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Abstract 

 

Breast cancer (BC) risk models based on electronic health records (EHR) can assist physicians in estimating the 

probability of an individual with certain risk factors to develop BC in the future. In this retrospective study, we used 

clinical data combined with machine learning tools to assess the utility of a personalized BC risk model on 13,786 

Israeli and 1,695 American women who underwent screening mammography in the years 2012-2018 and 2008-2018, 

respectively. Clinical features were extracted from EHR, personal questionnaires, and past radiologists’ reports. 

Using a set of 1,547 features, the predictive ability for BC within 12 months was measured in both datasets and in 

sub-cohorts of interest. Our results highlight the improved performance of our model over previous established BC 

risk models, their ultimate potential for risk-based screening policies on first time patients and novel clinically relevant 

risk factors that can compensate for the absence of imaging history information. 

 
Introduction 

 
Risk prediction models estimate the likelihood of an individual with specific risk factors to develop a condition in a 

certain timeframe. They are increasingly used to complement clinical decision making and to inform future health 

policies. In particular, breast cancer (BC) risk prediction models based on clinical factors may serve as a guidance to 

physicians to determine an individual woman’s screening policy and intervals based on an estimated BC risk. 

Traditionally, the common factors consist mainly of, but not limited to, age, age at menarche, age at first livebirth, 

family history of BC, use of hormone replacement therapy (HRT), and previous biopsies or benign breast diseases. 

Some of the most common models include Gail1, Tyrer-Cuzick2 and Tice3.  

 

While historically the first risk models were based on statistics and particularly survival analysis, more recently, 

machine learning (ML) models were introduced4. As for risk factors, Louro et al.5 surveyed published risk models and 

have found that age was the only risk factor present in all models, while different models used different combinations 

of factors for family history, obstetric-gynecological history, and more recently breast density. In their review paper 

from 2014, Howell et al.6 covered possible improvements besides breast density, such as genetic information and 

hormone measurements. Indeed, several studies have already shown significant improvement by adding present 

density7,8. This, however, relies on an analysis and interpretation of a current mammography. Additionally, few studies 

reported improvements in risk prediction when adding single-nucleotide polymorphisms (SNPs) scores to their 

models9, 10. Overall, a ML approach enables generation of different risk predictors to sub-cohorts of interest and allows 

a more personalized analysis which can yield more accurate risk assessment. 

 
In their 2012 review, Meads et al.11 have conducted a systematic survey of breast cancer risk prediction models. In a 

meta-analysis study of 17 risk models, they reported suboptimal results for both the general and high-risk populations. 

Moreover, they determine that further improvement would be a result of identifying and incorporating new factors, as 

well as proper validation of new models. Here, we aimed to utilize comprehensive electronic health records (EHR) 

data in a ML algorithm for a personalized BC prediction and examination of potential novel risk factors in populations 

of two countries. 

  



  

 

 

Methods 

 

This study was approved by the institutional review boards of Assuta Medical Centers (AMC) and the American 

healthcare network, who waived the requirement for patient consent. The Israeli data was collected and controlled by 

Maccabi Health Services (MHS). The study was compliant with the Health Insurance Portability and Accountability 

Act. This report followed the Standards for Reporting of Diagnostic Accuracy (STARD) 2015 reporting guideline. 

 

• Study Populations 

 
The retrospective study comprised of clinical data from Israeli and American women. The Israeli dataset included 

records of 68,342 women who underwent screening mammography in one of the five AMC facilities in Israel between 

April 2013 and February 2018, and have at least one year of clinical history in MHS prior to their mammogram. In 

the American dataset, clinical records of 1,695 women undergoing mammograms in 19 facilities of a single provider 

in a single state were collected between July 2008 and February 2018. Women were excluded from the study if they 

had a history of BC, prior breast surgeries (e.g., lumpectomy, mammaplasty), prior breast radiotherapy or 

chemotherapy. Breast Imaging-Reporting and Data System (BI-RADS) 1-2 studies without a normal follow-up of at 

least two years or a biopsy result were excluded as well. For each woman, we selected the first examination that met 

the exclusion/inclusion criteria as the index test. All other instances were removed. See Figure 1 for STROBE 

diagrams.  

 

The Israeli dataset was split 13,786 (20%) in the held-out test set and the rest divided 80%-20% to train (44,112) and 

tuning/validation (11,029) sets. The American dataset was used as an external held-out test set in its entirety. 

