝑖) the Jacobi method, (𝑖𝑖) the Gauss-Seidel method, and (𝑖𝑖𝑖) 

the Gauss-Seidel method with successive over-relaxation factor  𝜔 = 1.2 and 𝜔 = 1.5 for solving the 

following systems for any initial approximation. Perform computations with a precision of 4 decimal digits, 

at least. Assume the error tolerance as 0.0001. 

(a) 

𝑥1 − 0.25𝑥2 − 0.25𝑥3 = 9
−0.25𝑥1 + 𝑥2 − 0.25𝑥3 = 4
−0.25𝑥1 − 0.25𝑥2 + 𝑥3 = −1

 

(b) 

4𝑥1 + 𝑥2 − 𝑥3 + 𝑥4 = 2.5
𝑥1 + 4𝑥2 − 𝑥3 − 𝑥4 = 0.5

−𝑥1 − 𝑥2 + 5𝑥3 + 𝑥4 = 5
𝑥1 − 𝑥2 + 𝑥3 + 3𝑥4 = 4

 

(c) 

2𝑥1 − 𝑥2 + 𝑥3 = −3
2𝑥1 + 4𝑥2 + 2𝑥3 = 8
−𝑥1 − 𝑥2 + 2𝑥3 = 1

 

(d) 

𝑥1 − 0.25𝑥2 − 0.25𝑥3 + 0𝑥4 = 11
−0.25𝑥1 + 𝑥2 + 0𝑥3 − 0.25𝑥4 = 7
−0.25𝑥1 + 0𝑥2 + 𝑥3 − 0.25𝑥4 = 3

0𝑥1 − 0.25𝑥2 − 0.25𝑥3 + 𝑥4 = −1

 

(e) 

0.2𝑥1 + 0.3𝑥2 + 0𝑥3 = 0.1
0.3𝑥1 + 0𝑥2 + 0.2𝑥3 = 0.1
0𝑥1 + 0.2𝑥2 + 0.3𝑥3 = 0.8

 

(f) 

8𝑥1 + 4𝑥2 + 0𝑥3 + 0𝑥4 = 10
4𝑥1 + 12𝑥2 + 2𝑥3 + 0𝑥4 = 12
0𝑥1 + 2𝑥2 + 7𝑥3 + 2.5𝑥4 = 9.25
0𝑥1 + 0𝑥2 + 2.5𝑥3 + 4.5𝑥4 = 4.75

 

∎∎∎ 
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Chapter 8 

Eigenvalues and Eigenvectors  

Corridor I: BASICS 

 Let’s plan it 

8.1     Basic Definitions and Concepts 

8.2     General Approach of Finding Eigenvalues and Eigenvectors 

8.3     Some Numerical Methods for Eigenvalues 

The Power Method 

The Householder Method 

The QR Factorization Method 

The Sturm Method 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

 

Corridor II: ANALYSIS 

 Let’s think deep 

8.4     Further Discussions 

The Power Theorem 

The Gerschgorin Circle Theorems 

The Singular Value Decomposition (SVD) 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

http://www.timerenders.com.pk/
http://www.timerenders.com.pk/
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Corridor III: PROGRAMMING ARCADE 

 Let’s do it 

8.5     Algorithms and Implementations 

Built-in MATLAB® Commands 

The Power Method 

To cross-check the results/output of the computer programs you would execute, please delve into 

the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

8.5 Algorithms and Implementations 

Question 11: List out some built-in functions/commands of MATLAB® relevant to the eigen 

values of a square matrix. 

MATLAB® provides built-in functions for finding eigenvalues and eigenvectors as part of the core 

MATLAB® functionality. These functions do not require any additional toolboxes. Here are the 

main core MATLAB® functions for eigenvalue and eigenvector computations: 

1. eig(): This function computes the eigenvalues of a square matrix. It can also compute 

the corresponding eigenvectors if requested. The syntax is: [V, D] = eig(A) 

Here, A is the input matrix, V contains the eigenvectors as columns, and D is a diagonal 

matrix with the eigenvalues on the main diagonal. 

2. eigs(): This function computes a few eigenvalues and, optionally, eigenvectors of a 

square matrix. It's useful for finding a subset of eigenvalues (e.g., the largest or smallest) 

or eigenvalues close to a target value. The syntax is: [V, D] = eigs(A, k) 

Here, A is the input matrix, k is the number of eigenvalues to compute, and V and D have 

the same meaning as in the eig() function. 

These core functions are part of the basic MATLAB® package and do not require any additional 

toolboxes. For general eigenvalue and eigenvector computations, the core MATLAB® functions 

eig() and eigs() should be sufficient. If any specialized functionality or additional tools 

needed for eigenvalue problems in specific contexts, the following toolboxes may be considered: 

• Linear Algebra Toolbox 

• Partial Differential Equation Toolbox 

• Control System Toolbox. 

http://www.timerenders.com.pk/
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Question 12: Write down an algorithm (pseudo code) to find dominant eigenvalue and a corresponding 

eigenvector of a matrix using the Power method. 

Algorithm: To approximate the dominant eigenvalue and associated eigenvector of an 𝑛 × 𝑛 matrix 𝐴, given 

a nonzero normalized vector 𝑋 (i.e., having 1 as the largest component) as the initial approximation. 

𝐈𝐍𝐏𝐔𝐓𝐒:   

{
 
 

 
 
𝒏: an integer as the length of the vector 𝑋

𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻:  a real valued vector (as a normalised initial approximation)

𝑨 = (𝒂𝒊𝒋), 1 ≤ 𝑖, 𝑗 ≤ 𝒏: a real valued square matrix whose eigenvalue is to be obtained

𝑻𝑶𝑳:  𝑎 real value as the tolerance 
𝑵:  an integer as the maximum number of iterations

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑩: a real value as the approximate eigenvalue

𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻:  𝑎 normalized vector as the eigenvector corresponding to 𝑩 

 

Step 1          Receive the inputs as stated above 

Step 2          for 𝒌 = 𝟏, 𝟐, 𝟑,⋯ ,𝑵  perform steps 3-6 

Step 3      for 𝑖 = 1, 2,⋯ , 𝒏 Set 𝒙𝒑𝒊 = 𝒙𝒊 {
𝑿𝑷 = [𝒙𝒑𝟏, 𝒙𝒑𝟐, ⋯ , 𝒙𝒑𝒏]

𝑻 is to keep a copy of present
approximation 𝑿, because 𝑿 is going to be updated

 

Step 4 (Compute the vector such that 𝑋(𝑘) = 𝐴𝑋(𝑘−1)) 

for 𝑖 = 1, 2,⋯ , 𝒏 

sum = 0
for 𝑗 = 1, 2,⋯ ,𝒏

 

sum = sum + 𝒂𝒊𝒋 × 𝒙𝒑𝒋
𝑥𝑖 = sum }

 

 
   (𝑥𝑖

(𝑘)
=∑𝑎𝑖𝑗

𝑛

𝑗=1

𝑥𝑗
(𝑘−1)

)    

Step 5 (Approximate the eigenvalue 𝑩 and normalize the vector 𝑿) 

set 𝑟 = 1
for 𝑖 = 1, 2,⋯ , 𝒏

 

if (|𝑥𝑖| > |𝑥𝑟|)   𝑟 = 𝑖
set 𝑩 = 𝑥𝑟

}         (

Finding the element of 𝑋 with
the largest absolute value 
and then setting it as 𝑩 

)    

for 𝑖 = 1, 2,⋯ , 𝒏   

        𝑥𝑖 = 𝑥𝑖/𝑩                                                                                   (Normalizing the vector 𝑋) 

Step 6  

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳 )then

Exit/Break the loop 
}

This means that the consecutive 
approximations are nearly the same
Therefore, stop iterations.

. 

end for loop of Step 2  (Go to Step 3) 

Step 9         Print the output: eigenvalue 𝑩, and eigenvector  𝑿 = [𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏]
𝑻 

if (𝒆𝒓𝒓 < 𝑻𝑶𝑳)         OUTPUT (‘The desired accuracy achieved; Solution converged.’) 

else               OUTPUT (‘The number of iterations exceeded the maximum limit.’) 

STOP.    
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Problem 11: Write a MATLAB® program to solve find the dominant eigenvalue of the following matrix 

using the Power method. For simplification, specify the matrix within the program. Take 𝑋(0) = [1, 1, 1]𝑇 

as the initial approximation. Take 𝑋(0) = [1, 1, 1]𝑇 as the initial approximation. The iterations of the 

method should stop when either the approximation is accurate within 10−5, or the number of iterations 

exceeds 100, whichever happens first. 

𝐴 = [
4 1 0
2 5 0
7 2 1

] 

1 clc , clear ;                              
2 n = 4 ;           % number of components    
3 TOL = 0.00001 ;        % error tolerance    

4 N = 100 ;        % maximum number of iterations    
5                
6 fprintf ( 'The Power Method. \n' )        
7 a = [ 4, 1, 0  ;  2, 5, 0  ;  7, 2, 1 ] ; % the problem matrix 

8 x = [ 1, 1, 1 ] ;  % initial approx. to the dominant eigenvector  
9                                    

10 %----------------------- Processing Section -------------------------%       
11                                    
12 for k = 1:1:N                     
13                             
14  for i = 1:1:n                           

15   xp(i) = x(i) ;                           
16  end                                

17                                    
18     % Computing the vector X^(k) = A * X^(k-1)        
19  for i = 1:1:n                  
20   sum = 0.0 ;                

(𝑥𝑖
(𝑘)

=∑𝑎𝑖𝑗

𝑛

𝑗=1

𝑥𝑗
(𝑘−1)

) 

 

21   for j = 1:n              
22    sum = sum + a(i,j) * xp(j) ;      
23   end                    
24   x(i) = sum ;                 
25  end                     
26                                 
27     % Approximating the eigenvalue B and normalizing the vector X        

28  r = 1 ;                              
29  for i = 2:1:n                           
30   if ( abs(x[i]) > abs(x[r]) )                   

31    r = i ;                           
32   end                               
33  end                                
34                                    

35  B = x[r] ;                             
36                               
37  for i = 1:n                           
38   x(i) = x(i) / B ;                       
39  end                               
40                                    
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41     % Computing the error as L2-norm                
42  sum1 = 0.0 ;                    

Computing 
𝑙2 − 𝑛𝑜𝑟𝑚 

 
43  for i = 1:1:n                    
44   sum1 = sum1 + ( x(i) –xp(i) ) * ( x(i) – xp(i) ) ;     

45  end                        
46  err = sqrt( sum1 ) ;                
47                                    
48  if ( err < TOL )     break ;   end                   
49                     
50 end                                 
51                                    

52 %---------------------- Output Section -------------------------%     
53                                    

54 disp ( 'The approximate dominant eigenvalue is ' )           
55 disp ( B )                           
56                                    
57 disp ( 'The approximate corresponding eigenvector is ' )        

58 disp ( x )                             
59                                    
60 if( err<TOL )                            
61  fprintf('\nThe desired accuracy achieved; Solution converged.')    
62 else                                 
63  fprintf('\nThe number of iterations exceeded the maximum limit.')  
64 end                                 

∎ 

Remark: In the program of Problem 11, the code segment of lines 54-58 can be placed just before 

line 50 to print the latest results on completion of each of the iterations. 

Remark: The MATLAB® program in Problem 11 can be modified to receive the square matrix 

and the initial approximation of the Eigenvector at the execution time (instead of fixing in the 

code). For this, the code segment at lines 7 and 8 in the program of Problem 11 should be 

replaced by the following code segment: 

 fprintf(Enter the matrix row-wise: \n')       

  for i = 1:n                             
   for j = 1:n                           
    a(i,j) = input('Enter the element of matrix: ') ;             
   end                               
  end                                
                                    

 fprintf('Enter the elements of the initial approximation\n')     
  for i = 1:n                             
   b(i) = input('Enter the element of constant vector: ') ;           
  end                                

∎∎∎ 
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Chapter Summary 

• An eigenvalue of a square matrix 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛
is a number 𝜆 such that the vector equation 

𝐴𝑋 = 𝜆𝑋 

• has a non-zero solution vector 𝑋. The solution vector 𝑋 is then called an eigenvector of the matrix 𝐴 

corresponding to the eigenvalue 𝜆. The set of all eigenvalues of a matrix is called the spectrum of the 

matrix. An eigenvalue is also called a characteristic value or latent root. Likewise, an eigenvector is also 

called a characteristic vector or latent vector. 

• A concise account of the results and techniques relevant to the eigenvalues and eigenvectors is given in 

Section 8.1. 

• The theorem of the Power method: Suppose that an 𝑛 × 𝑛 matrix 𝐴 has 𝑛 eigenvalues 𝜆1, 𝜆2,⋯ , 𝜆𝑛and 

associated 𝑛 linearly independent eigenvectors, 𝑉1, 𝑉2, ⋯ , 𝑉𝑛 . Further, suppose that 𝑋(0) is a normalized 

vector  (i.e., a vector having maximum absolute value as 1) in the space of the said eigenvectors. The 

sequence of normalized vectors {𝑋(𝑘)}
𝑘=1

∞
and the sequence of scalars {𝛽𝑘}𝑘=1

∞  generated recursively by  

𝑋(𝑘) =
1

𝛽𝑘
𝑌(𝑘), 

where 𝑌(𝑘) = 𝐴𝑋(𝑘−1), and 𝛽𝑘 = 𝑦𝑟
(𝑘)

such that |𝑦𝑟
(𝑘)
| = ‖𝑌(𝑘)‖

∞
, 

will converge to the dominant eigenvector and eigenvalue, respectively.  

