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Abstract

At Heliax, we are developing a compiler stack to facilitate the creation of decentralized applications using high-level functional
programming languages. This stack comprises a series of compilers that begin with Juvix and culminate in various targets.
One such target is arithmetic circuits, represented via VampIR, an intermediate language for such circuits. This report
highlights the Geb project, a component of this pipeline, and details the process of compiling JuvixCore into VampIR through
the Geb compiler. To aid its adoption and implementation, we provide a categorical overview of the mathematical foundations
of the Geb project and insights into its current Lisp-based implementation. The objective of this report is to guide future
implementations and improvements of the Geb project.
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1. Introduction
The Geb project was initiated to compile functional programs into high-level representations of arithmetic circuits
using categorical methods. This categorical approach specifies compilation procedures via internal language theorems,
thus shifting focus from syntax to suitable categorical structures.

The core of the approach taken here rests on the observation that compilation procedures1 can be linked to functors
that maintain the corresponding structures between categories representing appropriate programming languages. One
canonical example is specified in Lambek and Scott (1986), dealing with the fact that languages possessing the simply
typed Lambda calculus (STLC) structure form a category which is equivalent to the category of Cartesian Closed
Categories (CCC).

Therefore, instead of operating with syntax, we can represent our languages as categories and construct functors
between them as also described in Elliott (2017). This approach simplifies compiler formalization due to the direct
mathematical meaning of the constructions. Furthermore, functor properties inherently provide several beneficial
features, including automatic type-checking for morphism composition.

The approach outlined in this document is supported by a reference implementation in Lisp. This Lisp-based
Geb implementation signifies the project’s initial completed stage: the compilation of functional programs written

1Those that preserve specified type structures.
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in the JuvixCore language (regarded as an appropriate untyped Lambda calculus with optional typing) to VampIR,
an in-house language for arithmetic circuits. As part of the implementation, we also provide an interactive user
environment equipped with extra features such as interpreters, program type-checkers, and a Geb visualizer available
at the following address, release v0.5.

https://github.com/anoma/geb.

The general aim of the paper is to provide an overview of pipeline design that is accessible to people without
delving deep in the Lisp implementation. Primarily, we aim to:

1. Make all components of the pipeline precise by describing their intended semantics and paraphrasing the
constructions in ML-like code with explicit typing.

2. Describe all the compilation steps using diagrams for readability and intelligibility.

3. Highlight important interactive features of the current implementation (see Appendix A).

2. Language/Category Specs
The central challenge is to effectively specify the compilation of programs, written in a high-level functional programming
language, into an intermediate arithmetic circuit language. Here, this corresponds to the translation from Juvix to the
VampIR language, with a specific focus on the compilation of JuvixCore to VampIR.

Juvix JuvixCore

VampIR

• JuvixCore: A Lambda calculus (with possible typing) incorporating inductive types and primitive integers, which
defines the strict execution semantics of Juvix.

• VampIR: An intermediate language for arithmetic circuit specification, akin to LLVM IR. It features useful
constructors such as tuples, arrays, mapping and folds, currying, and circuit synthesis to Plonkup and Halo2.

The first step in this is to provide a compilation from a sub language of Juvix, namely JuvixCore. The way we do
this is by breaking up the procedure into compilations through languages we name Lambda, Geb , and SeqN.

JuvixCore Lambda Geb SeqN VampIR

Here we are concerned only with the steps starting from Lambda. The Juvix compiler already supports compiling
JuvixCore to a suitable representation in Lambda. Hence, the pipeline we will be interested in and the one written in
Lisp is presented in the diagram below.

Lambda Geb SeqN VampIR

The current section is devoted to the specifications of the languages used in the compilation with the VampIR
section concerned not with the description of VampIR itself, but of the library of functions needed for any compiled
code to compile on valid inputs.

Let us provide a summary of the language features of each language in the compiler stack, as originally presented
in Czajka (2023).

Feature Juvix JuvixCore Geb VampIR
General recursion (functions) Yes Yes No No
First-class functions Yes Yes Yes Noa

Inductive data types Yes Yes No No
Finite data structures Yes Yes Yes Nob

Prenex polymorphism Yes Yes No Noc

Higher-rank polymorphism Some Yes No No
Primitive integer type Yes Yes Yes Yesd

Errors Yes Yes Yes No

aVampIR higher-order and anonymous functions are not fully “first-class” because they cannot nontrivially interact with the field elements - they
are essentially compilation-time-only.

bPairs and lists in VampIR cannot nontrivially interact with the field elements. In general, finite JuvixCore data structures cannot be translated into
them.

cPolymorphic functions are supported, but not polymorphic data types which can interact non-trivially with field elements. Hence, monomorphisation
is still necessary to translate from JuvixCore.

dVampIR “integers” are the field elements, not integers strictly speaking.
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2.1. Geb. The finite version of Geb implemented here answers two questions:

• What are the minimal/optimal operations needed to present polynomials which VampIR operates with?

• What are the minimal/optimal bounding operations between functional programming languages?

The answer seems to be that we need some sort of addition, multiplication, 0, and 1 as structures to be used. For the
usual arithmetic to hold, we also need some sort of distributivity law. Exponentiation should follow in a similar fashion
to how we define arithmetic exponentiation from multiplication in N2. Finally, we need some notion of a "context" or
a "domain" - as is usual in the syntax/semantics duality - in order to be able to produce variables.

Hence, this brings us to the first definition of Geb .
Definition 1 Geb is the language spanned by the empty type so0 , unit type so1 and sum/product types appropriately
named coprod and prod .

Here is a definition as one would write using Agda-like syntax:

data substobj : Set where
so1 : substobj
so0 : substobj
coprod : substobj → substobj → substobj
prod : substobj → substobj → substobj

variable
x y z : substobj

data _G→_ : substobj → substobj → Set where
comp : (y G→ z) → (x G→ y) → (x G→ z)
-- composition
id : (x : substobj) → (x G→ x)
-- identity function
initial : (x : substobj) → (so0 G→ x)
-- absurd
terminal : (x : substobj) → (x G→ so1)
-- constant function
mcase : (x G→ z) → (y G→ z) → ((coprod x y) G→ z)
-- casing
prod : (z G→ x) → (z G→ y) → (z G→ (prod x y))
-- product analysis

distribute : (prod x (coprod y z)) G→ (coprod (prod x y) (prod x z))
-- distributivity

→left : x G→ (coprod x y)
-- left injection

→right : y G→ (coprod x y)
-- right injection

←left : (prod x y) G→ x
-- left projection

←right : (prod x y) G→ y
-- right projection

subtmorph : substobj → substobj → Set
substmorph a b = a G→ b

Remark 2 In the implementation, we use the name substmorph for the type above but for readability we use G→
here.