 

 

 

 

 

• End Point 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Study inclusion/exclusion diagrams for the Israeli (A) and American (B) datasets. The flowcharts are 

based on the Strengthening Reporting of Observational Studies in Epidemiology (known as STROBE). 

 
A BC outcome was determined using a positive biopsy within 12 months, based on pathologies and cancer registry 

(Israel), or on annotated biopsy reports and ICD9/10 diagnosis codes (USA). Normal exams with a clean two-year 

follow-up and negative biopsy exams were considered negative.  

 

• Exposure Variables 

 
Data were collected prior to index exam from three different resources: (i) EHR data, structured; (ii) Self-reported 

factors from questionnaires filled by the women prior to a mammogram, structured; (iii) Radiologist reports from past 

 
 



  

mammograms, if existed, semi-structured. Data from questionnaires and reports were manually inserted into the 

databases by technical staff in each clinic. The data was then cleaned, processed, and validated by our team.  

 

Factors were extracted using a framework developed by Ozery et al.12. The final factor set included age, BMI, 

diagnosis codes, common lab tests, hormonal medications, past breast procedures, gynecological history, family 

history of breast and ovarian cancer, referrals to genetic exams, and smoking habits. Urinalysis values in the American 

data were based on dipstick categories and were transformed to numerical values. We have enhanced the available 

factors with engineered ones, indicating the presence of a factor, the number of times it has been in use for that 

individual, and in cases where a factor had an expected range (as is the case in lab tests) whether the value was out of 

range and to which direction. This process resulted in 1,547 possible factors for each woman. We attributed equal 

weights for all factors in the ML models. 

 

• Statistical Analysis 

 

Univariate analysis was performed using Fisher exact test for binary factors and two-sided t-test for continuous factors, 

followed by Benjamini-Hochberg’s false discovery rate (FDR) adjustment for multiple hypotheses testing (Python 

statmodels, v0.9). Performance comparison between different models was performed using DeLong13 95% confidence 

interval (CI). We considered p-value <.05 as significant. 

 

Model training was performed using XGBoost14 classifier (Python, v0.81), an open-source implementation of gradient 

boosting machines (GBM). Shapely values were calculated using SHAP15 (Python, v0.36). Shapely values estimate 

factors contribution by calculating the individual impact of each factor on the prediction for each patient. SHAP’s 

ranking of factors is based on the mean absolute value contribution of each factor to each patient. The ranking of the 

top factors was determined using a sequential forward selection procedure (SFS, Python, mlxtend16, v0.15). Beginning 

from an empty set, in each iteration the factor that is most contributing to a prediction model based on all previously 

selected factors is added to the set. 

 

Results 

 

• Data sources 

 

A machine learning model for identifying BC based on clinical data was trained on an Israeli dataset and evaluated 

on Israeli and American test sets. Results are reported on the test sets that were not used to train or tune the model.  A 

set of 1,547 clinical factors were shared between the two datasets (please see Methods). The Israeli test set included 

records of 355 (2.6%) women diagnosed with BC within 12 months, 1,104 (8.0%) women who had a negative biopsy 

within 12 months, 253 (1.8%) women who had a BI-RADS 3 exam with no follow-up biopsy, and 12,074 (87.6%) 

women who had at least two years of normal exams. The American dataset included all available biopsied cases and 

only a random sample of the normal cases. As such, the set included records of 419 (24.7%) women diagnosed with 

BC within 12 months, 37 (2.2%) women who had a negative biopsy within 12 months, and 1,239 (73.1%) women 

who had at least two years of normal exams. See Table 1 for characteristics of the two test sets. 

 

Table 1. Characteristics of the Israeli and American data sets.  
IL Train IL Validation IL Test USA Test 

No. of women  44,112 11,029 13,786 1,695 

Age (y)* 56 ± 9 56 ± 10 56 ± 10 60 ± 11 

Most recent body mass index* 26.9 ± 5.4 26.9 ± 5.4 26.8 ± 5.4 30.8 ± 7.5 

Age first menstruation*  12.6 ± 1.1 12.5 ± 1.1 12.6 ± 1.1 12.7 ± 1.7 

Post menopause  23,231 (52.7) 5,780 (52.4) 7,257 (52.6) 974 (57.5) 

