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Abstract 

WANNIER90 is a quantum-mechanics code for the computation of maximally localized Wannier functions, ballistic transport, 
thermoelectrics and Berry-phase derived properties – such as optical conductivity, orbital magnetization and anomalous Hall 
conductivity. In this whitepaper, we report on optimizations for WANNIER90 carried out in the course of the PRACE 
preparatory access project PA2231. Through performance tuning based on the integrated tool suite HPCToolkit and further 
parallelisation of runtime-critical calculations, significant improvements in performance and scalability have been achieved. 
Previously unfeasible computations with more than 64 atoms are now possible and the code exhibits almost perfect strong 
scaling behaviour up to 2048 processes for sufficiently large problem settings. 
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1. Introduction 

For the discovery and design of new, improved materials – e.g. for transparent electrodes of solar cells or for 
non-volatile magnetoresistive random access memories (MRAM) – simulation codes, capable of predicting 
desired and undesired material properties, are an inevitable complement to practical experimentation. One of 
such simulation codes is WANNIER90, which is based centrally on the theory of maximally localized Wannier 
functions (MLWFs). In this whitepaper, we report on several optimizations for WANNIER90, which have been 
carried out in the course of the PRACE preparatory access project PA2231 on the PRACE Tier-0 System 
SuperMUC at the Leibniz Supercomputing Centre (LRZ) located in Garching near Munich, Germany.  

This report is structured in the following way: The remainder of this section is devoted to a short introduction 
to the theory of MLWFs and its applications. In Section 2, we introduce the software package WANNIER90 and 
briefly discuss its main characteristics from a purely software-engineering point of view. Moreover, the main 
objectives of this project are defined in that section. Section 3 discusses the most important code changes carried 
out in the course of this project as well as their impact on the performance of WANNIER90. Section 4 
complements this discussion with scalability analyses and a detailed comparison of the original and new code 
version. 

1.1. Maximally Localized Wannier Functions 

Wannier functions (WF) give real space representation of Bloch functions characterizing a crystal in the 
momentum space (so-called reciprocal space). WFs were introduced in 1937 [1] for the very special case of 
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isolated impurity states, and later were extended to all semiconductor or insulator states in 1997 [2], and metallic 
systems as well in 2001 [3]. The recipe on how to find WFs rests on a certain localization criterion, therefore 
they are called maximally-localized Wannier functions (MLWFs).  

There are many applications of MLWFs. Most important, various observables can be calculated quickly using 
very accurate interpolation in the MLWFs basis. Examples for such calculations include band structures and 
Fermi surfaces (including topological insulators), phonon spectra and electron-phonon couplings, excited-state 
properties by means of the so-called GW-method, van der Waals corrections, the thermoelectric properties, and 
the properties derived from the Berry phase, such as: anomalous Hall effect (AHE), orbital magnetization and 
optical conductivity [7,8]. The latter three effects are subject of our investigations and the focus of the 
optimization work in this project.  

Optical conductivity can for example tell as whether a certain material of interest is suitable for transparent 
electrodes of solar cells. As an example, one might consider using elastic graphene or doped graphene (for better 
metallicity and elasticity) instead of popular tin oxide doped with Zn [10].  

Orbital magnetization can cause a material to be magnetic although it does not contain any magnetic elements 
(such as Fe, Mn, Ni or Co). When electrons move along a closed loop, magnetic moments arise. This effect is for 
example observable for graphene nanoribbons, depending on the width and chirality (i.e. the cutting direction 
through graphene chosen to define the nanoribbon) [11].  

Anomalous Hall conductivity (AHC) is the conductivity similar to the ordinary Hall effect – where the 
electrons and holes move in a crystal with some component perpendicular to the applied voltage and the 
magnetic field. But in the case of AHC, instead of the external magnetic field, the intrinsic magnetization of the 
measured sample acts as the driving force [12]. The technical application of this effect can be in magnetic 
sensors and non-volatile magnetic random access memories (MRAM) [13]. It is known for decades but the 
search for strong AHE materials is still an open research field [14]. 

For a very comprehensive review on the theory and all applications of MLWFs see also Mostofi et al. [9]. 

