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Abstract

We consider Riemann’s Xi function &(s) which is evaluated at s = 1+0+iw, given by £(3+0+iw) =
E,.(w), where o,w are real and compute its inverse Fourier transform given by E,(t). We study the
properties of E,(t) and a promising new method is presented which could be used to show that the
Fourier Transform of E,(t) given by Ej,(w) = £(3 + 0 +iw) does not have zeros for finite and real w
when 0 < |o] < 1, corresponding to the critical strip excluding the critical line.
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1. Introduction

o

It is well known that Riemann’s Zeta function given by ((s) = >_
m=1

where the real part of s is greater than 1. Riemann proved that ((s) has an analytic continuation to
the whole s-plane apart from a simple pole at s = 1 and that ((s) satisfies a symmetric functional
equation given by £(s) = £(1—s) = 2s(s—1)m2['(£)((s) where I'(s) = [~ e "u*"'du is the Gamma
function.[4] [5] We can see that if Riemann’s Xi function has a zero in the critical strip, then Rie-
mann’s Zeta function also has a zero at the same location. Riemann made his conjecture in his 1859
paper, that all of the non-trivial zeros of {(s) lie on the critical line with real part of s = %, which is

called the Riemann Hypothesis.[1]

1

ms

converges in the half-plane

Hardy and Littlewood later proved that infinitely many of the zeros of ((s) are on the critical line
with real part of s = 1.[2] It is well known that ((s) does not have non-trivial zeros when real part
of s = %+ o + iw, given by £ + ¢ > 1 and 3 4+ o < 0. In this paper, critical strip 0 < Rels| < 1
corresponds to 0 < |o| < 1.

In this paper, a new method is discussed and a specific solution is presented to prove Riemann’s
Hypothesis. If the specific solution presented in this paper is incorrect, it is hoped that the new
method discussed in this paper will lead to a correct solution by other researchers.

In Section [2] to Section [ we prove Riemann’s hypothesis by taking the analytic continuation of
Riemann’s Zeta Function derived from Riemann’s Xi function £(3 + 0 + iw) = Ej,(w) and compute
inverse Fourier transform of E,,(w) given by E,(t) and show that its Fourier transform E,,(w) does
not have zeros for finite and real w when 0 < |o] < %, corresponding to the critical strip excluding
the critical line.
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In Section [7] it is shown that the new method is not applicable to Hurwitz zeta function and
related functions and does not contradict the existence of their non-trivial zeros away from the

critical line with real part of s = %

We present an outline of the new method below.

1.1. Step 1: Inverse Fourier Transform of f( + w)

Let us start with Riemann’s Xi Function &(s) evaluated at s = 3 +iw glven by £(3 +iw) = E(w) =
FEo,(w), where w is real. Its inverse Fourier Transform is given by EO( =5 f_oo EOw (w)e™dw, where
w, t are real, as follows (link).[3] (Titchmarsh pp254-255) We take the term ez out of the bracket and
rearrange the terms as follows.

Eo ( = = 22 2n ™ 62 — 3n? 71'@2 Z 2p4e4 _ 6rnle Qt]e 28%6% (1)

We see that Ey(t) = Ey(—t) is a real and even function of ¢, given that Epy,(w) = Egu(—w)
because £(s) = (1 — s) (link) and hence £(3 +iw) = £(3 — iw) when evaluated at s = 1 + iw.(Details
in [Appendix C.8)

The inverse Fourier Transform of £(3 —i— o +iw) = E,,(w) is given by the real function E,(t). We

can write E,(t) as follows for 0 < |o| < 1 and this is shown in detail in |Appendix A}
E,(t) = Ep(t)e™ = [An*n'e™ — 6rn2e™]e ™ ez~ (2)
n=1
We can see that E,(f) is an analytic function for real ¢, given that the sum and product of
exponential functions are analytic for real ¢ and hence infinitely differentiable for real .

1.2. Step 2: On the zeros of a related function G(w,ts,ty)

Statement 1: Let us assume that Riemann’s X1 function £(1 + o + iw) = E,,(w) has a zero at
w = wp where wy is real and finite and 0 < |o]| < correspondlng to the critical strip excluding the
critical line. We will prove that this assumption leads to a contradiction.

Let us consider 0 < o < 1 at first. Let us consider a new function g(¢, ts, o) = f(¢, t2, to)e™ " u(—t)+
f(t, tg, to)e"tu(t), where f(t, tg, to) = e‘zatofl (t, ta, t()) + 620tof2(t, tg, to) and f1 (t, tg, to) = €UtOEII)<t +
to, t2) and fo(t, ta, to) = e_"toEZ;(t — to, t2) and E;](t,tg) = e E,(t — ty) — e"2E,(t + t3) and to, to
are real and g(¢, 1o, 1) is a real function of variable ¢ and u(t) is Heaviside unit step function. We can
see that g(t,ta,to)h(t) = f(t,ta,to) where h(t) = [e”u(—t) + e u(t)] .

In Section , we will show that the Fourier transform of the even function gee,(t,ts2,tg) =
%[g(t, ta,to) + g(—t, ta, to)] given by Gr(w,ts,to) must have at least one zero at w = w, (s, %) # 0,
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for every value of ty, for each nonzero value of ty, where Gg(w,ts, %) crosses the zero line to the
opposite sign, to satisfy Statement 1, where w, (s, ) is real and finite.

1.3. Step 3: On the zeros of the function Ggr(w,ts,to)

In Section we compute the Fourier transform of the function g(¢,ts,%y) and compute its real
part given by Gr(w,ts,t) and we can write as follows.

0
Gr(w, ta, o) = e~ 270 / [Eo(T + to, t2)e™ 2T + Ey (T — to, t2)] cos (wr)dr

—0o0

0
+e20to / [E(/)(T — to, t2)€_2gT + E(l)n(T + to, to)] cos (wT)dT

—0o0

(3)
We require Gg(w, ta,tg) = 0 for w = w,(ts,ty) for every value of t;, for each non-zero value

of ty, to satisfy Statement 1. In general w,(ts,tg) # wo. Hence we can see that P(ty,ty) =
Gr(ws(t2, ), t2, to) = 0.

1.4. Step 4: Zero Crossing function w,(ts, 1)) is an even function of variable i

In Section 2.4 we show the result in Eq. 4 and that w,(ts,t9) = ws(t2, —to). It is shown that
P(tg,to) = GR(WZ(tQ,to),tQ,to) = Podd<t2,t0> + Podd(tg,—t0> = 0 and that Podd(tg,to) is an odd
function of ¢y, for each non-zero value of £, as follows.

to

P,aa(te, tg) = [cos (wz(tg,to)to)/ E(l)(T, t2)6_2” cos (w, (te, to)T)dT

—0o0
to

-+ sin (wz(tg, to)to) / E(/)(T, tg)e_z‘” sin (wz (tg, to)T)dT]

—00

to to

+e2"t°[cos (wz(tg,to)to)/ E(l)n(T, to) cos (w,(ta, to)T)dT + sin (wz(tg,to)to)/ E(l)n(T, to) sin (w, (g, to)7)dT]

—0o0 —0o0

(4)

1.5. Step 5: Final Step

In Section , it is shown that w,(ts,%y) is a continuous function of variable ¢, and t, for all
0 <tp < oo and 0 <ty < oo. In Section [} it is shown that Ey(t) is strictly decreasing for ¢ > 0.

In Section |3 we set tg = tg. and ty = t9. = 2%y, such that w,(to., to.)to. = Z and substitute
2

in the equation for P,y4(ts, o) in Eq. 4 and show that this leads to the result in Eq. 5. We use
E(I)(t, tg) = Eo(t — tQ) — Eo(t -+ tg) and E()n(t,tg) = Eé(—t,tg)



/0 Oc(EO(T — tae) — Eo(T + tae))(cosh (20tg.) — cosh (207)) sin (w, (tac, toe)7)dT = 0

(5)
We show that each of the terms in the integrand in Eq. 5 are greater than zero, in the interval
0 < 7 < to. and the integrand is zero at 7 = 0 and 7 = ty., where ty. > 0.

Hence the result in Eq. 5 leads to a contradiction for 0 < o < %
We show this result for 0 < o < 3 and then use the property £(1 + 0 +iw) = (3 — o —iw) to show

the result for —% < 0 < 0. Hence we produce a contradiction of Statement 1 that the Fourier
Transform of the function E,(t) = Ey(t)e " has a zero at w = wy for 0 < |o| < 3.



2. An Approach towards Riemann’s Hypothesis

Theorem 1: Riemann’s Xi function £(5 + o + iw) = E,,(w) does not have zeros for any real
value of —0o < w < o0, for 0 < |o| < %, corresponding to the critical strip excluding the critical
line, given that Ey(t) = Eo(—t) is an even function of variable ¢, where E,(t) = 5= [* Ep,(w)e™dw,

2.2t t

E,(t) = Eo(t)e 7" and Ey(t) = > o [Ar?nie® — 6rne?|e ™ ¢ e2.

Proof: We assume that Riemann Hypothesis is false and prove its truth using proof by contra-
diction.

Statement 1: Let us assume that Riemann’s Xi function £(5 + 0 + iw) = E,,(w) has a zero at
w = wp where wy is real and finite and 0 < |o| < %, corresponding to the critical strip excluding the
critical line. We will prove that this assumption leads to a contradiction.

We will prove it for 0 < ¢ < 3 first and then use the property £(3 4+ 0 +iw) = £(3 — 0 — iw) to
show the result for —% < ¢ < 0 and hence show the result for 0 < |o| < %

We know that wy # 0, because ((s) has no zeros on the real axis between 0 and 1, when s =
s +o0+iwisreal, w=0and 0 < |o| < 5. [3] (Titchmarsh pp30-31). This is shown in detail in first
two paragraphs in [Appendix C.1]

2.1. New function ¢(t,ts,10)

Let us consider the function E (1) = e "2 E,(t — to) — e"2E,(t + to) = (Eo(t — t2) — Eo(t +
ty))e™ = Ey(t,ty)e !, where ty is non-zero and real, and Ey(t,ty) = Eo(t—ty)—Eo(t-+t,) (Definition
1). Its Fourier transform is given by E, (w,t2) = Ep,(w)(e 72e7!2 — ¢7'2¢™!2) which has a zero at

the same w = wy, using Statement 1 and linearity and time shift properties of the Fourier transform
(link). (Result 2.1.1).

Let us consider the function f(,ts,ty) = 27 f1(t,ta, to) + €27% fo(t, ta, ty) where fi(t,t2,t0) =
e™E (t + to,t2) and fo(t, ta,to) = fi(t,ta, —to) = e 7E (t — to,t3) Where to is finite and real and
we can see that the Fourier Transform of this function F(w,t2,ty) = E,,(w, t)(e 700 4 otoe—twlo)
also has a zero at the same w = wy, using Result 2.1.1. (Result 2.1.2)

Let us consider a new function g(t,ts,tg) = g_(t, ta, to)u(—1t) + g4 (t, to, to)u(t) where g(t,ts,1¢) is
a real function of variable ¢ and wu(t) is Heaviside unit step function and g_(t,ts, tg) = f(t,t2,t0)e 7"
and gy (t,t2,t0) = f(t,t2,t0)e’" . We can see that g(t,ts,to)h(t) = f(t,ta, to) where h(t) = [e” u(—t) +
e 7tu(t)].

We can write the above equations as follows.
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E\(t,t)) = e "Byt — ts) — e Ey(t + to) = (Eo(t — t2) — Eo(t + t2))e 7" = Eqy(t, to)e "
filt ta, to) = €7 B, (t + to, 12)

folt, ta, to) = fi(t,ta, —to) = e 7K, (t — to, o)

Ft ta,to) = €721 fi(t o, to) + €270 fo(t, o, o) = € O E (t + to, ta) + €7 E, (t — to, o)
g(t,ta,to) = [f(t,ta, to)e " Ju(—t) + [f(t, ta, to)e” Ju(t)

g(t,ta,to)h(t) = f(t 2, t0),  h(t) = [ u(—t) + e " u(t)]

(6)
We can show that E,(t), E,(t,t2),h(t) are absolutely integrable functions and go to zero as
t — +o0o. Hence their respective Fourier transforms given by Epw(w),E;w(w,tz),H (w) are finite

for real w and go to zero as |w| — o0, as per Riemann Lebesgue Lemma (link). We can show that
FEo(t) and Ey(t)e~27" are absolutely integrable functions. These results are shown in [Appendix C.1}

In Section and Section , it is shown that g(¢,ts,to) is a Fourier transformable function and
its Fourier transform given by G(w, ta, tg) = e 270G (w, ta, to) + €2 Gy (w, ta, —tg) converges. (Eq. 14
and Eq. 17)

If we take the Fourier transform of the equation g(t, t2, to)h(t) = f(t,t2,to) where h(t) = [e”'u(—t)+
e 'u(t)], using Result 2.1.2, we get =[G (w,ts,t0) ¥ H(w)] = F(w,ta,ty) = E;w(w,tg)(e’atoe"”to +
e7loemwh) = Fp(w, ta, tg) + 1 Fr(w, tQ,to) as per convolution theorem (link), where * denotes con-
volution operation given by F(w,t2,t0) = 5- f GW', ta, to)H(w — w')dw'.

