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Abstract 

We trained and validated machine learning models to identify Non–small-cell lung cancer patients with a 

high risk of developing brain metastases, as they could potentially benefit from surveillance brain magnetic 

resonance imaging. Early detection of asymptomatic brain metastases is crucial to improve clinical prospects. 
Employed prospectively at initial diagnosis, such models can help select high-risk subgroups. 
Purpose: Non–small-cell lung cancer (NSCLC) shows a high incidence of brain metastases (BM). Early detection is 
crucial to improve clinical prospects. We trained and validated classifier models to identify patients with a high risk of 
developing BM, as they could potentially benefit from surveillance brain MRI. Methods: Consecutive patients with an 

initial diagnosis of NSCLC from January 2011 to April 2019 and an in-house chest-CT scan (staging) were retrospectively 
recruited at a German lung cancer center. Brain imaging was performed at initial diagnosis and in case of neurological 
symptoms (follow-up). Subjects lost to follow-up or still alive without BM at the data cut-off point (12/2020) were excluded. 
Covariates included clinical and/or 3D-radiomics-features of the primary tumor from staging chest-CT. Four machine 

learning models for prediction (80/20 training) were compared. Gini Importance and SHAP were used as measures 
of importance; sensitivit y, specificit y, area under the precision-recall curve, and Matthew’s Correlation Coefficient as 
evaluation metrics. Results: Three hundred and ninety-five patients compromised the clinical cohort. Predictive models 
based on clinical features offered the best performance (tuned to maximize recall: sensitivit y ∼70%, specificit y ∼60%). 
Radiomics features failed to provide sufficient information, likely due to the heterogeneity of imaging data. Adenocar- 
cinoma histology, lymph node invasion, and histological tumor grade were positively correlated with the prediction of 
BM, age, and squamous cell carcinoma histology were negatively correlated. A subgroup discovery analysis identi- 
fied 2 candidate patient subpopulations appearing to present a higher risk of BM (female patients + adenocarcinoma 

histology, adenocarcinoma patients + no other distant metastases). Conclusion: Analysis of the importance of input 
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features suggests that the models are learning the relevant relationships between clinical features/development of BM. 
A higher number of samples is to be pr ior itized to improve performance. Employed prospectively at initial diagnosis, 
such models can help select high-risk subgroups for surveillance brain MRI. 

Clinical Lung Cancer, Vol. 000, No.xxx, 1–12 © 2023 The Author(s). Published by Elsevier Inc. 
This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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2 Cli
Introduction 

Lung cancer is one of the most commonly diagnosed cancers
worldwide with an estimated 2.2 million cases in 2020 alone and
is the leading cause of cancer death. 1 With approximately 85% of
all lung cancers, Non–small-cell lung cancer (NSCLC) summarizes
a heterogeneous group of histologies. The World Health Organi-
zation (WHO) has classified 3 main types: squamous cell carci-
noma, adenocarcinoma, and large-cell carcinoma. 2 With 20% to
40% of NSCLC patients, the incidence of brain metastases (BM) is
one of the highest in cancer subtypes. 3-7 Certain genetic aberrations
seem to be related to an increased risk. It is estimated that approxi-
mately 30% to 70% of patients with epidermal growth factor recep-
tor (EGFR) mutations, 6 , 8 , 9 60% to 70% of patients with anaplas-
tic lymphoma kinase (ALK) rearrangements 10-12 and 30% to 40%
of patients with proto-oncogene tyrosine-protein kinase 1 (ROS1)
rearrangements 12 , 13 develop BM of the course of their disease.
The incidence rates vary with the type of study, patient selection
methods, and follow-up intervals. 

BM are associated with a high rate of morbidity and mortality
which make their early detection and personalized treatment impor-
tant clinical goals. 7 , 14 The European Society for Medical Oncology
(ESMO) guidelines currently state that if available, brain imaging
with magnetic resonance imaging (MRI) or computed tomography
(CT) should be carried out at initial diagnosis, but is most relevant
in patients with neurological symptoms or signs. 15 , 16 The American
College of Radiology (ACR) recommends MRI of the brain at initial
diagnosis in any patient with clinical stage II, III, or IV even in the
absence of neurologic symptoms and at any stage in case of neuro-
logical symptoms. 17 However, routine surveillance brain MRI for
patients without neurological symptoms is not advised. 15 , 18 Brain
scans of patients at initial clinical staging identify BM in 3% to
10% of patients. 19-21 It is well known, that there is a consider-
able number of patients with asymptomatic BM at initial presen-
tation and during follow-up. 22-26 While prophylactic cranial irradi-
ation (PCI) treatment can reduce the incidence of BM by approx-
imately 50%, current data suggests that it fails to improve overall
survival (OS) and may lead to a cognitive decline. 27-29 Early detec-
tion of BM is therefore crucial for the timely initiation of local
therapy and systemic treatment with central nervous system (CNS)
penetrance. Local therapeutic options for BM currently include
surgical interventions, stereotactic radiotherapy, and whole brain
radiation therapy (WBRT), depending on the size and number of
lesions, location, and on the patient’s performance status before or
in conjunction with. 30 , 31 