1-year outcome 

Normal examination‡  38,634 (87.6) 9,659 (87.6) 12,074 

(87.6) 

1,239 (73.1) 



  

BI-RADS category 3† 810 (1.8) 202 (1.8) 253 (1.8) 0 (0.0) 

Biopsy negative for cancer  3,533 (8.0) 884 (8.0) 1,104 (8.0) 37 (2.2) 

Biopsy positive for cancer  1,135 (2.6) 284 (2.6) 355 (2.6) 419 (24.7) 

Note. -- Unless otherwise indicated, data are numbers of women and data in parentheses are percentages. 
* Data are means  standard deviation.  
†BI-RADS category 3 found at examination and no subsequent biopsy procedure within 2 years. 
‡Normal examinations are index test examinations with final BI-RADS category of 1–2 with at least 2 

years of normal follow-up examinations. 

Abbreviations: IL: Israel, BI-RADS: Breast Imaging and Reporting Data System. 

 

• Evaluation of common risk variables 

 

Women with BC diagnosis within 12 months tended to be older on average (mean age of 58 vs. 56, P <.002 and 62 

vs. 59, P <.001, for Israeli and American test sets respectively, FDR adjusted). They tended to have higher BMI (29.0 

vs. 28.3, P < .001 and 33.4 vs. 31.6, P=.002), a higher number of menstruation years (37.5 vs. 36.9, P=.001, and 35.8 

vs. 34.8 P=.08), and a higher average number of relatives with BC (1.4 vs. 1.3, P = .002 and 0.1 vs. 0.0, P=.001). Past 

usage of HRT in Israeli women was also statistically different between women with BC (31.2%) and without BC 

(25%, P < .001). Interestingly, in the USA this factor was not different between the groups (1% vs. 2%, P = .142). 

Finally, women with BC tended to have lower past benign breast diseases in both cohorts (7% vs. 12.3%, P <.001 in 

Israel and 0.2% vs. 6% in the USA, P<.001). 

 

Gail model17 assessment of 1-year risk of BC obtained an AUROC of 0.51 (95% CI, 0.48-0.54) on the Israeli test set 

and 0.52 (0.49-0.55) on the American test set. Training a gradient boosting machines (GBM) classifier on the same 

set of factors as Gail’s (age, age at menarche, age at first childbirth, past biopsy procedure, and family history of BC), 

resulted in AUROCs of 0.66 (0.63-0.69) and 0.56 (0.52, 0.59) on the Israeli/American test set, respectively.  

 

Additionally, we have evaluated Tice’s model3, which incorporates breast density into its risk estimation. For that 

purpose, we had to limit our test sets to records meeting Tice’s requirements of ages 35-74 and past breast density 

information. This resulted in 8,576 records in the Israeli test set and 387 records in the American. For those subsets, 

Tice model’s assessment of 1-year risk of BC obtained AUROCs of 0.53 (0.48-0.58) and 0.64 (0.58-0.70) on the 

Israeli/American test sets, respectively. 

 

We then evaluated a GBM model trained on all available established risk factors11: BMI, weight, past BI-RADS and 

breast density, number of children and pregnancies, breastfeeding history, usage of HRT and oral contraceptives. The 

model obtained AUROCs of 0.70 (0.68-0.73) and 0.68 (0.65-0.71) on the Israeli/American test sets, respectively. 

Finally, adding factors for current and past symptoms including indications of lumps detected by the doctor, nipple 

discharge or nipple retraction, obtained AUROCs of 0.76 (0.73-0.79) and 0.68 (0.65-0.71) on the Israeli/American 

test sets, respectively. 

 

• Evaluation of additional risk variables 

 

In order to evaluate how information derived from EHR data affects prediction, we trained a GBM model based on 

the entire set of clinical factors in the data set of Israel. This resulted in AUROCs of 0.76 (0.73-0.79) but only 0.58 