2. The WANNIER90 code 

The open-source software package WANNIER90 [4,5] is available since 2007 to the material science 
community. It is entirely written in Fortran and released under GNU GPL.  

WANNIER90 consists of two main executables: 1) a serial tool named wannier90.x and 2) a purely MPI-
parallelized application, called postw90.x. Based on an initial electronic structure calculation employing density-
functional theory [6] - using for example Quantum ESPRESSO [15], or other codes such as: SIESTA, Wien2k, 
Octopus, Fleur etc. – wannier90.x computes MLWFs which are needed by postw90.x for computing the 
thermoelectric (the BoltzWann code) and Berry-phase derived properties of interest. 

Within this workflow, originally the calculations of postw90.x for Berry-phase derived properties were most 
problematic regarding wall-clock runtime and total resource consumption. For this reason, the main focus of this 
project has been the optimization of postw90.x with respect to performance and scalability. 

The computations of postw90.x essentially boil down to the evaluation of certain quantities associated to the 
vertices of a regular grid within a 3-dimensional space, the so-called reciprocal space (or k-space) whose points 
are often referred to as k-points. Calculations for each k-point are in turn dominated by dense matrix operations 
(double precision complex), in particular by matrix-matrix multiplication and diagonalization. It is an important 
feature of the approach using MLWFs that calculations can be done independently for each k-point, which 
renders the overall computation an embarrassingly parallel problem. 

From a software-architectural point of view, the Berry part of postw90.x is organized in three main 
computation modules, which accomplish slightly different tasks but share the same core functionality for 
evaluating k-point quantities: 1) berry_main samples the reciprocal space along a finite 3-dimensional regular 
grid and calculates some aggregated values (such as optical conductivity, anomalous Hall conductivity or orbital 
magnetization), 2) kslice produces 2-dimensional plot data with respect to a certain 2d-slice through the 
reciprocal space, finally, 3) kpath produces plot data according to a polyline (a one-dimensional path) through 
the reciprocal space. Depending on the use-case, each module can either be disabled or configured with an 
individual sampling resolution. Compared to the other modules, usually the calculations of berry_main involve 
the largest number of k-points and are therefore most computationally intensive. For this reason, originally 
berry_main was the only module which was parallelized using MPI. For kpath and kslice, only serial 
implementations existed at the beginning of this project. 
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3. Performance optimization 

All optimizations to postw90.x implemented in the course of this project are based on performance analyses 
using the integrated tool suite HPCToolkit [16]. In this section, we list the most important and successful of these 
optimizations and discuss their impact on program performance. All reported runtimes and speedups in this 
section refer to a small test case with 32 atoms running at 64 processes.  

Additional information on all changes to the code-base of WANNIER90 can be found online in the GitHub 
repository of this project: https://github.com/ponweist/Wannier90. 

3.1. BLAS integration 

The first target for performance optimization was the computation for anomalous hall conductivity, which 
happens in the program module berry_main.  

Through profiling runs with HPCToolkit (modules kpath and kslice disabled), we identified a hotspot in the 
routine utility_rotate (utility.F90): The calculation of matrix products of the form B = RH·A·R, accounted for 
almost half of the code’s total runtime. Note that the matrices involved are dense double-precision complex 
matrices of size N×N, where N=133 is the number of Wannier-functions (N depends essentially linearly on the 
number of atoms in the test case). The matrix product was formulated in one line of Fortran code, as follows:  

 

 B = matmul(matmul(transpose(conjg(R)), A), R) 

 
Clearly, this implementation yields sub-optimal performance for two main reasons: First, several (avoidable) 

temporary matrices are created during result evaluation. Second and much more important, the default behavior 
of our compiler (Intel Fortran Compiler 14.0.3) is to translate the Fortran’s built-in matmul function to primitive 
loop constructs, which in turn are not vectorized because auto-vectorization does not seem to be supported for 
loops involving complex data types. 

As a first simple solution, we tried using the compilation flag ‐opt‐matmul, which should instruct the compiler 
to use matrix multiplication routines from Intel’s Math Kernel Library (MKL) whenever a call to matmul is 
encountered. However, neither an improvement in runtime, nor any evidence that MKL is actually used could be 
seen from the profiles. 