In this work, we trained and validated classifier models to identify
NSCLC patients with a high risk of developing BM over the course
nical Lung Cancer 2023 
Please cite this article as: Giovanni Visonà et al, Machine-Learning-Aided Predi
Clinical Lung Cancer, https://doi.org/10.1016/j.cllc.2023.08.002 
of their disease, as they could potentially benefit from surveillance
brain MRI. The models were trained on a selected set of clinical
features such as age, sex, or initial stage of cancer, as well as tumor
histology and genetic features. Additionally, we examined the use of
3D-radiomics-features of the primary tumor from staging chest-CT.
The semi-automatic segmentation pipeline was deployed using an
End-to-end artificial intelligence (AI) solution for medical research.
The prediction models trained offer insights on the challenges
involved in the classification task described. The primary aim is the
development of a sufficiently robust model to support prospective
studies by highlighting patients who are more likely to develop BM.
To the best of our knowledge, no such study has been conducted on
an unselected NSCLC patient collective. 32 

Material and Methods 

Patients 
This retrospective study was approved by the Institutional Review

Board (IRB) of the University Hospital blinded (UCT-3-2018).
Consecutive patients with initial diagnosis of NSCLC from January
2011 to April 2019 and in-house chest-CT scan (staging) were
identified in the blinded clinical cancer registry. In this central-
ized data collection, all cancer patients from our hospital and
referring hospitals are fully documented as inpatients and outpa-
tients, with documentation of their history, diagnostic workup,
and follow-up information. The tumor documentation was done
by trained medical documentation specialists and documentation
assistants. Patients were followed-up until December 20th 2020
(data cut-off ). Patients underwent brain imaging at initial diagnosis
(contrast-enhanced MRI; only if there were absolute contraindica-
tions, contrast-enhanced CT) and in case of neurological symptoms
or signs during follow-up. 

Clinical Feature Extraction and Data Processing 
The clinical parameters extracted from the clinical cancer registry

with a data cut-off on December 20th 2020 are listed in Table 1 .
Indication for testing for driver mutations changed over the recruit-
ment period. If patient’s informed consent was given and biomate-
rials (tumor tissue) were available in the Interdisciplinary Biobank
and Database blinded (iBDF), testing was completed for this study.

We excluded patients without BM who were lost to follow-up
or still alive without BM at the data cut-off date (48/443). Patients
were classified as “alive without BM” if they were still in routine
surveillance at our hospital (intervals/frequency and modality of
surveillance imaging dependent on stage/prior treatment) without
neurological symptoms or if so with a negative MRI scan in line
with guideline recommendations. 
ction of Brain Metastases Development in Non–Small-Cell Lung Cancers, 
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Table 1 The Clinical Parameters Extracted From the Clinical 
Cancer Registry if Available 

Patient characteristics 
Age at initial diagnosis 
Sex 
Date of death (DOD) 
Tumor characteristics 
UICC TNM categories at initial diagnosis 
UICC TNM stage at initial diagnosis 
Histological grading at initial diagnosis 
BM at initial diagnosis (yes/no) 
BM over the course of disease (yes/no) 
Other distant metastases at initial diagnosis (yes/no) 
ICD-O Code at initial diagnosis 
EGFR mutation (mutated with Exon/wild-type) 
BRAF mutation (mutated/wild-type) 
ALK rearrangement (EML4-ALK fusion protein; positive/negative) 
ROS 1 rearrangement (positive/negative) 
PD-L1 expression (positive/negative) a 