(0.55-0.61) on the Israel/USA test sets, respectively. Interestingly, dropping past imaging factors, as these are not 

commonly available in EHR data, resulted in an AUROCs of 0.75 (0.72-0.78) on the Israel test set. Moreover, 

dropping gynecological history factors, as these are often self-reported, resulted in an AUROC of 0.73 (0.70-0.77), 

still well within the confidence interval of a model including all possible factors. Using Shapley values (see Methods), 

the entire set of factors was ordered by their contribution to the prediction on the Israel test set (Figure 2A, Figure 2B 

for American). In Israel, Shapley analysis identified current symptom as the most predictive factor for BC within 12 

months. Women suffering from a symptom for the first time tended to have higher chance of malignancy prediction 

than those who also reported symptoms in the past. Similarly, women who never reported any symptoms and did not 

do so recently either, had a lower chance of malignancy prediction (Figure 3A). The second and third most important 

factors were age and mass diagnosed by a physician. Older women tended to have higher prediction of malignancy, 

especially if their doctor diagnosed a mass. However, there was no such association for younger women (40-49 years) 



  

with a diagnosed mass (Figure 3B). The maximal albumin/creatinine ratio in the past year positively contributed to 

malignancy prediction if the values were between 0 and 40 microg/min (Figure 3C). When the highest BMI value 

registered in the woman’s history was below 25, it negatively contributed to malignancy prediction. On the other hand, 

women with high BMI and high glucose levels tended to have higher chance of malignancy prediction (Figure 3D). 

Additionally, high levels of platelets, mean corporal volume (MCV), white blood cells profiles as well as low levels 

of thyroid stimulating hormone (TSH) were all contributors to malignancy prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Factors contribution to prediction of breast cancer on the Israeli test set as summarized using Shapely values.  

Factors are ordered on the y-axis in a descending order according to the mean absolute values of A) The Israeli 

validation’s set Shapely values. B) The American Shapely values. Each dot represents value for a specific factor and 

a specific woman. The farther a dot is from 0 on the x-axis, the more effect (positive or negative) this factor had on 

model’s output for this particular woman. A dot’s color indicates the factor’s original value using a color bar between 

low (blue) and high (magenta) values; missing data are gray. The color scale was calculated for each factor separately 

on the basis of the women’s factor values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Figure 3. Scatter plots of factor values (x axis) vs. Shapely values (y axis) for the most contributing factors. 

Gray bars represent the values histogram. A) Scatter of current symptom values, colored according to past symptom 

values. B) Scatter of current age, colored according to a current lump diagnosis by a doctor. C) Maximal 

albumin/creatinine ratio registered during the previous year. D) Maximal BMI, colored according to minimal blood 

glucose levels. 

 
Interestingly, it is sufficient to use only the top 40 most contributing risk factors according to their Shapely values in 

order to achieve the same AUC score of 0.76 (0.73-0.78) and 0.58 (0.55-0.61) on the Israeli/American test sets, 

respectively. 

 

In an additional analysis, we used sequential feature selection to order factors by their additive contribution (see 

Methods). Trained and tested on the Israeli dataset, the single most contributing factor turned out to be a current 

symptom (AUROC of 0.66 (0.64-0.69)). Adding age resulted in an AUROC of 0.72 (0.69-0.75), followed by the 

highest past BI-RADS (0.73, 0.70-0.76). The most contributing factors included both known factors as well as many 

lab results, including lipid levels, hemoglobin A1C, monocytes levels, and lab tests for liver function (Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Accumulated AUROC as obtained in each iteration of a sequential feature selection procedure. 

 

 

• Sub-cohorts of interest 

 

An important aspect of any risk prediction model is whether there are certain sub-populations on which it performs 

better or worse. To this end, we have generated four sub-cohorts of interest for both Israeli and American test sets 

according to density (BI-RADS 1-2 vs. 3-4), age 40-49, and women for which this is their first breast imaging (Table 

2). Our model was able to obtain significantly better AUROCs than Gail’s for both Israeli women with fatty breast 

tissue (0.70 (0.65-0.75) vs. Gail’s 0.58 (0.53-0.63)) and dense breast tissue (0.74 (0.64-0.83) vs. Gail’s 0.49 (0.38-

0.59)). For American women, the difference in results was not significant (fatty breast 0.60 (0.53-0.67) vs. Gail’s 0.54 

(0.47-0.62), and dense breast 0.63 (0.54-0.72) vs. Gail’s 0.57 (0.48, 0.67)).  For women ages 40-49, our model again 

obtained a significantly higher AUROC on the Israeli set (0.71 (0.65-0.78) in comparison to Gail’s 0.47 (0.41-0.52)), 

but performed similarly, and poorly, on the American set (0.56 (0.48-0.65) vs. Gail’s 0.54 (0.46-0.62)). Lastly, on a 

sub-cohort of women undergoing mammography for the first time, our model obtained a significantly higher AUROCs 

in comparison to Gail’s on both the Israeli (0.80 (0.70-0.85) vs. Gail’s 0.51 (0.44-0.57)) and American (0.71 (0.63-

0.78) vs. Gail’s 0.54 (0.47-0.62)) test sets.  