• In the Power method, both the sequences of the scalars {𝛽𝑘}𝑘=1
∞  and the normalized vectors {𝑋(𝑘)}

𝑘=1

∞
 

converge linearly to the dominant eigenvalue 𝜆1 and a corresponding eigenvector 𝑉1, respectively. Thus, 

the order of convergence of the Power method is linear. 

• Aitken’s ∆𝟐 method offers a technique for accelerating the convergence of any sequence that is linearly 

convergent. Using a given sequence, say {𝛽𝑘}𝑘=1
∞ , which converges linearly to 𝜆1, another sequence 

{�̂�𝑘}𝑘=1
∞

 (that also converges to 𝜆1 with possibly improved convergence rate) is constructed by using the 

Aitken’s ∆2 process as: 

�̂�𝑘 = 𝛽𝑘 −
(𝛽𝑘+1 − 𝛽𝑘)

2

𝛽𝑘+2 − 2𝛽𝑘+1 + 𝛽𝑘
= 𝛽𝑘 −

  (∆𝛽𝑘)
2

∆2𝛽𝑘
, for 𝑘 = 0, 1, 2,⋯  

• Suppose that 𝜆 is a non-zero eigenvalue of a square matrix 𝐴 and 𝑋 is an eigenvector corresponding to 𝜆. 

Then, 1 𝜆⁄  is an eigenvalue of 𝐴−1 and the same 𝑋 is an eigenvector corresponding to 1 𝜆⁄ . Thus, the 

reciprocal of all the non-zero eigenvalues of a square matrix 𝐴 are the eigenvalues of 𝐴−1 (having the 

same set of eigenvectors). Hence, the largest of the absolute eigenvalues of 𝐴 is the smallest of the 

eigenvalues of 𝐴−1 (and vice-versa). Thus, the Power method can be used to obtain the largest 

eigenvalue of 𝐴−1 and then taking its reciprocal gives the smallest eigenvalue of 𝐴. 

∎∎∎ 
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Chapter Exercises 

Exercise 01: Find all the eigenvalues and eigenvectors of the following matrices using the characteristic 

equations. Also find the spectrum, spectral radius, trace, and determinant of the given matrix.  

(i) [
3 2 −1
2 6 4
−1 4 5

]  (ii) [
3 −2 0.5
−1 −2 1.5
−4 0 4

]  (iii) [
2 0 0
−6 8 −14
0 0 −6

] 

(iv) [
−15.5 −10 10
3 4.5 −3
−17 −10 11.5

] (v) [
4.5 0 1.5
−6 9 6
1.5 0 4.5

] 

Exercise 02: Apply the Power method to find the dominant eigenvalue and corresponding eigenvector of the 

given matrices. 

(i) [
3 2 −1
2 6 4
−1 4 5

]  (ii) [
3 −2 0.5
−1 −2 1.5
−4 0 4

]  (iii) [
2 0 0
−6 8 −14
0 0 −6

] 

(iv) [
−15.5 −10 10
3 4.5 −3
−17 −10 11.5

] (v) [
4.5 0 1.5
−6 9 6
1.5 0 4.5

] 

Exercise 03: Apply the Power method to find the dominant eigenvalue and corresponding eigenvector of the 

given matrices. 

(i) [

8 1 0 0
0 7 0 0
−2 1 10 0
−4 −1 4 6

] (ii) [

1 10 6 −6
0 −9 0 0

−0.5 16.5 7.5 0.5
−6.5 10.5 6.5 1.5

] 

Exercise 04: Use Householder’s method to place the following matrices in tridiagonal form. 

(i) [
1 1 1
1 1 0
1 0 1

]  (ii) [
2 −1 −1
−1 2 −1
−1 −1 2

] 

(iii) [

5 −2 −0.5 1.5
−2 5 1.5 −0.5
−0.5 1.5 5 −2
1.5 −0.5 −2 5

] (iv) [

2 −1 −1 0
−1 3 0 0
−1 0 4 1
0 −2 2 3

] 
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Exercise 05: Apply two iterations of the QR Factorization method without shifting the following matrices. 

(i) [
4 −1 0
−1 3 −1
0 −1 2

]  (ii) [
3 1 0
1 4 2
0 2 1

] 

(iii) [

4 2 0 0
2 4 2 0
0 2 4 2
0 0 2 4

]  (iv) [

0.5 0.25 0 0
0.25 0.8 0.4 0
0 0.4 0.6 0.1
0 0 0.1 1

] 

Exercise 06: Determine a singular value decomposition for the following matrices. 

(i) [
1 1 0
−1 0 1
0 1 −1

]  (ii) [
2 1
−1 1
1 1

] 

(iii) [
1 1 0
1 0 1
0 1 1

]  (iv) [
2 1
1 0
0 1

] 

  

∎∎∎ 
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Chapter 9 

Numerical Solution of               

Ordinary Differential Equations (ODEs)  

Corridor I: BASICS 

 Let’s plan it 

 

9.1     Introduction 

9.2     Solving IVPs using Single Step Methods and Multistep Methods 

The Euler Method 

The Mid-point Method (an RK2 method of Order 2) 

The Modified/Improved Euler Method (an RK2 method of Order 2) 

The RK Method of order 4 (RK4) 

9.3     Solving IVPs using Predictor-Corrector Methods 

The Adams-Bashforth-Moulton Method of Order 4 

9.4     Solving Systems of ODEs and Higher Order ODEs 

Using the Classical RK4 Method 

9.5     Solving Linear BVPs using the Finite Difference Method 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

 

http://www.timerenders.com.pk/
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Corridor II: ANALYSIS 

 Let’s think deep 

 

9.6     Some  Theoretical Concepts and Error Analysis 

 

 

To unleash the topics of this Corridor, please delve into the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 

 

 

 

Figure: The connection between various terms related to MDE (Model Differential Equation/s - 
ODE/PDE) and the related FDE (Finite Difference Equation/s). 

http://www.timerenders.com.pk/
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Corridor III: PROGRAMMING ARCADE 

 Let’s think deep 

9.7     Algorithms and Implementations 

Euler method 

Mid-point method 

Modified/Improved Euler method 

RK method of order 4 (RK4) 

Adams-Bashforth method of order 4 

Adams-Bashforth-Moulton method of order 4 

RK4 method for a system of two ODEs 

RK4 method for a system of three ODEs 

RK4 method for Second Order ODE 

RK4 method for Third Order ODE 

Linear FDM for BVP 

Built-in MATLAB® Commands 

 

To cross-check the results/output of the computer programs you would execute, please delve into 

the principal book: 

Simplified Numerical Analysis (Fourth Edition; by Dr. Amjad Ali; www.TimeRenders.com.pk) 

∎∎∎ 
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9.7 Algorithms and Implementations 
 

Question 16: Write down an algorithm (pseudo code) to solve a first-order ODE using the Explicit 

Euler’s method (the Taylor method of order 1). 

Algorithm: To solve 𝑦′ = 𝑓(𝑥, 𝑦) , for 𝑎 ≤ 𝑥 ≤ 𝑏  and 𝑦(𝑎) = 𝛼  by approximating 𝑦 = 𝑦(𝑥)  at 

(𝑚 + 1)  equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚 , such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 = 𝑏 , ℎ = (𝑏 −

𝑎)/𝑚  and 𝑦(𝑥𝑖) = 𝑦𝑖  using the Explicit Euler’s method (the Taylor method of order 1): For 𝑖 =

1,2,3,⋯ ,𝑚 

𝑤𝑖 = 𝑤𝑖−1 + ℎ × 𝑓(𝑥𝑖−1, 𝑦𝑖−1) 

𝐈𝐍𝐏𝐔𝐓𝐒:  

{
 

 
𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of nodes (other than 𝑎) in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the initial condition 𝑦(𝑎)

A definition of the function 𝑓(𝑥, 𝑦) in an appropriate way 

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑊 = [𝑤0, 𝑤1, ⋯ , 𝑤𝑚]

𝑇: a real valued vector as the approximate solution 𝑤(𝑥𝑖) 
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚

 

Auxiliary Variables: {
ℎ: a real value as the step length in 𝑥 direction such that ℎ = (𝑏 − 𝑎)/𝑚 

𝑥 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚: a real valued vector to represent 𝑥𝑖𝑠
 

Step 1 Receive the inputs as stated above 

Step 2         Set ℎ = (𝑏 − 𝑎)/𝑚
Set 𝑥(0) = 𝑎

Set 𝑥(𝑚) = 𝑏

 

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚 − 1  
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ (Constructing interior mesh points, 𝑥𝑖  )  

 end for 

Step 4         Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎 (Setting the initial condition) 

Step 5 for 𝑖 = 1, 2,⋯ ,𝑚 

𝑓𝑣𝑎𝑙 = 𝑓(𝑋(𝑖 − 1), 𝑤(𝑖 − 1)) (Computing the value 𝑓(𝑥𝑖−1, 𝑦𝑖−1) ) 

𝑤(𝑖) = 𝑤(𝑖 − 1)  +  ℎ × 𝑓𝑣𝑎𝑙 

 end for 

Step 6 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ , 𝑤𝑚]
𝑇  ;      

STOP. 
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Problem 09: Write down a MATLAB® program to solve the IVP, 𝑦′ = 4𝑦 + 4𝑥2 + 3𝑥, for 0 ≤ 𝑥 ≤

1, with initial condition 𝑦(0) = 𝛼 = 1/2, using the Explicit Euler’s method (the Taylor method of 

order 1). Computer the solution for 10 steps. At each step, compare the approximate solution with 

the exact solution, to be obtained by 𝑦(𝑥) = −𝑥2 −
5

4
𝑥 −

5

16
+

13

16
𝑒4𝑥, by finding the relative error 

between the two solutions. 

clear; clc ; 

 

% Constants 

a = 0.0 ;  % starting point of domain 

b = 1.0 ;  % ending point of domain 

alpha = 0.5 ;  % initial condition 

m = 10 ;  % number of steps 

 

% Inline function definitions 

fval = @(x,y) 4*y + 4*x^2 + 3*x ; 

fexact = @(x) -x^2 - 1.2*x - (5.0/16.0) + (13.0/16.0) * exp(4*x) ; 

 

 

h = (b - a) / m; 

 

x = zeros(1, m+1) ; 

y = zeros(1, m+1) ; 

 

x(1) = a ; 

for i = 2:m+1 

x(i) = x(i-1) + h ; 

end 

 

y(1) = alpha ; 

 

 

% Computing solutions with the Euler method 

 

for i = 2:m+1 

fv = fval(x(i-1), y(i-1)) ; 

y(i) = y(i-1) + h*fv; 

end 
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% Printing Solutions 

for i = 1:m+1 

fprintf('Node= %2d\t', i-1) ; 

fprintf('x= %8.6f\t', x(i)) ; 

fprintf('y= %8.6f\t', y(i)) ; 

sol = fexact(x(i)) ; 

fprintf('Exact sol= %8.6f\t', sol) ; 

err = abs(sol - y(i)) / abs(sol) ; 

fprintf('Relative Error= %8.6f\n', err) ; 

end 

∎ 

 

The above program can be written in a better way that a MATLAB® function for the Euler method 

is formed to compute the solution. This makes the program better manageable and modular. The 

new program is given as follows. 

 

clear; clc ; 

 

% Constants 

a = 0.0 ;  % starting point of domain 

b = 1.0 ;  % ending point of domain 

alpha = 0.5 ;  % initial condition 

m = 10 ;  % number of steps 

 

% Inline function definitions 

fval = @(x,y) 4*y + 4*x^2 + 3*x ; 

fexact = @(x) -x^2 - 1.2*x - (5.0/16.0) + (13.0/16.0)*exp(4*x) ; 

 

h = (b - a) / m;  % computing step size 

 

x = zeros(1, m+1) ; 

y = zeros(1, m+1) ; 

 

x(1) = a ; 

 

for i = 2:m+1 

x(i) = x(i-1) + h ; 

end 

 

y(1) = alpha ;     % setting initial condition 

 

y = euler(x, y, h, fval) ;   % Call to the function 
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% Printing Solutions 

for i = 1:m+1 

fprintf('Node= %2d\t', i-1) ; 

fprintf('x= %8.6f\t', x(i)) ; 

fprintf('y= %8.6f\t', y(i)) ; 

sol = fexact(x(i)) ; 

fprintf('Exact sol= %8.6f\t', sol) ; 

err = abs(sol - y(i)) / abs(sol) ; 

fprintf('Relative Error= %8.6f\n', err) ; 

end 

 

 

% User-defined function for the Euler method 

 

function y = euler(x, y, h, fval) 

 

for i = 2:numel(x) 

fv = fval(x(i-1), y(i-1)) ; 

y(i) = y(i-1) + h*fv;  % computing next solution 

end 

 

end 
∎ 

The results are shown in the following table. 

Steps 

𝑖 
Node 𝑥(𝑖) 

Numerical 
solution  

𝑤𝑖 = 𝑤(𝑥𝑖) 

Exact solution 

𝑦𝑖 = 𝑦(𝑥𝑖) 

Error of computer 
program solution 

0 0 0.5 0.5 0 

1 0.1 0.7 0.769608 0.0904455 

2 0.2 1.014 1.21575 0.165948 

3 0.3 1.4956 1.93509 0.227118 

4 0.4 2.21984 3.07184 0.277358 

5 0.5 3.29178 4.84111 0.320037 

6 0.6 4.85849 7.56383 0.357669 

7 0.7 7.12588 11.7188 0.391926 

8 0.8 10.3844 18.0202 0.423855 

9 0.9 15.0311 27.5336 0.45408 

10 1.0 21.6376 41.8485 0.482954 
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Question 17: Write down an algorithm (pseudo code )  to solve a first-order ODE using the 

Midpoint method (which is an RK method of order 2). 