We see that H(w) = Hr(w) = [= + 75] = (022fw2) is real and is the Fourier transform of
the function A(t) (link). G(w,ts,ty) = Gr(w,ta, to) + iGr(w, ta,to) is the Fourier transform of the
function g(t,ts,ty). We can write g(t, ta,t0) = Geven (L, t2, to) + Goaa(t, t2, to) Where geyen(t,ta,to) is an
even function and g,qq(t, t2, to) is an odd function of variable t.

If Statement 1 is true, then we require the Fourier transform of the function f(¢,t,%) given
by F(w,ts,ty) to have a zero at w = wy for every value of t;, for each non-zero value of ¢, us-
ing Result 2.1.2. This implies that the real part of the Fourier transform of the even function
Geven(t, b2, t0) = 3[g(t, ta, o) + g(—t, t2, )] given by Gr(w, ta, to)({Appendix D.2) must have at least
one zero at w = w,(ta,ty) # 0 where w,(ts, ) is real and finite, where Gg(w, t2, ty) crosses the zero
line to the opposite sign, explained below. We note that w,(t2,to) can be different from wy in general.

Because H(w) = (022+—0w2) is real and does not have zeros for any finite value of w, if Gr(w, 2, 1)
does not have at least one zero for some w = w,(t2,ty) # 0, where Gg(w, ta, to) crosses the zero line to
the opposite sign, then the real part of F(w,ty,t) given by Fr(w,ts, tg) = %[GR(w, to, to) * H(w)],
obtained by the convolution of H(w) and Gg(w, t2, ty), cannot possibly have zeros for any non-zero fi-

nite value of w, which goes against Result 2.1.2 and Statement 1. This is shown in detail in Lemma 1.


https://en.wikipedia.org/wiki/Riemann-Lebesgue_lemma
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The proof for Lemma 1 below is shown for a fixed value of ¢, = to; and ty = t5¢, in the interval
[to] < oo and 0 < |t < oo (Interval A), where Gr(w,ts,1p) is a function of w only. The proof
continues to hold for our choice of each and every combination of fixed values of ¢; and ¢; in
interval A, where Gg(w, t2, o) is a function of w only.

Lemma 1: Let to,t, € R be fixed values and t5 # 0 and £(5 + 0 + iwg) = Ep(wy) = 0 using
Statement 1. Then the Fourier transform of the even function gee,(t, t2, %) given by Ggr(w, ta, o)
must have at least one zero at w = w,(t2,ty) # 0, where Gr(w, t2,ty) crosses the zero line to the
opposite sign and w,(ts, t) is real.

Proof: If E,, (wy) = 0 to satisfy Statement 1, then F'(wy,t2,to) = 0, using Result 2.1.2 and its
real part given by Fg(wo,t2,ty) = 0, where wy # 0(Result 2.1.3).

We do not have a closed form solution for Gg(w, ts,ts) and do not know the exact location of its
zeros at w = w, (e, ty), for each fixed choice of t5,ty. For a specific choice of 5, ¢y, only one of the 2
cases is possible: Case B: Gr(w,ts, ) has at least one zero crossing for a specific w # 0 or
Case A: Gg(w,ts,1y) does not have a zero crossing for any choice of w # 0. If Statement 1 is true,
then Case B is the only possibility and Case A is ruled out, as shown below.

We want to show the Result 2.1.5 that Gr(w, t2,ty) must have at least one zero crossing at
some value of w = w,(t2,ty) # 0 (Case B), to satisfy Statement 1, for this choice of fixed t, t5.

To show Result 2.1.5, we assume the opposite Case A, that Gg(w,t2,%y) does not have at
least one zero for any value of w # 0, where Gg(w, t,t) crosses the zero line to the opposite sign
(zero crossing) and will show that Fr(w,ts,t) does not have at least one zero at finite w # 0 for this
case, which contradicts Result 2.1.3 and Statement 1 and hence prove Result 2.1.5 and Case B.

This does not mean that, proof of Lemma 1 will work only if Gg(w,ts,to) does not have a zero
crossing for any value of w # 0, for any choice of t5,t5. The device Proof by Contradiction is used
here to rule out Case A and arrive at Case B. (Details of other cases in Section [2.1.1])

The arguments above and following proof continue to hold for our choice of each and every
combination of fixed values of ¢ty and ¢, in interval A, where Gr(w, t9,to) is a function of w only.

Given that H(w) is real, we can write the convolution theorem only for the real parts as follows.

1 [e.e]
FR(wa lo, tO) = 2_ / GR<w,7 lo, tO)H(w - w/)dw/ (7)

™ —0o0
We can show that the above integral converges for real w, given that the integrand is absolutely
integrable because G(w, ts,to) and H(w) have fall-off rate of 2 as [w| — oo because the first deriva-

tives of g(t,t2,to) and h(t) are discontinuous at ¢t = 0.( [Appendix C.2and |[Appendix C.6))

We substitute H(w) = (a22+—0w2) in Eq. |7l and we get

9 > !/ ]' /
Fr(w, ta, to) = p /_Oo Gr(W', t2, o) (02 + (w— w/>2)dw (8)

We can split the integral in Eq. using = = fi)oo + /57, as follows.




1
(02 + (w—w)?)

0 00
FR(w,tQ,to) = %[/ GR<w/,t2,t0) 2)dw' +/ GR(wl,tg,to) dw’]
—00 0

(7 + (=)

(9)
We see that Gr(—w,ta,t9) = Gr(w,ta,to) because g(t, t2,to) is a real function of variable t.

({Appendix D.1)) We can substitute ' = —w” in the first integral in Eq. 9 and substituting w” = «'’
in the result, we can write as follows.

1 . 1
(02 4+ (w—w)?)  (02+ (w+w)?)

o oo
FR(w,tQ,to) = _/ GR(wlatQatO)[
0

™

(10)

We note that ¢y and ty are fixed in Eq. 10 and Gg(w,ts,%) is a function of w only and the
integrand in Eq. 10 is integrated over the variable w only.

In [Appendix C.2] it is shown that G(w', t9,to) is finite for real w’ and goes to zero as || — 0.
We can see that for w’ — oo, the integrand in Eq. 10 goes to zero. For finite w > 0, and 0 < w’ < oo,
we can see that the term (02+(Lj_w,)2) + (02+(Lj+w, = >0, for 0 < o < % We see that Gr(w', ta, o) is
not an all zero function of variable w’ (Section . (Result 2.1.4)

e Case 1: Gg(W',ta,ty) > 0 for all finite w’ >0

We see that Fr(w,ts,to) > 0 for all finite w > 0, using Result 2.1.4. We see that Fr(—w,ts,tg) =
Fr(w, to,tg) because f(t,ts,1to) is a real function ( [Appendix D.1)) and link ). Hence Fr(w,ts,%9) > 0
for all finite w < 0.

This contradicts Statement 1 and Result 2.1.3 which requires Fr(w,ts,t) to have at least one
zero at finite w # 0. Therefore Gr(W', t2,to) must have at least one zero at w' = w,(t2,ty) > 0
where it crosses the zero line and becomes negative, where w, (o, o) is real and finite.

e Case 2: Gg(W',ta,ty) <0 for all finite w' >0
We see that Fr(w,ts,ty) < 0 for all finite w > 0, using Result 2.1.4. We see that Fr(—w,ts,ty) =

Fr(w,ts,tg) because f(t,ts,t0) is a real function ( [Appendix D.1|) and link ). Hence Fr(w,ts,t9) <0
for all finite w < 0.

This contradicts Statement 1 and Result 2.1.3 which requires Fr(w,ts, %) to have at least one
zero at finite w # 0. Therefore Gr(w, ta,1y) must have at least one zero at ' = w,(t2,ty) > 0,
where it crosses the zero line and becomes positive, where w, (ts, to) is real.

We have shown that, Gr(w, ta, ty) must have at least one zero at finite w = w,(t2, ty) # 0 where
it crosses the zero line to the opposite sign, to satisfy Statement 1, for specific choices of fixed ty, .
We call this Result 2.1.5.
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The arguments above and the proof continue to hold for our choice of each and every combi-
nation of fixed values of ¢y and ¢, in interval A, where Gg(w, ts, ) is a function of w only.

In the rest of the sections, we consider only the first zero crossing away from origin, where
Gr(w, ta,ty) crosses the zero line to the opposite sign. Hence 0 < w,(t2,t) < oo, for all |ty| < oo, for
each non-zero value of 5, to satisfy Statement 1.

2.1.1. Discussion of Lemma 1

Result 2.1.5: Gg(w,ts,ty) must have at least one zero at finite w = w,(ts,%y) # 0 where it
crosses the zero line to the opposite sign, to satisfy Statement 1.

For each fixed value of g, t5, only 2 cases are possible for Gg(w, t2,ty). Case A: Gg(w, ts,t) does
not have a zero crossing for any choice of w # 0. Case B: Gr(w, t,to) has at least one zero crossing
for a specific w # 0. Proof of Lemma 1 assumes Case A and uses Proof by Contradiction to rule
out Case A and arrive at Case B, for each choice of fixed ty,t;. This does not mean that Proof of
Lemma 1 does not work for Case B. For Case B, we do not use Proof of Lemma 1 and jump to the
end of the proof because we already have the desired Result 2.1.5 which is the same as Case B.

The logic used is this proof is as follows: If Statement 1 is true(RH is false), then Result 2.1.5 is
true (Case B), for each and every combination of fixed values of ¢y, t5 in interval A (|¢o] < oo and
0 < |t2] < oo )and hence Case A is ruled out and only Case B is possible for Gg(w, t2,tg). Then we
proceed with Result 2.1.5 to Section 2.3, 2.4 and Section 3, to produce a contradiction of Statement
1 in Eq. [40] and thus prove the truth of RH.

We present an alternate method of analyzing all possible cases of Gg(w, ta,%y) below. We can
arrive at Result 2.1.5, for each and every combination of fixed values of ¢y, t5 in interval A, using
Proof of Lemma 1 for Case C and Case D or using Case E, as explained below.

It is noted that Fr(w,ts,to) and Ggr(w, ta, tp) may have more zeros than F(w, ts, ty) and G(w, ta, to)
respectively. That does not affect the proof of Lemma 1, as explained below.

We do not have a closed form solution for Gg(w, t2,t) and do not know the exact location of its
zeros at w = w,(ta, to), for each fixed choice of 5, tg. We consider 3 possible cases of Gr(w, ta, ty) below.

e Case C: We consider the case that Gr(w, t2,tg) does not have at least one zero crossing, for any
value of w # 0, for each and every choice of ¢, ty and we use Proof of Lemma 1 for each and every
choice of ty, ty, to show that it leads to a contradiction of Statement 1, and hence prove Result 2.1.5.

Hence Case C is ruled out, if Statement 1 is true.

e Case D: We consider the case G R(w,t;,tg) has a zero crossing, for a specific value of w =
w. (th, ), corresponding to specific choices of t,,t,.(Not for all possible choices of t,, t;)

For Case D, this means that Gg(w, ty,1,) has at least one zero crossing at w = w,(t}, t;) which
is the desired Result 2.1.5 and hence we do not go through the arguments in this proof and we can



jump to end of Proof of Lemma 1. In this case, we have not assumed Statement 1 and yet arrived
at Result 2.1.5, for specific choices of t/2, té).

For Case D, there may be at least one choice of tof, tos for which Gr(w,taf, tor) does not have
at least one zero crossing, for any value of w # 0. For this choice of t5¢,%yf, we use Proof of Lemma
1 to show that it leads to a contradiction of Statement 1, and hence prove Result 2.1.5.

Hence Case D is ruled out, if Statement 1 is true.

e Case E: We consider the case Gr(w, t9,to) has at least one zero crossing, for a specific value of
w = w,(ta, tp), corresponding to each and every choices of ty,ty. We call this Statement 3.

For Case E, this means that Gr(w, ts,ty) has at least one zero crossing at w = w,(ts, ty), for
each and every choices of t5, ty which is the desired Result 2.1.5 and hence we do not go through
the arguments in this proof and we can jump to end of Proof of Lemma 1. In this case, we have not
assumed Statement 1 and yet arrived at Result 2.1.5, for each and every choices of ¢, .