Here substobj is the collection of the types of our language and f : substmorph a b stands for a term of b in
the context of a 3.

Another way of thinking about Geb is to specify the categorical structure instead of the syntactical one.
Definition 3 Geb is the category freely spanned by an initial object, terminal object, and finite (co)products alongside
the distributivity law.

2Of course multiplication can be defined similarly by addition, but it is not optimal to do so due to exponentiation of terms. Moreover, it seems
that having primitive exponentiation in a language through which we compile is inefficient, as it would need to compile to some separate VampIR
function.

3There are extra equalities to subject the terms to, e.g. making terminal terms unique or composition associative on the nose, yet for the sake of
the current project, we do not implement these, and if needed, reductions are done by hand. There is also an explicit reducer in development.
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Remark 4 The discussion below uses a more advanced categorical vocabulary. Anyone satisfied by the previous two
definitions can instead go directly to Corollary 7.

Recall that a category of models of a language is a category in which objects are models of said language and
morphisms are mappings that maintain the language structure4. Definition 3 is equivalent to considering the term
model of a language, which is the initial category of its corresponding category of models5.

However, the semantics of Definition 3 are unclear. Note that taking coproducts with so0 is equivalent to the
identity functor6 while taking products with so0 to a constant functor at so0 7. Similarly, taking products with so1
is equivalent to the identity functor8. Therefore, intuitively, the only way to make "new" types in Geb is by taking
coproducts of so1 with itself over and over. There is actually a category which is specified by being generated by
filtered colimits over finite inclusions between such coproducts of the terminal object: FinSet. It is indeed generated
by simply adding extra 1-element sets to the empty set. Thus, there is the third definition of Geb .
Definition 5 Geb is FinSet.

Let us make this correspondence exact:
Theorem 6 FinSet is an initial weak model of the Geb language. That is, it is equivalent to the initial model of
the essentially algebraic theory of category theory with initial, terminal objects, finite (co)products structure, and
distributivity. Moreover, the equivalence preserves all relevant categorical structure.

Proof. We can instead deal with the skeleton 𝑆𝑘(FinSet) = FinOrd, the category of finite ordinals, since clearly the
equivalence preserves all relevant structure. Now suppose that (𝐶, 1𝐶 , 0𝐶 , +𝐶 , ×𝐶) is a distributive category with
initial/terminal object.

Note that (
⨁︀

𝑛
1𝐶) ×𝐶 (

⨁︀
𝑚

1𝐶) =
⨁︀

𝑛×𝑚
1𝐶 by induction on 𝑛.

• When 𝑛 = 0 since the initial object is strict, then the product is just 0𝐶 which is also the null coproduct.
• For the inductive step, consider the chain of isomorphisms below.⨁︁

1+𝑛

1𝐶 ×𝐶

⨁︁
𝑚

1𝐶
∼=

(︃⨁︁
𝑛

1𝐶 +𝐶 1𝐶

)︃
×𝐶

⨁︁
𝑚

1𝐶

∼=

(︃⨁︁
𝑛

1𝐶 ×𝐶

⨁︁
𝑚

1𝐶

)︃
+𝐶

⨁︁
𝑚

1𝐶 (By distributivity prop.)

∼=
⨁︁
𝑛×𝑚

1𝐶 +
⨁︁

𝑚

1𝐶 (By induction hypothesis on 𝑛)

∼=
⨁︁

(1+𝑛)×𝑚

1𝐶 .

Now we prove that FinOrd is our weakly initial model. To do so, we need to construct a functor of type FinOrd → 𝐶
that preserves our structure, and we also need to prove that it is unique up to a natural isomorphism.

First, we construct the functor.
Recall that both FinSet and FinOrd constitute the weakly initial category of the theory of categories with finite

coproduct on one object9. Given that 𝐶 has coproducts and 1𝐶 , we can hence construct the functor 𝐹 : FinOrd → 𝐶,
which preserves this structure along with the terminal object. We claim that 𝐹 is our needed functor. We claim that
the product structure is also preserved. Given 𝑛 × 𝑚 proceed by induction on 𝑛:

• If 𝑛 = 0, then we have
𝐹 (0 × 𝑚) = 𝐹 (0) ∼= 0𝐶

∼= 0𝐶 ×𝐶 𝐹 (𝑚) ∼= 𝐹 (0) ×𝐶 𝐹 (𝑚).
• For the inductive step, we use the previous observation:

𝐹 ((1 + 𝑛) × 𝑚) = 𝐹 ((𝑛 × 𝑚) + 𝑚)
∼= (𝐹 (𝑛) ×𝐶 𝐹 (𝑚)) +𝐶 𝐹 (𝑚) (By induction and 𝐹 preserves coproducts)

∼=

(︃⨁︁
𝑛

1𝐶 ×𝐶

⨁︁
𝑚

1𝐶

)︃
+𝐶

⨁︁
𝑚

1𝐶 (By definition of 𝐹 )

∼=
⨁︁
𝑛×𝑚

1𝐶 +
⨁︁

𝑚

1𝐶

4For example, the category of models of groups is the category of groups and group morphisms.
5For more abstract nonsense on the topic one can consult Kapulkin and Lumsdaine (2018) and Adamek and Rosicky (1994).
6Similar to how adding 0 is the same as the identity function.
7Distributive categories have strict initial objects, similar to how multiplying by 0 gives 0.
8Similar to how multiplying by 1 gives back the original term.
9https://ncatlab.org/nlab/show/FinSet#universal_properties
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∼=
⨁︁

(1+𝑛)×𝑚

1𝐶

∼=
⨁︁
1+𝑛

1𝐶 ×𝐶

⨁︁
𝑚

1𝐶

∼= 𝐹 (1 + 𝑛) × 𝐹 (𝑚).

Since everything the functor hits is a coproduct of the terminal object up to an isomorphism and 𝐹 preserves all
coproduct structure, it preserves all other morphism structure, including product universal morphisms and distributivity,
that is, it is an actual functor of models.