Algorithm: To solve 𝑦′ = 𝑓(𝑥, 𝑦) , for 𝑎 ≤ 𝑥 ≤ 𝑏  and 𝑦(𝑎) = 𝛼  by approximating 𝑦 = 𝑦(𝑥)  at 

(𝑚 + 1)  equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚 , such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 = 𝑏 , ℎ = (𝑏 −

𝑎)/𝑚  and 𝑦(𝑥𝑖) = 𝑦𝑖  using the Midpoint method: For 𝑖 = 1,2,3,⋯ ,𝑚 

𝑦�̿� = 𝑦𝑖−1 +
ℎ

2
× 𝑓(𝑥𝑖−1, 𝑦𝑖−1)

𝑦𝑖 = 𝑦𝑖−1 + ℎ × 𝑓 (𝑥𝑖−1 +
ℎ

2
, 𝑦�̿�)

 

𝐈𝐍𝐏𝐔𝐓𝐒:  

{
 

 
𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of nodes (other than 𝑎) in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the initial condition 𝑦(𝑎)

A definition of the function 𝑓(𝑥, 𝑦) in an appropriate way 

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑊 = [𝑤0, 𝑤1, ⋯ , 𝑤𝑚]

𝑇: a real valued vector as the approximate solution 𝑤(𝑥𝑖) 
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚

 

Auxiliary Variables: {
ℎ: a real value as the step length in 𝑥 direction such that ℎ = (𝑏 − 𝑎)/𝑚 

𝑋 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚: a real valued vector to represent 𝑥𝑖𝑠
 

Step 1 Receive the inputs as stated above 

Step 2         Set ℎ = (𝑏 − 𝑎)/𝑚
Set 𝑥(0) = 𝑎

Set 𝑥(𝑚) = 𝑏

 

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚 − 1  
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ (Constructing interior mesh points, 𝑥𝑖  )  

 end for 

Step 4         Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎 (Setting the initial condition) 

Step 5 for 𝑖 = 1, 2,⋯ ,𝑚 

𝑓𝑣𝑎𝑙1 = 𝑓(𝑥(𝑖 − 1), 𝑤(𝑖 − 1))      (Computing the value 𝑓(𝑥𝑖−1, 𝑦𝑖−1)) 

𝑎𝑢𝑥 = 𝑤(𝑖 − 1)  + (ℎ/2) × 𝑓𝑣𝑎𝑙1 

𝑓𝑣𝑎𝑙2 = 𝑓(𝑥(𝑖 − 1) + (ℎ/2), 𝑎𝑢𝑥)   (Computing 𝑓(𝑥𝑖−1 + ℎ/2, 𝑎𝑢𝑥) ) 

𝑤(𝑖) = 𝑤(𝑖 − 1)  + ℎ × 𝑓𝑣𝑎𝑙2 

 end for 

Step 6 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ , 𝑤𝑚]
𝑇  

STOP. 
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Problem 10: Write down a MATLAB® program to solve the IVP, 𝑦′ = 4𝑦 + 4𝑥2 + 3𝑥, for 0 ≤ 𝑥 ≤

1, with initial condition 𝑦(0) = 𝛼 = 1/2, using the Midpoint method (which is an RK method of 

order 2). Computer the solution for 10 steps. At each step, compare the approximate solution with 

the exact solution, to be obtained by 𝑦(𝑥) = −𝑥2 −
5

4
𝑥 −

5

16
+

13

16
𝑒4𝑥, by finding the relative error 

between the two solutions. 

 

clear; clc ; 

 

% Constants 

a = 0.0 ;  % starting point of domain 

b = 1.0 ;  % ending point of domain 

alpha = 0.5 ;  % initial condition 

m = 10 ;  % number of steps 

 

% Inline function definitions 

fval = @(x,y) 4*y + 4*x^2 + 3*x ; 

fexact = @(x) -x^2 - 1.2*x - (5.0/16.0) + (13.0/16.0)*exp(4*x) ; 

 

h = (b - a) / m;  % computing step size 

 

x = zeros(1, m+1) ; 

y = zeros(1, m+1) ; 

 

x(1) = a ; 

 

for i = 2:m+1 

x(i) = x(i-1) + h ; 

end 

 

y(1) = alpha ;     % setting initial condition 

 

y = eulermid(x, y, h, fval) ;   % Call to the function 

 

% Printing Solutions 

for i = 1:m+1 

fprintf('Node= %2d\t', i-1); 

fprintf('x= %8.6f\t', x(i)); 

fprintf('y= %8.6f\t', y(i)); 

sol = fexact(x(i)); 

fprintf('Exact sol= %8.6f\t', sol); 

err = abs(sol - y(i)) / abs(sol); 

fprintf('Relative Error= %8.6f\n', err) ; 

end 
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% User-defined function for the Mid-point method 

 

function y = eulermid(x, y, h, fval) 

 

for i = 2:numel(x) 

fv = fval(x(i-1), y(i-1)) ; 

yhalf = y(i-1) + (h/2.0)*fv ;   

xmid = x(i-1) + (h/2.0) ; 

fv = fval(xmid, yhalf) ; 

y(i) = y(i-1) + h*fv ;      

end 

 

end 
∎ 

 

The results are shown in the following table. 

 

Steps 

𝑖 
Node 𝑥(𝑖) 

Numerical 
solution 𝑤𝑖 =

𝑤(𝑥𝑖) 

Exact solution 

𝑦𝑖 = 𝑦(𝑥𝑖) 

Error of computer 
program solution 

0 0 0.5 0.5 0 

1 0.1 0.756 0.769608 0.0176812 

2 0.2 1.17968 1.21575 0.0296705 

3 0.3 1.86113 1.93509 0.0382248 

4 0.4 2.93367 3.07184 0.0449802 

5 0.5 4.59463 4.84111 0.0509141 

6 0.6 7.13605 7.56383 0.0565563 

7 0.7 10.9902 11.7188 0.0621758 

8 0.8 16.7966 18.0202 0.0678992 

9 0.9 25.5022 27.5336 0.0737776 

10 1.0 38.5081 41.8485 0.0798221 
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Question 18: Write down an algorithm (pseudo code) to solve a first-order ODE using the RK 

method of order 2 (also known as the Modified or Improved Euler’s method). 

Algorithm: To solve 𝑦′ = 𝑓(𝑥, 𝑦) , for 𝑎 ≤ 𝑥 ≤ 𝑏  and 𝑦(𝑎) = 𝛼  by approximating 𝑦 = 𝑦(𝑥)  at 

(𝑚 + 1)  equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚 , such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 = 𝑏 , ℎ = (𝑏 −

𝑎)/𝑚  and 𝑦(𝑥𝑖) = 𝑦𝑖  using the Modified Euler’s method of order 2: For 𝑖 = 1,2,3,⋯ ,𝑚, 

𝐾1 = ℎ × 𝑓(𝑥𝑖−1, 𝑦𝑖−1)

𝐾2 = ℎ × 𝑓(𝑥𝑖 , 𝑦𝑖−1 + 𝐾1)

𝑦𝑖 = 𝑦𝑖−1 +
1

2
× [𝐾1 + 𝐾2]

 

𝐈𝐍𝐏𝐔𝐓𝐒:  

{
 

 
𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of nodes (other than 𝑎) in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the initial condition 𝑦(𝑎)

A definition of the function 𝑓(𝑥, 𝑦) in an appropriate way 

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑊 = [𝑤0, 𝑤1, ⋯ , 𝑤𝑚]

𝑇: a real valued vector as the approximate solution 𝑤(𝑥𝑖) 
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚

 

Auxiliary Variables: {
ℎ: a real value as the step length in 𝑥 direction such that ℎ = (𝑏 − 𝑎)/𝑚 

𝑋 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚: a real valued vector to represent 𝑥𝑖𝑠
 

Step 1 Receive the inputs as stated above 

Step 2         Set ℎ = (𝑏 − 𝑎)/𝑚
Set 𝑥(0) = 𝑎

Set 𝑥(𝑚) = 𝑏

 

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚 − 1  
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ      (Constructing interior mesh points, 𝑥𝑖  )  

 end for 

Step 4        Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎        (Setting the initial condition) 

Step 5 for 𝑖 = 1, 2,⋯ ,𝑚 

𝑘1 = ℎ × 𝑓(𝑥(𝑖 − 1), 𝑤(𝑖 − 1)) 

𝑘2 = ℎ × 𝑓(𝑥(𝑖), 𝑤(𝑖 − 1) + 𝑘1) 

𝑤(𝑖) = 𝑤(𝑖 − 1)  +  0.5 × (𝑘1 + 𝑘2) 

 end for 

Step 6 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ , 𝑤𝑚]
𝑇  

STOP. 
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Problem 11: Write down a MATLAB® program to solve the IVP, 𝑦′ = 4𝑦 + 4𝑥2 + 3𝑥, for 0 ≤ 𝑥 ≤

1 , with initial condition 𝑦(0) = 𝛼 = 1/2 , using the RK method of order 2 (also known as the 

Modified or Improved Euler’s method). Computer the solution for 10 steps. At each step, compare 

the approximate solution with the exact solution, to be obtained by 𝑦(𝑥) = −𝑥2 −
5

4
𝑥 −

5

16
+

13

16
𝑒4𝑥, 

by finding the relative error between the two solutions. 

 

clear ; clc ; 

 

% Constants 

a = 0.0 ;  % starting point of domain 

b = 1.0 ;  % ending point of domain 

alpha = 0.5 ;  % initial condition 

m = 10 ;  % number of steps 

 

% Inline function definitions 

fval = @(x,y) 4*y + 4*x^2 + 3*x ; 

fexact = @(x) -x^2 - 1.2*x - (5.0/16.0) + (13.0/16.0)*exp(4*x) ; 

 

h = (b - a) / m ;  % computing step size 

 

x = zeros(1, m+1) ; 

y = zeros(1, m+1) ; 

 

x(1) = a ; 

 

for i = 2:m+1 

x(i) = x(i-1) + h ; 

end 

 

y(1) = alpha ;     % setting initial condition 

 

y = eulerimp(x, y, h, fval) ;   % Call to the function 

 

% Printing Solutions 

for i = 1:m+1 

fprintf('Node= %2d\t', i-1) ; 

fprintf('x= %8.6f\t', x(i)) ; 

fprintf('y= %8.6f\t', y(i)) ; 

sol = fexact(x(i)) ; 

fprintf('Exact sol= %8.6f\t', sol) ; 

err = abs(sol - y(i)) / abs(sol) ; 

fprintf('Relative Error= %8.6f\n', err) ; 

end 
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% User-defined function for the Improved Euler method 

 

function y = eulerimp(x, y, h, fval) 

 

for i = 2:numel(x) 

fv = fval(x(i-1), y(i-1)) ; 

k1 = h*fv ; 

ynext =  y(i-1) + k1 ; 

fv = fval(x(i), ynext) ; 

k2 = h*fv ; 

y(i) = y(i-1) + 0.5*(k1+k2) ;   

end 

 

end 
∎ 

 

The results are shown in the following table. 

Steps 

𝑖 
Node 𝑥(𝑖) 

Numerical 
solution 𝑤𝑖 =

𝑤(𝑥𝑖) 

Exact solution 

𝑦𝑖 = 𝑦(𝑥𝑖) 

Error of computer 
program solution 

0 0 0.5 0.5 0 

1 0.1 0.757 0.769608 0.0163818 

2 0.2 1.18216 1.21575 0.0276306 

3 0.3 1.8658 1.93509 0.0358113 

4 0.4 2.94158 3.07184 0.0424044 

5 0.5 4.60734 4.84111 0.0482887 

6 0.6 7.15586 7.56383 0.0539372 

7 0.7 11.0205 11.7188 0.0595885 

8 0.8 16.8425 18.0202 0.0653535 

9 0.9 25.5711 27.5336 0.0712755 

10 1.0 38.611 41.8485 0.0773618 

∎ 
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Question 19: Write down an algorithm (pseudo code) to solve a first-order ODE using the RK 

method of order 4. 

Algorithm: To solve 𝑦′ = 𝑓(𝑥, 𝑦) , for 𝑎 ≤ 𝑥 ≤ 𝑏  and 𝑦(𝑎) = 𝛼  by approximating 𝑦 = 𝑦(𝑥)  at 

(𝑚 + 1)  equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚 , such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 = 𝑏 , ℎ = (𝑏 −

𝑎)/𝑚  and 𝑦(𝑥𝑖) = 𝑦𝑖  using the RK method of order 4: For 𝑖 = 1,2,3,⋯ ,𝑚 

𝐾1 = ℎ × 𝑓(𝑥𝑖−1, 𝑦𝑖−1)

𝐾2 = ℎ × 𝑓(𝑥𝑖−1 + 0.5ℎ, 𝑦𝑖−1 + 0.5𝐾1)

𝐾3 = ℎ × 𝑓(𝑥𝑖−1 + 0.5ℎ, 𝑦𝑖−1 + 0.5𝐾2)

𝐾4 = ℎ × 𝑓(𝑥𝑖 , 𝑦𝑖−1 + 𝐾3)

𝑦𝑖 = 𝑦𝑖−1 +
1

6
× [𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4]

 

𝐈𝐍𝐏𝐔𝐓𝐒:  

{
 

 
𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of nodes (other than 𝑎) in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the initial condition 𝑦(𝑎)

A definition of the function 𝑓(𝑥, 𝑦) in an appropriate way 

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑊 = [𝑤0, 𝑤1, ⋯ , 𝑤𝑚]

𝑇: a real valued vector as the approximate solution 𝑦(𝑥𝑖) 
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚

 

Auxiliary Variables: {
ℎ: a real value as the step length in 𝑥 direction such that ℎ = (𝑏 − 𝑎)/𝑚 

𝑋 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚: a real valued vector to represent 𝑥𝑖𝑠
 

Step 1 Receive the inputs as stated above 

Step 2         Set ℎ = (𝑏 − 𝑎)/𝑚
Set 𝑥(0) = 𝑎

Set 𝑥(𝑚) = 𝑏

 

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚 − 1  
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ     (Constructing interior mesh points, 𝑥𝑖  ) 

 end for 

Step 4        Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎        (Setting the initial condition) 

Step 5 for 𝑖 = 1, 2,⋯ ,𝑚 

𝑘1 = ℎ × 𝑓(𝑥(𝑖 − 1), 𝑤(𝑖 − 1)) 

𝑘2 = ℎ × 𝑓(𝑥(𝑖 − 1) + 0.5 × ℎ,𝑤(𝑖 − 1) + 0.5 × 𝑘1) 

𝑘3 = ℎ × 𝑓(𝑥(𝑖 − 1) + 0.5 × ℎ,𝑤(𝑖 − 1) + 0.5 × 𝑘2) 

𝑘4 = ℎ × 𝑓(𝑥(𝑖), 𝑤(𝑖 − 1) + 𝑘3) 

𝑤(𝑖) = 𝑤(𝑖 − 1)  + (𝑘1 + 2 × 𝑘2 + 2 × 𝑘3 + 𝑘4)/6 

 end for 

Step 6 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ , 𝑤𝑚]
𝑇  

STOP. 
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Problem 12: Write down a MATLAB® program to solve the IVP, 𝑦′ = 4𝑦 + 4𝑥2 + 3𝑥, for 0 ≤ 𝑥 ≤

1, with initial condition 𝑦(0) = 𝛼 = 1/2, using the RK method of order 4. Computer the solution for 

10 steps. At each step, compare the approximate solution with the exact solution, to be obtained by 

𝑦(𝑥) = −𝑥2 −
5

4
𝑥 −

5

16
+

13

16
𝑒4𝑥, by finding the relative error between the two solutions. 

