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Abstract  

Larger supercomputers allow the resolution of more complex problems that require denser and thus also larger meshes. In 
this context, and extrapolating to the Exascale paradigm, meshing operations such as generation, deformation, 
adaptation/regeneration or partition/load balance, become a critical issue within the simulation workflow. In this paper we 
focus on the mesh partitioning, presenting the work carried out in the context of a PRACE Preparatory Access Project to 
enable a Space Filling Curve (SFC) based partitioner in the computational mechanics code Alya. In particular, we have run 
our tests on the MareNostrum III supercomputer of the Barcelona Supercomputing Center.  SFC partitioning is a fast and 
scalable alternative to the standard graph based partitioning and in some cases provides better solutions. We show our 
approach at implementing a parallel SFC based partitioner. We have avoided any computing or memory bottleneck in the 
algorithm, while we have imposed that the solution achieved is independent (discounting rounding off errors) of the number 
of parallel processes used to compute it.  

 

  

1. Introduction 

Alya is a high performance computational mechanics code to solve coupled engineering problems. The physics 
solvable with the Alya system include: incompressible/compressible flow, solid mechanics, chemistry, particle 
transport, heat transfer, turbulence modeling, electrical propagation, etc. Alya is designed for massively parallel 
supercomputers [1]. Its parallelization includes both the MPI and OpenMP models to take advantage of the 
distributed and the shared memory paradigms. Accelerators like GPU are also exploited at the iterative solver 
level to further enhance the performance of the code. Recently, dynamic load balancing techniques have been 
introduced as well to better exploit the computational resources at the node level. Alya is one of the twelve 
simulation codes of the Unified European Applications Benchmark Suite (UEABS) and thus complies with the 
highest standards in HPC. The code has been tested on the largest supercomputers worldwide, where it has 
proven to efficiently scale up to 100K CPU-cores for industrial applications. The aim of this paper is to broaden 
the scalability of the mesh-partitioning module. 

Mesh partitioning is traditionally based on graph partitioning, which is a well-studied NP-complete problem 
generally addressed by means of multilevel heuristics composed of three phases: coarsening, partitioning, and 
un-coarsening. Different variants of them have been implemented in publicly available libraries such as Metis 
[2] and Scotch [3].  Parallel formulations have also been developed (ParMetis [4], PT-Scoch [5]), however they 
present limitations on the parallel performance and the quality of the solution at a growing number of 
partitioning processes [6]. This lack of scalability makes graph-based partitioning a potentially critical bottleneck 
in the simulation workflow. However, taking into account the evolution of the computing HPC systems, any 
potential bottleneck becomes an effective bottleneck if not addressed in time.  Motivated by these circumstances, 
we present a fully parallel geometric partitioning alternative implemented in Alya.  
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Geometric partitioning techniques obviate the topological interaction between mesh elements and perform its 
partition according to their spatial distribution. If we consider as unitary element the mesh cell, then its mass 
center can be used to determine its spatial location. A Space Filling Curve (SFC) is a continuous function used to 
map a multi-dimensional space into a one-dimensional space with good locality properties, i.e. it tries to preserve 
the proximity of elements in both spaces. The idea of geometric partitioning using SFC is to map the mesh 
elements into a 1D space and then easily divide the resulting segment into equally weighted sub-segments. A 
significant advantage of the SFC partitioning is that it can be computed very fast and it is easy to parallelize, 
especially when compared to graph partitioning techniques. However, while the load balance of the resulting 
partitions can be guaranteed, the data transfer between the resulting subdomains, measured by means of edge-
cuts in the graph partitioning approach, cannot be explicitly measured and thus neither be minimized.  

In this paper we present our implementation of a parallel SFC based partitioner in Alya. We have avoided any 
computing or memory bottleneck that could limit the scalability of the algorithm, imposing that the solution 
achieved is independent (discounting rounding off errors) of the number of parallel processes used to compute it. 
Section 2 presents a short overview of the Hilbert SFC, Section 3 explains the parallel SFC mesh partitioner 
implemented in Alya, Section 4 presents some computing results, before concluding in Section 5. 

 

2. Hilbert Space Filling Curve and SFC-based mesh partitioning 

There are many alternative definitions of SFC on the 2D and 3D spaces, representing different mapping options. 
Among them the well-known Peano [7] and Hilbert [8] approaches. A complete overview is given in [9]. In this 
paper we use the Hilbert SFC, but changing the mapping option would be straightforward in our implementation.  

