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Abstract

This paper provides an overview of VampIR v0.1.3 and outlines potential modifications for future versions. Specifically, it
contains proposals for streamlined versions of the fresh function and constraint generation, a proposal for removing the type
system, and a short proposal for dealing with imports. It ends with an overview of implementation improvements made in
light of the Haskell port.
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1. Introduction
VampIR serves as a language for constructing arithmetic circuits on finite fields (Heliax AG, 2023a; Hart, 2023),
designed to be a universal intermediate language for numerous proof systems based on arithmetic circuits such as
Halo21. Higher-level languages, such as Juvix (Heliax AG, 2023b), which compile to arithmetic circuits, can employ
VampIR as an intermediary.

The necessity for an intermediate language is evident. Without one, each desired proof system must be individually
supported by the systems. However, with an adequate intermediate representation, the total workload required to
establish the ecosystem remains linear. Languages can target the intermediate representation rather than a specific
proof system, thereby gaining support for every proof system targeted by this intermediate representation.

VampIR aims to offer a minimal yet expressive interface for describing the core data structure utilized by most
modern zero-knowledge proof systems. It is designed to be flexible and straightforward but does not incorporate any
cryptographic features. VampIR files are sufficiently generic to be applicable for uses involving arithmetic circuits,
even those unrelated to cryptography.

Here, we focus on reevaluating the existing design of the VampIR front-end language and compiler. We present
its syntax, type system, and semantics in Section 2 with the aim of proposing a more flexible design in Sections 3
and 4 for a new compiler with support for explicit constraints in modular VampIR programs as described in Sections 5
to 7.
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VampIR ::= (VampIR = VampIR)
| (VampIR; VampIR)
| ()
| (VampIR, VampIR)
| fst | snd
| VampIR :: VampIR | []
| hd | tl
| fresh VampIR+

| iter n VampIR
| fold VampIR VampIR VampIR
| λv.VampIR
| (VampIR VampIR)
| VampIR op VampIR
| −VampIR | f | v

op ::= + | × | − | /
f ∈ F (F is the field associated with the circuit.)
v ∈ string

Fig. 1: VampIR syntax grammar.

2. Current VampIR
2.1. Syntax. If we retroactively turn VampIR into a calculus, then its syntax could be described as in Figure 1.
Remark 1. In Figure 1, VampIR+ is the same as VampIR, except for op which can also be % or ÷, the non-field
operations of modulus and integer division, respectively.
Remark 2. Note that real VampIR lacks the built-in operations fst, snd, hd, and tl operations. Instead, such
operations are implemented via pattern matching; however, since pattern matching can only be done on tuples and
lists, this ends up being equivalent to what we present here.

2.2. Type system. VampIR has a simple type system. The syntax of types can be defined as;

Type ::= v
| Type −→ Type
| Type × Type
| [Type]
| ()
| F

Fig. 2: VampIR types.

VampIR relies on a notion of first-order type for some determinations. The set of first-order types can be defined
inductively following the grammar described in Figure 3.

1st ::= ()
| F
| [1st]
| 1st × 1st

Fig. 3: First-order types.

The type-checking rules of VampIR are described in Figure 4.

x:T y:U
(x; y):U

f∈F
f:F

op∈{+,∗,−,/,÷,%} x:F y:F
(x op y):F

T ∈1st x:T y:T
(x=y):()

():()
x:T y:U

(x,y):T ×U fst:T ×U→T snd:T ×U→U
x:T ⊢y:U

λx.y:T →U
x:T →U y:T

(x y):U

[]:[T ]
x:T l:[T ]
(x::l):[T ] hd:[T ]→T tl:[T ]→[T ] fold:U→(T →U→U)→[T ]→U

n∈N
iter n:T →(T →T )→T

Fig. 4: VampIR typing rules. Variables T and U are types as in Figure 2.

1https://zcash.github.io/halo2/
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The types of free variables can vary, but each must have a unique type. VampIR requires that the type of a
variable be inferable from context. For example, (x = 1) allows us to infer that x : F. Such variables always represent
(tuples or lists of) public and/or private variables. The variables that represent tuples are further broken down. For
example, if x is known to be a tuple, it can be divided into (x.1, x.2), with x.1 and x.2 being new variable names.
This process of splitting will continue until all variables are field elements. Note that a free variable cannot be a
function; it has to be a first-order type, see Figure 3.

Remark 3. We use the typing rules described in Figure 4 to prevent many ill-formed terms. However, these rules do
not prevent us from introducing expressions such as hd []. This will cause an error during evaluation.

2.3. Evaluation. The evaluation semantics is described in Figure 5 and is designed to have side effects that make
it less intuitive than it would otherwise. During the evaluation, there is a global stack of constraints, denoted by χ
below.

