

IMPROVEMENT OF DRILLING FLUID FOR CONSTRUCTION OF WELLS IN ARCTIC SHELF WATER.

R.S. Shaymanova, M.K. Urazov, D.N. Yuldosheva, D.Sh. Mirzayorova Termiz Institute of Engineering and Technology NX Shaymanova - teacher of the 15th general education school

Key words: *clay sandstones, inhibitor , montmorillonite clay , hydration , deformation , dispersion, water Arctic shelf.*

Annotation: book and field information-based In the waters of the Arctic shelf, the well to build his own special geological and technical conditions, unstable mud in the mines inhibitor drilling from liquids to use the efficiency of seeing will be released.

Researchers most of them in the borehole insults and falls appear to be drilling liquid clay own into the resulting floor with a physicist and chemical mutual effect process with connects

Khar another like braking doer drilling from liquids use exercise that 's all showed that from them some mining and geological in data circumstances use efficiency another in data circumstances wells successful drilling guarantee Not Maybe

Natural under the circumstances, the clay sex balance is in a state of far geological affairs as a result of organizing the found state processes. In this case, clay floors activity to evaluate suitable will come It's time to wet steam relative humidity with is determined. drilling fluid watery phase with reciprocal effect do as a result of clay floor well with opening as a result of the balance is broken and that's all together with the second so-called "layer". The adsorption pressure of the following is defined as:

$$P_{out} = -\frac{RT}{V_M} \cdot \ln\left(\frac{a_n}{a_n}\right),$$

water molar volume where ;

T - steam temperature;

a - clay genus (an) and this relation who is the environment ("") activity measure ;

 $P \ is \ the \ steam$ pressure , P \$ - at temperature T saturated vapor pressure .

ME to his words according to _ Schenever , drill liquid watery activity phase (Table 1) and clay floor water activity (Fig . 2) weak connected water with _ alignment wetting and swelling _ _ Not will be .

Table 1

Polyglycol solutions and CBR activities to fit in with experience Results

Test solution	p/n s	1 g clay k is known time within was swallowed up water amount (mg).						
		24 hours	48	72 hours				
OBM contains 10% pure water There is	0.91	101	114	122				
-//- 30% clear water	0.95	117	134	141				

Multidisciplinary Journal of Science and Technology ISSN: 2582-4686 Impact factor: 8.848

50% pure water	0.97	123	138	150
distilled water	1.00	108	142	150
polyethylene glycol solution 10% mineralized water (10% NaCl)	0.90	96	112	120
-//- 20% NaCl	0.85	85	94	102
10% CaCl	0.84	83	94	99
-I- 20% CaCl ₂	0.75	62	72	78
-//- 10% MgCl ₂	0,83	85	89	96
-I- 20% MgCl 2	0,71	56	66	72
—//— 30% MgCl ₂	0,46	38	46	51

For a comparative assessment of the inhibitory ability of drilling fluid filtrates (Table 2), various clay samples from the North Kamennomyssk site (well No. 6) were taken, as well as mudstone samples from the Semakovskaya deposit (well No. 100).

The given data show the difference between drilling mud filtrates according to the method of inhibition: active inhibition (positive Kp) and passive inhibition (negative Kp).

Active inhibition is characteristic of filtrates containing potassium, calcium, and ammonium cations. *C* and for potassium chloride the value indicates a high acceleration of the hydration process.

Swelling rate															
				Absorbed water			Swelling			Averag	ge swe	lling	Prohibition to do ability		
explore environment	Swell	ling lev	vel K_t	quantity <i>K</i> ₂ , ml / g of clay			period g, hour			speed	co,m 10' ³)	ıl/h-			
	<i>TO,' TO,"</i> To who		"G kg" To		T'	T' T" T		So '	cooper O		WIT	Si"	Xi		
colorful dirt															
Water	1.40	0.08	1.48	0.162	0.032	0.194	19	31	50	8.52	1.04	3.89			
10% NaCl solution	1.29	0.06	1.35	0.117	0.024	0.142	5	25	thirt	23.48	0.97	4.72	1.76	-0.07	1.69
5% solution of	1.20	0.03	1.23	0.081	0.012	0.093	2	10	12	40.49	1.21	7.76	3.75	0.16	3.91
5% p- pNH 4 C	1.24	0.04	1.28	0.097	0.016	0.113	4	15	19	24.29	1.08	5.97	1.85	0.03	1.88
1% CaCl solution	1.28	0.04	1.32	0.113	0.016	0.130	7	14	21	16.19	1.16	6.17	0.90	0.11	1.01
1% MgClj solution	1.27	0.11	1.38	0.109	0.045	0.154	elev	29	40	9.94	1.54	3.85	0.17	0.47	0.64
10% polyethylene															
glycol solution	1.35	0.07	1.42	0.142	0.028	0.170	8	36	44	17.71	0.79	3.86	1.08	-0.25	0.83
3% phyto-RK															
starch solution	1.29	0.06	1.35	0.117	0.024	0.142	32	50	82	3.67	0.49	1.73	-0.57	-0.54	-1.10
Gammaxan															
xanthan gum 0.5%	1.33	0.05	1.38	0.134	0.020	0.154	24	41	65	5.57	0.49	2.37	-0.35	-0.53	-0.87
solution															
Argillite															