The Hilbert SFC is defined by means of a geometric recursion. For the 2D case, on the p’th level of the recursion 
a discrete function is obtained: 

h:{1,…,22p} → {1,…,2p}×{1,…,2p}, 

which covers all the cells of a 2p × 2p uniform grid. The four initial steps of this recursion are represented in 
Figure 1 (top). On the first step, the curve has an “∩” shape set up on a 2×2 grid.  This is further refined as 
shown in the second step. At this point we have a 4×4 grid which can be decomposed into four 2×2 sub-grids, 
where the curve has the shapes “⊃”, “∩”, “∩” and “⊂”, respectively. Following a specific decomposition for 
each of these 2×2 shapes we obtain the third level, and this process is continued until the desired level of 
refinement. Therefore, to generate the Hilbert curve it is only necessary to recursively apply the decomposition 
pattern of each of the basic 2×2 shapes. This can be implemented by cyclic lookups on two arrays, one storing 
the orientation of the basic shapes the second its decomposition. Details of this implementation approach can be 
found in [10]. The same idea is followed in the 3D case, where the basic shapes are defined on 2×2×2 sub-grids, 
the first four steps of the recursion are depicted in Figure 1 (bottom). Note that the Hilbert SFC can be used in 
any rectangular or cubic domain by just applying a scaling factor to the axes. 

The process of partitioning an unstructured mesh using an SFC, is divided in five steps: 

1. Define a bounding box. A bounding box for the mesh is defined from the maximum and minimum 
coordinate values of the nodes. 
 

2. Embed mesh elements into a cartesian grid. First a grid within the bounding box is defined, then for 
each mesh element a weight is added to the grid bin containing it. A mesh partition can be based on the 
distribution of nodes or cells. In this paper we use cells and we associate each cell with the bin that 
contains its mass centre. We define the weight of a cell as its number of nodes. 

 
3. Sort the grid bins using the SFC order. Using a Hilbert SFC poses a restriction: the cartesian grid must 

have a power of two of elements in each direction.  If this number is referred as n, the steps of the 
Hilbert recursion required to cover the whole grid are log2(n). 
 

4. Divide the set of bins in equally sized sub-sets. First the objective weight is defined as the total weight 
accumulated in the grid bins divided by the desired number of partitions, P.  Then the grid is traversed 
following the SFC order until the objective weight is reached. The bins traversed compose a subset of 
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the partition. Each time a subset is defined, the objective weight is re-evaluated to redistribute the 
discrete errors as much as possible. 
  

5. Define the mesh partition from the bins partition. This step is straightforward; the partition index of 
each mesh element is equal to the partition index of the bin containing it. 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Representations of the Hilbert curve recursive generation, 2D (top) and 3D (bottom). 

 

3. Parallel SFC partition implemented in Alya  

The parallel extension of the algorithm outlined in the previous section has the following steps: 

1. Parallel mesh read. Each parallel process reads a portion of the mesh file. Namely a continuous 
“chunk” of cells and the corresponding nodes. If the algorithm is applied on a re-partition or load 
balancing process this step is not necessary, actually each parallel process will already hold a part of the 
mesh.  

2. Bounding box. A bounding box containing the mesh is defined, this requires a collective reduce 
operation in order to find the maximum and minimum value for each of the node coordinates.  

3. Sub-boxes distribution and sorting. The bounding box is divided into equally sized sub-boxes, one for 
each of the Psfc parallel processes. Each process will be in charge of the portion of mesh contained in its 
corresponding sub-box (which can be an empty set). The sub-boxes are themselves indexed using the 
Hilbert SFC order, this way each parallel process can continue the recursion to compute the piece of 
SFC covering its sub-box independently. To do this it is only necessary to apply the recursive process 
defined above starting with the proper orientation/shape, which is determined by the index of the sub-
box. Joining all the independently processed local SFCs a coherent Hilbert SFC is obtained for the 
overall bounding box. Using the Hilbert SFC poses a restriction: the number of partitioning processes 
must be a multiple of 2d, where d is the domain dimension. Therefore, the number of partitioning 
processes, Psfc, is set as the largest multiple of 2d lower than P, the total number of processes. At this 
step is also decided the depth of the Hilbert recursion within the sub-boxes, referred as ql. In 
consequence the depth of the overall SFC is q = log2(Psfc

1/d) ql.  

4. Bin weights evaluation and distribution. Each parallel process traverses its sub-list of mesh elements 
and assigns weights to the corresponding bins. Note this sub-list comes from the parallel mesh read 
(step 1) so is not related with the sub-boxes distribution (step 3). In order to accumulate the bins weight 
while traversing the cells sub-list an array would be required having the same size as the complete grid. 
However, to avoid possible memory limitations, this operation is performed in different sub-steps:  
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a. Count the number of cells of the sub-list belonging to each sub-box 

b. For each sub-box (other than the own one) containing elements of the sub-list: i) allocate a 
buffer according to the number of sub-list elements contained in it; ii) store in it the bins with 
non-null weight; iii) send the buffer to the process associated with the sub-box. On this step, an 
array with the same dimension as the size of the local sub-grids is used in order to accumulate 
the weights corresponding to the sub-box being considered. 

c. The partitioning processes sum-up the weights received for the bins of its sub-grid.  