In approximately 20% of cases the primary tumor was not bioptable and therefore, tissue analy- 
sis was conducted on distant metastases. 
a With regard to PD-L1 expression, tumor proportion score (TPS) was documented: Percentage 
of viable tumor cells showing partial or complete membrane staining at any intensity, relative 
to all viable tumor cells; 0 = 0%-1%; 1 = 1- < 5%; 2 = 5- < 10%; 3 = 10- < 25%; 4 = 25- 
< 50%, 5 = > 50%. 74 A score of 1 or higher was considered positive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a first step for the processing of the raw data, we removed
the uninformative features, as well as features that were missing
for an excessive number of patients. This included the information
on 4 out of the 5 mutations/gene expression signatures analyzed
(EML4_ALK, PD_L1, ROS-1, BRAF), which were missing for
more than 75% of the patients. Details on the missing values
imputation for all features are given in Supplemental File 3 and
Supplemental Table S1 . We removed features that directly contained
information on the presence of BM to avoid information leakage,
such as the UICC TNM stage or the UICC TNM M category. In
order to preserve non-BM-related information from the M category,
a binary indicator of the presence of other distant metastases was
introduced. To avoid excessive stratification, we mapped each ICD-
O code to a category consisting of its first 3 digits, which are indica-
tive of the histology of the tumor. The information on BM consists
of 2 features, indicative of the presence of BM at first diagnosis and
the development of BM during the course of the disease. As the
classification target, we used a binary feature with a value of 1 if
the patient had developed BM at any stage of the disease, and 0
otherwise. This process produced a dataset with 8 clinical features
and a corresponding set of binary labels. For the classification analy-
sis, the ICD-O 3-digits feature was 1-hot encoded, which results in
the substitution of that feature with 11 binary features. The final
set of clinical features consisted of 18 features. We first performed a
preliminary analysis to confirm previously established correlations of
clinical features with the development of BM. 4 , 33-35 To this end, we
considered these 18 features and employed Kendall’s Tau Hypothesis
Testing for a direct comparison with the binary variable indicating
the presence of BM. We did not employ any form of data imputa-
Please cite this article as: Giovanni Visonà et al, Machine-Learning-Aided Predi
Clinical Lung Cancer, https://doi.org/10.1016/j.cllc.2023.08.002 
tion for this analysis. To correct for multiple hypothesis testing, we
employed the Benjamini-Hochberg method 36 implemented in the
Python package multiply. 37 

Technical Parameters for CT Image Acquisition 

All patients underwent chest contrast-enhanced CT, mostly in
addition to nonenhanced CT as first-line imaging investigation
of NSCLC. Imaging was performed at 2 different institutions
(Institute of Diagnostic and Interventional Radiology and Insti-
tute of Neuroradiology, both University Hospital Frankfurt am
Main, Germany) on 6 different scanners, as hardware was subject
to changes over time. The region of interest (ROI) covered the gross
tumor volume on mediastinal and lung window. Technical parame-
ters are summarized in Supplemental Table S2 . 

Radiomics Feature Extraction and Data Processing 
The computer-assisted detection (CAD) pipeline for automated

segmentation consisted of 3 prominent building blocks: (1) multi-
threshold candidate detection, (2) feature extraction, and (3)
learning-based nodule classification. A hierarchical support vector
machine (SVM) was applied for nodule detection. Details on
the cascaded SVM classifier have been published previously. 38 

The pipeline was deployed using the Philips IntelliSpace Discov-
ery 3.0, an End-to-end AI solution for medical research (Philips
Healthcare, Hamburg, Germany). Correct ROI identification and
segmentation were reviewed by an experienced clinical radiolo-
gist (K.J.W. > 8 years of experience in oncologic imaging). In
case of automated segmentation errors, Simplicit was used for
manual correction. Simplicit is a set of tools for 3D interactive
segmentation developed in Philips Research Medisys by Jean-Michel
Rouet. A detailed description can be found in Supplemental File
1 . Pyradiomics v3.0.1, an open-source python package for the
extraction of radiomics features from medical imaging, was used
for radiomic feature extraction. 39 Patients were excluded from the
radiomic analysis in case we were unable to distinguish tumor tissue
from nontumor tissue on bolus-enhanced CT even with simultane-
ous consideration of all additional information available (38/395).
Features were extracted from nonenhanced lung windows if avail-
able (229/357). Volume segmentation spanning multiple slices was
converted into one volume (NIFTII) before extracting features. 3D
shape descriptors were extracted and single values per feature for
a region of interest were calculated (segment-based). The parame-
ter file for customized extraction (yaml structured) is provided in
Supplemental File 2 . These features were filtered to remove non-
numerical features and features with 0 variances, resulting in a
set of 1231 features. In 128 patients, lung windows were recon-
structed from IV contrast-enhanced raw data only, which resulted
in a significant covariate shift. Several methods have been proposed
to account for distributional shifts (such as ComBat 40 ), however,
they rely on strict assumptions on the type of distribution shift.
None of the methodologies tested could ensure that a trained classi-
fier would truly predict the target variable, rather than learning the
difference between the 2 IV contrast sets. We therefore filtered the
radiomics data to include only patients for whom no IV contrast
agent was used (229 samples). Additionally, hierarchical clustering
Clinical Lung Cancer 2023 3 
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Table 2 Description of the Selected Clinical Features 