For Case E, we see that we arrive at Result 2.1.5 by assuming Statement 3 only. Then we proceed
with Result 2.1.5 to Section 2.3, 2.4 and Section 3, to produce a contradiction of Statement 3 in
Eq. 40l Hence Statement 3 is false and Case E is ruled out.

There are only 3 possible cases for Gg(w,ts,ty) given by Case C,D and E. We have ruled out
Case E in above para. If Statement 1 is true, Case C and Case D have been ruled out. This means
Statement 1 is false.

Hence we have produced a contradiction of Statement 1 that the Fourier Transform of the
function E,(t) = Eo(t)e " has a zero at w = wy for 0 < |o| < 3.

Hence the assumption in Statement 1 that Riemann’s Xi Function given by £(3+0+iw) = Ep, (w)
has a zero at w = wy, where wy is real and finite, leads to a contradiction for the region 0 < |o| < %
which corresponds to the critical strip excluding the critical line. Hence ((s) does not have non-trivial
zeros in the critical strip excluding the critical line and we have proved Riemann’s Hypothesis.

2.2. Gr(W, ts,ty) is not an all zero function of variable W'

If Gr(w',ts,t0) is an all zero function of variable w’, for each given value of tg, ¢, (Statement
2), then Fg(w,ts,ty) in Eq. [7] is an all zero function of w, for real w. Hence 2feyen(t,ta,to) =
f(t ta,to) + f(—t, 19, to) is an all-zero function of ¢, given that the Fourier transform of feyen(t, t2, to)
is given by Fg(w,t2,tg), using symmetry properties of Fourier transform( [Appendix D.2)) and link
). Hence f(t,ts,19) is an odd function of variable ¢.(Result 2.2).

From Eq. 6 we see that E,(t,t2) = e "2 E,(t — ty) — e"2E,(t + ta) = [Eo(t — ta) — Eo(t +t2)]e ",
Hence fi(t,ts,to) = €70 E (t + to, t2) = [Eo(t + to — t2) — Eo(t + to + t2)]e " and
folt, ta, tg) = e’”tOEZI)(t — to,ta) = [Eo(t — tg — t2) — Eo(t — to + t2)]e™?" . Hence we can write
[t b, to) = e 270 f1(t, 1o, o) + €27% fo(t, 15, tp) in Eq. 6, as follows.

f(t, o, tg) = e 27 0[Ey(t+tg—to) — Eo(t +to+ta)]e 7 + e [Eg(t —tg—to) — Eo(t —to+12)]e™7" (11)
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Case 1: For tg # 0 and t5 # 0, it is shown that Result 2.2 is false. We will compute f(¢,ts,t0) in
Eq. |11} at ¢t = 0 and show that it does not equal zero.

We see that f(0,ty,t0) = e > [Ey(tg — ta) — Eo(to + t2)] + €27 [Eo(—to — t2) — Eo(—to + ta)]
= —2sinh (20t)[Fo(to — t2) — Eo(to + t2)]. We use the fact that Ey(ty) = Eo(—to) (|Appendix C.8)
and hence E(](to — tg) = E(](—t(] + t2) and E()(to + t2> = E()(—to — tQ)

If Result 2.2 is true, then we require f(0,ts,t9) = 0 in Eq. . For our choice of 0 < 0 < % and
to # 0, this implies that Ey(to — t2) = Fo(to + t2). Given that ty # 0 and t5 # 0, we set ty = Kt
for real K # 0 and we get Ey((1 — K)tg) = Eo((1 + K)tp). This is not possible for ty # 0 because
Eo(to) is strictly decreasing for ¢y > 0 (Section[f)) and 1 — K #1+ K or 1 — K # —(1+ K) for
K # 0. Hence Result 2.2 is false and Statement 2 is false and Gg(w', t2, ) is not an all zero function
of variable '

Case 2: For tg = 0 and ty # 0, we have f(t,ta,t0) = 2[Fo(t — t2) — Eo(t + t2)]e™ 7" = 2D(t)e 7"
in Eq. where D(t) = Ey(t — t3) — Eo(t + t2). We see that D(t) + D(—t) = Ey(t — t5) —
Eo(t + tg) + E()(—t - tg) — Eo(—t + tQ) Given that Eo(t) = Eo(—t), we have D(t) + D(—t) =
Eo(t - tg) - Eo(t + tg) + Eo(t + t2> — E()(t - tg) = (0 and hence D(t) = E()(t - t2) - Eo(t + tg) is an
odd function of variable ¢ (Result 2.2.1).

If Result 2.2 is true, then we require f(¢,t2,t9) = 2D(t)e™ " to be an odd function of variable
t. Using Result 2.2.1, we require D(¢) to be an odd function of variable ¢. This is possible only for
o = 0. This is not possible for our choice of 0 < 0 < % Hence Result 2.2 is false and Statement 2 is
false and Gr(w', ta, 1) is not an all zero function of variable w’.

Case 3: For t; = 0 and [to| < oo, we have E,(t,ts) = e “2E,(t — t5) — e E,(t + t) = 0 and
f(t ta,tg) = g(t, ta,to) = 0 for all ¢ in Eq. 6 and Lemma 1 is not applicable for this case.

11



2.3.  On the zeros of a related function G(w,ty, 1)

In this section, we compute the Fourier transform of the function geyen (£, t2,t0) = %[g(t, to, to) +
g(—t,ta,to)] given by Gr(w, t2, to)(|Appendix D.2)). We require Gg(w, ta,ty) = 0 for w = w, (¢, to) for
every value of ¢y, for each non-zero value of t,, to satisfy Statement 1, using Lemma 1 in Section [2.1]

We define gl(t7 t?; to) = fl <t7 t?) to)eiatu(_t) + fl (ta t2a t())eatu(t) = eatOE}/)(t + th t2)67o-tu(_t) +
e E (t + to, t2)e” u(t), using Eq. 6 (Definition 3). First we compute the Fourier transform of the
function (51 (ta t27 t(]) given by Gl (W, t27 tO) - GIR(W7 t27 tO) + iGlI(wa t?? t())

00 0

G1<W,t2,t0) :/ gl(t7t27t0)€_iwtdt :/

—00 —00

0

g1 (t, tg, to)e_thdt + / g1 (t, tQ, to)e_iu}tdt
0

Gl(wa t?a tO) = /

—00

e"tOE;D(t + to, ta)e e dt + /0 e"tOE;(t + to, ta)e et

(12)

We use E;(t,tg) = Ey(t, ty)e " from Eq. 6, where Ey(t,ty) = Ey(t — ty) — Eo(t + t3), using
Definition 1 in Section and we get E(t + to,t2) = Ey(t + to, t2)e """ and write Eq. 12 as
follows. Then we substitute ¢ = —t in the second integral in first line of Eq. 13.

0 o
Gr(w, b2, t9) = / Eo(t + to, ta)e 2 e ™t dt + / Ey(t + to, ta)e " dt
. ;
0 ! . 0 / .
Gr(w, by, tg) = / Ey(t + to, ta)e 27t e ™™ dt + / Bl (—t + to, t)e™ldt

(13)
We define FE,(t,ty) = Ey(—t,ty) (Definition 2) and get Ey(—t + to,t5) = E, (t — to,t2) and
write Eq. 13 as follows. The integral in Eq. 14 converges, given that Ey(t)e 2! is an absolutely

integrable function ( [Appendix C.1]) and its t¢, t5 shifted versions are absolutely integrable, using
Ey(t, ty) = Eo(t — to) — Ey(t + to) in Definition 1 in Section [2.1{ and Definition 2.

0 0

Gl (w, t27 tO) = / E(l)(t + to, t2)6_20t6_iwtdt + / E(l)n(t — to, tQ)Gthdt = GlR(w, tg, to) + iGH(w, tg, to)

(14)
The above equations can be expanded as follows using the identity ™! = cos(wt) + isin(wt).
Comparing the real parts of G;(w, ts, ), we have

0 0

Gir(w,ta, ty) = / Ey(t + to, t2)e 27 cos (wt)dt + / Ey, (t — to, t5) cos (wt)dt

—00 — 00

(15)
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2.4. Zero crossing function w,(ts,ty) is an even function of variable ty, for a given t,

Now we consider Eq. 6 and the function f(t,ta,t0) = e727% fi(t, ta, to)+€*" fo(t, ta, to) = e T E (t+
to, ta) + eatoE;(t — to,t2) where fi(t,ta,t0) = e E(t 4 to,t2) and fo(t,ta,t0) = fi(t,t2, —to) =
G_UtOE;@—to, tg) and g(t, to, to)h(t) = f(t, to, to) where g(t, to, to) = f(t, to, to)e_JtU(—t)+f(t, to, t())eJtUJ(t)
and h(t) = [e”u(—t) + e “"u(t)]. We can write the above equations and ¢ (¢, ta, t) from Definition 3
in Section , as follows. We define gy(t, to,to) below and write g(t,t2, 1) as follows.

g1(t,ta,t0) = fi(t, ta, to)e " u(—t) + fi(t, ta, to)e” u(t), gi(t,ta, to)h(t) = fi(t,ta, to)
g2 (tu t2) t()) = f2(t7 t27 to)e_otu<_t) + f2(t7 t27 to)egtu(t)7 g2 (tu t2) to)h(t - f2 (ta t27 tO)
gt ta, tg) = e 270y (¢, ta, to) + €70 ga(t, ta, to)

(16)

We compute the Fourier transform of the function g¢(t,t2,%9) in Eq. 16 and compute its real

part Gg(w, ta, o) using the procedure in Section [2.3] similar to Eq. 15 and we can write as follows in

Eq. 17. We use Gag(w, ta, tg) = Gir(w, ta, —to) given that fo(t,ta,t0) = fi(t, t2, —to) and ga(t,t2, o) =

g1(t, ta, —to) and Gao(w, te, tg) = Gi(w,ta, —tg). We substitute t = 7 in the equation for Gyg(w, ts, o)
below, copied from Eq. 15.

Gr(w,ta, tg) = e 270G 1 r(w, ta, tg) + €27 Gar(w, ta, tg) = e 27 G1g(w, ta, o) + €*7° G g(w, ta, —to)

0
G, ta, o) = / EL(T + to, t2)e=2" + Bl (7 — to, £2)] cos (wr)dr
_(;)O / /
Grlw, ty, ty) = e 2% / [Eq(T + to, t2)e 27T + By, (T — to,t2)] cos (wT)dr

0
+e2oto / [E(;(T — to, t2)€_2UT + E(l)n(T + to, t2)] cos (wT)dT

—00

(17)

We require Gr(w, ta,ty) = 0 for w = w,(t2, o) for every value of ¢y, for each non-zero value of o,
to satisfy Statement 1, using Lemma 1 in Section . In general w,(ty,ty) # wo. Hence we can see
that P(te,tg) = Gr(w.(t2,t0),t2,to) = 0 and we can rearrange the terms in Eq. 17 as follows. We
take the first and fourth terms in Gg(w, t2,to) in Eq. 17 and include them in the first line in Eq. 18.
We take the second and third terms in Eq. 17 and include them in the second line in Eq. 18.

0
P(ty, to) = Grlw.(ta, to), ta, to) = / (€720 B (7 4 Lo, t5)e ™27 + €70 Ey (T + to, t2)] cos (ws (Lo, to)T)dT

— 00

0
+/ (€270 By (T — to, ta)e 2T + e 20 (T —tg, ty)] cos (w,(te, to)T)dT = 0

—0o0

(18)
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We use the fact that f(¢,ts,tg) = e 7E (t + to, 1) + € E,(t — to, t2) = f(t,t2, —to) in Eq. 6, is
unchanged by the substitution to = —to. If f(t,t9,t0) = f(t,t2, —1p) is unchanged by the substi-
tution ty = —to, then g(t,ts,tg) = g(t,t2, —t) is unchanged by the substitution ¢ty = —ty, using the
fact that g(t,ta, to)h(t) = f(t, t2,t0) and h(t) = [e7'u(—t) + e tu(t)].

Hence the Fourier transform of g(t,ts,%9) given by G(w,ta,ty) = G(w,ta, —tp) and its real part
given by Gg(w,ts,t9) = Gr(w,ts, —tg) is unchanged by the substitution ty = —t; and the zero
crossing in Gr(w, ta, —to) given by w,(t2, —to) is the same as the zero crossing in Gr(w, ta,ty) given
by w.(t2,t9) and we get w,(ta, 1) = w,(t2, —ty) and hence w,(ts,ty) is an even function of variable ¢,
for each non-zero value of t,.