The only thing left to prove is the uniqueness property of 𝐹 .
However, by the same argument, since everything the functor hits is a coproduct of 1𝐶 and 𝐹 preserves coproduct

structure and is a unique functor doing so up to natural iso, this also proves uniqueness up to iso. □

Hence, Definition 5 is fully valid and when one talks of Geb , one can instead think about a nice presentation of
FinSet. Hence a term of substobj is just a finite set and a term of a G→ b is just a function between corresponding
finite sets. As expected, this equivalence actually provides us with the existence of a lot of extra structure.
Corollary 7 Geb is cartesian closed.

That is, for any two objects a, b : substobj we get an object (sohomobj a b) : substobj which is an object of
Geb representing all terms of b in context a , or, in other words, it is the function type from type a to type b . It
also comes equipped with the usual curry isomorphism and evaluation maps:

curry : ((prod x y) G→ z) → (x G→ (sohomobj y z))
eval : (prod (sohomobj x y) x) → y
uncurry : (x G→ (sohomobj y z)) → ((prod x y) G→ z)

Remark 8 The actual implementation of the said types and terms is not important for the report, but we need these
functions in order to compile JuvixCore code to Geb , which is why these are mentioned. For explicit constructions,
one can consult the Agda folder10.

Now we "extend" Geb by adding natural numbers with the following trick: consider all 𝑛-bit-wide numbers.
Evidently, there are 2𝑛 of these, which means that their set is in bijection with the finite ordinal of cardinality
2𝑛. In other words, we introduce objects nat-width n for every 𝑛 > 0 which are really just isomorphic copies of
2𝑛 coproducts of so1 . So Geb already had the natural number functionality, it was just highly inefficient before
introducing primitive constructors.

data substobj : Set where
...

nat-width : Nat → substobj
-- nat-width n is the set of n-bit natural numbers

data substmorph : substobj → substobj → Set where
...
nat-add : (n : Nat) → ((nat-width n) G→ (nat-width n))
-- addition
nat-mult : (n : Nat) → ((nat-width n) G→ (nat-width n))
-- multiplication
nat-sub : (n : Nat) → (nat-width n) G→ (nat-width n)
-- subtraction
nat-div : (n : Nat) → (nat-width n) G→ (nat-width n)
-- division
nat-concat : (n m : Nat) → ((prod (nat-width n) (nat-width m))

G→ (nat-width (n+m)))
-- concatenation of bits
nat-inj : (n : Nat) → ((nat-width n) G→ (nat-width (n + 1)))
-- injects an n-bit numbers as an n+1 bit number
nat-decompose : (n : Nat) → ((nat-width (n + 1))

G→ (prod (nat-width 1) (nat-width n)))
-- decomposes an n+1 bit number into the top bit and the rest of the bits
one-bit-to-bool : (nat-width 1) G→ (coprod so1 so1)
-- isomorphism between a set containing 0,1 bits and bool
nat-eq : (n : Nat) → ((prod (nat-width n) (nat-width n))

G→ (coprod so1 so1))
10https://github.com/anoma/geb/blob/main/geb-agda/Geb_Hom.pdf
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--equality predicate
nat-lt : (n : Nat) → ((prod (nat-width n) (nat-width n))

G→ (coprod so1 so1))
--"less-than" predicate

Remark 9 Be careful when using the term "Geb" as it can point to many things. The Geb language, as it is currently
implemented in the pipeline, is just a subcomponent of what the final version of Geb will look like. The intention is
that Geb will become a language that will be able to articulate the entirety of the pipeline currently presented in CL.
The reason we call this category Geb here is that this category will be a core component specifying the higher-order
Geb category, which itself will correspond to a larger programming language. However, in this report we always use
"Geb" to describe Geb as given in Definitions 1, 3 and 5.

2.2. Lambda. The Lambda language is an extended version of STLC with types taken from Geb 11. However, the
terms are introduced untyped first and become typed once the context is introduced via specific functions such as
ann-term .
Definition 10 Lambda is STLC with types from substobj extended by error terms err of arbitrary type, as well as
natural number arithmetic with fixed bit width.

Here is the definition as one would type it in Agda:
data lambda : Set where

absurd : substobj → lambda
-- beta reduction for empty type
unit : lambda
-- unique element of unit type so1
left : substobj → lambda → lambda
-- left inclusion into coproduct
right : substobj → lambda → lambda
-- right inclusion into comporoduct
case-on : lambda → lambda → lambda → lambda
-- beta elimination for coproducts
pair : lambda → lambda → lambda
-- term introduction for products
fst : lambda → lambda
-- left projection
snd : lambda → lambda
-- right projection
lamb : List substobj → lambda → lambda
-- function type term introduction
-- takes in a list of types for iterated function type use
app : lambda → List lambda → lambda
-- function type elimination
-- takes in a list of terms for iterated elimination
index : Nat → lambda
-- variable via de Bruijn indices
err : substobj → lambda
-- error term of arbitrary type
plus : lambda → lambda → lambda
-- arithmetic operations
times : lambda → lambda → lambda
minus : lambda → lambda → lambda
divide : lambda → lambda → lambda
bit-choice : List bool → lambda
-- natural number choice
lamb-eq : lambda → lambda → lambda
-- equality of natural numbers
lamb-lt : lambda → lambda → lambda
-- "less-than" predicate on natural numbers

Of course, a lot of the terms produced in this way will be ill-typed. For example, indices in an empty context are
ill-defined. Then, as mentioned before, we have the functionality of typing the terms of Lambda, namely the function
ann-term as in the Lisp implementation each term has a slot for types which we can fill in recursively. We also have
a predicate well-defp that checks whether a given Lambda term is well defined according to the standard typing
rules examples of which are provided below.

11The latter part is the reason why we described Geb before talking about Lambda, even if the compilation order is different.
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• unit is of type so1 .

• All the arithmetic operation terms are deemed well-typed iff the provided terms are of same bit-width.

• The natural number predicates have return type coprod so1 so1

2.3. SeqN. At this stage, we need a way to talk about abstract VampIR functions in terms of inputs and outputs.
SeqN is supposed to act as a canonical model for that.
Definition 11 SeqN is the category whose objects are finite sequences of natural numbers (𝑥1, · · · , 𝑥𝑛) and a morphism
𝑓 : (𝑥1, · · · , 𝑥𝑛) → (𝑦1, · · · , 𝑦𝑚) is a VampIR function that takes in 𝑛 inputs with the 𝑖-th entry being of bit-size 𝑥𝑖

and outputs an 𝑚-tuple with 𝑖-th entry being of bit-size 𝑦𝑖. Hence, it makes sense to also call SeqN a category of
VampIR programs.