 

 



  

 

 

 

Table 2. AUROCs comparison between our model and other models on sub-cohorts of interest. 

 Israeli test set American test set 

Model Low 

density 

High 

density  

Age 40-49  1st time 

patients 

Low 

density 

High 

density 

Age 40-49  1st time 

patients 

 

Ours 0.70 [0.65-

0.75] 

(n = 6,293) 

0.74 [0.64-

0.83] 

(n = 2,476) 

0.71 [0.65-

0.78] 

(n = 3,198) 

0.80 [0.70-

0.85] 

(n = 3,219) 

0.60 [0.53-

0.67] 

(n = 258) 

0.63 (0.54-

0.72) 

(n = 175) 

0.56 [0.48-

0.65] 

(n = 325) 

0.71 [0.63-

0.78] 

(n = 270) 

Gail 0.58 [0.53-

0.63] 

(n = 2,476) 

0.49 [0.38-

0.59] 

(n = 2,476) 

0.47 [0.41-

0.52] 

(n = 3,198) 

0.51 [0.44-

0.57] 

(n = 3,219) 

0.54 [0.47-

0.62] 

(n = 258) 

0.57 (0.48, 

0.67) 

(n = 175) 

0.54 [0.47-

0.62] 

(n = 325) 

0.54 [0.47-

0.62] 

(n = 270) 

Ours 0.66 [0.61, 

0.72] 

(n = 6,126) 

0.70 [0.59, 

0.80] 

(n = 2,450) 

0.62 [0.51, 

0.74] 

(n = 1,633) 

N/A* 0.58 [0.50, 

0.65] 

(n = 230) 

0.61 [0.51, 

0.70] 

(n = 157) 

0.55 [0.42, 

0.69] 

(n = 77) 

N/A* 

Tice 0.56 [0.51, 

0.62] 

(n = 6,126) 

0.47 [0.35, 

0.58] 

(n = 2,450) 

0.41 [0.33, 

0.50] 

(n = 1,633) 

N/A* 0.67 [0.60, 

0.74] 

(n = 230) 

0.59 [0.49, 

0.68] 

(n = 157) 

0.72 [0.60, 

0.83] 

(n = 77) 

N/A* 

Note. -- n indicates the number of women in each cohort.  

* Tice is not applicable to patients without breast density information. 

 

Discussion 

 

In this study we have employed comprehensive EHR data in order to shed more light on how clinical factors are 

associated with BC diagnosis, as a direct extension of our previous work on utilizing both mammograms and clinical 

data for BC prediction18, but on a much smaller cohort. Our model suggests several undocumented risk factors as 

biomarkers. Importantly, most of the undocumented risk factors introduced in our model are known to be associated 

with BC or related cancers. For instance, albumin/creatinine ratio test is usually done for patients suffering from 

chronic conditions (i.e., diabetes or hypertension). Levels higher than 20 mg/mmol indicate microalbuminuria that is 

known to be associated with BC and other cancer19,20. High levels of blood glucose (as reflected in the Shapely 

analysis) or HbA1c (as reflected by the sequential feature selection), were also reported to be associated with BC21. 

High values of alkaline phosphatase has been shown to be associated with both advanced stage BC as well as BC 

reoccurrence22,23.  Higher levels of white blood cells (especially count and percentage of monocytes in the blood) were 

associated with BC24. Low TSH could be an indicator of hyperthyroidism, and it has been shown to be associated with 

BC25-27. From the known factors, it is interesting to note the interconnectivity between different factors. For instance, 

while higher risk was associated with the combination of older age and diagnosed masses, there was no such 

association in younger women (40-49 years). This could be explained by more benign lesions at this age, or the use 

of this code by the doctor for the patient to avoid copayment for breast imaging.  

 

Using SFS, we could observe the potential performance of a model if it would use any arbitrary number of factors. 