We can write Eq. 18 as follows, where P,g(t2,%9) is an odd function of variable ¢y, for each
non-zero value of to. We use w,(ta,ty) = w.(t2, —to).

P(to, to) = Poaa(ta, to) + Poaa(ta, —to) =0
0

Podd(t27 to) = / [6_2UtOE(I) (7' + to, tg)e_z‘” + €2at0E6n (7’ + to, tz)] COS (wz (tz, to)T)dT

— 00

14



3. Final Step

We expand P,gq(ts, o) in Eq. 19 as follows, using the substitution 7+ ty = 7. We get 7 = 7/ — ¢
and dr = d7r’ and substitute back 7 = 7 in the second line below. We use e~27%0¢27% = 1 below.

to ! ’ ’ ’
Podd(tg, to) = / [G_QJtOE(; (7'/, t2)€_207— €2ato + GQUtOEOn(T ,tQ)] COS (wz(tQ, to)(T — to)dT’
. "
P,aq(ta,to) = [cos (wz(tg,to)to)/ Ey(T, tg)e’Q"T cos (w,(ta, to)T)dT
o
4 sin (w2 (fa, f0)to) / (7. £2)e=2" sin (w. (ta, t0)7)d7]
to , - to ,
+€2710(cos (w. (t, o)to) / B, (7. 5) cos (w2 (ta, fo)7)dr + sin (w. (fa, fo)to) / E, (v, 1) sin (w. (ta, to)7)d7]

(20)

In Section it is shown that 0 < w,(t2,t9) < oo, for all |ty| < oo, for each non-zero value of t,.
In this section, we consider ¢, > 0 and ¢, > 0 only.

In Section , it is shown that w,(ts,%) is a continuous function of variable ¢, and to, for all
0 <ty <ooand 0 <ty < 0.

In Section [6] it is shown that Eq(t) is strictly decreasing for ¢ > 0.

Given that w,(t2,19) is a continuous function of both ¢y and ¢, we can find a suitable value of
to = to. and ty = ty. = 2t such that w, (tac, to.)to. = 5. Given that w.(t2,10) is a continuous function
of tg and t, and given that t; is a continuous function, we see that the product of two continuous
functions w, (s, t9)to is a continuous function and is positive for tg > 0 because 0 < w,(t2, ) < 00.

We see that w, (ta,%9) > 0 and is a continuous function of variable ¢y and ¢5, and that w, (2, t9)to =
5 can be reached for specific values of £y and £, = 21y, as finite ¢y increases without bounds. (Section .
As tg and t, increase from zero to a larger and larger finite value without bounds, the continuous
function w, (s, t9)to starts from zero and will pass through %, for specific values of ¢y and £, = 21,.

We set ty = to. > 0 and ty = ty. = 2ty such that w,(tac, toc)loc = 5 in Eq. 20 as follows. We use
the fact that cos (w.(t2c, toc)toe) = 0, sin (w,(t2e, toc)toe) = 1 and w,(tae, —toe) = ws(tae, to.) shown in

Section 2.4l

toc
’

toc
Ey (7, tae)e™ 277 sin (w, (tae, toe)T)dT + €270 / Ey, (T, tae) sin (ws (tae, toe)T)dT

Paa(toc, toc) = /

(21)
We compute Pygq(te, —to) in Eq. 20 as follows. We use w, (ta, —to) = w.(t2,ty) (Section .
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_tO

Podd(tg, —t0> = [COS (wz(t27 to)to) / E(/J(T, t2)6_20T COS (wz(tg, to)T)dT

—to
— sin (w, (t2, to)to) / E(,)(T, t2)6_2‘" sin (w, (t, to)T)dT]
—to ’ N —to ’
e 20t [cos (wz(tg,to)t())/ E,, (T, t2) cos (w.(te, to)T)dT — sin (wz(tg,to)t0>/ Eq, (7, t2) sin (w, (t2, to)T)dT]

(22)

We set ty = to. > 0 and ty = ty. = 2t such that w,(tac, toc)loc = 5 in Eq. 22 as follows. We use
08 (W, (tae, toc)toe) = 0, sin (w, (tac, toe)toe) = 1.

—toc

E(I)(T, tQC)e_Q‘” sin (w, (tae, toe)T)dT — ¢~ 20t0c / E(;n(T, toc) sin (w (tac, toe)T)dT

[e.e]

—toc

Prga(toc, —toc) = —/

(23)

We compute P,yq(ta, to) + Poaaltz, —to) = 0 in Eq. 19, at ¢ty = to. and ty = t5. using Eq. 21 and
Eq. 23.

toc
/ E(l) (7—7 t2c>€7207 Sin (wz (t2(:7 tOc dT + 620t06 / E t2c SlIl (wz (t207 tOc) )dT

—0o0 o
—toc —toc

— E(/] (T, t20)67207— Sln (wz(t207 tOC)T)dT —e —20toc /

—00

Eén(T toe) sin (w, (tae, toe)T)dT = 0

(24)
We split the first two integrals in the left hand side of Eq. 24 using f = foe 4 I foe _ as follows.

—toc toc
[/ E(/) (T, t26>€7207 sin (w, (tae, toe)T)dT + / E(l) (T, tzc)efz‘” sin (w, (t2e, toe)T)dT]

o _tOC
—toc toc
| e2otoc [/ E(']n(r, toe) sin (w, (tac, toe)T)dT +/ E(l)n(T, to.) sin (w, (tac, toe)T)dT]
—00 —toc
—toc , —t0c (j
— / Eqy(T, tQC)B_ZJT sin (w, (tae, toe)T)dT — e~ 2otoc / Eq,, (T, tae) sin (w, (tac, toe)T)dT = 0

(25)
~297 sin (w, (tae, toe)T)dT in Eq. 25 and rearrange
—20tgc

We cancel the common integral f:;?c By (1, tac)e

20toc

the terms as follows, using 2sinh (20t.) = e —e

toc toc
/ (7, tae)e=27 sin (w. (tes too) 7)dr + €271 / E, (7o) sin (w. (fe, foo) 7)dr

—toc
—toc

= —2sinh (ZUtOC)/ E(l)n(T, toe) sin (w, (tae, toe)T)dT

— 00
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We can combine the integrals in the left hand side of Eq. 26 as follows.

tOc
/ [E(/)(T, t26)6_2UT + E(l)n(’]', tgc)e%toc] sin (w, (tae, toe)T)dT

—toc
—toc

— _9sinh (201p,) / Bl (7, t2e) sin (. (fae, toe) ) dr

(27)

We denote the right hand side of Eq. 27 as RHS. We can split the integral in the left hand side

of Eq. 27 using ff‘;% = ff)top + JOC as follows.

0
/ B (7 t20) 62 + Bl (7, £22)€210°] sin (s (fae, foc)7)dr

—toc

toc
+ / [E(,J (7'7 tQC)e_QJT + E(;n(ﬂ t2c)620t06] sin (wz (t207 tOC)T)dT = RHS
0

(28)

We substitute 7 = —7 in the first integral in Eq. 28 as follows. We use Ej(—7,t2.) = Ej, (7, ta.)
and Ey, (—7,ts.) = Fy(T, ta.) using Definition 2 in Section .

0
/ [E(/)n(T, t28)6207 + E(/) (T, tgc)e%toc] sin (w, (tae, toe)T)dT

toc

toc
+/ By tac)e ™™ + Egy (7, 1) sin (ws (tae, to)7)dr = RHS
0

(29)
Given that ft?) =— JOC, we can simplify Eq. 29 as follows.
tOC / /
/ [E0<7-7 t2C) (67207 - e2<7t0c) + EOn(T7 tQC)(_e2UT + QQUtOC)] sin (wz(t2cy tOC)T)dT = RHS
0
(30)

We substitute 7 = —7 in the right hand side of Eq. 27 as follows. We use Ey,,(—7, t2.) = Eo(7, tac)
using Definition 2 in Section [2.3]

RHS = 2sinh (20toc)/ Eé(T, toc) sin (w (tac, toe)T)dT

toc
(31)
We split the integral on the right hand side in Eq. 31 using [~ = [~ — 7, as follows.
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[ee) tOc
RHS = 2sinh (20t0.)] / (7, £22) sin (. (fae, too) 7)dT — / (7, tae) sin (ws (oo, foo)7)dr
0 0

(32)

We consolidate the integrals of the form fotoc E(/)(T, toe) sin (w, (tac, to.)T)dT in Eq. 30 and Eq. 32 as
follows. We use 2sinh (20tg,) = 27t — ¢=27%0c,

toc
/ [E(/](T, toe) (€277 — ¥toe 4 2toe _ om20loc) 4 E(;n(T, toe)(—e7T 4 e27'0¢)] sin (w, (tae, toe)T)dT
0

:2sinh(20toc)/ E(l)(T, tae) sin (w; (tae, toe)T)dT
0

(33)
We cancel the common term e27%¢ in the first integral in Eq. 33 as follows.
tOC / /
/ [Ey (7, tae) (67277 — e727%0¢) - B (7, tae)(—€*7T + €27%°)] sin (w, (tae, toe)T)dT
0
— 2sinh (200.) / By (7, tae) sin (ws (2, o))
0

(34)

We substitute Fy(7,to) = Eo(T — toe) — Eo(T + ta.) (using Definition 1 in Section ) and
B, (T,t) = Ey(—7,ts.) = Eo(—T — ty.) — Eo(—T + ta.) (using Definition 2 in Section [2.3). We see
that Eo(—7 —ta.) = Eo(T+t2.) and Eo(—7+t2.) = Eo(T —ta.) given that Ey(7) = Eo(—7)(|Appendix

C.8). Hence we see that £, (T, to.) = Eo(T +ta.) — Eo(T — ta.) = —Ey(7, t2.) (Result 3.1) and write
Eq. 34 as follows.

tOc
/ (Eo(T — tae) — Eo(T + tQC))(€_2UT — g7 20te 4 20T _ GQUtOC) sin (w, (tae, toe)T)dT
0

= 2sinh (20t,) / (Eo(T — toe) — Eo(T + tae)) sin (w (tae, toe)T)dT
0

(35)
We substitute 2cosh (207) = €27 + ¢72°7 and 2cosh (20t).) = e*c 4 ¢727%: and cancel the

common factor of 2 in Eq. 35 as follows.

/0 OC(EO(T — tae) — Eo(T + tac))(cosh (207) — cosh (20t¢.)) sin (w, (tac, toe)T)dT

= sinh (20tq.) / (Eo(T — tae) — Eo(T + tac)) sin (w, (tae, toe)T)dT
0
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Next Step:

We denote the right hand side of Eq. 36 as RHS . We substitute 7 — ty. = 7/ and 7 + to. = 7" in
the right hand side of Eq. 36 and then substitute 7/ = 7 and 7" = 7 in the second line below.

o0

RHS' = sinh (20t06)[/ Eo(7") sin (w, (tae, toe) (7" + toe))dT" — / Eo(7") sin (w, (tae, toe) (T — tac))dT"]

—toc tac
RHS' = sinh (20t0,)[cos (w. (tae, toc) tac) / Eo(7) sin (w, (tac, toe)T)dT
—t2¢
i (00 (s oo e / Eo(7) cos (ws (fae, tor)7)dT
—t2c
— cos (s (faes for) e / Eo(r) sin (@ (tae foo) 7 + sin (s (f20s foo)iae) / Eo(r) cos (w. (fae, toe)7)d7]
toc tac
(37)
In Eq. 37, given that w.(fa, toc)toc = 5 and ty, = 2ty and hence w,(tac, toc)loe = 25 = m and
sin (w, (tae, toe)tae) = 0 and cos (w,(tac, toe)ta.) = —1. Hence we cancel common terms and write
Eq. 37 and Eq. 36 as follows.
toc
/ (Eo(T — tae) — Eo(T + tac))(cosh (207) — cosh (20t¢.)) sin (w, (tac, toe)T)dT
0
= —sinh (QO'tOC)[/ Eo(7) sin (w, (tae, toe)T)dT — / Eo(7) sin (w, (tac, toe)T)dT]
—tac toc
(38)

We use f_oi;c Eo(7) sin (w,(tae, toe)T)dT = fi;c Eo(7) sin (w, (tac, tOC)T)d7'+fth Eo(7) sin (w, (tac, toe)T)dT
and cancel the common term ftzo Eo(7) sin (w,(tae, toe)7)dT in Eq. 38 as follows. Given that Ey(7) is
an even function of variable 7 ( [Appendix C.8) and Ey(7) sin (w, (2, toc)7) is an odd function of
variable 7, we get ffi; Eo(7) sin (w, (tae, toe)T)dT = 0.

