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Abstract 

The aim of this research it to examine the possibility of  parallelizing  the Frish-Hasslacher-Pomeau (FHP) model, a cellular 
automata algorithm for modeling fluid flow, on clusters of modern graphics processing units (GPUs). To this end an Open 
Computing Language (OpenCL) implementation for GPUs was written and compared with a previous, semi-automatic one 
based on the OpenACC compiler pragmas (S. Szkoda, Z. Koza, and M. Tykierko, Multi-GPGPU Cellular Automata 
Simulations using OpenACC, http://www.prace-project.eu/IMG/pdf/wp154.pdf). Both implementations were tested on up to 
16 Fermi-class GPUs using  the MPICH3 library for the inter-process communication. We found that for both of the multi-
GPU implementations the weak scaling is practically linear for up to 16 devices, which suggests that the FHP model can be 
successfully run even on much larger clusters. Secondly, while the pragma-based OpenACC implementation is much easier 
to develop and maintain, it gives as good performance as the manually written OpenCL code. 
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1. Introduction 

    Frish-Hasslacher-Pomeau (FHP) model of fluid flow [1] is an important example of a cellular automaton, 
a broad class of numerical algorithms applicable in various areas of science and engineering [3], [4]. Our 
research on the FHP model carried out previously within PRACE-3IP [2] has shown promising results for 
OpenACC and CUDA ports on a single 8-GPU computing node. Therefore the main goal of the present work is 
to examine the possibility of porting the FHP algorithm to a cluster of GPU accelerators. From the two general-
purpose computing environments available currently for GPUs, CUDA and OpenCL, we chose the latter one for 
its versatility, and compared the results with those obtained using another GPU programming model, pragma-
based OpenACC, which is also versatile but much simpler to use. 
 

2. Model 

The FHP model of fluid flow is a cellular automaton in which particles forming the liquid are allowed to 
move only along the bonds of a triangular lattice [3], [4], hopping in discrete time steps Δt to one of the 6 
neighboring lattice nodes. The exclusion rule asserts that only one particle is allowed to move along a given 
bond in a given direction. The particles can meet at lattice nodes and collide, exchanging the momentum and 
changing their velocities. The evolution from time t to t + Δt takes part in two steps: propagation and scattering. 
In the propagation step each particle moves one node at a time in accordance to its current velocity. In the 
scattering step particles collide, changing their directions according to the rules imposed by the physical laws of 
mass and momentum conservation, see Fig. 1. If a particle hits an obstacle, it usually bounces back to mimic the 
no-slip boundary conditions typical of fluid flow simulations. 

 
There are several versions of the model, each characterized by distinct collision rules. Here we consider the so 

called FHP I model, in which each lattice node can be occupied by up to six particles, one per direction 
represented by internode links (bonds). The velocities of the particles shall be denoted by  vi, i = 0,…,6. 
 

 

 

Figure 1 The FHP I and FHP II collision rules. The states before and after the collision are visualized in the first and second column, 
respectively. The first row shows FHP I collision rules, and the whole table presents the FHP II collision rules.  
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3. FHP with a multi-spin technique 

In the multi-spin coding approach particle velocities at each lattice node can be represented by single bits and 
stored in independent arrays xi, i=1,…,6. Each array stores information about the presence (bit set to 1) or 
absence (bit set to 0) of the particle in a particular direction. The lattice is mapped into a large parallelogram,  
Figure 2.  

 

 
 
 

 
For effective scattering, instruction-level and data-level parallelism of the FHP model can be used. Such 

an approach involves dividing the data into separate bits and distributing them appropriately in computer words. 
Then it is possible, through logical and arithmetic bitwise operations, to execute more than one operation per 
processor clock. For the propagation step to be performed efficiently, a special ordering of bits representing 
particles in lattice nodes in arrays xi must be applied. The first N/B nodes are assigned in the first bits of 
subsequent words, then next N/B nodes are assigned to the second bits of consecutive words, and in such manner 
repeated B times, where B is the  maximum computer word length. Most often B equals 64, being the length of 
the long long integer type. The aim of such a data distribution is to perform the particle movement through 
a simple assignment of words.  

Besides the six velocity arrays, one still needs an array holding the placement of obstacles and an array of 
random bits. The array of random bits used in the scattering step to mimic the stochastic choice of the scattering 
pattern for the cases where a given collision can result in two collisions with probability 1/2, Fig 1. 

4. Implementations 

In this report we compare two implementations of the FHP I model, an OpenCL-based and an OpenACC-
based [7], the latter described in detail in [2]. Both of them use the multi-spin coding technique. 

4.1. OpenCL implementation  

OpenCL [6] is a free programming standard for general purpose parallel programming, unifying code 
development techniques for CPUs, GPUs and other processors. It is designed to take the full advantage of 
heterogeneous processing platforms, such as multi-core CPUs and GPUs, including also DSP's, the Cell 
processor etc. OpenCL consists of a compiler-independent runtime API and the OpenCL C language. The 
runtime API is meant to be used by the flow control program written in C or C++ to execute computing kernels 
written in OpenCL C. OpenCL C is almost the standard C language that enables writing computing kernels 
which are loaded into flow control program during runtime. This feature enables lunching the same binary on 
various hardware platforms, swapping only the computing kernels in such way that they fit the best accelerator 
available in the computational environment. 

 
In this programming model all computing devices (e.g., CPU cores, GPUs) are treated as co-processors 

running kernels asynchronously to the work flow control program. In the case of the FHP implementation, the 
main task of the control program is to transfer the data to the GPU, launch GPU computational kernels in 
an appropriate order, and read the results from the GPUs. The main application was written in C++ and compiled 
with the GCC 4.7.2 compiler set, while the computational part uses the OpenCL 1.1 implementation from Nvidia 

Figure 2 A triangular lattice (a) mapped onto parallelogram (b). 
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SDK 5.5.22. Nvidia's OpenCL implementation was chosen as it seems to be the most appropriate for their 
devices. 