However, we do not need a precise specification of VampIR as is, what we are aiming for is simply to specify some
subcategory of the one described above, which will be sufficient for interpreting faithfully all the Geb programs we
have.

We now present an explicit definition of SeqN in terms of a free category spanned by the following objects/mor-
phisms12.

seqnobj = List Nat

variable
x y z w : seqnobj

data _S→_ : seqnobj → seqnobj → Set where
composition : (y S→ z) → (x S→ y) → (x S→ z)
-- composition
id : (x : seqnobj) → (x S→ x)
--identity
fork-seq : (x : seqnobj) → (x S→ (append x x))
-- morphism copying the entry twice
parallel-seq : (x S→ y) → (z S→ w) →

((append x z) S→ (append y w))
-- given two functions, parallizes them
drop-nil : (x : seqnobj) → (x S→ (0 :: []))
-- given an object, just drops everything to a nil entry
remove-right : (x : seqnobj) → ((append x (0 :: [])) S→ x)
-- removes a right-positioned zero entry
remove-left : (x : seqnobj) → ((append (0 :: []) x) S→ x)
-- removes a left-positioned zero entry
drop-width : (x y : seqnobj) → (x S→ y)
-- on entry, removes extra bits assuming x > y pointwise
inj-length-left : (x y : seqnobj) → (x S→ (append x y))
-- injects an entry producing nothing on the left side
inj-length-right : (x y : seqnobj) → (y S→ (append x y))
-- injects an entry producing nothing on the right side
inj-size : (x y : Nat) → ((x :: []) S→ (y :: []))
-- if x < y injects an x-bit number as y-bit
branch-seq : (x S→ y) → (x S→ y) → ((1 :: x) S→ y)
zero-bit : (0 :: []) S→ (1 :: [])
-- produces 0
one-bit : (0 :: []) S→ (1 :: [])
-- produces 1
shift-front : ((x_1 :: ... :: x_n) : seqnobj) → (k : Nat) →

((x_1 :: ... :: x_n) S→
(x_k :: x_1 ... x_k-1 :: x_k+1 :: ...))

-- shifts the k-th entry in front
seqn-add : (n : Nat) → ((n :: n :: 0) S→ (n :: 0))
-- basic arithmetic operations
seqn-subtract : (n : Nat) → ((n :: n :: 0) S→ (n :: 0))
seqn-multiply : (n : Nat) → ((n :: n :: 0) S→ (n :: 0))
seqn-divide : (n : Nat) → ((n :: n :: 0) S→ (n :: 0))
seqn-nat :: (n m : Nat) → ((0 :: []) S→ (n :: []))

12Operations such as :: and append are usual operations on lists in the definition.
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-- produces an n-wide natural number m
seqn-concat : (n m : Nat) → ((n :: m :: []) S→ ((n + m) :: []))
-- concatenates two n and m wide bits
seqn-decompose : (n : Nat) → ((n :: []) S→ (1 :: (n - 1) :: []))
-- takes the top bit off of the input and places it in separate slot
seqn-eq : (n : Nat) → ((n :: n :: []) S→ (1 :: 0 :: []))
-- equality predicate
seqn-lt : (n : Nat) → ((n :: n :: []) S→ (1 :: 0 :: []))
-- less-than predicate

Remark 12 Note the pseudocode used in seqn-shift definition. Also, note the unusual codomain of seqn-eq and
seqn-lt . In this category (1, 0) ∼= (1). For a more detailed discussion, see Section 3.2.

The parallel-seq function is actually the product of the corresponding morphisms, and therefore we use the
notation parallel-seq f g = 𝑓 × 𝑔.

2.4. VampIR. VampIR is an intermediary language for arithmetic circuits. As the final point of compilation, it does
not need to be fully specified by the pipeline13 described here. The only thing we need is the following collection of
VampIR functions used in the compilation procedure14.To gain a better understanding of the details of the VampIR
language, consult Hart (2023).

• Check that x is a boolean, then print it

def bool x = { x*(x-1) = 0 ; x};

• def base_range 0 = { []};

• def next_range range a = {
def a0 = bool (fresh (a % 2));
def a1 = fresh (a / 2);
a0 : (range a1)

};

• Take natural number 𝑛 and integer 𝑚, check that 𝑚 is 𝑛-bit then print 𝑛-bit representation of 𝑚.

def range_n n = { iter n next_range base_range };

• Head of the list

def hd (h:t) = { h };

• Tail of the list

def tl (h:t) = { t };

• n-th element of the list

def n_th lst n = { hd (iter n tl lst) };

• Give 0 if a is negative and 1 otherwise given an expected bit-size

def negative n a = {
nth (range_n (n + 1) (a + (2 ^ n))) n

};

• Check that the sum of two n-bit numbers is an n-bit number then prints the sum

def plus_range n x1 x2 = {
range_n n (x1 + x2);
x1 + x2

};
13In the Lisp-based implementation we have a specification of the principal aspects of VampIR

https://github.com/anoma/geb/blob/main/src/vampir/spec.lisp.
14The functions are written in VampIR syntax v0.1.3.

DOI: 10.5281/zenodo.8262747 Anoma Research Topics | August 21, 2023 | 8

https://github.com/anoma/geb/blob/main/src/vampir/spec.lisp
https://dx.doi.org/10.5281/zenodo.8262747


Lambda Geb SeqN VampIRto-cat to-seqn to-circuit

to-seqn

to-circuit

to-cicruit

Fig. 1: Compiler pipeline including generics.

• Check that the multiplication of two n-bit numbers is n-bit then prints the sum.

def mult_range n x1 x2 = {
mult_range n (x1 * x2);
x1 * x2

};

• Check that the subtraction of two n-bit natural numbers is non-negative then prints the subtraction

def minus_range n x1 x2 = {
negative n (x1 - x2) = 1;
x1 - x2

};

• Check that "a" is nonzero

def iszero a = {
def ai = fresh (1 | a);
def b = 1 - (ai * a);
a * b = 0;
1 - b

};

• def combine-aux x y = { x + (2 * y) };

• Combines a bit-representation of a number into decimal form

def combine xs = { fold xs combine_aux 0 };

• def take_base lst = { [] };

• def take_ind take (h:t) = { h:(take t) };

• def take n = { iter n take_ind take_base };

• def drop_ith_rec take (h:t) = { h:(take t) };

• Drop n-th element of a list.

def drop_ith n = { iter n drop_ith_rec (fun (h:1) {1}) };

3. Compilation Steps
We have outlined the specifications of the intermediary languages that we will be using to compile through, and we
are now ready to present our main pipeline. The compilation diagram is presented below.