We see that I= ftQC Eo(7) sin (w, (tae, toe)T)dT = fEtQC Eo(7) sin (w, (tac, toe)T)dT
f b ) sin (w, (tae, toe)T)dT. We substitute 7 = —7 in the first integral and get
I= ft EO ) sin (w: (tae, toe)T)dT + [3* Eo(7) sin (w. (fae, toc) 7)dr
t2° Eo(7) sin (w, (tae, to.)T)dT + fOtQC Eo(7) sin (w, (tae, toe)7)dT = 0. We write Eq. 38 as follows.
toc
/ (Eo(T — tae) — Eo(T + tac))(cosh (207) — cosh (20t¢.)) sin (w, (tac, toe)T)dT = 0 (39)
0

We can multiply Eq. 39| by a factor of —1 as follows.

/0 : [Eo(T — tae) — Eo(T + tac)](cosh (20tg.) — cosh (207)) sin (w, (tae, toe)7)dT = 0 (40)

In Eq. , given that w;(tac, toc)toc = 5, as 7 varies over the interval (0,to.), w(toc, toc)T = ST
varies from (0, g) and the sinusoidal function is > 0, in the interval 0 < 7 < %y, for to. > 0.
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In Eq. [0 we see that the integral on the left hand side is > 0 for ¢,. > 0, because each of the
terms in the integrand are > 0, in the interval 0 < 7 < t. as follows. Given that Ey(t) is a strictly
decreasing function for ¢ > 0(Section [6)), we see that Eo(7 — to.) — Eo(T + ta) is > 0 (Section
in the interval 0 < 7 < to.. The term (cosh (20t¢.) — cosh (207)) is > 0 in the interval 0 < 7 < tq..

The integrand is zero at 7 = 0 due to the term sin (w, (2., to.)7) and the integrand is zero at 7 = ¢,
due to the term cosh (20ty.) — cosh (207) and hence the integral cannot equal zero, as required by
the right hand side of Eq. . Hence this leads to a contradiction, for 0 < g < %

For o = 0, both sides of Eq. |40|is zero, given the term (cosh (20t,.) — cosh (207)) = 0 and does
not lead to a contradiction.

We have shown this result for 0 < o < 1. If the Fourier transform of E,(t) = Ey(t)e”"" given by
E,.(w) = Epry(w) + iE,,(w) has a zero at w = wy, then the real part E,g,(w) and imaginary part
E,1,(w) also have a zero at w = wy, to satisfy Statement 1.

Given that E,(t) = Ey(t)e " is real, its Fourier transform E,,(w) = £(3 + 0 + iw) has symmetry
properties and hence Epp,(—w) = Eppro(w) and Epp,(—w) = —Ep1,(w) (Symmetry property) and
hence Ej,(—w) = £(5 + 0 — iw) also has a zero at w = wy to satisfy Statement 1.

Using the property &£(s) = £(1 —s), we get (3 + 0 —iw) =&(5 — 0+ iw) at s = 5 + 0 — iw and
Ey(w) = &(3 — 0 4 iw) also has a zero at w = wy to satisfy Statement 1. We see that Eg,(w) is
obtained by replacing o in E,,(w) by —o. Hence the results in above sections hold for —% <0o<0
and for 0 < |o| < 3.

Hence we have produced a contradiction of Statement 1 that the Fourier Transform of the
function E,(t) = Eo(t)e " has a zero at w = wy for 0 < |o| < 3.

Hence the assumption in Statement 1 that Riemann’s Xi Function given by £(3+0+iw) = Ep, (w)

has a zero at w = wy, where wy is real and finite, leads to a contradiction for the region 0 < |o| < 2

2
which corresponds to the critical strip excluding the critical line. Hence ((s) does not have non-trivial

zeros in the critical strip excluding the critical line and we have proved Riemann’s Hypothesis.

3.1. Result Eo(t — tzc) — Eo(t + tQC) >0

It is shown in Section |§] that Ey(t) is strictly decreasing for ¢ > 0. In this section, it is shown
that E()(t — tgc) — Eg(t + tgc) > 0, for0 <t< toc and t2c = 2t00 in Eq .

Given that Ey(t) is a strictly decreasing function for t > 0 and Ey(t) is an even function of vari-
able ¢ (|[Appendix C.8), and to. = 2t., we see that, in the interval 0 < ¢t < tq., Eo(t+t2.) = Eo(t+2to.)
ranges from Ey(2to.) > Eo(t + tae) > Fo(3to.)(Result 6.3.1) and Ey(t — to.) = Eo(t — 2to.) which
ranges from Fo(—2to.) < Eo(t —ta.) < Eo(—to.) respectively. Given that Fy(t) = Ey(—t), we see that
E0(2toc) < E(](t — tgc) < E0<tOc> in the interval 0 < t < o, (Result 6.3.2)

Using Result 6.3.1 and Result 6.3.2, we see that Ey(t—to.) > Eo(t+ta.), in the interval 0 < t < tq..
At t = 0, Eo(t — tgc) = Eo(t + tgc). At t = toc, Eo(t — tQC) > Eo(t + tQC) because Eo(—toc) > E0<3toc).
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Hence Ey(t — ta.) — Eo(t 4 ta.) > 0 for 0 < t < to. in Eq. 40|, for to. > 0 and to. = 2t,.
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4. w,(ta,t0) is a continuous function of t, and ¢,

It is shown in Lemma 1 in Section that Gr(w,ts,ty) = 0 at w = w,(ts,tg) where it crosses
the zero line to the opposite sign, if Statement 1 is true, and that w, (s, %) is finite and non-zero
for all |¢y] < oo and for each non-zero value of t, and that w,(t2,to) is an even function of variable ¢,
for a given value of #5(Section [2.4). For a given ¢, and ¢y, w,(ts,%p) can have more than one value,
corresponding to multiple zero crossings in Ggr(w, 2, %), but we consider only the first zero crossing
away from origin in the section below, where Gg(w, 2, 1y) crosses the zero line to the opposite sign,
as detailed in Lemma 1 in Section 2.1]

We consider the Fourier transform of the even part of g(t,t2,1t9) given by Gr(w,ts,ty) in the
section below and show that, under this Fourier transformation, as we change ¢, and ¢, the zero
crossing in Gg(w, ta,ty) given by w,(ts,ty) is a continuous function of ¢y and ¢, for all 0 < ¢y < oo
and 0 <ty < oo. This is shown in the steps below using Implicit Function Theorem.

e It is shown in Section that Gr(w, t2,t0) and Ggar(w,ts,ty) are partially differentiable at
least twice with respect to w, for some value of r € W (element of set of whole numbers including
zero.)

e It is shown in Section that Grar(w, 2, to) is partially differentiable at least twice with re-
spect to typ. It is shown in Section that Grar(w, t2, o) is partially differentiable at least twice with
respect to ts.

e In Section [4.8] it is shown in proof of Lemma 2 that, if Gr(w,t2,t9) = 0 at w = Fw,(t2, ),
for each fixed choice of ty,ts € R and (2r + 1) is the highest order of the zero at w = Fw,(ts, )
for some value of r € W (element of set of whole numbers including zero), then Gga,(w, 2, %)) =

82TGR(w,t2,t0) _ - 8GR’2T(w,t2,t0) . 62T+1GR(w,t2,t0) _
N 0Oatw= iwz(tz, to) and e = B2+l 7£ 0at w= :sz(tg,to).

e It is shown in Section [4.6 that the zero crossing in Gra,(w, t2, o) given by w,(ts, 1), is a con-
tinuous function of ty, for a given t,, for 0 < ¢, < oo, using Implicit Function Theorem in R2.

e It is shown in Section that w,(t2, o) is a continuous function of ¢y and ts, for 0 < ¢y < o
and 0 < ty < 00, using Implicit Function Theorem in R3.

4.1.  Gpr(w,ts, ty) and Grar(w,ts, ty) are partially differentiable twice as a function of w

GRr(w,ta,tp) in Eq. 17 is copied below.

0
Grlw, o, o) = €210 / B (7 + to, ta) e + B\ (7 — to, ta)] cos (wr)dr

—00

0
+e2ato / [E(;(T — to, t2)€7207 + E(l)n(T + to, to)] cos (wT)dT

—00
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(41)

We could then use Ey(7,ty) = (Eo(T — t3) — Eo(T + t2) (using Definition 1 in Section ) and
E,, (1,ty) = Ey(—7,t3) = —Ey(7,t5) (using Definition 2 in Section and Result 3.1 in Section .
We see that Ey(7) in Eq. [If and its tg and ¢, shifted versions are analytic functions of 7,ty and to,
given that the sum and product of exponential functions are analytic and hence infinitely differen-
tiable.(Result 4.1)

In Eq. 41, Gg(w,ts,to) is partially differentiable at least twice with respect to w and the inte-
1

grals converge in Eq. 41 and Eq. 42 for 0 < 0 < 3, because the terms 7" Eo(T % to, ta)e 2" and
7" By, (T + to,ty) = —7"Ey(T + to,t5) have exponential asymptotic fall-off rate as |7| — oo, for
r € W (Section . The integrands in Eq. 41 and Eq. 42 are analytic functions of variables w and
to, for a given t,(using Result 4.1 in Section 4.1 and given that the terms cos (w7),sin (wr) and e=27"
are analytic functions). The integrands have exponential asymptotic fall-off rate (Section and
absolutely integrable and we can find a suitable dominating function with exponential asymptotic
fall-off rate which is absolutely integrable.(Section Hence we can interchange the order of partial
differentiation and integration in Eq. 42 using theorem of differentiability of functions defined by

Lebesgue integrals and theorem of dominated convergence, recursively as follows.(theorem)

OG g(w, ta, t R '
r(w, 1, to) = _[@_20'50/ T[Ey(T + to, t2)e 277 + Ey, (T — to, t2)] sin (wr)dr

Oow

[e.e]

0
+620t0 / T[E(;(T . to’ t2)6—207' + E(/) (7- + th tz)] sin (WT)dT]

n
—00

82GR(w,t2,to) _ _[e—%to /0

D2 T2 [E(I)(T + to, ta)e 2T + E(l)n(T — to, ta)] cos (wT)dr

— 00

0
+e20to / T2[E(l)(’7' — to, t2)€_2UT + Eén(T + to, to)] cos (wT)dT]

(42)

We can use the arguments in the above paras and derive the (27)"" derivative of Gg(w, 2, tp), for
r € W, which is differentiable at least twice, as follows.

aQTGR(w7t27tO) _ (_l)r[e—QJto /0

Ow2r T2 [Ey(T 4 to, t2)e 2T + Ey, (T — to, t2)] cos (wT)dr

Grar(w, ta, tg) =

— 00

0
+e2oto / T Ey(T — to, t2)e 2T + E (T + to, t3)] cos (wr)dr]

—00

(43)

4.2.  Exponential Fall off rate of B(t) = t"Ey(t % to, ts)e > for r € W

In this section, it is shown that the term B(t) = " Ey(t % to,t5)e"°" has exponential asymp-
totic fall-off rate as |t| — oo, for 1 € W where Ey(t,ty) = Eo(t — t3) — Eo(t + t5). Hence
B(t) = tT6_2Gt[E0(t — tz + to) — Eo(t + tg + to)] (Result BG].)
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+

We consider C(t) = t"e 2'Ey(t — t,) for finite and real t,. We see that C(t +t,) = (¢
ty) e 2te 20t By (t). We see that Ey(t)e 2! is an absolutely integrable function, for 0 < |o| <
given that it has exponential fall-off rates as |t| — oco. (|Appendix C.5|and [Appendix C.6).

1
2

Hence C(t+t,) = (t+t,)"e 2" Ey(t)e~ 7" also has exponential fall-off rates as |t| — oo, for r € W
and finite ¢, and is an absolutely integrable function.

Hence C(t) = t"e 2" Fy(t — t,) has exponential fall-off rates as [¢| — oo, for finite ¢, and is an
absolutely integrable function. We set t, = ty+to and t, = —t5 £ty and see that B(¢) in Result B.6.1,
has exponential fall-off rates as |t| — oo, for finite t5, ¢ty and is an absolutely integrable function.

4.3.  Dominating function

We consider z(t) = Fy(t)e > which has asymptotic exponential fall-off rate of o[e=*M].(
We see that z(t + t,) also has the same asymptotic exponential fall-off rate, for finite
shift of t, = to +tg and y(t,t,) = t"x(t + t,)e*' also has the same asymptotic exponential fall-off
rate, for r € W. We consider the intervals 0 < ¢ty <ty,,.., 0 <ta <ty . and 0<t, <t where
L0mans 12, 0m s tama, are finite.