Feature Number Missing Description 
Distant metastases 0 (0) Binary indicator of the presence of other distant metastases (than BM) at initial diagnosis 
Age 0 (0) Age at first diagnosis 
Sex 0 (0) Binary indicator for the sex of the patient 
Grade 140 (151) Histological grading at initial diagnosis 
TNM \ _T 3 (3) UICC TNM category T at initial diagnosis that describes the primary tumor site and size 
TNM \ _N 6 (7) UICC TNM category N at initial diagnosis that describes the regional lymph node involvement 
EGFR 170 (199) Binary indicator of the presence of mutations in the EGFR gene 
ICD-O 3-digits 0 (0) First 3 digits of the ICD-O code 

The parentheses following the number of missing values for each feature represent the number of missing values in the complete set of patients before the removal of the 48 patients with unknown 
status for the presence of brain metastases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Cli
of the correlation matrix of the radiomics features reveals a high
degree of collinearity (Supplemental Figure S1 ). 

Machine-Learning-Based Classification of BM 

To verify the feasibility of the prediction task, we trained a
series of binary classifiers using as input the set of clinical features
( Table 2 ), radiomics features, or a combination of both. As the
radiomics features presented a high degree of collinearity (as
evidenced in Supplemental Figure S1 ), we pre-processed them with
a standardization followed by PCA, selecting the number of compo-
nents to capture 90% of the variance in the data (Supplemental
Figure S2 ). The models selected include Logistic Regression (LR),
Random Forests (RF), 41 LightGBM, 38 and the AutoML framework
Autogluon. 42 Gini Importance (GI) and the TreeExplainer imple-
mentation of SHapley Additive exPlanations (SHAP) were used
as measures of importance for the RF model. Deliberation on the
choice of models and feature importance is summarized in Supple-
mental File 3 . To measure the classification performance, we chose
sensitivity, specificity, the area under the precision-recall curve, and
Matthew’s Correlation Coefficient (MCC) as evaluation metrics.
Given the limited size of the dataset, we evaluated our models using
a methodology similar to the nested cross-validation or “double
cross” approach. 43 Specifically, we performed 30 random partitions
of the data into 80/20 training to test split. If required by the model,
the training set is used to fit a K Nearest Neighbor (KNN; using 5
nearest neighbors), which is then employed to fill in missing values
in the full dataset. With each training set, we performed a random
hyperparameter search using 5-fold cross-validation. The best result-
ing configuration is selected to train a model on the full training
split, and this model is subsequently used to predict labels for the
test set. In addition, a similar setup was tested with the AutoML
framework Autogluon Tabular. 42 Autogluon Tabular was employed
for the clinical data, the radiomics features, and a combination of
both. 

Identification of Patient Subpopulations 
Identifying groups of NSCLC patients that are particularly

susceptible to developing BM is crucial to improve clinical care and
correctly allocate the necessary resources. More generally, this data
mining task is referred to as subgroup discovery, for which many
methodologies have been proposed. 44 , 45 We employed the beam
nical Lung Cancer 2023 
Please cite this article as: Giovanni Visonà et al, Machine-Learning-Aided Predi
Clinical Lung Cancer, https://doi.org/10.1016/j.cllc.2023.08.002 
search algorithm implemented in the Python package pysubgroup 46

to identify feature combinations of interest for their link to BM. 

Results 

Patient Characteristics 
The study population selection is depicted in Figure 3 . Of 443

retrospectively enrolled patients, 48 patients were lost to follow-up
or still alive without BM at the data cut-off point and therefore
excluded. The remaining 395 patients compromised our clinical
cohort ( Table 3 ). Of these, 43 (11%) were stage I, 19 (5%) stage
II, 60 (15%) stage III, and the majority with 273 (69%) stage IV.
Most patients were male (63%). The minimum age was 24 years,
the maximum 89 and the mean 65. The histologic distribution
included 245 patients (62%) with adenocarcinoma, 110 (28%) with
squamous cell neoplasia, 18 (5%) with epithelial neoplasia, and 22
(6%) with other histologies. Most patients had no node involvement
(104) or regional node involvement (N2, 153). A total of 40% of
female patients and 27% of male patients presented with BM at
initial diagnosis (32% overall) and 45% of female patients and 33%
of male patients with BM at any time during the course of disease.
The patient collective was predominantly Caucasian. 

Due to the heterogeneity of the existing imaging data, the
radiomics cohort compromised only 229 patients. The reasons for
the heterogeneity are discussed in detail in the limitations section. 