For this reason, we implemented a new version of utility_rotate, where we explicitly used BLAS for matrix 
products instead of Fortran’s built-in matmul function. Additional analysis of the code showed that at least in all 
performance-critical calls to utility_rotate, the input matrix A is actually not needed any more and its storage 
can be reused as target for the result matrix B. The new version of utility_rotate incorporates this observation 
and uses only one temporary matrix object.  The observed speedup factor for utility_rotate through these 
changes is 5.7 – the total speedup of the entire computation (berry_main) is 55%. 

Note that the original implementation of utility_rotate is still used in several non-performance critical 
sections of the code. We advise the code developers to entirely remove it and to use exclusively the new 
implementation instead. 

3.2. Optimization of core calculation routines 

After introducing BLAS for matrix multiplications in utility_rotate, the next performance critical code 
section was identified in the routine get_imfgh_k_list (berry.F90). When enabling the computation of orbital 
magnetization, this routine contributes to a significant amount of the total runtime of berry_main (>50%). 

The routine get_imfgh_k_list computes three quantities, Fαβ, Gαβ and Hαβ, for each of a given list of energies 
close to the Fermi-energy level. Evaluation of these quantities is based on equations (51), (66) and (56) of [14] 
and involves traces (sums of diagonal elements) of certain matrix products. 

It is important to note that in the original code these matrix products were calculated exhaustively, although 
only their diagonal elements were actually needed for the final result. This observation led to a first straight-
forward optimization, where we replaced the final matrix multiplication of each of the involved products with a 
“partial” multiplication, deriving only the product’s diagonal elements. Additionally, we replaced all of the 
remaining 15 (originally 25) calls to matmul with explicit calls to BLAS. 

The second step in optimizing get_imfgh_k_list involved a closer dependency analysis of all necessary 
matrix products. By exploiting associativity and by rearranging and re-using intermediate results, the number of 
matrix multiplications could be further reduced from 15 to 7. Moreover, two of these seven intermediate 
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products are actually not energy-dependent and could thus be pulled out of the innermost loop of 
get_imfgh_k_list. 

 
 Original code Trace optimization Reusing intermediate results 

Fαβ 4 0 0 

Gαβ 9 6 2 

Hαβ 12 9 3 

Overall 25 15 5 (+2)* 

* Two energy-independent matrix multiplications can be calculated outside the innermost loop. 

Table 1: Number of (full) matrix multiplications for computing Fαβ, Gαβ and Hαβ for a given energy close to the Fermi-energy level 

The above optimizations for the evaluation of Fαβ, Gαβ and Hαβ came at the cost of using five temporary 
matrix objects within get_imfgh_k_list (instead of originally one), but brought a significant improvement in 
runtime – the achieved speedup for berry_main (including the effect of the optimization for utility_rotate from 
the previous section) corresponds to a factor of 2.5. 

 
 Runtime (in CPU cycles) Speedup factor 

 Original New  

berry_main 2.6 ×1014 1.0 ×1014 ≈ 2.5 

get_imfgh_k_list 1.9 ×1014 3.6 ×1013 ≈ 5.3 

[matrix multiplications for Fαβ, Gαβ and Hαβ] 9.8 ×1013 8.6 ×1012 ≈ 11.5 

Table 2: Perfomance improvement for computing anomalous hall conductivity and orbital magnetization  
(test case with 32 atoms and 64 processes) 

Note that also the computation for anomalous hall conductivity (AHC) benefited from the above changes: 
AHC is derived from the quantity Fαβ, which is now evaluated using only 4 “partial” matrix multiplications, 
yielding a computational effort of the order O(N 2) (N is again the number of Wannier functions), instead of 
originnally O(N 3) when computing unneeded off-diagonal elements of the 4 involved products. 

3.3. Bottleneck elimination in the initialization phase 

After successfully optimizing the most performance-critical program module of postw90.x, berry_main, we 
put our focus on the program’s initialization phase.  