Amax

We consider tq >> t,, . where y(t,t,) = t"x(t+1t,)e?** falls off at the rate of o[e®™] for t << —t,.
We consider f(t,t,,w) = y(t,t,)cos (wt) and we get M —ty(t,t,)sin (wt) which falls off at

the rate of 0[e®®] for t << —t4. Let fiae > 0 be the maximum value of |—af bita,
—o0 <t < o0.

| in the interval

We can find a suitable dominating function D(t) = e XM f, X% > 0 with a fall off rate of
Ole= %] where 0 < K < 0.5 and hence D(t) has a slower fall off rate than M and D(t) = fiax
at t = —t4 and hence D(t) > laft%| for —oo < t < 0 and hence |8f o) < D(t) in the interval

(—00, 0] and f (t)|dt = f e fraee®tadt = & frape®a R0 = Kfmaxemd is finite.(Result
B.6.2)

The first term in Eq. 42 given by B(t) = t" Ey(t+to, to)e 27 = t"e 727 [ Ey(t —ty+to) — Eo(t+ta+to)]
using Result B.6.1 in Section . We set t, =ty + tg and t, = to — tg and get B(t) = t"e 27 [Ey(t —
ty) — Eo(t +t4)]. Hence y(t,t,) = t"x(t +t,)e*' = 1" Ey(t + t,)e” " in the second para, corresponds
to the second term in B(t) and Result B.6.2 holds for this term. The first term in B(¢) is obtained
by replacing t, by —t;, and Result B.6.2 holds for this term and hence for B(t). We see that Result
B.6.2 holds for the other 3 terms in Eq. 42 using arguments in above paragraphs and replacing ¢, by
—to and setting o = 0 as needed.

As to,..,to, .. ta, .. increase to a larger and larger finite value without bounds, we consider
larger intervals 0 < ¢y < tg,,,., 0 < to <ty . and 0 < t, < t, .. and fn. and t; also increase
correspondingly and the results in above paragraphs are valid in these intervals.

Similarly, we consider f(t,t,,w) = y(t,t,)cos(wt) = t"Eg(t + t,)e 27" cos (wt) = t"Ey(t + to +

t2)e27 cos (wt) and we see that 8f(gf§’ and 2L gtt“’ “) which fall off at the rate of o[e®%] for t << —tg,

using Eq. 47 and Ey(t) = Eo(—t) and due to the term e~™¢" and we can use arguments in above
paragraphs to get a result similar to Result B.6.2 for the terms in Eq. 44 and Eq. 54. We can use
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9% f (t,ta,w)

o and

these arguments to get a result similar to Result B.6.2 for the second derivative terms

Pita) iy g, 49 and Eq. 58.
2
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4.4.  Gprar(w,ta, ty) are partially differentiable twice as a function of ty, r €¢ W

In Eq. 43, GRa,(w, ta, ty) is partially differentiable at least twice as a function of ¢, and the integrals
converge in Eq. 44 and Eq. 49 shown as follows. The integrands in the equation for Gg o (w,t2,to)
in Eq. 44 are absolutely integrable because the terms 72" Ey(7 4 to, t2)e 2" and 72" Ey, (7 + to, t) =
—72 Ey(T = to, t5) have exponential asymptotic fall-off rate as || — oo, for 7 € W (Section
The integrands in Eq. 44 are absolutely integrable and are analytic functions of variables w and
to, for a given t5 (using Result 4.1 in Section ). The integrands have exponential asymptotic
fall-off rate(Section and we can find a suitable dominating function with exponential asymptotic
fall-off rate which is absolutely integrable.(Section Hence we can interchange the order of partial
differentiation and integration in Eq. 44 using theorem of differentiability of functions defined by
Lebesgue integrals and theorem of dominated convergence as follows. (theorem)

0
Gror(w, ta, ty) = 6_20t0(—1>r / T2T[E(l)(7' + to, t2)6_2” + E(l)n(T — to, ta)] cos (wT)dr

—0o0

0
—|—62"t°(—1)’" / TQT[E(I)(T — to, tg)e_QUT + E(/)n(T + to, t2)] cos (wT)dT

—0o0

OG Rar (W, ta, t 0 ; :
R2r (W 2, to) = —QUG_QUtO(—l)T/ T Ey(T + to, ta)e 27T + By, (T — to,t2)] cos (wT)dr

Oty o
0 ! —20T !
o0(E to, t E — 1o, t
+620to(_1)r/ L2 (Eo(T +to, t2)e + By, (T — to,t2)) cos (wr)dr
oo Oty
0 ! !
20270 (—1)" / T [Ey(T — to,t2)e 27" + By, (T + to, t2)] cos (wT)dr
0 / —20T !
O(E, (T —ty, t E to,t
+62ato(_1)r/ 7_27’ ( O(T 05 2)6 5 + On(T+ 05 2)) COS ((UT)dT
—00 0

(44)

We show that the integrals in Eq. 44 converge, as follows. We see that E,(7 4 to, ts) = Eo(T +to —
tz)—Eo(T—i-to—'—tQ) and E(I)n<7'—t0, tz) = —E(l)<7'—t0, tg) = EO(T_t0+t2)_EU(T_tO_t2) (using Definition
1 in Section and Result 3.1 in Section |3|).We see that the first and third integrals in the equation

W in Eq. 44 converge because the terms 72" E (7 =+ to, t5)e™2°" and 7% E,, (T & to, ts) =

—72" B (T % to, t) have exponential asymptotic fall-off rate as |7| — oo(Section .

for

We consider the integrand in the second integral in the equation for %ﬁw in Eq. 44 first
and use the results in the above paragraph.

O(Eo(T +to, t2)e 2" + By (T — to, t2))  O(Eo(T +to — ta)e ™ — Eo(T + tg + ta)e™27)
dto N dto
+8<EO(T — to + tg) — E()(T — to — tg))

Oty

(45)
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We consider the term Eo(7 + to + t2) first in Eq. 45 and can show that the integrals converge in
Eq. 44, as follows. We take the factor of 2 out of the summation in Ey(7) in Eq. [I| copied below.

oo

2. 21 T
EO(T) =2 E [271'2 4 4T 371'712 2T]€ e 62
n=1
(ta+tg)
2,27 2(tg+tg) T (t2tilg
E (T—l—tg—i—to E 2n4€4T€4 tatto) _ 371’712 27 2(t2 to)]e TnTetreniTo eze 2

(46)

We can show that ;2 g Eo(T +ta +10) = L Eo(T 4 t2 + to) as follows, given that the equation for

Eo(T +ts +tp) in Eq. 46 has terms of the form e™ ™% and the equation is invariant if we interchange
the variables 7 and ¢y. (Result A)

0 2,27 2(ty+tg) T (totto)
_EO( + ity + tO) -9 § e e e 2+to ere 23 [87T2n464764(t2+t0) 67Tn262762(t2+t0)

ot 0 n=1
—i—(; 9mn2e2” 2(t2+t0))(27T2n4e4764(t2+t0 3rn2e?” 2(t2+t0))]
agEO(T + tQ —I— tO) — 2 Z e—7rn2e2732(t2+t0)6%€@ [87T27’L4@4T@4(t2+t0) 67Tn262762(t2+t0)
-
n=1
—i—(; 9mn2e2” 2(t2+t0))(27T2n4e4764(t2+t0 3rn2e?” 2(t2+t0))]
(47)
We can replace to by t, = —t; in Eq. 46 and see that %E@(Tﬁ-tz +ty) = %Eo(T-l-tz +1)) (Result
0
E) given that the equation is invariant if we interchange 7 and t,. Given that a%) = 6‘?0 Zﬁo = 3%7

we substitute it in Result E and get 5 E()(’T + by — tg) = =L Eo(7 + t2 — ty).(Result B)

We can write the term Ey(T + to + t2)e 2" in Eq. 45, corresponding to the term in the second

integral in the equation for 9Crar(wilaty) ) Eq 44 usmg Result A, as follows. We use the fact that

dto
[2 G2 Brydr = [° AAGEDdr — [° A(r) G dr.
0 0
8 E t t 0(E t t
/ o(7 + 2+ 1)) 7727 cos (wT)dT = / ( O(T;— 2T 0)7'%672‘” cos (wr)dr
o T
a t t —20T 0 a 2r ,—20T
/ T 4ty + to) 7> cos (wT))dT B / Eo(r + ts + to) (t°"e cos (wT) Jr
~ 87’ e or
0
= [Eo(T 4ty +to)T* e 27" cos (wr)]°, + w / Eo(T +ty + 1)) T e 2" sin (w7)dr
0 0o
+20/ Eo(T +ty + o)) 7% ™27 cos (wT)dr — 27“/ Eo(T +ty 4 t)) 7> " re™7 cos (wr)dT

(48)
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We see that the integrals in Eq. 48 converge because the integrands are absolutely integrable be-
cause the terms Fo(7 +tg + 1) e 27" sin (w) and Ey(T + to + to)72"e 27 cos (wT) have exponential
asymptotic fall-off rate as |7| — oo(Section . The term [Eo(T + to + to)72 e 27" cos (wT)]° , is

finite, given that 72" Ey(7)e 2" and its shifted versions go to zero as t — —oo( [Appendix C.5| ).

8<E0(T+t2;g)7%72w) cos (wr)dr in Eq. 48 and in Eq. 44 corresponding to the

term Eo(7 + ta + to)e™ 27 in Eq. 45, converges.

Hence the integral ffoo

We set o = 0 and ty = —t; in the term Fo(7 + to + to)e 2°" and see that the integral

ffoo %ﬁ?—t“))ﬁr cos (wr)dr in Eq. 44 corresponding to the term Ey(7 + to — ty) in Eq. 45 also

converges, using Result B and the procedure used in Eq. 46 to Eq. 48.

We set ty = —to in the term Ey(7 + to + to)e 2°7 in Eq. 46 to Eq. 48 and see that the integral

ffoo B(EO(T_t;tttO)efzaT)TQ’" cos (w7)dr in Eq. 44 corresponding to the term Ey(7 —to+1t9)e 2" in Eq. 45

also converges.

We set ty = —to, 0 = 0 and tg = —tg in the term Ey(7 + to + tg)e 2°" and see that the integral
ffoo %ﬁrm))r” cos (wr)dr in Eq. 44 corresponding to the term Ey(7 — to — ty) in Eq. 45 also
converges, using Result B and the procedure used in Eq. 46 to Eq. 48. Hence the second integral in

. oG ot
the equation for 29R:2r(@:t2t0)

Bt in Eq. 44, also converges.

We can see that the last integral in Eq. 44 converges, by setting t, = —t; in Eq. 45 and using
Result B and using the procedure in Eq. 46 to Eq. 48. Hence all the integrals in Eq. 44 converge.

4.4.1. Second Partial Derivative of Gror(w,ts,ty) with respect to t,

2
The second partial derivative of Gga,(w,ts,ty) with respect to ¢y is given by MR’%—W =
0

%%{:’tm as follows. We use the result in Eq. 44 and the fact that the integrands are absolutely

integrable using the results in Section [4.4] and are analytic functions of variables w and ¢y for a
given ty (using Result 4.1 in Section ). The integrands have exponential asymptotic fall-off
rate (Section and we can find a suitable dominating function with exponential asymptotic fall-
off rate which is absolutely integrable.(Section Hence we can interchange the order of partial
differentiation and integration in Eq. 49 using theorem of differentiability of functions defined by
Lebesgue integrals and theorem of dominated convergence as follows. (theorem)
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ot}

o0

—4ge 270 (— / T2
(o]
0
20’t0 / 7_

82GR72T(W7t25t0) — 4 2 720’150 /0
0

(T + to, t2)e™ 27 + By, (1 — to, ty)] cos (wr)dr

to,to)e 2T + B (1 — to, t
T+ 0, t2)e + Eon (7 — Lo, 12)) cos (wr)dr
Oto
to, to)e 20T + B (1 —to, t
T+ 05 2) o + Oon ( 05 2)) COS(WT)dT
0

g2t (—1)" / TZT[EO(T—tO,tQ) 207 LB (7 4 to, )] cos (wr)dr

+4062"t° / T2

+620t0( 1)7“/ 7_2r

—to, ta)e 2T + B (T + o, t2))

P cos (wr)dr

0

—tg,12)e T+ E to, t

0, 12)e 5 + 0"<T+ 0,%2)) cos (wr)dr
0

(49)

The first two integrals and fourth and fifth integrals in Eq. 49 are the same as the integrals in the
equation for %&j’tm in Eq. 44 and have been shown to converge in Section H We will show

that the third and sixth integrals in Eq. 49 converge, as follows.