Different media clay samples swelling indicators

Multidisciplinary Journal of Science and Technology ISSN: 2582-4686 Impact factor: 8.848

													r		
Water	1.20	0.03	1.23	0.079	0.012	0.091	25	38	63	3.17	0.31	1.45			
10% NaCl solution	1.14	0.04	1.18	0.055	0.016	0.071	5	19	24	11.03	0.86	2.98	0.29	-0.18	0.11
5% solution of	1.10	0.02	1.12	0.038	0.010	0.048	2	18	20	19.01	0.53	2.38	1.23	-0.49	0.74
	1.15	0.02	1.17	0.060	0.008	0.067	4	18	22	14.88	0.44	3.07	0.75	-0.58	0.17
1% solution ₂	1.12	0.02	1.14	0.048	0.008	0.056	5	18	23	9.52	0.44	2.42	0.12	-0.58	-0.46
1% MgCl solution	1.13	0.05	1.18	0.051	0.021	0.072	10	28	38	5.13	0.75	1.90	-0.40	-0.29	-0.68
10% polyethylene															
glycol solution	1.15	0.08	1.20	0.060	0.020	0.079	12	43	55	4.96	0.46	1.44	-0.42	-0.56	-0.98
3% phyto-RK starch solution	1.10	0.05	1.15	0.040	0.020	0.060	26	46	72	1.53	0.43	0.83	-0.82	-0.59	-1.41
Gammaxan															
xanthan gum 0.5%															
solution	1.11	0.06	1.17	0.044	0.024	0.067	18	42	60	2.43	0.57	1.12	-0.72	-0.46	-1.17

Note: Ki', K_2' , g', a > ', C_{and}' - indicators of swelling in the first stage; Ki'', K_2'' , g'', co'', C_{and}'' - indicators of swelling in the second stage.

Used books list

1. Shaimanova R.S., Urazov M.K., Yuldosheva D.N., Shaimanova N.Kh._ _ Development technologies drilling with hydraulic motors in salt blood conditions. Multidisciplinary scientific journal and No. 1. S. Technologies. 5-6.

2. Shaimanova R.S., Urazov M.K., Yuldosheva D.N., Shaimanova N.Kh Development technologies drilling hydraulic motors in salt blood conditions. Multidisciplinary journal of science and technology. No. 1. S. 20-22.

3. Shaimanova R.S., Urazov M.K., Yuldosheva D.N., Shaimanova N.Kh._ _ Development technologies drilling with hydraulic motors in salt blood conditions. Multidisciplinary Journal of Science Oath Technology. No. 1. S. 23-25.

4. Shaimanova R.S., Urazov M.K., Yuldosheva D.N., Shaimanova N.Kh._ _ Development technologies drilling with hydraulic motors in salt blood conditions. Multidisciplinary journal of science and technology. No. 1. S. 26-29.

5. Shaimanova R. _ S. , Urazov M. _ No. , Yuldosheva D. _ N. _ Shaymanova N. _ H. _ development technology Burenia c hydraulic motor c conditions Solenoid TV series Multi-profile scientific and technical journal. No. 1. S. 5-6.

6. Muradov MM, Mukhitdinov UD, Urozov MK, Khudoyorov XO. Comparative studies of the composition and properties of CMT at different degrees of polymerization. // Scientific and technical practical journal of composite materials 2018 No. 1 - p. 57-58 (02.00.00 #4)

7. Mukhitdinov Yu.D., Murodov M.M., Urozov M.K. Technology for obtaining high-quality cellulose from sunflower stems and fiber waste from textile enterprises. //Composite materials Scientific and technical practical journal 2018 No. 1.- P. 65-66 (02.00.00 #4)

8. Turdiboeva N.Yu., Murodov M.M., Urozov M.K. Development of technology for

obtaining cellulose from plants and production of Na - carboxymethylcellulose on its basis . Scientific, technical and practical journal of composite materials. - Tashkent, 2018. - No. 3. P.36 (02.00.00 #4)

9. Urozov M.K., Turdiboeva N.Yu., Murodov M.M. Development of technology for the production of cellulose from vegetable safflower and based on carboxymethylcellulose . //Scientific-technical and practical journal of composite materials. - Tashkent, 2018.- No. 3. p.58 (02.00.00 #4)