

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Parallel Mesh Partitioning in Alya

A. Artiguesa*** and G. Houzeauxa*
aBarcelona Supercomputing Center

***antoni.artigues@bsc.es *guillaume.houzeaux@bsc.es

Abstract
The Alya System is the BSC simulation code for multi-physics problems [1]. It is based on a Variational
Multiscale Finite Element Method for unstructured meshes.

Work distribution is achieved by partitioning the original mesh into subdomains (submeshes). This pre-partition
step has until now been done in serial by only one process, using the metis library [2]. This is a huge bottleneck
when larger meshes with millions of elements have to be partitioned. This is due to the data not fitting in the
memory of a single computing node and in the cases where the data does fit; Alya takes too long in the
partitioning step.

In this document we explain the tasks done to design, implement and test a new parallel partitioning algorithm
for Alya. In this algorithm a subset of the workers, is in charge of partition the mesh in parallel, using the
parmetis library [3].

Partitioning workers, load consecutive parts of the main mesh, with a parallel space partitioning bin structure [4],
capable of obtaining the adjacent boundary elements of their respective submeshes. With this local mesh, each of
the partitioning workers is able to create its local element adjacency graph and to partition the mesh.

We have validated our new algorithm using a Navier-Stokes problem on a small cube mesh of 1000 elements.
Then we performed a scalability test on a 30M element mesh to check if the time to partition the mesh is reduced
proportionally with the number of partitioning workers.

We have also done a comparison between metis and parmetis, the balancing of the element distribution among
the domains, to test how the use of many partitioning workers to partition the mesh affects the scalability of
Alya. We have noticed in these tests that it’s better to use fewer partitioning workers to partition the mesh.

Finally we have two sections explaining the results and the future work that has to be done in order to finalise
and improve the parallel partition algorithm.

2

Introduction
Alya solves time-dependent Partial Differential Equations (PDEs) using the Finite Element Method
(FEM). The meshes are unstructured and can be hybrid, that is of different types of elements.

Work distribution is achieved by partitioning the original mesh into subdomains (submeshes) that run
concurrently by the corresponding MPI processes. Mesh partitioning is carried out using METIS, an
automatized mesh partitioner.

Alya is divided in two types of processes: The master and Nw workers. The master is mainly in charge
of pre-process and some of the post-process tasks. The workers are in charge of running concurrently
the simulation iterations, by assembling matrices and RHS, and solving the corresponding algebraic
system by way of iterative solvers.

In the initial version of Alya, the mesh partitioning is done sequentially by the master while the
workers wait for receiving their parts of the mesh. The partition job done by the master consists in the
following steps:

1. Mesh reading from the hard drive.

2. Initialise mesh properties variables.

3. Create the nodes-elements adjacency graph, for each node we get the elements to which it
belongs.

4. Create the adjacency nodes graph, to know the neighbours of each node.

5. Create the adjacency elements graph, to know the neighbours elements of each element. This
graph is computed using the two previous graphs defined in points 3 and 4.

6. Call metis passing the adjacency elements graph and the number of sub-domains. Obtain as a
response an array assigning the subdomain to each element.

7. Compute the communication arrays, needed to exchange data between the workers, based on
the result obtained from metis.

8. Compute the communication scheduling, needed to determine in which order the workers have
to interchange its data in pairs (through MPI_SendReceive).

9. Distribute the sub-meshes and corresponding element, boundary and node arrats to their
corresponding workers.

After these steps the workers can start to run the simulation time steps.

The main problems with this approach are:

 For larger meshes, that contain millions of elements, the node memory is too small to partition
the mesh by the master. Typically, nodes of supercomputers have a small RAM memory.

 For larger meshes the master takes a long time in the partitioning process, described earlier
(points 1 to 9). This solution does not scale.

The goal of this project is to parallelize the mesh partitioning represented by steps 1 to 9. The
approach consists in performing these steps by a subset of the Nw workers in parallel, and let the
master only be in charge of calculating the communication scheduling. Let us denote a partitioning
worker as a worker, belonging to the subset of the Nw workers, and participating to the parallel mesh
partitioning. Thus we have Np<=Nw workers involved in the partitioning.