The correctness of evaluation requires the term to be well-typed, assuming that, for example, top-level VampIR
program has type (). Missing patterns from the evaluation are, broadly, eliminated by type checking.

J()K :≡ ()J(x; y)K :≡ JxK; JyKJ(x, y)K :≡ (JxK, JyK)Jfst (x, y)K :≡ JxKJsnd (x, y)K :≡ JyKJiter 0 f xK :≡ JxKJiter (n + 1) f xK :≡ Jf (iter n f x)KJ(x :: l)K :≡ (JxK :: JlK)Jhd (x :: l)K :≡ JxKJtl (x :: l)K :≡ JlKJfold n f []K :≡ JnKJfold n f (x :: l)K :≡ Jn x (fold n f l)KJ(p, q) = (r, s)K :≡ Jp = rK; Jq = sKJ(x :: l) = (y :: l′)K :≡ Jx = yK; Jl = l′KJx = yK :≡ J JxK = JyK K, (x, y : 1st, but not x, y : F)Jx = yK :≡ () (JxK = JyK gets pushed onto χ, where x, y : F)J(λx.f)yK :≡ J f [y/x] KJx op yK :≡ r (x, y ∈ F, and r is the obvious result)Jfresh xK :≡ v (v is a fresh variable)

Fig. 5: VampIR evaluation semantics.

Some things never need to be evaluated; for example, an unapplied lambda expression on its own should never
occur during the evaluation of a well-formed program, so it does not need to be considered. Any unconsidered pattern
should produce an error, although most such forms are already eliminated by type checking.

The nature of evaluation makes semantics somewhat nonintuitive. As a program is evaluated, it will output more
and more constraints. There is no control over the constraints themselves as they are not manipulable objects of the
language. Through the ability to ignore function calls, it is possible to prevent constraints from propagating (e.g. any
constraint produced by f in iter 0 f x), but it is not always obvious when this will happen. The overall meaning
of a program will be that, for a fixed set of public variables, there exists an assignment to the private variables such
that the conjunction of all the constraints in χ is true.

Remark 4. The evaluation process generates a global stack of constraints, denoted as χ, through side effects, resulting
in semantics that are not immediately compositional. However, due to the monoidal nature of conjunction, which
makes the order of evaluation irrelevant, it is possible that compositional semantics could be recovered. Nevertheless,
such semantics are not readily evident within the evaluation model.

3. Proposal: Remove the type system
The current type system in VampIR has led to limitations and the need for workarounds. While it is not inherently
flawed, there is potential for a more versatile design. A key constraint is the inability to represent certain recursive
programs due to typechecking. While solutions have been made to address specific instances, like lists and numbers,
these are band-aid solutions that do not address the core issue: the limitations inherent in the type system itself.

While lists could be implemented using lambda expressions if removed from the language, their destructors, such
as the head and tail, cannot be iterated due to typechecking issues. This requires the addition of built-in lists and
accompanying hd, tl, and fold functions. A similar limitation arises with natural numbers; these numbers could
also be lambda encoded, but iterated predecessors do not type check, limiting their usage. iter was added to
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compensate; it just interprets its natural number argument as a church numeral; something that can already easily
be implemented.

The same issue arises with any recursive type. For example, binary trees can be lambda encoded, and, in fact,
one can fold over them as well already in VampIR. One can even take the left and right branches, but iteration
over these branches does not type check. Some version of this issue emerges with all recursive types. VampIR has
no solution currently. The way things have been done in the past suggests extending the language, perhaps with a
full-fledged recursive type system. However, we would prefer a different solution: remove the type system.

The type system does not prevent exponentially sized circuits from occurring; just infinitely sized ones. The way to
dealing with exponentially sized circuits is straightforward –halt evaluation prematurely. This method should suffice
for managing infinite circuits when they arise.

VampIR primarily serves as an intermediate language. This makes facilities that prevent the developer from
shooting themselves in the foot less important than it might be. It is already the user’s responsibility to make sure
VampIR code is sensible; giving them the additional responsibility to make sure that the code does not loop infinitely
is trivial in comparison. The logic errors that the simple type system prevents are, perhaps, not all trivial, but they
are not substantial either. Given the simplicity of the type system, the guarantees it gives should be easy to keep
track of by hand.

Using lambda encodings for all data structures would allow essentially all the faculties of functional programming
to be made available; from data structures to complex mutually recursive algorithms. As it stands, the type system
filters this into a less useful subset than end users might otherwise want to use.

4. Proposal: Remove DSL and make fresh simpler
The design of VampIR has an understated issue related to fresh. During evaluation, the body of fresh is discarded,
but VampIR saves it as a method to determine the value of the newly generated variable. This design does not impact
circuit semantics but serves as a convenience tool. Instead of users manually entering values for private variables,
fresh provides automatic calculation instructions. To aid this, fresh utilizes a DSL, essentially an extended version
of VampIR with additional operations, like modulus, which are not easily represented in arithmetic circuits. This
enables fresh to compute values, with subsequent constraints verifying the accuracy of these values.