 

 

Figure 1: Performance problem in initialization phase: Non-master ranks wait for more than 2 minutes  
(green region with cross-hair) for receiving calculation parameters from the master rank. 
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Figure 1 shows a visualization of the activity of 64 processes, executing a test case with 32 atoms 
(berry_main and kpath enabled). Time flows from left to right; colors encode program routines which are 
currently being executed. As can be seen from the large green area (where the white cross-hair is positioned), 
MPI ranks 1 to 63 are waiting for more than two minutes (cross-hair position is at ≈ 73 seconds) in MPI_Bcast for 
the master rank to broadcast the parameters needed for the actual computations. Investigations with HPCToolkit 
showed that the master rank (whose activity can be seen in the topmost timeline Figure 1), spends most of the 
initialization time in a loop of the following structure: 

 

 ! Wannier‐gauge overlap matrix S in the projected subspace 
 ! 
 call get_win_min(ik,winmin_q) 
 call get_win_min(nnlist(ik,nn),winmin_qb) 
 S=cmplx_0 
 do m=1,num_wann 
    do n=1,num_wann 
       do i=1,num_states(ik) 
          ii=winmin_q+i‐1 
          do j=1,num_states(nnlist(ik,nn)) 
             jj=winmin_qb+j‐1 
             S(n,m)=S(n,m)& 
                   +conjg(v_matrix(i,n,ik))*S_o(ii,jj)& 
                   *v_matrix(j,m,nnlist(ik,nn)) 
          end do 
       end do 
    end do 
 end do 

 
For the elimination of this bottleneck, it is a key step to recognize that the above loop is just an alternative 

formulation for a matrix product of the form S = (V1)
H·S0·V2. By introducing a temporary matrix object and by 

applying the variable substitutions ik_a  ← ik; ik_b  ← nnlist(ik,nn); ns_a  ← num_states(ik); ns_b  ← 
num_states(nnlist(ik,nn)) and wm_a  ← winmin_q; wm_b  ← winmin_qb, this product can be formulated 
equivalently as: 

 

 allocate(tmp(ns_b,num_wann)) 
 
 call gemm(S_o(wm_a:wm_a+ns_a‐1, wm_b:wm_b+ns_b‐1), & 
           v_matrix(1:ns_a, 1:num_wann, ik_a), & 
           tmp, 'C', 'N') 
 call gemm(tmp, & 
           v_matrix(1:ns_b,1:num_wann,ik_b), & 
           S, 'C', 'N') 

 
Through this change, the computational complexity for the matrix product dropped from essentially O(N 4)  

(N = num_wan ≈ num_states) to O(N 3). For the concrete test case (N = 133) the matrix product is now calculated 
610 times faster than before (additional performance comes from the usage of BLAS). As can be seen in Figure 
2, the total initialization time dropped in this way from originally more than 2 minutes to less than 15 seconds 
(cross-hair position is at ≈ 6.6 seconds). 
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Figure 2: Improved initialization performance: Waiting time for non-master ranks (green region with cross-hair)  
has been reduced from originally more than 2 minutes to less than 15 seconds. 

 

 

Figure 3: Parallelized kpath module: Workload is distributed evenly among all processes.  
The computation phase corresponding to kpath is highlighted. 

3.4. Parallelization of program modules ‘kpath’ and ‘kslice’ 

Looking at Figure 1 and Figure 2, another problem is quite obvious: From the large turquoise region at the 
end of the program execution it can be seen that MPI ranks 1 to 63 have to wait quite long in MPI_Finalize for 
the master rank to finish its computations. This load imbalance is simply explained by the fact that originally 
only serial implementations for the program modules kpath and kslice existed, i.e. all the work was done 
exclusively on the master rank (note that the master rank executes kpath before berry_main, while other ranks 
directly start their computations for berry_main). 

For this reason, our last goal in the frame of this project was the parallelization of kpath and kslice. Separating 
the result data output from the actual computation loops and distributing the workload among all processes was 
quite straight-forward and gave very satisfactory results.  
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In Figure 3, we see the final version of the code performing the same computation as in Figure 1 and Figure 2. 
It can be seen clearly that computational workload is balanced pretty evenly among the processes. Again the 
green region with the cross-hair corresponds to waiting times in the initialization phase. It is followed by a short 
computation phase for kpath (see red dashed rectangle), and later by a significantly longer phase for berry_main. 
The runtime for the particular computation could be further reduced from more than 3.5 minutes to less than 2 
minutes. For the kslice module, which has not been enabled for the specific test case, the results with respect to 
load balance look very similar. 