 

clear ; clc ; 

 

% Constants 

a = 0.0 ;  % starting point of domain 

b = 1.0 ;  % ending point of domain 

alpha = 0.5 ;  % initial condition 

m = 10 ;  % number of steps 

 

% Inline function definitions 

fval = @(x,y) 4*y + 4*x^2 + 3*x ; 

fexact = @(x) -x^2 - 1.2*x - (5.0/16.0) + (13.0/16.0)*exp(4*x) ; 

 

h = (b - a) / m ;  % computing step size 

 

x = zeros(1, m+1) ; 

y = zeros(1, m+1) ; 

 

x(1) = a ; 

 

for i = 2:m+1 

x(i) = x(i-1) + h ; 

end 

 

y(1) = alpha ;     % setting initial condition 

 

y = rk4(x, y, h, fval) ;   % Call to the function 

 

 

% Printing Solutions 

for i = 1:m+1 

fprintf('Node= %2d\t', i-1) ; 

fprintf('x= %8.6f\t', x(i)) ; 

fprintf('y= %8.6f\t', y(i)) ; 

sol = fexact(x(i)) ; 

fprintf('Exact sol= %8.6f\t', sol) ; 

err = abs(sol - y(i)) / abs(sol) ; 

fprintf('Relative Error= %8.6f\n', err) ; 

end 
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% User-defined function for the RK4 method 

 

function y = rk4(x, y, h, fval) 

 

for i = 2:numel(x) 

k1 = h * fval(x(i-1), y(i-1)) ; 

k2 = h * fval(  x(i-1) + h*0.5, y(i-1) + k1*0.5 ) ; 

k3 = h * fval(  x(i-1) + h*0.5, y(i-1) + k2*0.5 ) ; 

k4 = h * fval(  x(i) , y(i-1) + k3 ) ; 

y(i) = y(i-1) + (k1+ 2*k2 + 2*k3 + k4)/6.0 ;   

end 

end 
∎ 

The results are shown in the following table. 

Steps 

𝑖 
Node 𝑥(𝑖) 

Numerical 
solution 

𝑤𝑖 = 𝑤(𝑥𝑖) 

Exact solution 

𝑦𝑖 = 𝑦(𝑥𝑖) 

Error of computer 
program solution 

0 0 0.5 0.5 0 

1 0.1 0.764547 0.769608 0.00657595 

2 0.2 1.20556 1.21575 0.00838021 

3 0.3 1.91966 1.93509 0.00797517 

4 0.4 3.05096 3.07184 0.00679678 

5 0.5 4.81444 4.84111 0.00550804 

6 0.6 7.53081 7.56383 0.00436537 

7 0.7 11.6785 11.7188 0.00343964 

8 0.8 17.9711 18.0202 0.00272617 

9 0.9 27.4731 27.5336 0.00219447 

10 1.0 41.7728 41.8485 0.0018091 

 

Question 20: Write down an algorithm (pseudo code) to solve a first-order ODE using the Adams-

Bashforth method of order 4. 

Algorithm: To solve 𝑦′ = 𝑓(𝑥, 𝑦) , for 𝑎 ≤ 𝑥 ≤ 𝑏  and 𝑦(𝑎) = 𝛼  by approximating 𝑦 = 𝑦(𝑥)  at 

(𝑚 + 1)  equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚,such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 = 𝑏,  ℎ = (𝑏 −

𝑎)/𝑚   and 𝑦(𝑥𝑖) = 𝑦𝑖 . Having 𝑦(𝑥0) = 𝛼0 , 𝑦(𝑥1) = 𝛼1 , 𝑦(𝑥2) = 𝛼2 , and 𝑦(𝑥3) = 𝛼3 , compute 𝑦𝑖  

using the 4-step explicit Adams-Bashforth method of order 4:  For 𝑖 = 4,5,6,⋯ ,𝑚, 
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𝑦𝑖 = 𝑦𝑖−1 +
ℎ

24
× [55𝑓(𝑥𝑖−1, 𝑦𝑖−1) − 59𝑓(𝑥𝑖−2, 𝑦𝑖−2) + 37𝑓(𝑥𝑖−3, 𝑦𝑖−3) − 9𝑓(𝑥𝑖−4, 𝑦𝑖−4)] 

𝐈𝐍𝐏𝐔𝐓𝐒:  

{
 

 
𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of nodes (other than 𝑎) in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the initial condition 𝑦(𝑎)

A definition of the function 𝑓(𝑥, 𝑦) in an appropriate way 

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑊 = [𝑤0, 𝑤1, ⋯ , 𝑤𝑚]

𝑇: a real valued vector as the approximate solution 𝑤(𝑥𝑖) 
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚

 

Auxiliary Variables: {
ℎ: a real value as the step length in 𝑥 direction such that ℎ = (𝑏 − 𝑎)/𝑚 

𝑋 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚: a real valued vector to represent 𝑥𝑖𝑠
 

Step 1 Receive the inputs as stated above 

Step 2         Set ℎ = (𝑏 − 𝑎)/𝑚
Set 𝑥(0) = 𝑎

Set 𝑥(𝑚) = 𝑏

 

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚 − 1  
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ     (Constructing interior mesh points, 𝑥𝑖  ) 

 end for 

Step 4            Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎        (Setting the initial condition) 

Step 5         Obtain or compute (using some other basic method for ODEs) the following: 

 𝑤(1) = 𝑎𝑙𝑝ℎ𝑎1 

 𝑤(2) = 𝑎𝑙𝑝ℎ𝑎2 

 𝑤(3) = 𝑎𝑙𝑝ℎ𝑎3 

Step 5 for 𝑖 = 4, 5, 6,⋯ ,𝑚 

𝑓𝑣1 = 𝑓(𝑥(𝑖 − 1), 𝑤(𝑖 − 1)) (Computing the value 𝑓(𝑥𝑖−1, 𝑦𝑖−1)) 

𝑓𝑣2 = 𝑓(𝑥(𝑖 − 2), 𝑤(𝑖 − 2)) (Computing the value 𝑓(𝑥𝑖−2, 𝑦𝑖−2)) 

𝑓𝑣3 = 𝑓(𝑥(𝑖 − 3), 𝑤(𝑖 − 3)) (Computing the value 𝑓(𝑥𝑖−3, 𝑦𝑖−3)) 

𝑓𝑣4 = 𝑓(𝑥(𝑖 − 4), 𝑤(𝑖 − 4)) (Computing the value 𝑓(𝑥𝑖−4, 𝑦𝑖−4)) 

𝑤(𝑖) = 𝑤(𝑖 − 1)  + (
ℎ

24
) × (55𝑓𝑣1 − 59𝑓𝑣2 + 37𝑓𝑣3 − 9𝑓𝑣4) 

 

 end for 

Step 6 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ , 𝑤𝑚]
𝑇 

STOP. 
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Problem 13: Write down a MATLAB® program to solve the IVP, 𝑦′ = 4𝑦 + 4𝑥2 + 3𝑥, for 0 ≤ 𝑥 ≤

1, with initial condition 𝑦(0) = 𝛼 = 1/2, using the Adams-Bashforth method of order 4. Compute 

the solution for 10 steps. For computing the approximate solution at the first three steps, use the 

RK4 method. At each step, compare the approximate solution with the exact solution, to be obtained 

by 𝑦(𝑥) = −𝑥2 −
5

4
𝑥 −

5

16
+

13

16
𝑒4𝑥, by finding the relative error between the two solutions. 

 

clear ; clc  ; 

 

% Constants 

a = 0.0 ;  % starting point of domain 

b = 1.0 ;  % ending point of domain 

alpha = 0.5 ;  % initial condition 

m = 10 ;  % number of steps 

 

% Inline function definitions 

fval = @(x,y) 4*y + 4*x^2 + 3*x ; 

fexact = @(x) -x^2 - 1.2*x - (5.0/16.0) + (13.0/16.0)*exp(4*x) ; 

 

 

h = (b - a) / m ; % computing step size 

 

x = zeros(1, m+1) ; 

y = zeros(1, m+1) ; 

 

x(1) = a ; 

for i = 2:m+1 

x(i) = x(i-1) + h ; 

end 

 

y(1) = alpha ;  % setting initial condition 

 

y = rk4(x, y, h, fval) ; % Call to the function RK4 

y = ab4(x, y, h, fval) ; % Call to the function ab4 

 

% Printing Solutions 

for i = 1:m+1 

fprintf('Node= %2d\t', i-1) ; 

fprintf('x= %8.6f\t', x(i)) ; 

fprintf('y= %8.6f\t', y(i)) ; 

sol = fexact(x(i)) ; 

fprintf('Exact sol= %8.6f\t', sol) ; 

err = abs(sol - y(i)) / abs(sol) ; 

fprintf('Relative Error= %8.6f\n', err) ; 

end 
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% User-defined function for the Adams-Bashforth method (order 4) 

 

function y = ab4(x, y, h, fval) 

for i = 5:numel(x) 

 

k1 = fval(x(i-1), y(i-1)) ; 

k2 = fval(  x(i-2) , y(i-2) ) ; 

k3 = fval(  x(i-3) , y(i-3) ) ; 

k4 = fval(  x(i-4) , y(i-4) ) ; 

 

y(i) = y(i-1) + (h/24.0)*(55*k1 - 59*k2 + 37*k3 - 9*k4) ;   

end 

end 

 

 

% User-defined function for the RK4 method 

 

function y = rk4(x, y, h, fval) 

for i = 2:4 

k1 = h * fval(x(i-1), y(i-1)) ; 

k2 = h * fval(  x(i-1) + h*0.5, y(i-1) + k1*0.5 ) ; 

k3 = h * fval(  x(i-1) + h*0.5, y(i-1) + k2*0.5 ) ; 

k4 = h * fval(  x(i) , y(i-1) + k3 ) ; 

 

y(i) = y(i-1) + (k1+ 2*k2 + 2*k3 + k4)/6.0 ;   

end 

end 
∎ 

The results are shown in the following table. 

Steps 

𝑖 
Node 𝑥(𝑖) 

Numerical 
solution 𝑤𝑖 =

𝑤(𝑥𝑖) 

Exact solution 

𝑦𝑖 = 𝑦(𝑥𝑖) 

Error of computer 
program solution 

0 0 0.5 0.5 0 

1 0.1 0.764547 0.769608 0.00657595 

2 0.2 1.20556 1.21575 0.00838021 

3 0.3 1.91966 1.93509 0.00797517 

4 0.4 3.04469 3.07184 0.00883945 

5 0.5 4.79306 4.84111 0.00992469 

6 0.6 7.48205 7.56383 0.0108119 

7 0.7 11.5814 11.7188 0.011726 

8 0.8 17.7896 18.0202 0.0127952 

9 0.9 27.1477 27.5336 0.0140137 

10 1.0 41.2059 41.8485 0.0153558 
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Question 21: Write down an algorithm (pseudo code) to solve a first-order ODE using the Adams-

Bashforth-Moulton method of order 4. 

Algorithm: To solve 𝑦′ = 𝑓(𝑥, 𝑦) , for 𝑎 ≤ 𝑥 ≤ 𝑏  and 𝑦(𝑎) = 𝛼  by approximating 𝑦 = 𝑦(𝑥)  at 

(𝑚 + 1)  equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚,such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 = 𝑏,  ℎ = (𝑏 −

𝑎)/𝑚   and 𝑦(𝑥𝑖) = 𝑦𝑖 . Having 𝑦(𝑥0) = 𝛼0 , 𝑦(𝑥1) = 𝛼1 , 𝑦(𝑥2) = 𝛼2 , and 𝑦(𝑥3) = 𝛼3 , compute 𝑦𝑖  

using  

(1) the 4-step explicit Adams-Bashforth method of order 4 as the predictor:  

𝑦𝑖 = 𝑦𝑖−1 +
ℎ

24
× [55𝑓(𝑥𝑖−1, 𝑦𝑖−1) − 59𝑓(𝑥𝑖−2, 𝑦𝑖−2) + 37𝑓(𝑥𝑖−3, 𝑦𝑖−3) − 9𝑓(𝑥𝑖−4, 𝑦𝑖−4)] 

 (2) the 3-step implicit Adams-Moulton method of order 4 as the corrector: 

𝑦𝑖 = 𝑦𝑖−1 +
ℎ

24
× [9𝑓(𝑥𝑖 , 𝑦𝑖) + 19𝑓(𝑥𝑖−1, 𝑦𝑖−1) − 5𝑓(𝑥𝑖−2, 𝑦𝑖−2) + 𝑓(𝑥𝑖−3, 𝑦𝑖−3)] 

for 𝑖 = 4, 5, 6,⋯ ,𝑚. 