 
In our OpenCL implementation of the FHP model, the CPU subroutines presented in PRACE-3IP [2] were 

reimplemented as OpenCL computing kernels. Kernel implementations differs slightly from the Nvidia CUDA 
one described in [2]. However, the host code necessary to prepare the computations on the GPU is definitely 
longer and more complicated in the case of the OpenCL, which is the price of OpenCL's versatility. 

 
In the collision kernel (Listing 1) the local (shared) memory was used to optimize the multiple memory reads 

of arrays xi and nob. The value 32 for the local workgroup size gives the best performance results. In the 
remaining kernels the use of the local memory wouldn't be as profitable, as they use only simple memory 
assignments. The multi-GPU communication was realized through the MPICH3 implementation of the  Message 
Passing Interface (MPI).  

 
Before the simulation begins, the system is initialized on N computing systems where N is the number of 

GPUs, with the first H/N rows assigned to the first GPU, the next H/N rows to second GPU and so on. Each 
GPU is attached to one MPI process which creates one context and one command queue. The communication is 
provided by the non-blocking send and receive calls. The N-th process sends the first row of particles heading 
towards 0 and 1 directions to the one with the previous rank, and the last row of particles with velocities 3 and 4 
to the next process. At the same time, it receives the appropriate rows from the next and previous processes. Due 
to the impermeable boundary conditions on the top and bottom edges of the system, the first and last processes 
communicate only with one neighboring process, either the next or the previous one. 

 
To optimize inter-process communication, before the sending process begins, the first row of arrays holding 

particles with velocities pointing in directions 0 and 1 are aggregated into one buffer to perform one send 
operation on larger data array. The same applies to the last rows of directions 3 and 4. Particles that have just 
been sent to another process have to be cleared in the current one. In the multi-spin coding implementation, 
particles in each direction are stored in different arrays so they will not be overwritten by incoming data. The 
row clearing was implemented by device's internal memory copying of the previously prepared zero-filled 
buffer. This operation is done during non-blocking MPI communication. This kind of optimization brings 
a noticeable benefit only when we consider strong-scaling calculations. 

 
Figure 3 The weak scaling on 8 nodes with 2 NVIDIA M2050 cards.  
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5. Results 

Using 8 professional HPC computing nodes with two Nvidia M2050 units each, we could go up to 400 GUps 
(giga lattice updates per second). The result is one order of magnitude faster than for the single GPU 
implementation, which still is 4 times faster than the fastest CPU implementation (OpenMP + SSE) on 
a computing node with Intel Xeon X5670, considering weak scaling. The results for the weak and strong scaling 
for up to 16 GPUs are shown in Figure 3 and Figure 4, respectively. The weak scaling is almost linear for both 
implementations. Figure 3 and Figure 4 also presents results for an alternative OpenACC, Multi-GPU 
implementation, presented in the previous work [2]. Performance results of both implementations are equal, but 
it is important to remark that the multi-spin implementation considered here is perfectly suited for SIMD devices 
which allows semi-automatic OpenACC porting to be equally efficient as the hand-written code. Probably such 
a situation is rather rare. 

 
 
 

 
 
 
 
 
 
 

  

Figure 4 The strong scaling on 8 nodes with 2 NVIDIA M2050 cards. 
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6. Listings 

#define TYPE unsigned long int 
#define BS 32 //Local work size 
#define NEXTY(cw,ccw,same,oop)\ 
    ((( cw )  & ( cang ))+(( ccw ) & ( caang ))+\ 
    (( same ) & ( ncol ))+(( oop ) & ( ~tnob[i] ))) 
TYPE col,ncol,cang,caang; 
__kernel void sub_step_1(...) 
{ 
  __local TYPE t1[BS],t2[BS],t3[BS],t4[BS]; 
  __local TYPE t5[BS],t6[BS],tnob[BS]; 
  unsigned id = get_global_id(0); 
  unsigned i  = get_local_id(0); 
  t1[i]=x1[id]; t2[i]=x2[id]; 
  t3[i]=x3[id]; t4[i]=x4[id]; 
  t5[i]=x5[id]; t6[i]=x6[id]; tnob[i]=nob[id]; 
  ncol =(\ 
        (t1[i]^t4[i])|(t2[i]^t5[i])|\ 
        (t3[i]^t6[i])\ 
        )&\(\ 
        (t1[i]^t3[i])|(t3[i]^t5[i])|\ 
        (t2[i]^t4[i])|(t4[i]^t6[i])\ 
        )&(tnob[i]); 
 
  col     = (~ncol) & ( tnob[i]); 
  cang    = (  col) & ( ang[i]); 
  caang   = (  col) & (~ang[i]); 
  ang[i]  = (  col) ^ ( ang[i]); 
 
  y1[i] = NEXTY(t2[i],t6[i],t1[i],t4[i]); 
  y2[i] = NEXTY(t3[i],t1[i],t2[i],t5[i]); 
  y3[i] = NEXTY(t4[i],t2[i],t3[i],t6[i]); 
  y4[i] = NEXTY(t5[i],t3[i],t4[i],t1[i]); 
  y5[i] = NEXTY(t6[i],t4[i],t5[i],t2[i]); 
  y6[i] = NEXTY(t1[i],t5[i],t6[i],t3[i]); 
} 

Listing 1 Collision step OpenCL kernel.. 
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