5. Local partition. Before each parallel process can perform its local partition independently, we need the 
weight distribution through the sub-boxes to set-up the local partitions. This is obtained by means of a 
collective all-gather communication involving one real value per parallel process. From this information 
each parallel process can evaluate: i) its initial partition index; ii) the number of partitions it must 
generate (this can be any real number from 0 to P); iii) the maximum relative weight that it must assign 
to its first partition subset. For instance, for a particular parallel process, these initial conditions could 
be: i) the initial partition index is 56; iii) the number of partitions is 3.65 ii) the maximum relative 
weight of the first subset is 0.34. Under these conditions the relative weights of the subsets of the 
resulting local partition would be: 0.24, 1, 1, 1, 0.41; and the corresponding partition indexes: 
56,57,58,59,60. The process associated to the next sub-box, will start with the partition index 60 and a 
maximum relative weight for the first partition sub-set of 0.59, its number of partitions will be 
evaluated as the relative weight contained on its sub-box with respect to the total weight of the mesh.   

6. Mesh partition. Once a partition index is assigned to each bin, the partition index of each mesh element 
is fixed as the one of the bin containing it. This requires the point-to-point communication opposite to 
the on made in step 4, this way each parallel process obtains the partition indices of the bins containing 
cells of its sub-list. 

7. Data redistribution. Each parallel process distributes its part of mesh according to the partition result by 
means of point-to-point communications.  

Note that in no step of the algorithm more than 1/P of the mesh or the box grid elements are used. Therefore, the 
algorithm does not have any memory or computational bottleneck. Regarding data transfers, there are two 
collective low-weighted communications in steps 1 and 5, and three point-to-point communications in steps 4, 6 
and 7.   

The sequential and parallel executions of the algorithm produce an almost identical partition if the grid used to 
discretize the bounding box is the same. However, since a larger grid can result in more accurate results in terms 
of final load balance, this advantage can be used in parallel executions. This represents an opposite behaviour to 
that of the parallel graph partitioners, which in general generate poorer partitions at increasing the number of 
partitioning processes.  In case of identical grids, there can still be a minor difference between the parallel and 
sequential SFC algorithms. This is because of the objective weight re-evaluation used to distribute the discrete 
errors on steps 4 and 5 of the sequential and parallel algorithms, respectively. In the sequential case the re-
evaluation is performed P-1 times and affects all the domain; in the parallel case it is performed locally on the 
sub-box of each partitioning process and the number of repetitions depends on the portion of mesh contained in 
it.  

Finally, a nice property of SFC based partitioning when used for load balancing is that the partition changes 
occur at the extremes of the 1D sub-segments obtained when the SFC is broken. Therefore, in many cases, most 
of data of the previous partition remains in the former subdomain. 

 

4. Preliminary results 
Tests and validations of the algorithm were performed on the MareNostrum III supercomputer of the Barcelona 
Supercomputer Center. In this section we present a comparison of the quality of the partitions obtained with our 
algorithm vs the ones obtained with the sequential k-way graph algorithm implemented in Metis [3], using its 
default parameters. In particular, we have performed the partitions considering the mesh cell as unitary element, 
and we consider the scalability of the whole time step. The pre-processing stage, and in particular the 
partitioning is not considered, we expect to generate comparisons with ParMetis in following works. We show 
results for two different test cases. Despite a careful study it is still required to better understand the results 
obtained and optimize the algorithm accordingly, these tests show the readiness and applicability of the new 
partitioner in Alya. 
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Fig. 2. Simulation of the respiratory system airflow with a 17M cells mesh. Left: Strong speedup of the time-
integration using SFC and Metis partitions. Right: Representation of the bins partition (output of step 5 of the 
parallel algorithm).  

Figure 2 compares the strong scalability achieved with both partitions for the simulation of the airflow through 
the respiratory system. The domain is discretized by means of a highly anisotropic 17M mesh with a high density 
in the nasal cavity and the trachea. The parallel performance is clearly better with the SFC partition. With 1024 
CPUs it outperforms Metis by 16%. A better balance achieved with the SFC partition causes this difference. 
Figure 3 shows an equivalent test for a solid mechanics simulation of a fusion reactor component on a 100K 
elements mesh. In this case both partitions perform very similarly.  

 

 

 

Fig. 3. Solid mechanics simulation of a fusion reactor component, 100K cells mesh. Left: Strong speedup of 
the time-integration using SFC and Metis partitions. Right: Representation of a mesh partition. 
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5. Summary and Outlook 
 

This paper is the result of a PRACE Preparatory Access Project, our aim was to develop and implement from 
scratch a new SFC-based partitioner. Our initial motivations were the limitations of standard graph partitioners 
in terms of parallel performance and quality of the solution, at growing the number of parallel process used for 
the partition. We have presented with details a fully scalable implementation, without any memory or 
computational bottleneck, and that keeps or even increases the quality of the partition at growing the number of 
partitioning processes. We have shown some preliminary results comparing the quality of the partitions achieved 
with both approaches, but a more comprehensive study is still necessary in order to draw any conclusion. In any 
case, the SFC seems to be a competitive approach for parallel mesh partitioning and its integration in Alya 
overcomes some bottlenecks of standard libraries at the largest scale.  
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