𝐈𝐍𝐏𝐔𝐓𝐒:  

{
 

 
𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]

𝑚: an integer as the number of nodes (other than 𝑎) in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the initial condition 𝑦(𝑎)

A definition of the function 𝑓(𝑥, 𝑦) in an appropriate way 

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑊 = [𝑤0, 𝑤1, ⋯ , 𝑤𝑚]

𝑇: a real valued vector as the approximate solution 𝑦(𝑥𝑖) 
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚

 

Auxiliary Variables: {
ℎ: a real value as the step length in 𝑥 direction such that ℎ = (𝑏 − 𝑎)/𝑚 

𝑋 = (𝑥𝑖) for 𝑖 = 0, 1,⋯ ,𝑚: a real valued vector to represent 𝑥𝑖𝑠
 

Step 1 Receive the inputs as stated above 

Step 2         Set ℎ = (𝑏 − 𝑎)/𝑚
Set 𝑥(0) = 𝑎

Set 𝑥(𝑚) = 𝑏

 

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚 − 1  
Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ     (Constructing interior mesh points, 𝑥𝑖  ) 

 end for 

Step 4            Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎        (Setting the initial condition) 

Step 5         Obtain or compute (using some other basic method for ODEs) the following: 

 𝑤(1) = 𝑎𝑙𝑝ℎ𝑎1 

 𝑤(2) = 𝑎𝑙𝑝ℎ𝑎2 

 𝑤(3) = 𝑎𝑙𝑝ℎ𝑎3 
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Step 5 for 𝑖 = 4, 5, 6,⋯ ,𝑚 

𝑓𝑣1 = 𝑓(𝑥(𝑖 − 1), 𝑤(𝑖 − 1)) (Computing the value 𝑓(𝑥𝑖−1, 𝑦𝑖−1)) 

𝑓𝑣2 = 𝑓(𝑥(𝑖 − 2), 𝑤(𝑖 − 2)) (Computing the value 𝑓(𝑥𝑖−2, 𝑦𝑖−2)) 

𝑓𝑣3 = 𝑓(𝑥(𝑖 − 3), 𝑤(𝑖 − 3)) (Computing the value 𝑓(𝑥𝑖−3, 𝑦𝑖−3)) 

𝑓𝑣4 = 𝑓(𝑥(𝑖 − 4), 𝑤(𝑖 − 4)) (Computing the value 𝑓(𝑥𝑖−4, 𝑦𝑖−4)) 

𝑤(𝑖) = 𝑤(𝑖 − 1)  + (
ℎ

24
) × (55𝑓𝑣1 − 59𝑓𝑣2 + 37𝑓𝑣3 − 9𝑓𝑣4) 

 

𝑓𝑣 = 𝑓(𝑥(𝑖), 𝑤(𝑖)) (Computing the value 𝑓(𝑥𝑖−4, 𝑦𝑖−4)) 

𝑤(𝑖) = 𝑤(𝑖 − 1)  + (
ℎ

24
) × (9𝑓𝑣 + 19𝑓𝑣1 − 5𝑓𝑣2 + 𝑓𝑣3) 

 

 end for 

Step 6 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ , 𝑤𝑚]
𝑇 

STOP. 

 

 

Problem 14: Write down a MATLAB® program to solve the IVP, 𝑦′ = 4𝑦 + 4𝑥2 + 3𝑥, for 0 ≤ 𝑥 ≤

1, with initial condition 𝑦(0) = 𝛼 = 1/2, using the Adams-Bashforth-Moulton method of order 4. 

Compute the solution for 10 steps. For computing the approximate solution at the first three steps, 

use the RK4 method. At each step, compare the approximate solution with the exact solution, to be 

obtained by 𝑦(𝑥) = −𝑥2 −
5

4
𝑥 −

5

16
+

13

16
𝑒4𝑥, by finding the relative error between the two solutions. 

 

clear ; clc ; 

 

% Constants 

a = 0.0 ;  % starting point of domain 

b = 1.0 ;           % ending point of domain 

alpha = 0.5 ;       % initial condition 

m = 10 ;            % number of steps 

 

 

% Inline function definitions 

fval = @(x,y) 4*y + 4*x^2 + 3*x ; 

fexact = @(x) -x^2 - 1.2*x - (5.0/16.0) + (13.0/16.0)*exp(4*x) ; 

 

 

h = (b - a) / m;  % computing step size 

 

x = zeros(1, m+1) ; 

y = zeros(1, m+1) ; 
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x(1) = a ; 

 

for i = 2:m+1 

x(i) = x(i-1) + h ; 

end 

 

y(1) = alpha ;     % setting initial condition 

 

y = rk4(x, y, h, fval) ;    % Call to the function RK4 

y = ab4m3(x, y, h, fval) ;   % Call to the function ab4m3 

 

 

 

% Printing Solutions 

for i = 1:m+1 

fprintf('Node= %2d\t', i-1) ; 

fprintf('x= %8.6f\t', x(i)) ; 

fprintf('y= %8.6f\t', y(i)) ; 

sol = fexact(x(i)) ; 

fprintf('Exact sol= %8.6f\t', sol) ; 

err = abs(sol - y(i)) / abs(sol) ; 

fprintf('Relative Error= %8.6f\n', err) ; 

end 

 

 

% User-defined function for the Adams-Bashforth-Moulten method (order 4) 

 

function y = ab4m3(x, y, h, fval) 

 

for i = 5:numel(x) 

 

fv1 = fval( x(i-1) , y(i-1) ) ; 

fv2 = fval( x(i-2) , y(i-2) ) ; 

fv3 = fval( x(i-3) , y(i-3) ) ; 

fv4 = fval( x(i-4) , y(i-4) ) ; 

   

y(i) = y(i-1) + (h/24.0)*(55*fv1 - 59*fv2 + 37*fv3 - 9*fv4) ; 

   

fv = fval( x(i) , y(i)) ; 

   

y(i) = y(i-1) + (h/24.0)*(9*fv + 19*fv1 - 5*fv2 + fv3) ; 

end 

end 
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% User-defined function for the RK4 method 

 

function y = rk4(x, y, h, fval) 

for i = 2:4 

k1 = h * fval(x(i-1), y(i-1)) ; 

k2 = h * fval(  x(i-1) + h*0.5, y(i-1) + k1*0.5 ) ; 

k3 = h * fval(  x(i-1) + h*0.5, y(i-1) + k2*0.5 ) ; 

k4 = h * fval(  x(i) , y(i-1) + k3 ) ; 

 

y(i) = y(i-1) + (k1+ 2*k2 + 2*k3 + k4)/6.0 ;   

end 

end 
∎ 

The results are shown in the following table. 

Steps 

𝑖 
Node 𝑥(𝑖) 

Numerical 
solution 𝑤𝑖 =

𝑤(𝑥𝑖) 

Exact solution 

𝑦𝑖 = 𝑦(𝑥𝑖) 

Error of computer 
program solution 

0 0 0.5 0.5 0 
1 0.1 0.764547 0.769608 0.00657595 
2 0.2 1.20556 1.21575 0.00838021 
3 0.3 1.91966 1.93509 0.00797517 
4 0.4 3.05087 3.07184 0.00682605 
5 0.5 4.81417 4.84111 0.00556428 
6 0.6 7.53021 7.56383 0.0044448 
7 0.7 11.6773 11.7188 0.00354036 
8 0.8 17.9689 18.0202 0.00284706 
9 0.9 27.4693 27.5336 0.00233489 

10 1.0 41.7661 41.8485 0.00196874 

 

Problem 15: Write a MATLAB® program to solve the following system of two ODEs for the 

functions 𝑦1 = 𝑦1(𝑥) and 𝑦2 = 𝑦2(𝑥), where 𝑥 ∈ [0,1]: 

𝑦1
′ = 𝑦1𝑦2 − 2 

𝑦2
′ = 2𝑦1 − 𝑦2

3 

With initial conditions: 

𝑦1(0) = 2.0 

𝑦2(0) = 0.3 

Use the RK4 method of order 4 for 5 steps. 
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For 5 steps the domain is discretized as 

ℎ =
𝑏 − 𝑎

𝑚
=
1.0 − 0.0

5
= 0.2 

𝑥0 = 0,   𝑥1 = 0.2, 𝑥2 = 0.4, 𝑥3 = 0.6, 𝑥4 = 0.8, 𝑥5 = 1.0. 

According to the initial conditions: 

𝑤10 = 𝑦10 = 𝑦1(𝑥0) = 𝑦1(0) = 2.0 

𝑤20 = 𝑦20 = 𝑦2(𝑥0) = 𝑦2(0) = 0.3 

The problem is to find approximations 𝑤1𝑖  to 𝑦1𝑖 = 𝑦1(𝑥𝑖) and 𝑤2𝑖  to 𝑦2𝑖 = 𝑦2(𝑥𝑖), for 𝑖 = 1,2,3,4,5. 

 

The MATLAB® program for the solution is as follows. 

 

clear ; clc ; 

 

% Constants 

a = 0.0 ;  % starting point of domain 

b = 1.0 ;  % ending point of domain 

alpha1 = 2.0 ; % initial condition for first variable y1=y1(x) 

alpha2 = 0.3 ; % initial condition for second variable y2=y2(x) 

m = 5 ;  % number of steps 

 

% Inline function definitions 

f1 = @(x,y1,y2) y1*y2 -2 ; 

f2 = @(x, y1, y2) 2*y1 - y2^3 ; 

 

 

h = (b - a) / m ;  % computing step size 

 

x = zeros(1, m+1) ; 

w1 = zeros(1, m+1) ; 

w2 = zeros(1, m+1) ; 

 

x(1) = a ; 

x(m+1) = b ; 

 

for i = 2:m 

x(i) = x(i-1) + h ; 

end 

 

w1(1) = alpha1 ; % setting initial condition for y1 

w2(1) = alpha2 ; % setting initial condition for y2 



Numerical Solution of Ordinary Differential Equations (ODEs) 151 

 

 
 

% Call to the solver of ODEs system of 2 equations 

 

[w1, w2] = rk4system2(x, w1, w2, h, f1, f2) ; 

 

 

 

% Printing Solutions 

 

for i = 1:m+1 

fprintf('Node= %3d\t', i-1) ; 

fprintf('x= %8.6f\t', x(i)) ; 

fprintf('w1= %8.6f\t', w1(i)) ; 

fprintf('w2= %8.6f\n', w2(i)) ; 

end 

 

 

% User-defined function for ODE system of 2 equations using RK4 

 

function [w1, w2] = rk4system2(x, w1, w2, h, f1, f2) 

 

for i = 2:numel(x) 

 

k11 = h * f1(x(i-1), w1(i-1), w2(i-1)) ; 

k21 = h * f2(x(i-1), w1(i-1), w2(i-1)) ; 

 

k12 = h * f1( x(i-1)+0.5*h, w1(i-1)+0.5*k11, w2(i-1) + 0.5*k21) ; 

k22 = h * f2(x(i-1) + 0.5*h, w1(i-1) + 0.5*k11, w2(i-1) +     

0.5*k21) ; 

 

k13 = h * f1(x(i-1) + 0.5*h, w1(i-1) + 0.5*k12, w2(i-1) + 

0.5*k22) ; 

k23 = h * f2(x(i-1) + 0.5*h, w1(i-1) + 0.5*k12, w2(i-1) + 

0.5*k22) ; 

 

k14 = h * f1(x(i-1) + h, w1(i-1) + k13, w2(i-1) + k23) ; 

k24 = h * f2(x(i-1) + h, w1(i-1) + k13, w2(i-1) + k23) ; 

 

w1(i) = w1(i-1) + (k11 + 2*k12 + 2*k13 + k14) / 6.0 ; 

w2(i) = w2(i-1) + (k21 + 2*k22 + 2*k23 + k24) / 6.0 ; 

 

end 

end 

 
∎ 
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The results are shown in the following table. 

 

Steps 

𝑖 
Node 𝑥(𝑖) 

Numerical 
solution 

𝑤1𝑖 = 𝑤1(𝑥𝑖) 

Numerical 
solution 

𝑤2𝑖 = 𝑤2(𝑥𝑖) 

0 0.0 2 0.3 

1 0.2 1.815132 0.985522 

2 0.4 1.90079 1.36485 

3 0.6 2.08065 1.52571 

4 0.8 2.38251 1.62306 

5 1.0 2.85383 1.72393 

∎ 

Problem 16: Write a MATLAB® program to solve the following system of two ODEs for the 

functions 𝑦1 = 𝑦1(𝑥), 𝑦2 = 𝑦2(𝑥), and 𝑦3 = 𝑦3(𝑥), where 𝑥 ∈ [0,1]: 

𝑦1
′ = 𝑦1 + 3𝑦2 − 3𝑦3 + 𝑒

−𝑥 

𝑦2
′ = 2𝑦2 + 𝑦3 − 3𝑒

−𝑥 

𝑦3
′ = 𝑦1 + 2𝑦2 + 𝑒

−𝑥 

With initial conditions: 

𝑦1(0) = 2.5 

𝑦2(0) = −1.5 

𝑦3(0) = −1.0 

Use the RK4 method of order 4 for 10 steps. 