4. Results 

For discussing the finally achieved performance and scalability of postw90.x, we use a series of physically 
meaningful computations for Berry curvature and anomalous Hall conductivities of (Ga,Mn)As dilute magnetic 
semiconductors. The elementary cell sizes were 8, 16, 32, 64 and 128 which corresponds to the following 
dopings: 25%, 12.5%, 6.25%, 3.125%, and 1.5625%, respectively (we substituted one Ga atom in the cell by 
Mn). The symmetry of GaAs is face-centered cubic (fcc). However, after doping and building larger cells, we 
obtain simple cubic cells with 8 and 64 atoms, fcc cells with 16 and 128 atoms and body-centered cubic (bcc) 
cells with 32 and 256 atoms. All calculations were done for the bulk 3D perfect crystal, without disorder. The 
experimental finding that the AHC exhibits the maximum of its value at the doping of about 3% is reproduced in 
our approach, which was not the case when tight-binding methods were applied (compare Fig. 23 in [11]). These 
calculations are preliminary for more demanding project concerned with the surface doping, and necessity to 
explain the experimental data which show strong dependence of the AHE on the thin film thickness, temperature 
and doping; the AHC changes even its signum [17]. It is important, because magnetism in thin films of 
(Ga,Mn)As can be controlled by the electric field, and therefore be utilized in future spintronic devices [18]. 

4.1. Strong scalability analysis 

In Figure 4, we give a detailed comparison of the scalability behaviour of the original and new version of 
postw90.x for different test cases. All program modules, berry_main, kpath and kslice have been enabled and 
representative sampling resolutions have been chosen for each of them. Improvements in performance are 
mainly due to the usage of BLAS for all performance-critical matrix multiplications and due to the optimizations 
discussed in Section 3.2. Increased scalability – which is almost optimal up to 2048 processes for large problems 
– has been achieved mainly through parallelization of kpath and kslice as well as optimizing the initialization 
phase (see Section 3.3). A different view on the achieved scalability improvements is provided by Figure 5 and 
Figure 6 in terms of computational cost (CPU hours) and relative scaling overhead.  

At the time of writing, we do not completely understand the sudden scalability breakdown between 2048 and 
4096 processes. Analysis of the generated HPCToolkit profiles indicated a problem related to the result data 
collection within kslice which is done using MPI_Gatherv. While the run-time of all other routines behave as 
expected (near-to-optimal scaling), the calls to MPI_Gatherv take approximately 70 times longer for 4096 
processes than they do for 2048 processes, although the same amount of data is transferred to the master process 
(this phenomenon is observable for both test-cases, 64 and 128 atoms). Note that for our tests we were using 
Intel MPI version 4.1. In the course of further investigations the problem with MPI_Gatherv could be reproduced 
in a small test program outside the WANNIER90 code and an according issue has been reported to Intel. 
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Figure 4: Strong scalability comparison for the original (dashed lines) and the new (solid lines) code version for computations with  
8 up to 128 atoms. Performance has been increased significantly; scalability is now optimal up to 2048 processes for large problems. 

 

Figure 5: Computational cost for the original (dashed lines) and the new (solid lines) code version for computations with 8 up to 128 atoms.  
A scalability breakdown between 2048 and 4096 processes is observed for the new code version. 
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Figure 6: Increase of computational cost relative to the run with smallest number of processes in the test series. 
The scalability improvement from the original (dashed lines) to the new (solid lines) code version can clearly be seen. 

4.2. Weak scalability analysis 

In order to demonstrate the scalability of the most computationally intensive program module berry_main 
beyond 2048 processes, we carried out a weak scalability analysis for the 64 atoms test case. The program 
modules kpath and kslice have been disabled and the sampling resolution (i.e. grid size) has been chosen such 
that the number of grid vertices is approximately proportional to the number of processes. Table 1 shows that in 
this setup, weak scalability is nearly optimal (i.e. wall-clock runtime remains almost constant) up to 16-thousand 
processes. 

Processes Grid size Runtime 

512 100³ 0:36:47 

1024 126³ 0:37:05 

2048 159³ 0:37:03 

4096 200³ 0:37:10 

8192 252³ 0:37:15 

16384 317³ 0:37:46 

Table 3: Weak scalability analysis for the 64 atoms case. Only computations of berry_main are enabled. 
Weak scalability is almost perfect up to 16-thousand processes. 