Each partitioning worker reads a consecutive part of the mesh from the disk and contributes to the
partition. Metis has been substituted by Parmetis, a parallel version of Metis working with MPI.
Parmetis uses a Distributed CSR format as the input of the element graph. Each partitioning worker
has to create its part of the elements adjacency graphs in the Parmetis format. The main difficulty is
that the elements of the local graphs have to be numbered using the original global numbering.

We have designed the parallelisation process of the partitioning in different phases:

1. Parallelise the steps from 3 to 6. Corresponding to the metis partitioning part.

3

2. Parallelise the steps from 1 to 2. Corresponding to the loading mesh part.
3. Parallelise the steps 7 and 9. Corresponding to the computation and distribution of the

communication arrays.

In this project we have implemented and validated the most complex part of the parallel partitioning,
phase 1. The workflow that has been implemented is (see Figure 1):

1. (Master) Mesh reading from the hard drive.

2. (Master) Initialise mesh properties variables.

3. (Master) Distributes a consecutive part of the mesh to a partitioning workers subset in charge
of the partitioning.

4. (Workers) Each partitioning worker receives a part of the mesh and computes its own
elements adjacency graph.

5. (Workers) Each partitioning worker computes the partition of it's part calling the parmetis
library in parallel. Each partitioning worker obtains a part of the array assigning the
subdomains to each element (LEPAR_PAR).

6. (Workers) Each partitioning worker sends to the master his LEPAR_PAR.

7. (Master) Joins all the LEPAR_PAR received from the partitioning workers.

8. (Master) Compute the communication arrays, needed in order to interchange data between the
partitioning workers, based on the LEPAR_PAR

9. (Master) Compute the communication scheduling, needed to determine in which order the
workers have to interchange its data in pairs.

10. (Master) Distribute the mesh part to its corresponding worker.

Figure 1. Alya workflow for 6 mpi processes with 3 partitioning workers

4

Design and implementation

Parallel partition parameters

The parallel partition process has two main parameters:

 kfl_paral_parmes: Number of mesh partitioning workers.

 kfl_paral_proc_node: An integer indicating how the partitioning workers have to be
distributed among the nodes. If k is the value of kfl_paral_proc_node then the processes
selected to partition the mesh will be 1, 1+k, 1+k+k, and so on, where this number is the mpi
rank of the process. For example if the parameter has a value of 3, the workers in charge to
partition the mesh will be the 1, 4, 7, 10,… This allows us to distribute the partitioning
workers in different nodes.

Alya is launched in N mpi processes , process 0 is the master and the other N-1 processes are the
workers. Only a subset of the N-1 workers will be in charge of partitioning the mesh, the parameter
kfl_paral_parmes defines the number of partitioning workers. This number has to be as small as
possible in order to obtain the best partition from parmetis.

The kfl_paral_proc_node determines the distribution of the partitioning workers among the
supercomputer nodes. If the Ram memory of one node is not enough to partition the mesh by the
workers we can distribute the partitioning workers among different nodes in order to have more
memory available.

For example: In MareNostrum III [6] each node has 16 cores and 32 GB of RAM, processes from 0 to
15 are pinned in the first node, processes from 16 and 31 are pinned in the second node, and so on. If
we partition a mesh with workers 1 and 2 we only will have 32 GB of RAM, but if we partition a mesh
with workers 1 and 16 we will have 64GB of RAM to do the job. In this case the kfl_paral_proc_node
= 15.

Parallel partition workflow

Each partitioning worker receives from the master a consecutive part of the mesh. It consists in two
type of information: The elements to node connectivity (LNODS) and the node coordinates (COORD).

Each type of information is loaded independently on each of the partitioning workers; because of that
one partitioning worker can have a node in the connectivity that has no corresponding coordinate data.

5

Figure 2. Mesh distribution between 3 workers, each colour corresponds to the mesh part received by one

worker.

Each partitioning worker has to create the distributed CSR format graph of its mesh part, which is the
input needed by parmetis. To do this the partitioning worker needs to know the adjacent elements to
its boundary elements, in its part of the mesh.

We have to determine which elements one worker will send and receive from, in order to obtain the
adjacent boundary elements. For this we have used the computational geometry bin data structure
approach.