We consider the integrand in the third integral in Eq. 49 first. We see that Ey(1 + to,ts) =
E()(T +t0 — tg) — Eo(T +t0 +t2> and E(l)n(T — to, tQ) = —E(/)(T — to, tg) = Eo(T — to +t2) — E()(T — to — tQ)
(using Definition 1 in Section and Result 3.1 in Section [3| ). We write an equation similar to
Eq. 45.

62(E6<T + to, t2)6_207— + E(/)n(T - to, tg)) 82<E0(T + to - tg)e_z(ﬂ— - E()(T + t(] + t2)€_207)

ot} ot}
+82(E0(T - to + tg) - Eo(T — to — tg))
ot}
(50)
We consider the term Ey(7 + tg + t3) first in Eq. 50 and copy Eq. 46 below.
-9 Z 27_[_2 4 47’ 37T7’L2€2T]6_7rn262T€%
[ee]

E (T Tty to Z O r2niedt pAltatto) _ 3ﬂ_n2621‘€2(t2+t0)]e*ﬂ'nzeQTeQ(‘z‘Ho) ;em

(51)

We can see that th Eo(T+1ty+1t) = 88—7_22E0<T +ty + to), given that the equation has terms of the

form et and the equation is invariant if we interchange the variables 7 and ¢y.(Result A”)
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We can replace ty by t, = —t; in Eq. 51 and see that O Fo(T 4ty + ty) = aa—jQEo(T + ty + tp)

)
(Result E’) given that the equation has terms of the form eT+t0 and the equation is invariant if we
interchange the variables 7 and tb.

- o _ o0 _ _ o 2 00y _ _ 0 0y _ 0 0y _ & i
Given that 5 = o Bt — ot Ve get 2 e = (o) = ato(%) = 8t6(8t{)) = 5y Ve substi

tute it in Result E’ and get 2 oz S Eo(T + ty — tg) = TQQ Eo(T +ty — to) .(Result B?)

We can write the term Fy(7+to+t2)e 277 in Eq. 50, Corresponding to the term in the third integral
in Eq. 49, using Result A', as follows. We use the fact that [ “0B(r)dr = [ ADBEO) g

dr
f AT —dB(T dr
—00 dr .

0 9%(E ty+t O 9%(F, ty+t
/ ( O(Ta—; 2+ 0))7'%6_207 cos (wr)dr = / ( O(Ta+2 2+ 0))72T€_207 cos (wr)dr
—00 0 —0o0 T

/0 a(aEO(TthQ‘FtO)TZTefZO'T coS (WT)) p /0 8E0<T 4 t2 + t()) a<7_2r6—2a7- CcoS (w7_>> J
= T —

oo or e or or T

OF, ty+1t O 9F ty+ 1t
= [ O(Tg 2 0)727“6’2‘" cos (wT)] + w/ 0(7'; 2+ O)TQTe’Z‘” sin (wr)dr
T . T
0 0
0F t t OF t t
—1—20/ 1 g 2 O)T2T€_2UT cos (wr)dr — 27‘/ o —{I; 2+ 0)7'27"_16_2” cos (wr)dr
o T o T
(52)

We see that the integral f? w =297 cos (wr)dr in Eq. 52 converges, using Eq. 48 in

. . OE to+1t — :
the previous subsection. We see that the term [MT%B 297 cos (wT)]? ., also converges, given

that Eo(7) = Eo(—7) and Eo(T + to + to) = Eo(—T — t2 — tp) and we consider OBo(rttatto) por =207 _

or
9Eo(=1=tat) 127 —207 using Eq. 47 and see that the term e~™¢*" goes to zero faster than the rising

term 7%7¢"2°7e"%7¢"2  as 7 — —oo. (Result 4.2.1.1)

It is shown below that the remaining term [°_ w 2re=297 gin (w7)dT also converges.

0
E
/ OEN(T +t2 4 10)) 727 e 72T gin (wT)dT
oo or
_ /O I(Eo(T +tg + to)T* e 277 sin (wT)) gr — /0 Eo(r + £y + 1)) A(1?e27 sin (wT) i
S or o or
0

= [Eo(T +ta + to)7¥ e " sin (wr)]° , —w / Eo(T 4ty + 1)) 7% e 27 cos (wT)dr

0 0
—1—20/ Eo(T 4ty + 1)) T 27 sin (wT)dr — 27“/ Eo(T 4ty + 1)) 7> e 7 sin (wr)dT

(53)

We see that the integrals in Eq. 53 converge because the integrands are absolutely integrable be-
cause the terms Eo(7+ty+19))72 e 27 sin (w) and Ey(7 +t2+1t0))72 e 2" cos (wT) have exponential
asymptotic fall-off rate as |7| — oco(Section [£.2). The term [Eo(7 + ta + to)72 e~ sin (wr)]%, is
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finite, given that TQT’EO( ) ~297 and its shifted versions go to zero as t — —oo( |[Appendix C.5| ).

Hence the integral f al (THQ;;QO)T%_QM) cos (wr)dr in Eq. 52 and in Eq. 49 corresponding to the

term Eo(7 +t2 +tg)e > in Eq. 50, also converges.

We set ¢ = 0 and ty = —t in the term Eo(7 + to + to)e 2°" and see that the integral

J‘O 2 (Eo(T+t2—t0))
—0o0 Btg

converges, using Result B’ and the procedure used in Eq. 51 to Eq. 53.

7% cos (wT)d7 in Eq. 49 corresponding to the term Fy(7 + ty — tp) in Eq. 50 also

We set ty = —ty in the term Ey(7 + ¢ + to)e 2" in Eq. 51 to Eq. 53 and see that the integral
fo 92 (E() (T—t2+t0)727‘6720‘r)
—o0 atg
also converges.

cos (wr)dr in Eq. 49 corresponding to the term Ey(7 —ts+19)e™2°7 in Eq. 50

We set ty = —tz, o =0 and ty = —t( in the term Ey(7 + t3 + ty)e 2°" and see that the integral

J‘O 92 (Eo(T to— t()))
—00 8t2

converges, using Result B’ and the procedure used in Eq. 51 to Eq. 53. Hence the third integral in
Eq. 49, also converges.

72" cos (wT)d7 in Eq. 49 corresponding to the term Ey(7 — ty — tg) in Eq. 50 also

We can see that the sixth integral in Eq. 49 converges, by setting ¢ty = —ty in Eq. 50 to Eq. 53
and using Result B" and the procedure used in Eq. 51 to Eq. 53. Hence all the integrals in Eq. 49
converge.

4.5, Gprar(w,ts, ty) is partially differentiable twice as a function of ty for re W

In Eq. 43, GRa,(w, ta, ty) is partially differentiable at least twice as a function of ¢, and the integrals
converge in Eq. 54 and Eq. 58 shown as follows. The integrands in the equation for G, (w,t2, o)
in Eq. 54 are absolutely integrable because the terms 72 Ey(7 + to, t2)e 2" and 72" Ey, (1 £ to, o) =
—72" B (T %19, t5) have exponential asymptotic fall-off rate as |7| — oo(Section. The integrands
are analytic functions of variables w and ty, for a given ty (using Result 4.1 in Section ). The
integrands have exponential asymptotic fall-off rate (Section and we can find a suitable domi-
nating function with exponential asymptotic fall-off rate which is absolutely integrable.(Section
Hence we can interchange the order of partial differentiation and integration in Eq. 54 using theorem
of differentiability of functions defined by Lebesgue integrals and theorem of dominated convergence
as follows. (theorem)

0
GR’QT(w’tQ,tO) _QUtO / T T"‘to,tg) —207 +E(,)n(7'—t0,t2)] COS (CUT)CZT
e
2‘”0 / T2 T—to,tg) ’2”T+E0n(7'+to,t2)] cos (wr)dr
OG R o (w, ta, t 0 to, ta)e 20T + B (1 — to, 1
R2 (w, 9, 0) _ —20to / or T + o, 2) + on(T 05 2)) cos(wT)dT
Ota o Oto
0 9
— g, 1 T+ F to, t
QJto / 7_ 05 2) gy + On(T+ 05 2)) COS(UJT)CZT
e’} 2

(54)
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We use the procedure outlined in Eq. 45 to Eq. 48, with ty replaced by ¢ and show that all the
integrals in Eq. 54 converge, as follows.

We see that E(/)(T—{—to,tQ) = E0(7+t0 —tz) —Eo(T—{—to —|—t2) and E(l)n(T—to,tQ) = —E(I)(T—to,tQ) =
Eo(T —tg + to) — Eo(T — to — t2) (using Definition 1 in Section [2.1] and Result 3.1 in Section (3| ). We

consider the integrand in the first integral in the equation for %ﬁw’m) in Eq. 54 first.

8(E(l)<7' + o, tg)@iQUT + E(l)n(T — 1o, tg)) o a(E()(T + 1ty — tg)@iQUT — E()(T + iy + tg)@iQUT)
Ot B Ot
+8<E0(T - to + tg) — EQ(T - t(] - tz))

Oty

(55)

We consider the term Ey(7 + to + t2) first and can show that the integrals converge in Eq. 54, as
follows. We copy Eq. 46 below.

2,21 T
_2§ 27T2 4 4T 37Tn2 27’]6 m™m<e es

2,27 2(tg+tg) T (tattg)
e“Te“\"'2 0626 5

Eo(t +ta + 1) =2 Z[2W2n4e4764(t2+t0) - 37rn262762(t2+t0)]e_”"
n=1
(56)

We see that - s Bo(T +ta+ o) = L Eo(T + t2 + to) given that the equation has terms of the form
e 2 and hence the equation is invariant if we interchange 7 and ¢,.(Result C)

We can replace ¢y by ty, = —t5 in Eq. 56 and see that a%Eo(’T +ty+to) = ZEo(T +ty + to) given
2

that the equation is invariant if we interchange 7 and t,(Result F). Given that 8‘? = 6%3—2 = —3%,

we use it in Result F and we get 7 EO( — by + ty) = —ZEo(T — ta + ty).(Result D)

We consider the term Ey(7 + to + t2)e ~297 first in Eq. 55, corresponding to the term in the first

integral in the equation for M in Eq 54 as follows, using Result C. We use the fact that

[, O B(ryr = [ B g7 _ [0 (7).
O 9(E O 9(E
/ OEn(T +t2 +10)) 72767297 cos (wr)dT = / OED(T +t2 +10)) 7277297 cos (wT)dT
. Ots s or
O O(Eo(1 + ty + to)T?" ™27 cos (wT)) 0 I(T*e 27" cos (wT)
-/ o7 ir— [ B+ttt o7 i

0
= [Eo(T +to +to) 7 e 2" cos (wr)]° o, +w / Eo(T + ty + to)7 e 27 sin (wr)dr

—0o0

0 0
+2a/ Eo(T 4ty + to)7e ™27 cos (wr)dT — Qr/ Eo(T 4ty + to)7 e 27 cos (wr)dr

—00 —00

(57)
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We see that the integrals in Eq. 57 converge because the integrands are absolutely integrable be-
cause the terms FEo(7+t2+t0))72 e 27 sin (wr) and Eo(7+t2+1y))7* 727" cos (wT) have exponential
asymptotic fall-off rate as |7| — oo(Section . The term [Eo(T + to + to)72 e 27" cos (wr)]° , is

finite, given that 72" Ey(7)e 2" and its shifted versions go to zero as ¢t — —oo( [Appendix C.5| ).

8(E0(7+t§ttt°)672ﬁ)7” cos (wr)dr in Eq. 57 and Eq. 54 corresponding to the

term Eo(7 + to + to)e 27 in Eq. 55 also converges.

Hence the integral fi)oo

We set 0 = 0 and ty = —t; in the term Fy(7 + to + tp)e 2’ and use the procedure in Eq. 56 to

Eq. 57 and see that the integral fi)oo %ﬁ_t”))ﬁ" cos (wt)dr in Eq. 54 corresponding to the term

Eo(T + ta — to) in Eq. 55 also converges.

We set to = —ty in the term Ey(7 + t + to)e 2°" and use the procedure in Eq. 56 to Eq. 57

and see that the integral fi)oo a(EO(T_%;;tO)(%T)TQT cos (wT)dr in Eq. 54 corresponding to the term

Eo(T — ty +t9)e 2" in Eq. 55 also converges, using Result D.

We ty = —ty, 0 = 0 and ty = —t in the term Fy(7 +t3 +tg)e 2°7 and use the procedure in Eq. 56
to Eq. 57 and see that the integral ffoo %}552_“))7‘% cos (wT)dt in Eq. 54 corresponding to the
term Eo(T —t2 —to) in Eq. 55 also converges, using Result D. Hence the first integral in the equation
fOI' 3GRygr(w,t2,to)

5t in Eq. 54 also converges.