4.3. Performance analysis using threaded BLAS version 

While performance optimization was the original focus of this project, also considerations regarding the 
memory requirements of postw90.x became more and more important when trying to perform computations with 
higher and higher number of atoms.  

Due to the resource constraints of this project, we have not been able to set up a test case with 256 atoms. 
However, we expect such a computation to be problematic with respect to memory consumption: The originally 
planned test case for 256 atoms would involve N=1029 Wannier functions. In this scenario, the required memory 
for most of the matrix objects would already exceed 16MB (double precision complex, dimension N×N). 
Assuming 1.5GB of available memory per core (SuperMUC thin nodes), each MPI process could hold only 
approximately 90 such matrices, which is most likely not enough. 

A first attempt to overcome this problem could be to use a hybrid version of postw90.x, i.e. reducing the 
number of MPI processes per node and thereby increasing the available memory per MPI process. In order to 
evaluate how viable such an approach would be, we performed a preliminary series of test runs, where we linked 
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postw90.x against the threaded version of Intel’s math kernel library. As can be seen in Table 4, the decrease in 
efficiency (due to thread idle times while non-BLAS routines are executed) may be tolerable when using up to 4 
threads per MPI process. Clearly, efficiency in this respect could be further improved by additionally 
parallelizing performance-critical code sections of postw90.x with OpenMP. However, this work has been out of 
scope of this project. 

 
Processes Threads/Process 

for BLAS 
Runtime 

2048 1 0:26:56 

1024 2 0:33:27 

512 4 0:49:17 

256 8 1:17:46 

Table 4: Performance comparison for the 128 atoms case when using a fixed number of 2048 processor cores. 
Using a threaded BLAS version might be a viable option in order to increase the available memory per MPI process. 

5. Conclusion 

In this whitepaper, we reported on a series of very successful optimizations for the post-Wannier Berry-phase 
program postw90.x of the Quantum mechanics software package WANNIER90.  

The performance of core computations, dominated by dense matrix operations, could be increased by a factor 
of 5 and higher by using BLAS instead of the Fortran built-in matmul function or explicit loop constructs for 
performing runtime-critical matrix products. A further speedup could be achieved by algebraically rearranging 
matrix multiplications (exploiting associativity) and reusing intermediate results.  

Another important improvement was the elimination of a severe bottleneck in the initialization phase. This 
now makes possible previously unfeasible computations with more than 64 atoms. Besides that, also the 
scalability of postw90.x benefited significantly from this optimization. An additional improvement in scalability 
has been achieved through the parallelization of two previously serial program modules, kpath and kslice.  

As a result of our work, we demonstrated near-to-perfect strong scalability of postw90.x up to 2048 processes 
for sufficiently large problem settings. When restricting the computations to the program module berry_main, 
we were able to demonstrate optimal weak-scalability up to 16-thousand processes. 

5.1. Outlook 

When it comes to computations with large number of atoms (more than 128), the memory requirements of 
postw90.x are getting problematic. A hybrid version of postw90.x (employing OpenMP and/or a threaded BLAS 
library for intra-node parallelism) may be a first solution to this problem. In the long term, also a proper 
distribution of large common data objects may be necessary. To give an example, in the current implementation 
every MPI rank holds its own copy of the matrix array v_matrix, which consumes several hundred megabytes for 
large problem settings. Clearly the distribution of such data objects will imply additional MPI communications 
during the computation. Although first ideas have been developed and discussed within this project, a precise 
data distribution concept which best maintains the current performance of postw90.x is subject of future 
investigations. 

Another more straight-forward task for a future improvement of the WANNIER90 package is the parallelization 
of currently serial computations within wannier90.x. Here it is especially important to parallelize the 
Wannierization code, since for large systems (more than 100 atoms) the number of needed bands may excess 
1000 and the run-times for metallic systems approach 5 hours and more. Also the run-time of the serial code for 
transport is more than 1 hour for systems with 100 atoms and 1D structure. We expect the computational effort 
to jump dramatically for 2D structures. For this reason, parallelization of that part is of great interest too.  
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