Age and Histology are Correlated With BM 

Selecting a false discovery rate (FDR) threshold of 0.01, 3 out
of 18 features showed a statistically significant dependence with
the presence of BM. The results are summarized in Supplemental
Table S3 . ICD-O histology codes starting with 814 indicate adeno-
carcinoma histology and were positively correlated with the presence
of BM at any stage of the disease. 33 ICD-O histology codes starting
with 807 indicate squamous cell carcinoma histology and showed
a reduced incidence of BM compared to nonsquamous tumors. 4

Finally, age displayed a negative correlation with BM. 34 In Figures 1
and 2 , we visualize the differences in counts or distributions in these
3 features for patients stratified by the development of BM. 

Machine-Learning-Based Classification of BM 

Classification models that employed only clinical features as input
showed the best performance when tuned to maximize recall to
ction of Brain Metastases Development in Non–Small-Cell Lung Cancers, 
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Table 3 Patient Characteristics of the Clinical Cohort (n = 395) 

Characteristics n (Unless Otherwise Specified) 
Age 65 y 

(mean; SD 10; range 24-89) 
Gender Male 249 (63%) 

Female 146 (37%) 
Histological subtype Adenocarcinoma 245 (62%) 

Female 104 (71% of female patients) 
Male 141 (57% of male patients) 

Squamous cell neoplasia 110 (28%) 
Female 29 (20% of female patients) 

Male 81 (33% of male patients) 
Epithelial neoplasia 18 (5%) 

Other 22 (6%) 
Histological grading at 
first diagnosis 

1 8 

2 167 
3 79 
4 1 

Unknown 140 
EGFR mutation Mutated Total 26 

Female 14 (10% of female patients tested for mutation) 
Male 12 (5% of male patients tested for mutation) 

Exon 19 with highest frequency 
Wildtype 199 

Not performed 170 
UICC TNM category N at 
initial diagnosis that 
describes the regional 
lymph node involvement 

N0 104 

N1 48 
N2 153 
N3 84 
Nx 6 

UICC TNM stage at initial 
diagnosis 

I 43 (11%) 

II 19 (5%) 
III 60 (15%) 
IV 273 (69%) 

BM at initial diagnosis Total 127 (32%) 
Female: 59 (40% of female patients) 

Male: 68 (27% of male patients) 
Adenocarcinoma: 99 (78% of patients with BM at first diagnosis) 

BM at any time during the 
course of disease 

148 (38%) 
Female: 66 (45% of female patients) 

Male: 82 (33% of male patients) 
Adenocarcinoma: 114 (77% of patients with BM at any time) 

Other distant metastases 
at first diagnosis (other 
than BM) 

208 (47%) 

Of 443 retrospectively enrolled patients, 48 patients were lost to follow-up or still alive without BM at the data cut-off point and therefore excluded. 

 

 

 

 

 

 

 

 

 

improve prospective studies, obtaining at best a sensitivity of ∼
70% and a specificity just above 60%. Radiomics features performed
suboptimally. The results of the ML-based classification task are
presented in Figure 4 and Table 4 . They highlight how the use
of clinical data appears to be much more informative than the
Please cite this article as: Giovanni Visonà et al, Machine-Learning-Aided Predi
Clinical Lung Cancer, https://doi.org/10.1016/j.cllc.2023.08.002 
radiomics features available. This observation, however, is skewed
by the different number of samples available to the 2 sets (395
samples in clinical dataset vs. 229 samples in radiomics dataset due
to heterogeneity of existing imaging data). Indeed, neither classi-
fiers trained on the clinical data for the same subset of patient nor
Clinical Lung Cancer 2023 5 
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Figure 1 Relationship between patient age and development of BM. There is a difference of 6.8 years between the peaks of the 
distributions of patients with and without BM. 

Figure 2 Relationship of the 2 discrete features that rejected the null hypothesis of the Kendall’s Tau test with the development 
of brain metastases. Squamous cell carcinomas (left), show a negative correlation with BM, while adenocarcinomas 
(right) display the opposite behavior. 

Table 4 Classification Metrics Evaluated for the Different Sets of Features 

Data Model Sensitivity Specificity AUPRC MCC 

Clinical Autogluon 6.16E-01 0.611 0.476 0.219 
Lreg 7.34E-01 0.572 0.513 0.293 

LightGBM 0.646 0.647 0.513 0.28 
RF 0.741 0.567 0.511 0.295 

Radiomics Autogluon 0.176 0.814 0.163 -0.009 
LReg 0.514 0.48 0.145 -0.004 

LightGBM 0.052 0.935 0.167 -0.012 
RF 0.236 0.776 0.179 0.010 

Combined Autogluon 0.219 0.802 0.162 0.019 
LReg 0.467 0.614 0.179 0.061 

LightGBM 0.232 0.801 0.191 0.032 
RF 0.267 0.788 0.208 0.042 

The area under the precision-recall curve (AUPRC) was calculated instead of the area under the receiver operating characteristic (AUROC) as it is a critical metric in problems where properly classifying 
the positives is important. 
The bold values indicate the best average value for the relevant metric among the models tested on the same set of features. 