Lambda Geb SeqN VampIRto-cat to-seqn to-circuit

The compilations are appropriately named to-cat , to-seqn , and to-circuit after their codomains. Actually,
to-seqn and to-circuit are generics, in the sense that their names stand for various compilations. For example,
to-seqn is originally a compilation from Geb to SeqN, yet if we feed this function with Lambda code, it actually
compiles 15 that code to SeqN: first, applying to-cat and then the original to-seqn . The same goes for to-circuit .

Remark 13 The interactive use of the pipeline is best done through the lambda package.
15With certain settings.
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CL-USER> (in-package geb.lambda.trans)

TRANS> (to-cat nil (lamb (list (coprod so1 so1)) (index 0)))
(<-left (+ s-1 s-1) s-1)

TRANS> (to-seqn (lamb (list (coprod so1 so1)) (index 0)))
(COMPOSITION (REMOVE-RIGHT (1 0)) (PARALLEL-SEQ (ID (1 0)) (DROP-NIL (0))))

TRANS> (to-circuit (lamb (list (coprod so1 so1)) (index 0)) :identity_fun)
(def identity_fun x1 x2 x3 = {

range_n 0 x3;
range_n 0 x2;
range_n 1 x1;
(x1) };

)

Here, nil stands for the empty context that we feed the compiler when we move from Lambda to Geb . All other
compilations are assumed to occur in the empty context. To compile to VampIR we also need to specify the name of
our function as above.

Remark 14 In the proceeding discussion, all possible info is replaced by categorical counterparts for readability.
prod will be denoted by ×, coprod by +, elements of substmorph by actual arrows etc. wherever possible without
losing information. Similarly, sohomobj will now be denoted by explicit arrows.

3.1. From Lambda to Geb. The core part of the compilation from Lambda to Geb is canonical: the initial morphism
from the term model of the Lambda language to Geb in the category of STLC models.

The description of the compilation will be made less formal to facilitate understanding, lambda-abstraction, and
function application terms will be assumed to be one argument only.

We define the compilation to-cat : Lambda→ Geb with precise typing being

to-cat : List substobj → lambda → substmorph

as a function taking in a lambda term and a list of Geb objects serving as a context and spitting out a Geb morphism
with typing

to-cat(𝐴1, ..., 𝐴𝑛)(t : 𝐵) : 𝐴1 × ... × 𝐴𝑛 × 1 → 𝐵.

We proceed by induction on t , assuming that we are always given context 𝐴1, ..., 𝐴𝑛 := 𝛾 and defining
𝐴1 × ... × 𝐴𝑛 × 1 := Γ16.

Table 1: Compilation from Lambda to Geb .

Lambda Geb

(absurd B (term : so0))
0

Γ 𝐵

to-cat(𝛾)(term) !

to-cat(𝛾)(t)

(unit : so1) Γ 1!

to-cat(𝛾)(t)

(left A (term : B) : B + A)
𝐵

Γ 𝐵 + 𝐴

to-cat(𝛾)(term) 𝜄1

to-cat(𝛾)(t)

(right A (term : B)) : A + B
𝐵

Γ 𝐴 + 𝐵

to-cat(𝛾)(term) 𝜄2

to-cat(𝛾)(t)

16That is, any context is interpreted in Geb as an iterated product with so1 on the right.
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(case (on : A + B)
(ltm : C)
(rtm : C)) : C

𝐴 × Γ 𝐵 × Γ

Γ × 𝐴 𝐶 Γ × 𝐵

Γ × (𝐴 + 𝐵) (Γ × 𝐴) + (Γ × 𝐵)

Γ 𝐶

to-cat(𝛾)(ltm)∼= ∼=

𝐹 𝐺

to-cat(𝛾)(rtm)

distribute

to-cat(𝛾)(on) [𝐹,𝐺]

to-cat(𝛾)(t)

(pair (ltm : A) (rtm : B)) : A × B

𝐴 × 𝐵

𝐴 Γ 𝐵𝐺

to-cat(𝛾)(rtm)

𝐹

to-cat(𝛾)(ltm)

𝜋1 𝜋2

⟨𝐹,𝐺⟩ to-cat(𝛾)(t)

(fst (term : A × B)) : A
𝐴 × 𝐵

Γ 𝐴

to-cat(𝛾)(term) 𝜋1

to-cat(𝛾)(t)

(snd (term : A × B)) : B
𝐴 × 𝐵

Γ 𝐵

to-cat(𝛾)(term) 𝜋2

to-cat(𝛾)(𝑡)

(lamb (tdom : A) (term : B)) : A → B

𝐴 × Γ

Γ × 𝐴 𝐵

Γ (𝐴 → 𝐵)

to-cat(𝐴,Γ)(𝑡𝑒𝑟𝑚)∼=

𝐹

curry(𝐹 )

to-cat(𝛾)(t)

(app (fun : A → B) (term : A)) : B

Γ

(𝐴 → 𝐵) 𝐴

(𝐴 → 𝐵) × 𝐴

Γ 𝐵

to-cat(𝛾)(fun) to-cat(𝛾)(term)

𝐹 𝐺

⟨𝐹,𝐺⟩ eval

to-cat(𝛾)(t)

(index i) : 𝐴𝑖 𝐴1 × ... × 𝐴𝑛 × so1 𝐴𝑖
𝜋𝑛

to-cat(𝛾)(𝑡)

(bit-choice bitv) : nat-width n

m = bitv in decimal notation

1

Γ (nat-width n)

! nat-const n m

to-cat(𝛾)(t)
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(plus (ltm : natwidth-n)
(rtm : nat-width n))

: nat-width n

Γ

(nat-width n) (nat-width n)

(nat-width n) × (nat-width n)

Γ (net-width n)

⟨𝐹,𝐺⟩ nat-add

to-cat(𝛾)(t)

𝐹 𝐺

to-cat(𝛾)(rtm)to-cat(𝛾)(ltm)

(lamb-eq (ltm : nat-width n)
(rtm : nat-width n))
: (coprod so1 so1)

Γ

(nat-width n) (nat-width n)

(nat-width n) × (nat-width n)

Γ 1 + 1

nat-eq⟨𝐹,𝐺⟩

to-cat(𝛾)(𝑡)

𝐹 𝐺

to-cat(𝛾)(ltm) to-cat(𝛾)(rtm)

Remark 15 Other arithmetic operations and lamb-lt that get compiled accordingly to the last two steps. There is
also an err term in the language that we have skipped for simplicity of presentation. Lambda term with err subterm
is interpreted through a different pass. The process of compiling terms with err is analogous to the one previously
described, but with the addition of wrapping all elements recursively in a Maybe monad.