So, what is the problem? The fact that fresh uses a manually created DSL means that users cannot use arbitrary
programs to calculate the values that need to be filled with fresh. This has led to much discussion as to how or
whether this language should be extended. Two paths emerge: perpetual addition of new elements as they arise,
or making the DSL computationally universal. However, both may not be viable solutions, as the correct value
for a private variable may need to be supplied by an oracle that cannot be implemented in a VampIR program. A
workaround is manual declaration and submission of a private variable at proof generation time. Yet, this raises the
question of why fresh needs to exist at all. If it is a reasonable feature of convenience, can it be made better?

Considering this, we suggest the complete elimination of the DSL, allowing only fresh to store a name and
signature.

Example 5. Consider the following as a typical example of fresh usage.

def bool x = { x*(x-1) = 0; x };

def range5 a = {
def a0:a1:a2:a3:a4:[] =
fresh (((a\1) % 2):((a\2) % 2):((a\4) % 2):((a\8) % 2) :((a\16) % 2):[]);
def a0 = bool a0;
def a1 = bool a1;
def a2 = bool a2;
def a3 = bool a3;
def a4 = bool a4;
a = a0 + 2*a1 + 4*a2 + 8*a3 + 16*a4;
(a0, a1, a2, a3, a4, ())

};

Here, fresh is calculating a list of values, and those values are calculated using integer division and the modulus
operation. The suggestion is that this be changed into something like in the following program.

def bool x = { x*(x-1) = 0; x };

def range5 a = {
def a0:a1:a2:a3:a4:[] = fresh (range5_fr a);
def a0 = bool a0;
def a1 = bool a1;
def a2 = bool a2;
def a3 = bool a3;
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def a4 = bool a4;
a = a0 + 2*a1 + 4*a2 + 8*a3 + 16*a4;
(a0, a1, a2, a3, a4, ())

};

Upon compilation, we expect the program above to generate a list of named signatures, each representing a function
requiring implementation. This program will contain a signature named range5_fr that takes one argument and
produces a list of five elements. The length may or may not be part of the signature, but the basic input and output
types are.

Now, when proving a circuit, implementations for every function in the signature must also be provided. The
exact form will depend on the language, but one can easily imagine implementing a function that takes a name and
a list of arguments to compute the required output for the circuit in any language. The prove function would then
essentially have an additional argument: a partial function of type string * [int] -> [int].

For languages lacking higher-order function support, a more complex approach may be needed, but this should
not be a show-stopper in any case. While this system may present less convenience for certain examples compared to
the current one, it compensates by offering full flexibility and potential simplifications to the language. This requires
VampIR to lean more towards a library than it currently does, as seen in practice within the Taiga2 framework for
shielded transactions.

5. Proposal: Explicit constraints
The difficulty in VampIR’s semantics stems from its non-compositional nature as discussed in Remark 4. To fix this,
we propose adding a type of constraint to the language. VampIR expressions should not generate constraints; rather,
they should return sets of constraints.

For simplicity, we propose a modified language, albeit omitting certain elements that may be desirable to retain.

Type ::= v
| Type −→ Type
| Type × Type
| B
| F

VampIR ::= (VampIR = VampIR)
| VampIR ∧ VampIR
| Type × Type
| λv.VampIR
| (VampIR VampIR)
| (VampIR op VampIR)
| −VampIR
| f
| v

op ::= + | × | − | /
f ∈ F
v ∈ string

Fig. 6: Modified VampIR syntax grammar for Explicit constraints’ proposal.

f∈F
f:F

op∈{+,∗,−,/,÷,%} x:F y:F
(x op y):F

T ∈1st x:T y:T
(x=y):B

x:B y:B
x∧y:B

x:T y:U
(x,y):T ×U fst:T ×U→T snd:T ×U→U

x:T ⊢y:U
λx.y:T →U

x:T →U y:T
(x y):U

Fig. 7: Modified VampIR typing rules for Explicit constraints’ proposal. U and T are terms of type Type as defined in Figure 6.

With these in place, we can give a sensible interpretation to any program of type B; it will be, essentially, a set
of constraints.

2https://github.com/anoma/taiga.
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Jx = yK :≡ {x = y}Jx ∧ yK :≡ JxK ∪ JyKJ(p, q) = (r, s)K :≡ Jp = rK ∪ Jq = sK
...

Fig. 8: Evaluation semantics for VampIR with explicit constraints.