6 Clinical Lung Cancer 2023 
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Figure 3 Flow chart showing number of patients enrolled in retrospective study cohort, excluded and analyzed. 

Figure 4 Classification result for different models and different input features. 
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the combination of clinical and radiomics features for this group
achieved performance comparable to the use of the full clinical
dataset. Resampling methods such as Synthetic Minority Oversam-
pling Technique (SMOTE) 47 were tested on the set of radiomics
features, but brought no significant improvement. 

Importance of Clinical Features 
Explaining the predictions of machine learning models is crucial

to adopt such classifiers in clinical settings. 48 Despite the limited
performance that classifiers have shown using clinical features as
input, we aimed to analyze which features influence the predicted
label the most. To this end, we employed 2 feature importance
measures to dissect the workings of the RF classifier on the KNN5-
imputed dataset. The RF model was selected for this analysis because
it displayed sufficiently robust performance over the randomized
train/test splits (Supplemental Figure S3 ). Within the same setting
of nested cross-validation presented for the analysis of classifica-
tion performance, we evaluated Gini importance, and SHAP values
for the best model trained in each split. Based on these impor-
tance measures, we ranked the features in order of importance
and analyzed how consistent these rankings are over the random-
ized seeds. The results are summarized in Figure 5 . The 3 features
that had shown significant correlation with BM (age, ICD-O
code 807 = squamous cell carcinoma histology, and ICD-O code
814 = adenocarcinoma histology) consistently showed up as the
highest ranking in both evaluation methods. The Gini Importance
assigns higher rank to the patient’s age, consistently with the fact
that GI is known to be biased towards continuous variables or
variables with many categories. 49 Examining the correlation between
SHAP values and feature values offers insights into the trends that
links certain features with the BM label (Supplemental Figure S4 ).
Age and ICD-O code 807 displayed a negative correlation with the
presence of BM, while ICD-O code 814 had a positive correlation,
consistent with the results of the Kendall’s Tau tests. In addition,
the histological tumor grade and the presence of regional lymph
node invasion at initial diagnosis appeared to be positively corre-
lated 4 with a prediction of BM. 

Identification of Patient Subpopulations 
Among the first candidate subgroups, the algorithm identified the

subgroups of female patients with adenocarcinoma histology (ICD-
O code 814), and the subgroup of adenocarcinoma patients with
no other distant metastases than BM. In both combinations, the
incidence of BM was noticeably higher in the selected subgroups
compared to the remaining population. 

Discussion 

In this work, we presented an analysis of the use of supervised
machine learning models for predicting the development of BM in
NSCLC patients using clinical and radiomics features. 

In our cohort, classification models that employed only clini-
cal features as input showed the best performance when tuned to
maximize recall to improve prospective studies, obtaining at best a
sensitivity of ∼ 70% and a specificity just above 60%. Radiomics
features performed suboptimally; however, this result is likely due
nical Lung Cancer 2023 
Please cite this article as: Giovanni Visonà et al, Machine-Learning-Aided Predi
Clinical Lung Cancer, https://doi.org/10.1016/j.cllc.2023.08.002 
to the limited number of samples for this dataset due to the hetero-
geneity of the existing imaging data (229 samples vs. 395 in the
clinical dataset; Figure 3 ). In all experiments performed, the dataset
size turned out to be a crucial element for the predictive perfor-
mance of the models. Therefore, a robust assessment of the signif-
icance of radiomics features for predicting the development of BM
in NSCLC patients will require further data collection. The models
trained were optimized to achieve high sensitivity, as that would be
the most valuable performance metrics when the model is employed
for prospective studies, where a higher retrieval of true positives
might be more valuable than reducing the false positives. Alterna-
tive clinical applications would require much a more careful balance
of the performance metrics. 

The analysis of the importance of the input features shows
high agreement with the established literature, suggesting that the
models are learning the relevant relationships between the clinical
features and the development of BM. Age and ICD-O code 807
(squamous cell carcinoma histology) displayed a negative correla-
tion with the presence of BM, while ICD-O code 814 (adenocarci-
noma histology) had a positive correlation. The histological tumor
grade and the presence of regional lymph node invasion at initial
diagnosis appeared to be positively correlated with a prediction of
BM. 4 , 34 , 50-54 It is still not fully explored why younger patients have
a higher BM risk. Several studies indicate that younger patients
harbor more targetable driver mutations compared to older patients,
including a higher rate of EGFR and ALK gene alterations. The
difference in prevalence of targetable mutations combined with a
better performance status in younger patients may lead to a longer
overall survival - long enough to experience intracranial spread. 55 , 56