3.2. From Geb to SeqN. The compilation of Geb to SeqN is more complex as we now explicitly deal with establishing
a functor. We need two functions: one presenting Geb types as sequences and another transforming Geb morphisms
into SeqN morphisms.

The encoding of types is tricky. We want coprod so1 so1 to stand for (1) since it should represent one bit. The
most evident way of taking coproducts is to index them with a bit, so that on 0 the element is of the left type and
the right one on 1. That is, taking the coproduct means adding an extra bit of information. Since coprod so1 so1
stands for (1), the original types should be of 0-bit width. That is, so1 stands for (0). Similarly, so0 stands for (0).

Clearly, nat-width n should correspond to (𝑛). We also have arithmetic functions of form

nat-add n : (nat-width n) × (nat-width n) → (nat-width n)

which we want to be a VampIR function taking in two 𝑛-bit inputs. So we want to interpret products prod a b as a
tuple where we append the list of interpreted a to the list of interpreted b . Hence, for the nat-add n domain, the
result will be (𝑛, 𝑛).

The hardest part is interpreting the coproducts. Given a morphism with domain coprod a b we want something
that takes either input from a or an input from b and uses branching the way it is usually done in VampIR. As
mentioned before, to use branching, we need the top of the sequence to have a bit on top, with 0 indicating an input
from a and 1 indicating an input from b . Then, for example, we might have coprod (nat-width n) (nat-width n)
interpreted as (1, 𝑛) so that at 0 we consider the second input to be from the left copy of numbers, and on 1 from
the right.

Yet what if the interpretations of 𝑎 and 𝑏 differ in bit-sizes? For example, when we consider the object
coprod (nat-width 2) (nat-width 3) ? Then we probably should just take the largest bit-width and interpret it
as (1, 3). What if they differ in lengths as coprod (nat-width 2) (prod (nat-width 2) (nat-width 2)) ? Take the
longest sequence: (1, 2, 2). What if both occur? Then take the longest sequence, take their product point-
wise and get the maximal bit-width of each entry. So coprod (nat-width 2) (prod so1 (nat-width 3)) becomes
(1, (max(2, 0)), (max(0, 3)) = (1, 2, 3)17.

Thus, we define a function width: substobj → seqnobj by induction using Agda-like notation18:
17Note that under this interpretation, width of a Geb boolean is actually (1, 0), which is, however, isomorphic to (1) via left injection
18The function zipWith utilized in defining width, accepts a binary function and two lists as arguments. It combines the lists element-wise using the

binary function. Processing halts when the end of the shorter list is reached.
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width : substobj → seqnobj
width so1 = (0 :: [])
width so0 = (0 :: [])
width (nat-width n) = (n :: [])
width (prod x y) = (append (width x) (width y))
width (coprod x y) = (1 :: (zipWith max (width x) (width y)))

Remark 16 Note that width (coprod so1 so1) is (1, 0) and not (1) as we originally intended. However, both objects
are isomorphic in our category as

composition (inj-length-left (1 :: []) (0 :: [])) (remove-right (1 :: []))
= id (1 :: 0 :: [])

composition (remove-right (1 :: [])) (inj-length-left (1 :: []) (0 :: []))
= id (1 :: [])

One can check that these establish relevant isomorphism info as function equality is established pointwise in our
category and refer to Section 3.3.

Now we are ready to define the compilation of morphisms via diagrams. Recall that seqn-parallel is the product
of morphisms in our category. Hence, we write 𝑓 × 𝑔 instead of parallel f g for appropriate morphisms.

We define to-seqn : Geb → SeqN with formal typing

to-seqn : {x y : substmorph} → (x G→ y) → ((width x) S→ (width y))

We denote the interpretation of the variables 𝑎, 𝑏, 𝑐 in SeqN by (𝑎1, . . . , 𝑎𝑛), (𝑏1, . . . , 𝑏𝑚), (𝑐1, . . . , 𝑐𝑘) accordingly.
Proceed by induction on t : substmorph .

Table 2: Compilation to-cat from Geb to SeqN.

Geb SeqN

id a (𝑎1, . . . , 𝑎𝑛) (𝑎1, . . . , 𝑎𝑛)id

to-seqn(t)

comp
(f : b G→ c)
((g : a G→ b)

(𝑏1, ..., 𝑏𝑚)

(𝑎1, ..., 𝑎𝑛) (𝑐1, ..., 𝑐𝑘)

to-seqn (g) to-seqn (f)

to-seqn(t)

init a (0) (𝑎1, . . . , 𝑎𝑛)drop-width

to-seq (t)

terminal a (𝑎1, . . . , 𝑎𝑛) (0)drop-nil

to-seqn(𝑡)

→left a b 19

∙ 𝑛 = 𝑚

(0, 𝑎1, . . . , 𝑎𝑛)

(𝑎1, . . . , 𝑎𝑛) (0, max(𝑎1, 𝑏1), . . . , max(𝑎𝑛, 𝑏𝑚))

∙ 𝑛 < 𝑚

(0, 𝑎1, . . . , 𝑎𝑛) (0, 𝑎1, . . . , 𝑎𝑛, 0, . . . , 0)

(𝑎1, . . . , 𝑎𝑛) (0, max(𝑎1, 𝑏1), . . . , max(𝑎𝑛, 𝑏𝑛), . . . , 𝑏𝑚)

inj-length-right

inj-length-left

zero-bit×(
⨂︀

𝑚
inj-size)

inj-length-right zero-bit×(
⨂︀

𝑛
inj-size)

to-seqn(t)

to-seqn(t)

19The case for 𝑛 > 𝑚 follows similarly.
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→right a b 20

∙ 𝑛 = 𝑚

(0, 𝑎1, . . . , 𝑎𝑛)

(𝑎1, . . . , 𝑎𝑛) (0, max(𝑎1, 𝑏1), . . . , max(𝑎𝑛, 𝑏𝑚))

∙ 𝑛 < 𝑚

(0, 𝑎1, . . . , 𝑎𝑛) (0, 𝑎1, . . . , 𝑎𝑛, 0, . . . , 0)