By having functions return an explicit set of constraints, we do not need to worry about procedural order, etc.
This will make function types more complicated, but it will also make them more intuitive. For example.

def bool x = { x*(x-1) = 0; x };

In the original VampIR this function has type F → F, despite the fact that it has the side effect of generating a
constraint. In the proposed change, this would become;

def bool x = { (x*(x-1) = 0, x) };

and have type F → B × F. This changes later usage; an example of a range check would become;

def range5 a = {
def a0:a1:a2:a3:a4:[] = [...];
def (c0, a0) = bool a0;
def (c1, a1) = bool a1;
def (c2, a2) = bool a2;
def (c3, a3) = bool a3;
def (c4, a4) = bool a4;
def c5 = (a = a0 + 2*a1 + 4*a2 + 8*a3 + 16*a4);
(c0 & c1 & c2 & c3 & c4 & c5
, (a0, a1, a2, a3, a4, ()) )

};

There are alternatives to this. This typical pattern is an instance of a state monad; it may be better to implement
state monad combinators and assume all functions are under a (possibly trivial) constraint set. Function composition
would union the produced states together, etc. This would be just as compositional, but it would be, perhaps, less
tedious than what we presented here. We can, however, implement such combinators in VampIR already, so that
may be unnecessary.

There are additional potential benefits to what we presented here. For many functions, it’s not always obvious
when one should do prefix constraint checks. In the case of bit-vector computations, if one does not know if the
inputs are actually constrained to 0 and 1 then one needs to check this. If we already know this (maybe we already
checked this with an earlier operation, and the output of this op is guaranteed to still be a bitvector by construction)
then we don’t need to add prefix checks. In the current version of VampIR this is handled by having multiple versions
of the same function, one with checks and the other without. This modification allows one to ignore generated
constraints, reducing the need for redundancy.

6. Proposal VampIR Imports
As it stands, VampIR does not currently support any kind of import system. This stems, largely, from the fact
that simply combining two files will force the top-level constraints of both files to be combined. Despite this, most
VampIR files consist mainly of reusable functions. VampIR should be modified to allow for imports. This would
allow much better code reuse, allowing several files to, for example, import range checks rather than forcing each to
re-implement them.

There are several ways this could be done. The simplest would be to simply ignore all top-level constraints for
imports. We could also make a second file format that specifically only has definitions and no top-level constraints.

Our preferred approach is this: There should be two kinds of VampIR files; one that has top-level constraints and
another that contains only definitions. These should not be allowed to mix and match. This would prevent spurious
constraints and would encourage programmers to abstract functionality into reusable definitions.

7. VampIR Haskell
We port VampIR from Rust to Haskell in (Heliax AG, 2023c). However, there are significant differences in this
VampIR implementation, which we briefly summarize in this section.

In the original implementation of VampIR, parsing was done using a PEG grammar. There was a .pest file which
was then used to define a datatype in which parsed modules were stored. The Haskell implementation uses parser
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combinators as provided by the Megaparsec library. This significantly reduces the parsing code from over a thousand
lines in Rust to less than 200 in Haskell. This is far more maintainable. In the original implementation of VampIR,
there were periodic stack overflows when certain files were parsed; it is not clear at this point if the parser combinators
will be more efficient in this respect.

The original VampIR compiler parses everything into the same format used for computation. The Haskell imple-
mentation has a separation between a simpler “core” language and a more complicated type representing VampIR
ASTs. This allows things like pattern matching to be removed prior to evaluation or type checking. This also allows
the core expressions to use higher-order abstract syntax, allowing us to reuse Haskell’s binding features instead of
implementing them anew.

In the original VampIR, all expression constructors are wrapped in a type annotation, which were blank by
default and filled only during type checking. Post type-checking, these annotations were discarded, yet the wrappers
persisted. This unnecessarily complicated the language data types, as the type annotations themselves were not
required. Recall that, as discussed in Section 3, VampIR’s type system is simple enough that a most general type
can always be efficiently inferred. The type checker in the Haskell implementation infers the most general type, and
attempts unification for type checking.

Originally, compiled VampIR came equipped with a large dictionary of definitions that told the system how to
calculate intermediate circuit values. As an example, an expression like;

x + (y * z) = 2

would be turned into something like

x + v = 2
v = y * z

Additionally, separate from the actual circuit sent to Halo2 or Plonk, there would be a definition instructing the
system that the value of v can be calculated by multiplying y and z. This redundancy significantly complicates circuit
processing, such as optimization, as one needs to keep track of not just the circuit, but also ancillary definitions.
In contrast, the Haskell implementation uses constraint propagation to infer the required values for unassigned
variables based on their involvement in the 3ac constraints. Any values which could be inferred through simple circuit
evaluation can similarly be inferred this way, with no change in asymptotic efficiency. This approach would also
significantly simplify any future optimization work, although the current Haskell implementation does not perform
any optimization.
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