In order to implement this algorithm each partitioning worker needs all the coordinates of his LNODS.
Each partitioning worker doesn’t have all the coordinate values of his LNODS, this is because he
receives only a part of the COORD data, and some coordinate values of his LNODS could be read by
another partitioning worker. Because of that the first step is to interchange the node coordinates in
COORD between the partitioning workers.

Each worker sends to the other workers the identifiers of the coordinates that he needs (with
mpi_allgatherv), with this received list each worker send to the others the coordinate values that he
has in its COORD in pairs (with mpi_send and mpi_recv).

6

Figure 3. Element redistribution, in white are the worker's own elements, in blue the elements received

from other workers

In summary, each partitioning worker has to do the following steps:

1. Get the elements connectivity and coordinates part from the master.
2. Redistribute the coordinates between the partitioning workers.
3. Calculate a local numeration for the worker nodes and coordinates. With this new numeration

the coordinate identifiers will be consecutive and we can store them in a smaller array.
4. Calculate a list with the mesh boundary elements.
5. Create the parallel bin structure between all the partitioning workers.
6. Redistribute elements among the partitioning workers using the bin structure and the boundary

elements list.
7. Renumber and reorder the local connectivity elements.
8. Partition the mesh with the local connectivity and coordinate information

a. Create the local nodes-elements graph, to know what elements are in each node.
b. Create the local adjacency nodes graph, to know the neighbours of each node.
c. Create the local adjacency elements graph, to know the neighbours elements of each

element
d. Call parmetis passing the local adjacency elements graph and the number of

subdomains. Obtain as a response a partition array giving the domain of each element
of the local mesh.

9. Send the partition array to the master.

7

Tests

Validation

We have executed a small well tested Navier-Stokes simulation in order to validate our
implementation. We have checked that the serial and parallel partitioning produces the same results.

We have run the simulation with 16 mpi processes, three workers have been used to partition a 1000
elements cube mesh. Figure 4 shows the comparison between the parallel and serial partition. The
paraver tool has been used for this purpose [5]. As you can see the workers 2, 3, 4 are in charge to
partition the mesh while the others are waiting. Between the partitioning workers the interchange data
corresponds to the steps 1, 2, 5, 6, 8, and 9 of the algorithm.

With only three partitioning workers the parallel partition runs faster than the serial partition, in the
figure 4 is shown that all the partitioning workers are running the time steps while in the serial run the
partitioning workers are still waiting to receive his mesh part.

Figure 4. At the top the parallel partition trace, at the bottom the serial partition trace

We also have validated the test with a larger case, running successfully 10 time steps with a 30 million
mesh partitioned in 4095 domains with 20 partitioning workers.

Partitioning Workers Scalability

In this test we have run the same Navier-Stokes simulation, but with a 30 million elements mesh. We
have partitioned the mesh in 511 domains using the parallel partition algorithm. We have used 2, 5,
10, 15 and 20 partitioning workers in different runs to achieve this task.

We have measured the time needed to partition the mesh between the following two points (both
included):

 The master distributes a consecutive part of the mesh to a workers subset.
 The master receives and joins all the partitioned mesh.

8

In this test we have measured the speed-up of the algorithm to partition the mesh in parallel when we
add more workers to partition the mesh. The speed-up is calculated dividing our base time (252,2) by
the time obtained when adding more partition slaves. Our base time is obtained with 2 partition slaves
because this is the minimum number of processes required by parmetis in order to work.

We have obtained this response times:

Number of partitioning workers Response time in seconds
2 252,2
5 118,8
10 76,7
15 62,2
20 57,3

Table 1: 30 million mesh partitioning time in 511 domains.

Figure 5. Partition algorithm speed-up when more partitioning workers are used, with a 30 million mesh in 511

domains

The code scales when we use more workers to partition the mesh; in our case a good number of
partitioning workers is 15, because with more workers the communication overhead is bigger than the
computation time of each worker, as is shown in the figure 5.

Running the same partition with the serial version and metis we have obtained a response time of
218,7 seconds, it is faster than the parallel partition in two workers (252,2 seconds) due to
communication overhead. But with 5 partitioning workers the response time is 118,8 seconds, that
doubles the performance of the serial version.