(𝑎1, . . . , 𝑎𝑛) (0, max(𝑎1, 𝑏1), . . . , max(𝑎𝑛, 𝑏𝑛), . . . , 𝑏𝑚)

inj-length-right

inj-length-left

one-bit×(
⨂︀

𝑚
inj-size)

inj-length-right one-bit×(
⨂︀

𝑛
inj-size)

to-seqn(t)

to-seqn(t)

mcase
(f : a G→ c)
(g : b G→ c)

21

∙ 𝑛 = 𝑚 (max(𝑎1, 𝑏1), . . . , max(𝑎𝑛, 𝑏𝑛), ..., 𝑏𝑚)

(𝑎1, . . . , 𝑎𝑛) (𝑏1, . . . , 𝑏𝑚)

(𝑐1, . . . , 𝑐𝑘) (𝑐1, . . . , 𝑐𝑘)

(1, max(𝑎1, 𝑏1), . . . , max(𝑎𝑛, 𝑏𝑚)) (𝑐1, . . . , 𝑐𝑘)

∙ 𝑛 < 𝑚 (max(𝑎1, 𝑏1), . . . , max(𝑎𝑛, 𝑏𝑛), ..., 𝑏𝑚)

(𝑎1, . . . , 𝑎𝑛, 0) (𝑏1, . . . , 𝑏𝑚)

(𝑎1, . . . , 𝑎𝑛)

(𝑐1, . . . , 𝑐𝑘) (𝑐1, . . . , 𝑐𝑘)

(1, max(𝑎1, 𝑏1), . . . , max(𝑎𝑛, 𝑏𝑛), ..., 𝑏𝑚)) (𝑐1, . . . , 𝑐𝑘)

drop-width×drop-nil drop-width

remove-right

to-seqn (g)

to-seqn (f)

𝐹 𝐺

branch-seq F G

to-seqn(t)

branch-seq F G

to-seqn(t)

drop-width drop-width

to-seqn(g)to-seqn(f)
𝐹 𝐺

←left a b
(𝑎1, . . . , 𝑎𝑛, 0)

(𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑚) (𝑎1, ..., 𝑎𝑛)

id×drop-nil remove-right

to-seqn(t)

←right a b
(0, 𝑏1, . . . , 𝑏𝑚)

(𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑚) (𝑏1, ..., 𝑏𝑚)

drop-nil×id remove-left

to-seqn(t)

pair
(f : a G→ b)
(g : a G→ c)

(𝑎1, . . . , 𝑎𝑛, 𝑎1, . . . , 𝑎𝑛)

(𝑎1, . . . , 𝑎𝑛) (𝑏1, . . . , 𝑏𝑚, 𝑐1, . . . , 𝑐𝑘)

fork-seq (to-seq (f))×(to-seq g)

to-seqn (t)

distribute :
((prod a (coprod b c)) G→
(coprod
(prod a b)
(prod a c)))

(𝑎1, . . . , 𝑎𝑛, 1, max(𝑏1, 𝑐1), . . . ) (1, 𝑎1, . . . , 𝑎𝑛, max(𝑏1, 𝑐1), . . . )shift-front

to-seqn(t)

nat-add (𝑛, 𝑛) (𝑛)seqn-add

to-seqn(t)

20The case for 𝑛 > 𝑚 follows similarly.
21The case for 𝑛 > 𝑚 follows similarly.
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nat-const n m (0) (𝑛)seqn-nat n m

to-seqn(t)

nat-inj n (𝑛) (𝑛 + 1)inj-size

to-seqn(t)

nat-concat n m (𝑛, 𝑚) (𝑛 + 𝑚)seqn-concat

to-seqn(t)

one-bit-to-bool (1) (1, 0)inj-length-left

to-seqn(t)

nat-decompose (1 + 𝑛) (1, 𝑛)seqn-decompose

to-seqn(t)

nat-eq n (𝑛, 𝑛) (1, 0)seqn-eq

to-seq(t)

3.3. From SeqN to VampIR. Finally, we need to showcase how a SeqN morphism is interpreted in VampIR by
producing actual code. We break this up into several parts: first, we showcase what sort of tuples get computed in
VampIR backend on valid inputs using the to-vampir function and then use those tuples to formulate a VampIR
function with constraints whose inputs will be variables we feed into our function.

Remark 17 We do not remove the inputs which are 0-bit long and instead produce 0-es whenever we land there.
These entries will be later removed.

We define to-vampir taking in a SeqN morphism 𝑡 : (𝑎1, . . . , 𝑎𝑛) → (𝑏1, . . . , 𝑏𝑚) and 𝑛-long list of inputs where
the 𝑖-th input is of bit-range 𝑎𝑖 producing an 𝑚-tuple in VampIR where the 𝑖-th entry is of bit-size 𝑏𝑖.

We proceed by induction on a SeqN morphism 𝑡.

Table 3: Compilation from SeqN to VampIR. Each case carries an induction hypothesis, assumed none unless introduced as a footnote.

SeqN Inputs Output
id (a1,...,an) (x1,...,xn) (x1,...,xn)

composition
(f : (b1,...,bm) S→ (c1,...,ck))
(g : (a1,...,an) S→ (b1,...,bm))

(x1,...,xn) to-vampir (f) (g1,...,gm) 22

parallel-seq
(f : (a1,...,an) S→ (b1,...,bm))
(g : (c1,...,ck) S→ (d1,...,di))

(x1,...,x(n+k)) (f1,...,fm,g1,...,gi)23

branch-seq
(f : (a1,...,an) S→ (b1,...,bm))
(g : (a1,...,an) S→ (b1,...,bm))

(x0,...,xn)
(((1-x0) * f1) + (x0 * g1),

...,
,((1-x0) * fm) + (x0 * gm))24

fork-seq (a1,...,an) (x1,...,xn) (x1,...,xn,x1,...,xn)

drop-nil (a1,...,an) (x1,...,xn) (0)

remove-right (a1,...,an) (x1,...,xn,x(n+1)) (x1,...,xn)

remove-left (a1,...,an) (x1,...,xn,x(n+1)) (x2,...,x(n+1))

inj-length-left (a1,...,an) (b1,...,bm) (x1,...,xn) (x1,...,xn,0,...,0)

inj-length-right (a1,...,an) (b1,...,bm) (x1,...,xm) (0,...,0,x1,...,xm)

inj-size n m (x1) (x1)

zero-bit Any (0)
one-bit Any (1)