There are other hypotheses, including differences in the angiogenic
microenvironment 57 or expression of biomarkers, such as vascular
endothelial growth factor, Ki-67, and caspase-3 that might create a
more favorable environment for seeding. 58 In our analysis, female
patients appeared more prone to developing BM, which is reflected
in the correlation of SHAP values with the feature. This is poten-
tially an indirect effect, since women are more likely to develop
adenocarcinomas, 59 , 60 and female sex is a predictive factor for EGFR
mutations, 33 , 35 which are themselves positively correlated with the
development of BM. 33 , 61 Overall, the analysis suggests that these
highly ranked features should be included in any machine learning
model that aims to robustly predict the development of BM. Some
known predictors, such as the presence of EGFR mutations, did
not show statistically significant results, possibly due to the small
size of the dataset (only 12% of patients tested showed a mutation)
that does not offer a high enough signal-to-noise ratio to detect
these features as significant, compounded with the high fraction
of missing values (mutation analysis was not performed in 43% of
patients). In addition, the rate in the primarily Caucasian popula-
tion is expected to be very low even in complete datasets. 62 , 63 

Among the first candidate subgroups, the algorithm identified the
subgroups of female patients with adenocarcinoma histology (ICD-
O code 814), and the subgroup of adenocarcinoma patients with
no other distant metastases. In both combinations, the incidence
of BM was noticeably higher in the selected subgroups compared
to the remaining population. However, it is unclear whether their
significance is due to real clinical factors or simply due to selec-
ction of Brain Metastases Development in Non–Small-Cell Lung Cancers, 
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Figure 5 Ranking of features according to 2 different evaluation methods over 30 randomized seeds using the RF model of the 
previous section. ICD-O code 807 = squamous cell carcinoma histology; ICD-O code 814 = adenocarcinoma histology; 
Table 2 describes the individual features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tion biases. In the first case, for example, we already noted how
female patients are likelier to develop tumors with adenocarcinoma
histology, 59 which is directly correlated with the development of
BM. Additional studies with more data will be required to make
robust conclusions on the clinical relevance of these subpopulations
of patients. 

Next to the sample size, another important limitation of our study
collective is the fact that systemic treatment and testing for driver
mutations has completely changed over the recruitment period.
Therefore, the true number of patients harboring driver mutations
and their possible impact on the population remains unclear. In
addition, the introduction of checkpoint inhibitors in the middle
of the recruitment period might have had an impact on overall
survival, 64 which, as aforementioned, could leave sufficient time
for intracranial spread. Information on anticancer therapies was not
documented in a structured manner and was therefore not available
for analysis. 

Recently, 956 stage II to IV NSCLC patients from the AACR
Project GENIE Biopharma Consortium dataset were analyzed for
Please cite this article as: Giovanni Visonà et al, Machine-Learning-Aided Predi
Clinical Lung Cancer, https://doi.org/10.1016/j.cllc.2023.08.002 
the prediction of BM. In addition to the variables we consid-
ered, information on race, anticancer therapies and next-generation
sequencing (NGS) features were available. With this broader
information, an area under the receiver operating characteristic
(AUROC) of up to 0.72 could be achieved on the test set. However,
using an RF model, demographics alone performed as well as
demographics, medication and genetic analyses combined. Univari-
ate features associated with BM in this study were treatment with
etoposide, Asian race, presence of bone metastases at NSCLC
diagnosis, mutations in TP53 and EGFR, amplifications of ERBB2
and EGFR, and deletions of RB1, CDKN2A and CDKN2B.
Univariate features inversely associated with BM were older age,
treatment with nivolumab, vinorelbine, alectinib, pembrolizumab,
atezolizumab, and gemcitabine, as well as mutations in NOTCH1,
and KRAS. 65 

Another promising approach in the identification of high-risk
subgroups is the combination of clinical parameters with gene
expression signatures (RNA sequencing data) found in primary
tumors, that are linked specifically to BM and not associated with
Clinical Lung Cancer 2023 9 

ction of Brain Metastases Development in Non–Small-Cell Lung Cancers, 

https://doi.org/10.1016/j.cllc.2023.08.002


Machine-Learning-Aided Prediction of Brain Metastases Development 

ARTICLE IN PRESS 

JID: CLLC [mNS;September 7, 2023;23:20 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

•  

 

•  

 

 

•  

 

•  

 

 

•  

 

 

•  

 

 

 

 

 

 

 

 

 

 

10 
the development of metastasis to other sites or simply to recur-
rence of disease. Particularly, the oxidative phosphorylation pathway
seems to be strongly associated with the risk of BM. 66 