For 10 steps, the domain is discretized as 

ℎ =
𝑏 − 𝑎

𝑚
=
1.0 − 0.0

10
= 0.1 

𝑥0 = 0, 𝑥1 = 0.1, 𝑥2 = 0.2, 𝑥3 = 0.3, 𝑥4 = 0.4, 𝑥5 = 0.5, 𝑥6 = 0.6, 𝑥7 = 0.7, 𝑥8 = 0.8, 𝑥9 = 0.9, 𝑥10 = 1.0. 

According to the initial conditions: 

𝑤10 = 𝑦10 = 𝑦1(𝑥0) = 𝑦1(0) = 2.5 

𝑤20 = 𝑦20 = 𝑦2(𝑥0) = 𝑦2(0) = −1.5 

𝑤30 = 𝑦30 = 𝑦3(𝑥0) = 𝑦3(0) = −1.0 

The problem is to find approximations 𝑤1𝑖  to 𝑦1𝑖 = 𝑦1(𝑥𝑖) , 𝑤2𝑖  to 𝑦2𝑖 = 𝑦2(𝑥𝑖) , and 𝑤3𝑖  to 𝑦3𝑖 =

𝑦3(𝑥𝑖), for 𝑖 = 1,2,⋯ , 10. 
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The MATLAB® program for the solution is as follows. 

clear ; clc ; 

 

% Constants 

a = 0.0 ;  % starting point of domain 

b = 1.0 ;  % ending point of domain 

alpha1 = 2.5 ; % initial condition for first variable y1=y1(x) 

alpha2 = -1.5 ; % initial condition for second variable y2=y2(x) 

alpha3 = -1.0 ; % initial condition for third variable y3=y3(x) 

m = 10 ;  % number of steps 

 

% Inline function definitions 

f1 = @(x, y1, y2, y3) y1 + 3*y2 - 3*y3 + exp(-x) ; 

f2 = @(x, y1, y2, y3) 2*y2 + y3 - 3*exp(-x) ; 

f3 = @(x, y1, y2, y3) y1 + 2*y2 + exp(-x) ; 

 

 

h = (b - a) / m ;  % computing step size 

 

x = zeros(1, m+1) ; 

w1 = zeros(1, m+1) ; 

w2 = zeros(1, m+1) ; 

w3 = zeros(1, m+1) ; 

 

x(1) = a ; 

x(m+1) = b ; 

 

for i = 2:m 

x(i) = x(i-1) + h ; 

end 

 

w1(1) = alpha1 ;   % setting initial condition for y1 

w2(1) = alpha2 ;   % setting initial condition for y2 

w3(1) = alpha3 ;   % setting initial condition for y3 

 

% Call to the solver of ODEs system of 3 equations 

 

[w1, w2, w3] = rk4system3(x, w1, w2, w3, h, f1, f2, f3) ; 

 

% Printing Solutions 

 

for i = 1:m+1 

fprintf('Node= %3d\t', i-1) ; 

fprintf('x= %8.6f\t', x(i)) ; 
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fprintf('w1= %8.6f\t', w1(i)) ; 

fprintf('w2= %8.6f\t', w2(i)) ; 

fprintf('w3= %8.6f\n', w3(i)) ; 

end 

 

 

% User-defined function for ODE system of 3 equations using RK4 

 

function [w1, w2, w3] = rk4system3(x, w1, w2, w3, h, f1, f2, f3) 

 

for i = 2:numel(x) 

 

k11 = h * f1(x(i-1), w1(i-1), w2(i-1), w3(i-1)) ; 

k21 = h * f2(x(i-1), w1(i-1), w2(i-1), w3(i-1)) ; 

k31 = h * f3(x(i-1), w1(i-1), w2(i-1), w3(i-1)) ; 

 

 

k12 = h * f1(x(i-1) + 0.5*h, w1(i-1) + 0.5*k11, w2(i-1) + 0.5*k21, w3(i-

1) + 0.5*k31) ; 

k22 = h * f2(x(i-1) + 0.5*h, w1(i-1) + 0.5*k11, w2(i-1) + 0.5*k21, w3(i-

1) + 0.5*k31) ; 

k32 = h * f3(x(i-1) + 0.5*h, w1(i-1) + 0.5*k11, w2(i-1) + 0.5*k21, w3(i-

1) + 0.5*k31) ; 

 

 

k13 = h * f1(x(i-1) + 0.5*h, w1(i-1) + 0.5*k12, w2(i-1) + 0.5*k22, w3(i-

1) + 0.5*k32) ; 

k23 = h * f2(x(i-1) + 0.5*h, w1(i-1) + 0.5*k12, w2(i-1) + 0.5*k22, w3(i-

1) + 0.5*k32) ; 

k33 = h * f3(x(i-1) + 0.5*h, w1(i-1) + 0.5*k12, w2(i-1) + 0.5*k22, w3(i-

1) + 0.5*k32) ; 

 

 

k14 = h * f1(x(i-1) + h, w1(i-1) + k13, w2(i-1) + k23, w3(i-1) + k33) ; 

k24 = h * f2(x(i-1) + h, w1(i-1) + k13, w2(i-1) + k23, w3(i-1) + k33) ; 

k34 = h * f3(x(i-1) + h, w1(i-1) + k13, w2(i-1) + k23, w3(i-1) + k33) ; 

 

 

w1(i) = w1(i-1) + (k11 + 2*k12 + 2*k13 + k14) / 6.0 ; 

w2(i) = w2(i-1) + (k21 + 2*k22 + 2*k23 + k24) / 6.0 ; 

w3(i) = w3(i-1) + (k31 + 2*k32 + 2*k33 + k34) / 6.0 ; 

 

end 

end 
∎ 
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The results are shown in the following table. 

 

Steps 

𝑖 
Node 𝑥(𝑖) 

Numerical 

solution 

𝑤1𝑖 = 𝑤1(𝑥𝑖) 

Numerical 

solution 

𝑤2𝑖 = 𝑤2(𝑥𝑖) 

Numerical 

solution 

𝑤3𝑖 = 𝑤3(𝑥𝑖) 

0 0.0 2.5 -1.5 -1.0 

1 0.2 2.45262 -3.16688 -1.22125 

2 0.4 1.43325 -5.68432 -2.39815 

3 0.6 -0.713292 -9.79838 -5.20827 

4 0.8 -4.26124 -16.8302 -10.7742 

5 1.0 -9.74139 -29.1044 -21.007 

∎ 

Problem 17: Write a MATLAB® program to find the numerical solution of the ODE, 𝑥𝑦′′ − 𝑦′ +

8𝑥3𝑦3 = 0 with initial condition 𝑦(1) = 0.5 and 𝑦′(1) = −0.5 for 𝑦(1.1). Consider the step size of 

ℎ = 0.1, thus only step is required. i.e., 𝑚 = 1. Use the exact solution, 𝑦 = 1 (1 + 𝑥2)⁄ , to find the 

error in the numerical solution. 

For the solution, consider 

𝑦′ = 𝑧  

Then, the given ODE becomes 

𝑧′ =
(𝑧 − 8𝑥3𝑦3)

𝑥
 

Thus, the second-order IVP is essentially converted to the problem of a first-order system of ODEs 

of comprising the two equations subject to the initial conditions: 

𝑤10 = 𝑦0 = 𝑦(𝑥0) = 𝑦(1) = 0.5 

𝑤20 = 𝑧0 = 𝑧(𝑥0) = 𝑧(1) = −0.5 

The problem is to find approximations 𝑤11 to 𝑦1 = 𝑦(𝑥1) and 𝑤21 to 𝑧1 = 𝑧(𝑥1). 

The MATLAB® program for the solution is easy to form now.  The approximate results are shown 

in the following table. 

Steps 

𝑖 
Node 𝑥(𝑖) 

Numerical 

solution 

𝑤1𝑖 = 𝑤1(𝑥𝑖) 

Numerical 

solution 

𝑤2𝑖 = 𝑤2(𝑥𝑖) 

0 1 0.5 -0.5 

1 1.02 0.4897000998 -0.5299800347 

2 1.04 0.4788015942 -0.5598407786 

3 1.06 0.4673080456 -0.5894651108 

4 1.08 0.4552253218 -0.618739865 

5 1.1 0.4425615 -0.6475575603 
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Problem 18: Solve the ODE 𝑦′′′ = −𝑦′′ + 3𝑦′ + 3𝑦  for 𝑦 = 𝑦(𝑥)  in 𝑥 ∈ [0,2]  with the initial 

conditions: 𝑦(0) = 2.0, 𝑦′(0) = −1.0, and 𝑦′′(0) = 8.0. Solve it for 10 steps. 

Given the equation, 

𝑦′′′ = −𝑦′′ + 3𝑦′ + 3𝑦              − − −(1) 

For 𝑦 = 𝑦(𝑥) in 𝑥 ∈ [0,2] with the initial conditions: 

𝑦(0) = 2.0 

𝑦′(0) = −1.0 

𝑦′′(0) = 8.0 

consider 

𝑦′ = 𝑧1        − − −(2) 

𝑦′′ = 𝑧1
′ = 𝑧2        − − −(3) 

Then, the given third-order Eq. (1) becomes 

𝑧2
′ = −𝑧2 + 3𝑧1 + 3𝑦        − − −(4) 

Thus, the third-order IVP is essentially converted to the problem of a first-order system of ODEs of 

comprising the three equations (2) - (4) subject to the initial conditions: 

𝑦(0) = 2.0 

𝑧1(0) = −1.0 

𝑧2(0) = 8.0 

For 10 steps, the domain is discretized as 

ℎ =
𝑏 − 𝑎

𝑚
=

2.0 − 0.0

10
= 0.2 

𝑥0 = 0, 𝑥1 = 0.2, 𝑥2 = 0.4, 𝑥3 = 0.6, 𝑥4 = 0.8, 𝑥5 = 1.0, 𝑥6 = 1.2, 𝑥7 = 1.4, 𝑥8 = 1.6, 𝑥9 = 1.8, 𝑥10 = 2.0. 

According to the initial conditions: 

𝑤10 = 𝑦0 = 𝑦(𝑥0) = 𝑦(0) = 2.0 

𝑤20 = 𝑧10 = 𝑧1(𝑥0) = 𝑧1(0) = −1.0 

𝑤30 = 𝑧20 = 𝑧2(𝑥0) = 𝑧2(0) = 8.0 

The problem is to find approximations 𝑤1𝑖  to 𝑦𝑖 = 𝑦(𝑥𝑖) , 𝑤2𝑖  to 𝑧1𝑖 = 𝑧1(𝑥𝑖) , and 𝑤3𝑖  to 𝑧2𝑖 =

𝑧2(𝑥𝑖), for 𝑖 = 1,2,⋯ , 10. 

The MATLAB® program for the solution is easy to form now. The approximate results are shown in 

the following table. 
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Steps 

𝑖 
Node 𝑥(𝑖) 

Numerical 

solution 

𝑤1𝑖 = 𝑤1(𝑥𝑖) 

Numerical 

solution 

𝑤2𝑖 = 𝑤2(𝑥𝑖) 

Numerical 

solution 

𝑤3𝑖 = 𝑤3(𝑥𝑖) 

0 0.0 2 -1 8 

1 0.4 2.2144 2.0592 7.984 

2 0.8 3.75537152 5.92358144 12.16498688 

3 1.2 7.317856436 12.5913347 22.55617331 

4 1.6 14.62815413 25.4339096 44.2884481 

5 2.0 29.29652369 50.88508966 88.1604031 

 

Question 22: Write down an algorithm (pseudo code) to solve a second-order linear ODE (BVP) 

with Dirichlet boundary condition using the finite difference method of second-order accuracy. The 

algorithm should follow the Gauss-Seidel approach to solve the linear system resulted after 

discretization of the model equation. 

Algorithm: To solve 𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′) = 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 + 𝑟(𝑥) , for 𝑎 ≤ 𝑥 ≤ 𝑏  subject to the 

Dirichlet boundary conditions: 𝑦(𝑎) = 𝛼  and 𝑦(𝑏) = 𝛽  by approximating 𝑦 = 𝑦(𝑥)  at (𝑚 + 2) 

equispaced nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚 , 𝑥𝑚+1 , such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑚 < 𝑥𝑚+1 = 𝑏 , ℎ =

(𝑏 − 𝑎)/𝑚  and 𝑦(𝑥𝑖) = 𝑦𝑖  using the finite difference method based on the central difference of 

second-order accuracy. 