We also have observed how our code scales in terms of the memory. We launched the simulation with
20 consecutive partitioning workers, that mean that 16 workers are at the same node sharing 32 GB of
RAM, in this case the simulation fails because we reached the available memory in one node.
However if we launch one partitioning worker per node the simulation runs perfectly, because each
worker has 32 GB of RAM available.

9

Parmetis strong scalability

We have measured the Alya scalability running a Navier-Stokes simulation with these inputs:

 30 million elements cube mesh.
 From 127 to 4095 domains.
 Partitioned in parallel with 8 partitioning workers.
 2 iteration time steps are measured.

Here we want to measure how well parmetis is doing a balanced partitioning between the domains. If
one of the domains has more assigned elements than the others the worker will have more work than
the others, otherwise if one domain has less elements than the others the worker will be idle most of
the time.

In order to avoid these two problems and to have a good scalability and efficiency we need to have
exactly the same number of elements in each domain.

Figure 6. Alya scalability with 8 partitioning workers and parmetis

As is shown in Figure 6 the Alya scalability with parmetis is near the ideal, taking into account that
with 4096 domains we have only 8000 elements per domain the scalability is quite good.

If we plot the histogram of the elements distribution between the domains we can observe that the
major part of the domains have the same number of elements, this plot corresponds to a 4095 domains
partition: 3795 domains have about 8000 elements, 282 domains have about 7000 elements and 18
domains have about 6000 elements assigned. We can conclude that parmetis has produced a well
balanced partitioning.

10

Figure 7. Parmetis elements distribution between domains histogram. It shows how elements are distributed

among the domains.

Parmetis and metis elements distribution comparison

We have partitioned the same 30 million mesh in 512 domains, using metis in serial and parmetis in
parallel with 20 and 40 partitioning workers. If we plot the histogram of the elements distribution
between the domains we can see that metis is doing a better job (figure 8), because with metis all
domains have a similar number of elements, however with parmetis there are domains with fewer
elements than others.

Figure 8. Parmetis and metis distribution between domains histogram. It shows how elements are distributed

among the domains.

The figure 8 shows that with metis all domains have from 60000 to 62500 elements assigned.
However, with parmetis and 20 partitioning workers the distribution is from 52500 to 65000 elements,
and with 40 partitioning workers we obtained a distribution from 47500 to 65000.

That means that if more partitioning workers are used to partition the mesh we obtain less balanced
distribution of the elements among the domains.

The conclusion is that we have to assign as few partitioning workers as possible. The minimum
number of partitioning workers will come from:

11

 The needs in terms of RAM memory, if we use more partitioning workers we have more
memory available because we can use more nodes in the partition.

 The response time that we need, if we use more partitioning workers we will obtain better
response time as you can see in section Partitioning Workers Scalability.

Summary and conclusions

 We have created and validate a new algorithm to partition Alya meshes in parallel, using a
workers subset.

 We have checked that our partition algorithm scales in terms of execution time and memory
consumption.

 We have obtained a very good Alya scalability with the parallel partition algorithm.

 We have concluded that is better to use fewer partitioning workers in order to obtain a
balanced elements distribution in the domains.

 We have observed that metis obtains better balanced elements distribution than parmetis.

Future work

 Design and implement the parallelization of the mesh loading.
 Design and implement the parallelization of the computation and distribution of the

communication arrays.
 Create a hybrid parallel partition algorithm adding openmp pragmas to the Alya code.
 Test the parallel partition algorithm with bigger meshes and with more domains.

References
[1] Alya: The Alya System - Large Scale Computational Mechanics (bsc-cns Alya web page)
[2] Metis: Serial Graph Partitioning and Fill-reducing Matrix Ordering (metis documentation)
[3] Parmetis: Parallel Graph Partitioning and Fill-reducing Matrix Ordering (parmetis documentation)
[4] Space partitioning: wikipedia article
[5] Paraver: Performance Analysis Tools: Details and Intelligence (paraver documentation)
[6] MN3: MareNostrum III Supercomputer (2013)
[7] G.Houzeaux, R.delaCruz, M.Vazquez: Parallel Uniform Mesh Subdivision in Alya. Available on-

line at www.prace-ri.eu

Acknowledgements
This work was financially supported by the PRACE project funded in part by the EUs 7th Framework
Programme (FP7/2007-2013) under grant agreement no. RI-312763.