Limitations With Regard to Radiomics 
Radiomics features could ultimately be obtained only from a

relatively small sample size (229 samples) and therefore performed
suboptimally. There are 2 reasons for this: First of all, central
bronchogenic tumors can cause post-obstructive pneumonia result-
ing in lung volume loss that can induce atelectasis. 67 Bolus-
enhanced CT performs poorly in the differentiation of tumor and
atelectasis. 68 As a consequence, patients had to be excluded from the
radiomic analysis in case we were unable to distinguish tumor tissue
from nontumor tissue on bolus-enhanced CT even with simulta-
neous consideration of all additional information available from
PET/CT images or MRI. The second reason lies in the challenge
of radiomics feature stability analyzing real world data. While the
overall goal for radiomics studies is to maintain homogeneity in
hardware and image scan protocols, reality of long-term studies
presents its performers with a dilemma: they have to accept that
scanners from different manufacturers are used at different insti-
tutions and that hardware will be upgraded. Imaging for this
study was conducted on 6 different scanners with consecutively
varying acquisition parameters. In general, radiomic features are
called reproducible if they remain the same when extracted using
different equipment, different image acquisition settings, or differ-
ent post processing filters. 69 While phantom studies indicate that
variable x-ray tube currents are unlikely to have a large effect on
radiomic features extracted from CT images of textured objects
such as tumors, 70 convolution kernel differences seem to have a
large impact on radiomic feature robustness with poor stability
of intensity, texture, and wavelet features. 71 , 72 Comparing contrast
with noncontrast enhanced CT in multicentric patient data sets, a
high impact on robustness of radiomic features was shown. 71 , 73 IV
contrast influence can be controlled by using a selection of contrast
enhanced or noncontrast enhanced images only. However, as Kakino
et al. 72 report, some of the radiomic features in contrast-enhanced
images are affected by the substrate itself and largely depend on
patient characteristics such as patient weight, age, tumor volume
or performance status. Even though all images in our study were
iteratively reconstructed with a sharp kernel (b60) and displayed
in standard lung window setting, they were either reconstructed
from IV contrast enhanced raw data or from noncontrast enhanced
data and stored in the picture archiving and communication system
(PACS). As common at most hospitals, raw data was stored strictly
local on scanners and deleted after 1 to 2 weeks. The majority of
patients with images reconstructed from IV contrast enhanced raw
data had been examined at the institute of Neuroradiology where
they were admitted with BM. As a consequence, the assignment of
IV contrast was highly correlated to the presence of BM ( p -value
for χ 2 test of independence: 2 ∗ 10-32), the inclusion of both IV
positive and IV negative samples would have led to information
leakage in the classification task. As mentioned, resampling methods
such as SMOTE were tested on the set of radiomics features, but
brought no significant improvement. These observations suggest
Clinical Lung Cancer 2023 
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that, for any future studies where similar classification tasks are
examined, the collection of a higher number of samples is to be
prioritized. 

Conclusion 

In this work, we presented an analysis of the use of supervised
machine learning models for predicting the development of BM in
NSCLC patients. Analysis of the importance of the input features
showed a high agreement with the established literature, suggest-
ing that the prediction models are learning the relevant relation-
ships between the clinical features and the development of BM.
To improve the performance of the models, the collection of a
higher number of samples is to be prioritized. Employed prospec-
tively at initial diagnosis, such models can help identify high-risk
patients who might benefit from surveillance brain MRI for early
detection and treatment of newly developed, asymptomatic BM.
Cost-effectiveness of a surveillance program for high-risk subgroups
would have to be investigated. 

Clinical Practice Points 

 Non-small Cell Lung Cancer (NSCLC) is among the cancer
subtypes with the highest incidence of brain metastases (BM),
which are associated with increased mortality. 

 Early detection of BM is crucial to improve clinical prospects of
NSCLC patients. While brain MRI is recommended at initial
diagnosis and in case of neurological symptoms during follow-up,
guidelines do not advise routine surveillance brain MRI. 

 We trained and validated classifier models on clinical and/or 3D-
radiomics-features of the primary tumor from staging chest-CT
to identify patients with a high risk of developing BM. 

 Predictive models based on clinical features offered the best
performance (tuned to maximize recall: sensitivity ∼ 70%, speci-
ficity ∼ 60%). Radiomics features failed to provide sufficient
information, likely due to the heterogeneity of imaging data. 

 Analysis of the importance of the input features showed a high
agreement with the established literature, suggesting that the
prediction models are learning the relevant relationships between
the clinical features and the development of BM. 

 To improve the performance of the models, the collection of a
higher number of samples is to be prioritized. Employed prospec-
tively at initial diagnosis, such models can help identify high-risk
patients who might benefit from surveillance brain MRI for early
detection and treatment of newly developed, asymptomatic BM. 
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