22Inductive hypothesis: to-vampir (g) (x1,...,xn)= (g1,....,gm) .
23Inductive hypotheses: to-vampir (f) (x1,...,xn) = (f1,....,fm) and to-vampir (g) (x(n+1),...,x(n+k))= (g1,....,gi) .
24Inductive hypotheses: to-vampir (f) (x1,...,xn)= (f1,...,fm) and to-vampir(g)(x1,...,xn)= (g1,...,gm) .
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shift-front (a1,...,an) k (x1,...,xn) (xk,x1,...,x(k-1),x(k+1),...,xn)

seqn-add n (x1,x2) (plus_range n x1 x2)

seqn-substract n (x1,x2) (minus-range n x1 x2)

seqn-multiply n (x1,x2) (mult_range n x1 x2)

seqn-divide n (x1,x2) (x1 / x2)

seqn-nat n m Any (m)

seqn-concat n m (x1,x2) ((x1 * (2 ˆ m)) + x2)

seqn-decompose n (x1) (n_th (n - 1) (range_n n x1), combine
(drop_ith (range n n x1)))

seqn-eq n (x1,x2) (iszero (x1 - x2), 0)

seqn-lt n (x1,x2) (negative n (x1 - x2), 0)

We define to-circuit as a function that takes a term t : (a1,...,an) S→ (b1,...,bm) , along with a name name ,
and produces a VampIR circuit as follows.

def name x1 ... xn = {
range a1 x1;
...
range an xn;
X

}

The expression X above is an abbreviation for the function to-vampir f (x1,...,xn) with any output of 0-bit length
removed.

Remark 18 Some functions, such as drop-width do not have interpretations that match their intended semantics.
However, due to the nature of the compilation, whenever we compile starting with Lambda, we never, e.g., drop
integers into a smaller bit-width, hence making any operations on the outputs superfluous. The report also skips
implemented optimization steps.

4. Future work
The current presentation of Geb merely signifies the project’s initial stage. A principal objective is to enhance Geb to
support not just Lambda, but richer type systems such as dependently typed languages. Moreover, the final version
ought to be able to represent the current pipeline internally. We plan to run benchmarks against the Juvix-VampIR
pipeline, as detailed in Czajka (2023), using this existing implementation.
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A. Interactive Lisp API
There are several resources that are not utilized directly in the pipeline, yet are heavily used in testing, debugging,
and the interactive environment of the Lisp implementation. This section is devoted to three main features that are
important for anyone interested in interacting with the code and further development.

A.1. Interpreters. Geb and SeqN are defined as categories and as such what they possess is a specification of
morphisms but not their evaluations. For example, Geb can specify a morphism nat-add 2 yet does not have a
straightforward way of being evaluated on inputs.

The implementation introduces an interpreter, namely a generic function gapply . It takes in a morphism from
Geb or SeqN alongside an appropriate input and spits out the result of applying the morphism to it as if evaluating a
function.

gapply on Geb takes in a list of "terms", so1 as a term of the terminal object, left t for a left inclusion of some
term into a coproduct, right t for a similar right inclusion, and natural numbers as terms of natural number types.
Product terms are generated via a fed-in list.

For example, we can evaluate the compiled Lambda code, recalling that there is an extra so1 appearing in the
domain:

• Evaluating the not function in the left part of bool gives the right part.

CL-USER> (in-package geb.lambda.trans)
TRANS> (gapply (to-cat nil

(lamb (list (coprod so1 so1))
(case-on (index 0)

(right so1 (index 0))
(left so1 (index 0)))))

(list (geb:left so1) so1))
(right s-1)

• TRANS> (gapply (to-cat nil
(lamb (list (coprod so1 so1))

(case-on (index 0)
(right so1 (index 0))
(left so1 (index 0)))))

(list (geb:left so1) so1))
(left s-1)

• Evaluating the +1 function at 1 gives 2

TRANS> (gapply
(to-cat nil

(lamb
(list

(nat-width 16))
(plus (index 0)

(bit-choice #*0000000000000001))))
(list 1 so1))

2

• Evaluating the +1 function at 1 gives 2

TRANS> (gapply (to-cat
nil
(lamb (list (nat-width 16))

(plus (index 0)
(bit-choice #*0000000000000001))))

(list 2 so1))
3
TRANS> (gapply (to-cat

nil
(lamb (list (nat-width 16))

(plus (index 0)
(bit-choice #*0000000000000001))))

(list 3 so1))
4
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CL-USER> (in-package geb)
GEB> (well-defp-cat (comp so0 so0))
T
GEB> (well-defp-cat (comp so0 so1))
; Evaluation aborted on #<SIMPLE-ERROR "(Co)Domains
; do not match for ~A" {1007FE8183}>.

CL-USER> (in-package geb.lambda.trans)
TRANS> (to-circuit (app (unit) (list (unit))) :name)
; Evaluation aborted on #<SIMPLE-ERROR "not a
; well-defined ~A in said ~A" {1009E8D9B3}>.

• As mentioned, gapply also works on SeqN terms. Here, the inputs should always be lists of natural numbers.

TRANS> (gapply
(to-seqn

(lamb
(list (nat-width 16))
(plus (index 0)

(bit-choice #*0000000000000001))))
(list 2 0))

(3)

A.2. Type-checking. The way in which Geb and SeqN are defined in Lisp allows the formation of many ill-typed terms.
For example, comp f g can be computed in the implementation even if f and g have mismatching (co)domains.

Although implementing the pipeline in a language such as Haskell will solve this problem, for debugging purposes,
we still have a generic well-defp-cat , that can be applied to both Geb and SeqN, morphisms checking whether they
are well defined and telling the user the first mismatch it notices.

Similarly, we have the usual type-checker for Lambda named well-defp , working as just a predicate in the usual
manner of STLC type-checkers. It is actually used in the pipeline during compiling from Lambda producing a
compilation error if the term being fed-in is mistyped.

A.3. Visualizer. One of the advantages that categorical semantics provides to programmers is the ability to canonically
reason using diagrams rather than pure syntax. Jeremy Ornelas has introduced a visualizer for Geb , which uses our
semantic structure to user’s advantage.

The visualizer can take in any Geb term and produce a representation of it in diagram form, allowing for readability
and providing great debugging features which were actively used in the early stages of the project.

The visualization uses usual notation for category-theoretic constructions other than for universal morphism from/to
(co)products, which are presented as separate arrows showcasing the casing/pairing involved.

After getting a term, the visualizer then produces a separate window with an inspectable diagram.

Fig. 2: Visualizer output for the compiled term pair (left so1 (unit))

CL-USER> (in-package geb.lambda.trans)
TRANS> (geb-gui::visualize (to-cat nil (pair (left so1 (unit))

(unit))))
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