Importantly, all but the first three factors turned out to be interchangeable. This characteristic may be used by clinicians 

in order to maintain the accuracy of BC prediction when some factors are missing (e.g., when no past imaging factors 

exist for women who never underwent a mammogram) or to compensate for factors that are harder to incorporate into 

their systems (such as self-reported history). Especially interesting was our model’s result on patients undergoing their 

first mammogram, outperforming Gail’s on both Israeli and American datasets.  

 

Admittedly, a model utilizing diagnosis codes and labs did not generalize well on the American test set. This is a 

known issue in artificial intelligence28. This could be the result of difference in race/ethnicity distributions – the Israeli 

data is large and reflects the Israeli population, with women mainly of Jewish descent and a minority of Arab descent 

(religion information is not available as part of the EHR). In the American dataset, however, Jewish (1.1%) and Arab 

(fall under “other”, and therefore unknown, but less than 3.5%) women are the minority, with a substantial 

representation of African American (33.7%), and Asian American (2.2%) women.  



  

 

Furthermore, and possibly due to differences in race/ethnicity distributions, some factors’ values are significantly 

different on average on the American set. For instance, maximal measured platelets levels (265.7 vs. 281.5*109 per 

liter, p-val<1x10-7 on the Israeli/American datasets, respectively), maximal measured mean corpuscular hemoglobin 

concentration levels (32.8 vs. 29.9 g/dl, p-val<1x10-183), or average HbA1c (6.2 vs. 6.4 mmol/mol, p-val<1x10-6). 

In other cases, a significant observed difference between negative and positive populations in the Israeli test set, simply 

did not exist in the American test set. Such was the case for blood minimal measured leukocytes (6.7 vs. 6.3 

international units, p-val=.03 for Israeli women, 6.7 vs. 6.7 p-val>.05 for American women), and minimal measured 

neutrophil count (3.7 vs. 3.5, p-val=.04 and 4.0 vs. 3.8, p-val>.05). Another difference could be a result of incomplete 

data collection. HRT usage as captured in the American dataset was 1-2%, while studies reported a prevalence of 

12.5%-50% in post-menopausal women29,30. Finally, the large number of sites in the USA and the variety of 

mammography workstations could also have contributed for the drop in performance. 

 

While classic BC risk algorithms focused on predicting lifetime average risk (or 5 to 10 years risk) for developing BC, 

here we suggest a personalized risk that can be calculated in the clinic, as other risks, in shorter intervals and without 

the need to actively involve the patient. Some recent works focused on an individualized risk predicted for a shorter 

time span of 1-2 years7,31. Wu et al.7 specifically utilized EHR data in a similar fashion – training a logistic model on 

the set of ICD-9 entries -  and reported an AUROC of 0.65. However, their model or test set are not available for 

comparison. 

 

 

Limitations 

 

A variability in the clinical data available in other facilities could be expected. However, the identification of most 

contributing features for each prediction task should assist in reproducing these results in other facilities. It may very 

well be that lab tests should be scaled differently for different races/ethnicities. Future models considering other 

sources of information such as genetic information can further improve the results. Many patients were excluded on 

the basis of having a single normal mammogram without sufficient follow-up to determine that they are indeed normal. 

On the other hand, many patients with benign findings were introduced into the cohort. In the USA dataset, EHR data 

was extracted from 19 breast imaging centers, resulting in a more inaccurate and noisier data with a larger proportion 

of missing values than in Israel. 

 

 
Conclusion 

 

The purpose of this work is not to suggest yet another risk model based on a different set of factors, but to envision a 

near-future reality. As EHR data’s quality and consistency improve, attempting to utilize the entire set of clinical data 

for the use of the patient would be a given. The interchangeability and compensation between factors should be 

regarded as an advantage, as some factors are going to be easier to obtain than others due to infrastructure constraints, 

price considerations or complexity of the test. Another possible action that could arise from identifying such factors 

could be treating them and reversing their effect. However, one-size may not fit all. A better model would also utilize 

mammography images on top of the clinical data18, but in this work we chose to focus on what is readily available in 

the EHR and leave the choice of a standalone imaging interpreter to the reader. As medicine becomes more 

personalized and substantial amounts of data are accumulated for each patient, such studies would become essential 

for providing an improved and more efficient healthcare for patients around the world. Generalization from Israel to 

the USA dataset should be further explored. Future steps in our research involves better understanding the weaknesses 

of the AI model by discovering specific ranges of data where the model’s predictions are inaccurate. 
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