𝐈𝐍𝐏𝐔𝐓𝐒:  

{
  
 

  
 
𝑎, 𝑏: real values as the endpoints of the interval: 𝑥 ∈ [𝑎, 𝑏]
𝑚: an integer as the number of interior nodes in the 𝑥 direction

𝑎𝑙𝑝ℎ𝑎: a real value as the boundary condition 𝑦(𝑎)

𝑏𝑒𝑒𝑡𝑎: a real value as the boundary condition 𝑦(𝑏)
𝑁: an integer as the maximum number of iterations

𝑇𝑂𝐿: a real value as the error tolerance

Definitions of the functions 𝑝(𝑥), 𝑞(𝑥), and 𝑟(𝑥) in an appropriate way 

 

𝐎𝐔𝐓𝐏𝐔𝐓: {
𝑍 = [𝑧0, 𝑧1, ⋯ , 𝑧𝑚, 𝑧𝑚+1]

𝑇: a real valued vector as the approximate values of 𝑦(𝑥𝑖) 
at the nodes 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑚 , 𝑥𝑚+1

 

Auxiliary Variables:

{
 
 
 
 

 
 
 
 
ℎ: a real value as the step length in 𝑥 direction: ℎ = (𝑏 − 𝑎)/(𝑚 + 1) 

𝑋 = (𝑥𝑖) for 𝑖 = 0, 1, ⋯ ,𝑚,𝑚 + 1: a real valued vector to represent 𝑥𝑖𝑠

𝑍𝑃 = [𝑧𝑝
0
, 𝑧𝑝

1
, ⋯ , 𝑧𝑝

𝑚
, 𝑧𝑝

𝑚+1
]
𝑇
: a real valued vector to keep a copy of 𝑍

𝑒𝑟𝑟: a real number to hold the value of error norm in each iteration

𝐵 = [𝑏0, 𝑏1, ⋯ , 𝑏𝑚]
𝑇: a real valued vector to hold right hand side constants

𝐷 = [𝑑0, 𝑑1, ⋯ , 𝑑𝑚]
𝑇: a real valued vector to hold diagonal entries

𝑈 = [𝑢0, 𝑢1, ⋯ , 𝑢𝑚]
𝑇: a real valued vector to hold upper diagonal entries

𝐿 = [𝑙0, 𝑙1, ⋯ , 𝑙𝑚]
𝑇: a real valued vector to hold lower diagonal entries
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Step 1 Receive the inputs as stated above 

Step 2         Set ℎ = (𝑏 − 𝑎)/(𝑚 + 1)
Set 𝑥(0) = 𝑎

Set 𝑥(𝑚 + 1) = 𝑏

 

Step 3 for 𝑖 = 1, 2,⋯ ,𝑚  

Set 𝑥(𝑖) = 𝑥(0) + 𝑖 × ℎ     (Constructing interior mesh points, 𝑥𝑖 ) 
 end for 

Step 4 (Applying the boundary conditions)      
 Set 𝑤(0) = 𝑎𝑙𝑝ℎ𝑎 
 Set 𝑤(𝑚 + 1) = 𝑏𝑒𝑒𝑡𝑎 

Step 5       (Setting the initial conditions on interior nodes)  
 for 𝑖 = 1, 2,⋯ ,𝑚  

Set 𝑤(𝑖) = 0     (Constructing interior mesh points, 𝑥𝑖 ) 

 end for 

Step 6   for 𝑖 = 1, 2,⋯ ,𝑚 

  Set  𝐵(𝑖) = −ℎ × ℎ × 𝑟(𝑥(𝑖)) ;  end for 

 for 𝑖 = 1, 2,⋯ ,𝑚 

  Set  𝐷(𝑖) = 2 + ℎ × ℎ × 𝑞(𝑥(𝑖))  ;   end for 

 for 𝑖 = 1, 2,⋯ ,𝑚 

  Set  𝑈(𝑖) = −1 + ℎ × 0.5 × 𝑝(𝑥(𝑖))  ;   end for 

 for 𝑖 = 1, 2,⋯ ,𝑚 

  Set  𝐿(𝑖) = −1 − ℎ × 0.5 × 𝑝(𝑥(𝑖))  ;   end for 

 

Step 7  for 𝑘 = 1, 2, 3,⋯ ,𝑁  perform steps 8-11 

  Step 8 

        for 𝑖 = 1, 2, ⋯ , 𝑚 Set 𝑍𝑃(𝑖) = 𝑊 (keeping a copy of 𝑍 in 𝑍𝑃 for taking the norm) 

Step 9   

                for 𝑖 = 1, 2,⋯ ,𝑚                (compute the components of solution vector 𝑍) 

𝑤(𝑖) =
𝐵(𝑖) − 𝐿(𝑖) × 𝑤(𝑖 − 1) − 𝑈(𝑖) × 𝑤(𝑖 + 1)

𝐷(𝑖)
 

end for 
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Step 10  Compute   𝑒𝑟𝑟 = ‖𝑊 − 𝑍𝑃‖ 

            (or 𝑒𝑟𝑟 = ‖𝑋 − 𝑋𝑃‖/‖𝑋‖)  Here ‖∙‖ is any suitable norm.  

Step 11  

if (𝑒𝑟𝑟 < 𝑇𝑂𝐿 )then

Exit/Break the loop 
}

This means that the consecutive 

approximations are nearly the same

Therefore, stop iterations.
. 

 end for loop of Step 7  (Go to Step 8) 

Step 12 Print the output: 𝑊 = [𝑤0, 𝑤1, ⋯ , 𝑤𝑚]
𝑇   ;    

STOP. 

Problem 19: Write a MATLAB® program that uses a second-order accurate Finite Difference 

method to solve the following boundary value problem: 

𝑦′′ = 𝑦′ + 2𝑦 + cos(𝑥) , for 𝑦 = 𝑦(𝑥), where 0 ≤ 𝑥 ≤
𝜋

2
 

subject to the following Dirichlet boundary conditions: 𝑦(0) = −0.3 and 𝑦 (
𝜋

2
) = −0.1. 

For domain discretization, take step sizes as ℎ = ∆𝑥 =
𝜋

8
 

To form the computational domain, the physical domain [0,
𝜋

2
] is discretized by considering that it 

consists of a number of equispaced discrete points or nodes, 𝑥𝑖 , for 𝑖 = 0, 1, 2,⋯ ,𝑚 + 1. For the 

given problem, 

Number of interior nodes = 𝑚 = 3 

𝑝(𝑥) = 1 

𝑞(𝑥) = 2 

𝑟(𝑥) = cos(𝑥) 

The target is to obtain the approximations 𝑤𝑖  to the function values 𝑦𝑖 = 𝑦(𝑥𝑖)  at the interior 

nodes 𝑥𝑖 , for 𝑖 = 1, 2, 3. The values of the solution function are known at 𝑥0 and 𝑥4 due to Dirichlet 

boundary conditions: 

𝑤0 = 𝑦(𝑥0) = −0.3 

𝑤4 = 𝑦(𝑥4) = −0.1 

A MATLAB® program that uses the Gauss-Seidel approach for the stated solution is as follows. 
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clear ; clc ; 

 

% Constants 

a = 0.0 ;  % starting point of domain 

b = pi/2.0 ;  % ending point of domain 

alpha = -0.3 ;  % Dirichlet boundary; Function value at x=a 

beta = -0.1 ;  % Dirichlet boundary; Function value at x=b 

m = 3 ;  % number of interior nodes 

N = 200 ;  % maximum number of iterations 

TOL = 0.0000001 ; % permissible error / tolerance for convergence test 

 

% Inline function definitions 

p = @(x) 1.0 ; 

q = @(x) 2.0 ; 

r = @(x) cos(x) ; 

 

h = (b-a) / (m + 1) ; 

x = zeros(1, m+2) ; 

w = zeros(1, m+2) ; 

wp = zeros(1, m+2) ; 

B = zeros(1, m+1) ; 

D = zeros(1, m+1) ; 

U = zeros(1, m+1) ; 

L = zeros(1, m+1) ; 

 

x(1) = a ; 

x(m+2) = b ; 

 

for i = 2:m+1 

x(i) = x(i-1) + h ; 

fprintf('\tnodes %.2f\n', x(i)) ; 

end 

 

w(1) = alpha ; 

w(m+2) = beta ; 

 

for i = 1:m 

B(i) = -h^2 * r(x(i+1)) ; 

D(i) = 2 + h^2 * q(x(i+1)) ; 

U(i) = -1 + (h*0.5) * p(x(i+1)) ; 

L(i) = -1 - (h*0.5) * p(x(i+1)) ; 

end 

 

k = 0 ; 

fprintf('%4d: w= %3.2f ', k, w(1)) ; 
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for i = 2:m+1 

fprintf('%.8f ', w(i)) ; 

end 

fprintf('%3.2f\n', w(m+2)) ; 

 

% Call to the solver function 

w = egs(w, B, D, U, L, h, N, TOL) ; 

 

% User-defined function for Gauss-Seidel Solver 

 

function w = egs(w, B, D, U, L, h, N, TOL) 

 

for k = 1:N          % Iterations loop 

 

 % Making a copy of the solution vector before updating it 

wp = w ; 

 

% Updating the solution vector 

 

for i = 2:numel(w)-1 

w(i) = (B(i-1) - L(i-1)*w(i-1) - U(i-1)*w(i+1)) / D(i-1) ; 

end 

 

% Printing the latest solution vector 

 

fprintf('%4d: w= %3.2f ', k, w(1)) ; 

for i = 2:numel(w)-1 

fprintf('%.8f ', w(i)) ; 

end 

fprintf('%3.2f\n', w(end)) ; 

 

 % Finding the error as the L2-norm 

sum = 0 ; 

for i = 2:numel(w)-1 

sum = sum + (w(i)-wp(i))^2 / (w(i)^2) ; 

end 

err = sqrt(sum) ; 

  % Testing the convergence 

if err < TOL 

break; 

end 

end 

end 
∎ 
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The above code is using explicit loops, to make the things a bit easier or clearer to understand. 

However, the use of implied loops makes the programs concise in appearance and efficient in 

execution. A code with implied loops given below. 

clear ; clc ; 

 

% Constants 

a = 0.0 ;  % starting point of domain 

b = pi/2.0 ;  % ending point of domain 

alpha = -0.3 ;  % Dirichlet boundary; Function value at x=a 

beta = -0.1 ;  % Dirichlet boundary; Function value at x=b 

m = 3 ;  % number of interior nodes 

N = 200 ;  % maximum number of iterations 

TOL = 0.0000001 ; % permissible error / tolerance for convergence test 

 

 

% Inline function definitions 

p = @(x) 1.0 ; 

q = @(x) 2.0 ; 

r = @(x) cos(x) ; 

 

 

h = (b-a) / (m+1) ; 

x = zeros(1, m+2) ; 

w = zeros(1, m+2) ; 

wp = zeros(1, m+2) ; 

B = zeros(1, m+1) ; 

D = zeros(1, m+1) ; 

U = zeros(1, m+1) ; 

L = zeros(1, m+1) ; 

 

x(1) = a ; 

x(m+2) = b ; 

 

x = a + h * (0:m+1);   

 

w(1) = alpha ; 

w(m+2) = beta ; 

 

for i = 1:m 

B(i) = -h^2 * r(x(i+1)) ; 

D(i) = 2 + h^2 * q(x(i+1)) ; 

U(i) = -1 + (h*0.5) * p(x(i+1)) ; 

L(i) = -1 - (h*0.5) * p(x(i+1)) ; 

end 
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k = 0 ; 

 

fprintf('%4d: w= %3.2f ', k, w(1)); 

fprintf('%.8f ', w(2:m+1)); 

fprintf('%3.2f\n', w(m+2)); 

 

% Call to the solver function 

w = egs(w, B, D, U, L, h, N, TOL) ; 

 

 

% User-defined function for Gauss-Seidel Solver 

 

function w = egs(w, B, D, U, L, h, N, TOL) 

 

 mm  =  numel(w)-2 ; 

 

for k = 1:N          % Iterations loop 

 

 % Making a copy of the solution vector before updating it 

wp = w ; 

 

% Updating the solution vector 

 
     w(2:mm+1) = (B(1:mm) - L(1:mm) .* w(1:mm) - U(1:mm)  

    .*  w(3:mm+2)) ./ D(1:mm); 

 

% Printing the latest solution vector 

 

fprintf('%4d: w= %3.2f ', k, w(1)); 

fprintf('%.8f ', w(2:m+1)); 

fprintf('%3.2f\n', w(m+2)); 

 

 % Finding the error as the L2-norm 

 
err = sqrt(sum((w(2:mm+1) - wp(2:mm+1)).^2  

    ./ (w(2:mm+1).^2))); 

 

  % Testing the convergence 

if err < TOL 

break; 

end 

end 

end 
∎ 
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Question 23: List out some built-in functions/commands of MATLAB® relevant to the ODEs (IVPS 

and BVPs).  

MATLAB® provides several core functions for numerically solving ordinary differential equations 

(ODEs). These functions are part of the base MATLAB® package and can be used without additional 

toolboxes. Here are the main core MATLAB® functions for numerical ODE solving: 

1. ode45: This function uses the Runge-Kutta Fehlberg method to solve ordinary 

differential equations. It is a fourth-order method that is accurate and stable. The 

syntax is: 

  [t, y] = ode45(odefun, tspan, y0) 

Here, odefun is a function handle representing the ODE system, tspan is the time span of 

integration, and y0 is the initial condition. 

2. ode23: his function uses the Runge-Kutta Cash-Karp method to solve ordinary 

differential equations. It is a third-order method that is accurate and stable. The 

syntax is similar to ode45: 

  [t, y] = ode23(odefun, tspan, y0) 

3. ode15s: This function is designed for stiff ODEs. It uses a variable-step, variable-order 

BDF (backward differentiation formula) method. The syntax is the same as ode45: 

  [t, y] = ode15s(odefun, tspan, y0) 

4. ode113: This function uses a variable-step, variable-order Adams-Bashforth-Moulton 

method. It's generally efficient for medium-accuracy solutions. The syntax is similar to 

ode45: 

  [t, y] = ode113(odefun, tspan, y0) 

The provided syntax for each function is a simplified version. The actual usage may involve 

specifying additional options or providing the ODE function in the appropriate format. Besides the 

stated the MATLAB® Core Functions, ODE Toolbox, PDE Toolbox, and Simulink available in 

MATLAB® can be considered depending upon the need. 

∎∎∎ 
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Chapter Summary 

• The numerical solution of an ODE is not a definition of 𝑦 = 𝑦(𝑥). The numerical solution of 

the ODE is a set of numbers 𝑤𝑖  that are approximations to the function values 𝑦(𝑥𝑖) at 

some pre-specified discrete values 𝑥𝑖 ∈ [𝑎, 𝑏]. That is, 𝑤𝑖 ≅ 𝑦𝑖 = 𝑦(𝑥𝑖). 

• To solve an initial-value problem consisting of a single first-order ODE in 𝑦 = 𝑦(𝑥) for 𝑎 ≤

𝑥 ≤ 𝑏  and an initial-value 𝑦(𝑎) = 𝛼 , first the domain [𝑎, 𝑏]  is discretized by selecting 

(𝑚 + 1)  equispaced nodes 𝑥0 , 𝑥1 , 𝑥2 ,  ⋯ , 𝑥𝑚  in [𝑎, 𝑏]  such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ <

𝑥𝑚 = 𝑏 , and ℎ = (𝑏 − 𝑎)/𝑚 . Then, approximations 𝑤𝑖  to the values 𝑦𝑖 = 𝑦(𝑥𝑖)  for 𝑖 =

1,2,⋯ ,𝑚 are obtained with 𝑤0=𝑦(𝑎). For simplicity, 𝑦(𝑥𝑖) is denoted by 𝑦𝑖 . 

• There is a wide variety of methods for finding numerical solutions of the ODEs involved in 

initial value problems (IVPs) and boundary value problems (BVPs). 

• Methods for IVPs include single step methods and multi-step methods, each category 

having explicit and implicit methods. A hybrid method, i.e., predictor-corrector method, 

involves a combination of explicit and implicit formulas. 

• Methods for BVPs are so versatile and involve much richer mathematical constructs. 

• The accuracy of the approximate solution can be improved either by using a larger number 

of steps (a smaller step size), or by using a better numerical method. 

• The prime characteristics (or considerations) associated with a finite difference scheme to 

determine its quality include 

➢ Stability 

➢ Local Truncation Error 

➢ Consistency (Compatibility) 

➢ Discretization Error 

➢ Convergence 

∎∎∎ 

Chapter Exercises 

Exercise 01: Find the numerical solution of the ODE, 𝑦′ = 3 − 3𝑦 − 𝑒−6𝑥, for 0 ≤ 𝑥 ≤ 2, with initial condition 

𝑦(0) = 1.0. Consider the step size of 0.5. Use the exact solution, 𝑦(𝑥) =
1

3
(𝑒−6𝑥 − 𝑒−3𝑥 + 3), to find the error 

in the numerical solution. 
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Exercise 02: Find the numerical solution of the ODE, 𝑦′ = 1 + (𝑥 − 𝑦)2, for 2 ≤ 𝑥 ≤ 3, with initial condition 

𝑦(2) = 1.0. Consider the step size of 0.5. Use the exact solution, 𝑦(𝑥) = 𝑥 + 1 (1 − 𝑥)⁄ , to find the error in the 

numerical solution. 

Exercise 03: Find the numerical solution of the ODE, 𝑦′ = 2 + (𝑥 − 𝑦)2, for 2 ≤ 𝑥 ≤ 3, with initial condition 

𝑦(2) = 1.5. Consider the step size of 0.5. Use the exact solution, 𝑦(𝑥) = 𝑥 − tan(−𝑥 + 2.463), to find the  

Exercise 04: Find the numerical solution of the ODE, 𝑦′ = (1 + 𝑥) (1 + 𝑦)⁄ , for 0 ≤ 𝑥 ≤ 1 , with initial 

condition 𝑦(0) = 2.0. Consider the step size of 0.5. Use the exact solution, 𝑦(𝑥) = √𝑥2 + 2𝑥 + 9 − 1, to find 

the error in the numerical solution. 

Exercise 05: For the functions 𝑦1 = 𝑦1(𝑥) and 𝑦2 = 𝑦2(𝑥), where 𝑥 ∈ [0,1], solve the following system of two 

ODEs:  

𝑦1
′ = 𝑦1𝑦2 − 2 

𝑦2
′ = 2𝑦1 − 𝑦2

3 

With initial conditions: 

𝑦1(0) = 2.0  𝑦2(0) = 0.3 

Use the RK4 method of order 4 for 5 steps. 

HINT: For 5 steps the domain is discretized as 

ℎ =
𝑏 − 𝑎

𝑚
=

1.0 − 0.0

5
= 0.2 

𝑥0 = 0, 𝑥1 = 0.2, 𝑥2 = 0.4, 𝑥3 = 0.6, 𝑥4 = 0.8, 𝑥5 = 1.0. 

According to the initial conditions: 

𝑤10 = 𝑦10 = 𝑦1(𝑥0) = 𝑦1(0) = 2.0 

𝑤20 = 𝑦20 = 𝑦2(𝑥0) = 𝑦2(0) = 0.3 

The problem is to find approximations 𝑤1𝑖  to 𝑦1𝑖 = 𝑦1(𝑥𝑖) and 𝑤2𝑖  to 𝑦2𝑖 = 𝑦2(𝑥𝑖), for 𝑖 = 1,2,3,4,5.  

Exercise 06: For the functions 𝑦1 = 𝑦1(𝑥), 𝑦2 = 𝑦2(𝑥), and 𝑦3 = 𝑦3(𝑥), where 𝑥 ∈ [0,1], solve the following 

system of three ODEs: 

𝑦1
′ = 𝑦1 + 3𝑦2 − 3𝑦3 + 𝑒

−𝑥  

𝑦2
′ = 2𝑦2 + 𝑦3 − 3𝑒

−𝑥 

𝑦3
′ = 𝑦1 + 2𝑦2 + 𝑒

−𝑥 

with initial conditions: 

𝑦1(0) = 2.5  𝑦2(0) = −1.5  𝑦3(0) = −1.0 

Use the RK4 method of order 4 for 10 steps. 

HINT: For 10 steps, the domain is discretized as 

ℎ =
𝑏 − 𝑎

𝑚
=

1.0 − 0.0

10
= 0.1 

𝑥0 = 0, 𝑥1 = 0.1, 𝑥2 = 0.2, 𝑥3 = 0.3, 𝑥4 = 0.4, 𝑥5 = 0.5, 𝑥6 = 0.6, 𝑥7 = 0.7, 𝑥8 = 0.8, 𝑥9 = 0.9, 𝑥10 = 1.0. 
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According to the initial conditions: 

𝑤10 = 𝑦10 = 𝑦1(𝑥0) = 𝑦1(0) = 2.5 

𝑤20 = 𝑦20 = 𝑦2(𝑥0) = 𝑦2(0) = −1.5 

𝑤30 = 𝑦30 = 𝑦3(𝑥0) = 𝑦3(0) = −1.0 

The problem is to find approximations 𝑤1𝑖  to 𝑦1𝑖 = 𝑦1(𝑥𝑖), 𝑤2𝑖  to 𝑦2𝑖 = 𝑦2(𝑥𝑖), and 𝑤3𝑖  to 𝑦3𝑖 = 𝑦3(𝑥𝑖), for 𝑖 =

1,2,⋯ , 10.   

Exercise 07: Find the numerical solution of the IVP, 𝑦′′ − 8𝑦′ + 7𝑦 = 16𝑒−𝑥  for 0 ≤ 𝑥 ≤ 1 , with initial 

condition 𝑦(0) = 4.0 and 𝑦′(0) = 4.0. Also find 𝑦(1.1). Consider the step size of 0.1. Use the exact solution, 

𝑦 = (1 3⁄ )(𝑒7𝑥 + 8𝑒𝑥 + 3𝑒−𝑥), to find the error in the numerical solution. 

HINT: Given the equation, 

𝑦′′ − 8𝑦′ + 7𝑦 = 16𝑒−𝑥             − − −(1) 

For the solution, consider 

𝑦′ = 𝑧   − − −(2)  

Then, the given second-order Eq. (1) becomes 

𝑧′ = 4𝑧 − 3𝑦 + 7𝑒−𝑥                   − − −(3) 

Thus, the second-order IVP is essentially converted to the problem of a first-order system of ODEs of 

comprising the two equations (2) and (3) subject to the initial conditions: 

𝑦(0) = 3.0  𝑧(0) = 3.0 

For 10 steps, the domain is discretized as 

ℎ =
𝑏 − 𝑎

𝑚
=

1.0 − 0.0

10
= 0.1 

𝑥0 = 0, 𝑥1 = 0.1, 𝑥2 = 0.2, 𝑥3 = 0.3, 𝑥4 = 0.4, 𝑥5 = 0.5, 𝑥6 = 0.6, 𝑥7 = 0.7, 𝑥8 = 0.8, 𝑥9 = 0.9, 𝑥10 = 1.0. 

According to the initial conditions: 

𝑤10 = 𝑦0 = 𝑦(𝑥0) = 𝑦(0) = 3.0 

𝑤20 = 𝑧0 = 𝑧(𝑥0) = 𝑧(0) = 3.0 

The problem is to find approximations 𝑤1𝑖  to 𝑦𝑖 = 𝑦𝑖(𝑥𝑖) and 𝑤2𝑖  to 𝑧𝑖 = 𝑧(𝑥𝑖), for 𝑖 = 1,2,⋯ , 10. 

Exercise 08: Solve the ODE 𝑦′′ = 4𝑦′ − 3𝑦 + 7𝑒−𝑥 for 𝑦 = 𝑦(𝑥) in 𝑥 ∈ [0,1] with the initial conditions: 𝑦(0) =

3.0 and 𝑦′(0) = 3.0. Solve it for 10 steps. 

Exercise 09: Find the numerical solution of the BVP, 𝑦′′ − 9𝑦′ + 𝑦 = 𝑥 for 0 ≤ 𝑥 ≤ 1, with initial condition 

𝑦(0) = 0.0 and 𝑦′(1) = 6.0. Consider the step size of 0.1. 

Exercise 10: Find the numerical solution of the ODE, 𝑥2𝑦′′ + 3𝑥𝑦′ + 3𝑦 = 0, with initial condition 𝑦(1) = 1 

and 𝑦′(1) = −5  for 𝑦(1.1). The exact solution is, 𝑦 =
1

𝑥
(cos(√2 ln 𝑥) + (

1

𝑥2
− 5) sin(√2 ln 𝑥)). 

Exercise 11: Find the numerical solution of the ODE, 𝑦′′ − 6𝑦′ + 9𝑦 = 𝑥2𝑒3𝑥 , with initial condition 𝑦(0) = 2 

and 𝑦′(0) = 6  for 𝑦(1.1). The exact solution is, 𝑦 = 2𝑒3𝑥 +
1

12
𝑥4𝑒3𝑥 . 
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Exercise 12: Solve the ODE 𝑦′′′ = −𝑦′′ + 3𝑦′ + 3𝑦  for 𝑦 = 𝑦(𝑥)  in 𝑥 ∈ [0,2]  with the initial conditions: 

𝑦(0) = 2.0, 𝑦′(0) = −1.0, and 𝑦′′(0) = 8.0. Solve it for 10 steps. 

HINT: Given the equation, 

𝑦′′′ = −𝑦′′ + 3𝑦′ + 3𝑦               − − −(1) 

For 𝑦 = 𝑦(𝑥) in 𝑥 ∈ [0,2] with the initial conditions: 

𝑦(0) = 2.0  𝑦′(0) = −1.0  𝑦′′(0) = 8.0 

Solve it for 10 steps. 

For the solution, consider 

𝑦′ = 𝑧1 − −−(2) 

𝑦′′ = 𝑧′1 = 𝑧2        − − −(3) 

Then, the given third-order Eq. (1) becomes 

𝑧2
′ = −𝑧2 + 3𝑧1 + 3𝑦 − −−(3) 

Thus, the third-order IVP is essentially converted to the problem of a first-order system of ODEs of comprising 

the three equations (2) - (4) subject to the initial conditions: 

𝑦(0) = 2.0  𝑧1(0) = −1.0  𝑧2(0) = 8.0 

For 10 steps, the domain is discretized as  ℎ =
𝑏−𝑎

𝑚
=

2.0−0.0

10
= 0.2 

𝑥0 = 0, 𝑥1 = 0.2, 𝑥2 = 0.4, 𝑥3 = 0.6, 𝑥4 = 0.8, 𝑥5 = 1.0, 𝑥6 = 1.2, 𝑥7 = 1.4, 𝑥8 = 1.6, 𝑥9 = 1.8, 𝑥10 = 2.0. 

According to the initial conditions: 

𝑤10 = 𝑦0 = 𝑦(𝑥0) = 𝑦(0) = 2.0 

𝑤20 = 𝑧10 = 𝑧1(𝑥0) = 𝑧1(0) = −1.0 

𝑤30 = 𝑧20 = 𝑧2(𝑥0) = 𝑧2(0) = 8.0 

The problem is to find approximations 𝑤1𝑖  to 𝑦𝑖 = 𝑦(𝑥𝑖), 𝑤2𝑖  to 𝑧1𝑖 = 𝑧1(𝑥𝑖), and 𝑤3𝑖  to 𝑧2𝑖 = 𝑧2(𝑥𝑖), for 𝑖 =

1,2,⋯ , 10. 

Exercise 13: Using a second-order accurate Finite Difference method, solve the following BVP: 

𝑦′′ = 9𝑦′ − 𝑦 + 𝑥, for 𝑦 = 𝑦(𝑥), where 0 ≤ 𝑥 ≤ 1  

subject to the following Dirichlet boundary conditions: 𝑦(0) = 0 and 𝑦(1) = 6. 

For domain discretization, take step sizes as ℎ = ∆𝑥 = 0.25. 

Exercise 14l: Using a second-order accurate Finite Difference method, solve the following BVP: 

𝑦′′ = −5𝑦′ − 8𝑦 + 𝑥2, for 𝑦 = 𝑦(𝑥), where 1 ≤ 𝑥 ≤ 2  

subject to the following Dirichlet boundary conditions: 𝑦(1) = 0 and 𝑦(2) = 24. 

For domain discretization, take step sizes as ℎ = ∆𝑥 = 0.25. 

∎∎∎ 
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