We can see that the last integral in Eq. 54 converges, by setting to = —ty in Eq. 57. Hence all the
integrals in Eq. 54 converge.

4.5.1. Second Partial Derivative of Gra(w,ta,ty) with respect to ty for r e W
The second partial derivative of Gga,(w,ts,%y) with respect to ty is given by w =
2

%%tj’tz’to) as follows. We use the result in Eq. 54 and the fact that the integrands are absolutely

integrable using the results in Section and the integrands are analytic functions of variables w
and t5 for a given ¢y (using Result 4.1 in Section ). The integrands have exponential asymptotic
fall-off rate(Section and we can find a suitable dominating function with exponential asymptotic
fall-off rate which is absolutely integrable.(Section Hence we can interchange the order of partial
differentiation and integration in Eq. 58 using theorem of differentiability of functions defined by
Lebesgue integrals and theorem of dominated convergence as follows. (theorem))

0?Gpror(w, ta, t 0 O2(E, to, ta)e 2T + E (1 — to,t
R2 (C;)a 2, to) 2620150(_1)7“/ Lo (Eo(T +to, ta)e - + Eo, (T — o, 12)) cos (wr)dr
0 2 / —20T !
0“(E, — 1o, 1 E to, 1
+€20t0(_1>r/ 7_27" ( 0(7_ 0 2)6 8t2 + On(T =+ 2o, 2)) cos (WT)dT
o 2

(58)

We consider the first integral in Eq. 58 and using Fy(7 +to, ts) = Eo(T +to — ta) — Eo(T 4+ 1o + Lo
and E,, (T —to, o) = —Ey(T —to, ta) = FEo(T —to+1t3) — Eo(T —to —to)(using Definition 1 in Section
and Result 3.1 in Section (3] ), we write an equation similar to Eq. 55.
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82(E(/)(7' -+ to, t2)6_207— -+ E()n(T — to, tg)) . 82<E0(T -+ to — t2)€_2UT — Eo(T + to -+ t2)€_207)

ot ot3
82(E0(7' - to -+ t2) - Eo(T - to - tg))
+ 2
ot;
(59)
We consider the term Ey(7 + to + o) first in Eq. 59 as follows. We copy Eq. 46 below.
-9 Z 27_[_2 4 47’ 3ﬂ_n2€27]6—7rn262"e%
Eo(T +ts + 1) = Z 924 AT A (t2tt0) 3ﬂ_n262762(t2+t0)]e*ﬂnQeQTeQ(tZ‘HO)656@
(60)

We can see that 2 o S Eo(T 4ty + 1) = e 2% Eo(7 +ty +to), given that the equation has terms of the
form e™™2 and the equation is invariant if we interchange the variables 7 and ¢,.(Result C’)

We can replace ty by t, = —t; in Eq. 60 and see that —Z— Eo(1 + t, + 1) = a—QQEO(T + ty + to)

a(t )
(Result F’) given that the equation has terms of the form ™ and the equation is invariant if we
interchange the variables 7 and t,.

i
i 0 _ 00 _ 0 > _ 0 (0 _ _9 (0 _ 98 (d\_ & i
Given that 5~ = o0 06 = o We et 8t2 = 35 (35) = 8,52((%/2) = at;(at;) = qum Ve substi-

tute it in Result F” and get 2 7 EO( —ty+ 1) = 86—T22E0(7' —ty+ 1) .(Result D’)
2

We can write the term Ey(7+1to+1t2)e” 27 in Eq. 59, corresponding to the term in the first integral
in Eq. 58, using Result C”, as follows. We use the fact that fi)oo %(TT)B(T)CZT = fi)oo wd

f A dB(T d

0 9%(E ty+t 0 9%(FE ty+t
/ ( 0(7'(;;2 2+ 0))72T6_2"T cos (wT)dr = / ( O(T(;z 2+ 0))727"6_2” cos (wT)dT
—00 2 T

/0 a(an(ngertO)TZTe—QUT cos (wT)) ; /0 OFEo(T + ty + to) (1% e 27" cos (wT
— T —
—oo or —o0 or or

— 00

>d7'

OF, to +t Y 9F to +t
= [ O(Tg 2+ 0>T2’“e’2‘” cos (wr)]% . + w/ 0(7—; 2+ 0)T2re’207 sin (wT)dr
T T

0 0
OF, to+t OF) to +1
—1—20/ ol —g 2 O>7'2Te’2‘” cos (wr)dr — 27”/ o7 + 12+ 0)72’"’16’2” cos (wr)dr
—0o0 T

—0o0

or

(61)

We see that the integral f 8EO+:2H°)T e 277 cos (wT)dT in Eq. 61 converges, using Eq. 57 in the

OF, to+t _
previous subsection. We see that the term [WT e 277 cos (wT)]" , also converges, using Re-

sult 4.2.1.1 in Section|4.4.1| Tt is shown in Eq. 53 that the remaining term f OBo(Titatio) p2r =207 gin (wr)dr
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also converges.

2 (Eo(T+ta+t0)T2 e 27T)
ot3
in Eq. 59 also converges.

We see that the integrals in Eq. 61 converge and hence the integral [ BOO g cos (wT)dT

—20T

in Eq. 58 corresponding to the term Ey(7 + t3 + tg)e

We set ¢ = 0 and ty = —ty in Eq. 61 and see that the integral ffoo WT% cos (wr)dr in
2

Eq. 58 corresponding to the term Ey(7 + ty — tp) in Eq. 59 also converges.

We set to = —t; in the term Ey(7 + to + t2)e 2°7 and use the procedure in Eq. 60 to Eq. 61

2 —20T
and see that the integral ffoo 9 (EO(TJrg)t;tQ)E )72 cos (wr)dr in Eq. 58 corresponding to the term
2

Eo(T —ty +t9)e " in Eq. 59 converges, using Result D'.

We set ty = —ty, 0 = 0 and ty = —to in the term Eo(7 + ty + to)e 2°" and use the procedure in
Eq. 60 to Eq. 61 and Result D" and see that the integral fi)oo WT% cos (wT)dT in Eq. 58
2

corresponding to the term Fy(T —ts —ty) in Eq. 59 also converges. Hence the first integral in Eq. 58,
also converges.

We can see that the second integral in Eq. 58 converge, by setting ty = —to in Eq. 59 to Eq. 61 .
Hence all the integrals in Eq. 58 converge.

4.6.  Zero Crossings in Gra,(w,ta, ) move continuously as a function of ty, for a given
to, forre W.

Result 4.7.1: It is shown in Lemma 1 in Section that Gg(w,t2,t0) = 0 at w = w,(t2,to)
where it crosses the zero line to the opposite sign, if Statement 1 is true. It is shown in Section
that Ggar(w, t2, t9) = 0 and w # 0 at w = w,(ta, to), for some value of r € W where (2r+1)
is the highest order of the zero of Gr(w,ts,ty) at w = w,(t2,ty). (example plot)

We use Implicit Function Theorem for the two dimensional case ( link and link). Given
that Grar(w, 2, to) is partially differentiable with respect to w and ¢y, for a given value of t5, with
continuous partial derivatives (Section and Section and given that Ggor(w,t2,ty) = 0 at
w = w,(ta,tr) and W # 0 at w = w,(t2, o), for some value of r € W where (2r + 1) is the
highest order of the zero of Gg(w, ts,ty) at w = w,(t2, t) (using Lemma 1 in Section 2.1, Lemma 2 in
Section and Result 4.7.1), we see that w,(t2, o) is a differentiable function of ¢y, for 0 < ty < oo,

for each value of t; in the interval 0 < £ < oo.

Hence w, (9, 1) is a continuous function of ¢, for 0 <ty < oo, for each value of ¢, in the interval
0 <ty < o00.

e It is shown in Sectionthat GRar(w, ta, to) is partially differentiable at least twice with respect
to to. We can use the procedure in previous subsections and Implicit Function Theorem and show
that w,(t2,19) is a continuous function of o, for 0 < ty < oo, for each value of ¢y in the interval
0 <ty <oo.
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4.7. Zero Crossings in Ggar(w,ts,t)) move continuously as a function of t, and t,, for
reWw

We can use the procedure in previous subsections and show that w, (s, %) is a continuous func-
tion of 5 and tg, for 0 < ty < 0o and 0 < t, < oo, using Implicit Function Theorem in 3.

We use Implicit Function Theorem for the three dimensional case (linkl and Theorem 3.2.1 in
page 36). Given that Gga,(w,t2,to) is partially differentiable with respect to w and ¢, and ¢, with
continuous partial derivatives, for r € W (Section , Section and Section and given that
Gror(w,ta,tg) = 0 at w = w,(ta,19) and W # 0 at w = w,(t2, o), for some value of r € W
where (2r + 1) is the highest order of the zero of Gg(w,ts, ) at w = w,(t2,%y) (using Lemma 1 in
Section[2.1] Lemma 2 in Section [4.8/and Result 4.7.1), we see that w, (2, ty) is a differentiable function

of ty and to, for 0 <ty < 0o and 0 < t9 < 00.

Hence w,(ts,t9) is a continuous function of ¢y and ¢, for 0 < ¢ty < co and 0 < 3 < o0.
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4.8. Proof of Lemma 2

In this section, it is shown that, if Gr(w,ts,tg) = 0 at w = Fw,(t2,ty), for each fixed choice of

positive tg,ty € R and (2r + 1) is the highest order of the zero at w = fw. (s, %) for some value of

27
02" GRr(wita;to) _ 0 at

r € W (element of set of whole numbers including zero), then Ggro.(w,ts,ty) = P

G Rar(Wi2to) _ 0> T1GR(w,t2,to)
w = Fw,(ta,1p) and o aw’;rﬂ 2:t0) # 0 at w = tw, (2, o).

In Section [4.1] it is shown that Gg(w, t2, ) is partially differentiable (21 +2) times, as a function
of w, where r € W.

We see that Gr(w, ta, o) is a real and even function of w because g(t, s, 1) is a real function of
variable ¢ (|Appendix D.1|) and hence Ggr(w,ts2, o) has its first zero crossing at w = fw,(t2, %) # 0
where it changes sign, for each fixed tg,t2 € R and t5 # 0.(Result 2.1.5 in Section Hence we can
write Gr(w, ta, to) = (w.(ta, t0)* — W) TN/ (w, ta, tg), for r € W, where N'(w,(ts, o), t2,to) # 0, for
each fixed positive to,t; € R and (2r + 1) is the highest order of the zero at w = w, (2, ty).

The case of (w,(t2,t9)? — w?)?" is ruled out because G g(w, ta, to) changes sign at w = +w, (ta, to)
and N'(w, ty,tg) does not change sign at w = Fw,(ts,ty) and (w,(t2,t9)* — w?)?*" > 0 for real w and
does not change sign at w = tw, (s, tp).

It is noted that the order of the zero given by (2r + 1) is finite because Gr(w, ta, to) is finite.
For a fixed positive tg,t2 € R, let Gr(w, ta,t9) = M(w),N'(w, t2,t0) = N(w) and w,(t2,ty) = w..
We consider the case of M(w) = M,(w) = (w? — w?)* TN, (w) for each r € W, where N, (w,) # 0.

Lemma 2: If M, (w) = (w? — w?)? TN, (w) where N,(w.) # 0 and r € W and (2r + 1) is the

highest order of the zero at w = w, and M,.(w) is differentiable (2r+ 1) times as a function of w, then

a dj‘f;(“’) =0 and % # 0 at w = w, using principle of mathematical induction.

Proof: For r=0, we see that My(w) = (w? — w?)Ny(w) where No(wz) # 0 . We see that
My(w.) = 0 (Result 0.a) and My(w) = dMO @ — (w2 — )dNO(w) + No(w)(—2 ) At w = w,, we see
that My(w.) = No(w.,)(—2w.). Given that wz # 0 and Ny(w.) # 0, we get My(w.) # 0 and hence
dMO(w #0 at w = w, (Result 0.b).

4.8.1. r=1 and s=0,1,2,3

For r = 1, we see that M;(w) = (w? — w?)?N;(w) where N;(w) # 0 at w = w,. We will compute

2r+1
< ]c‘l{:s and show that & MT( ) — Z (W2 —wh)" A (W), forr=1and s = 0,1,...(2r+1). Hence
r’'=2r4+1-—s
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3
we write M;(w) = Z(wf — W) Ag,1(w) where Agsq(w) = Ny(w), for s = 0.
r’'=3
We define K,,, = 2(2r +2 —p) # 0 where p < s and s < 2r + 1 and compute A, ,(w) for v’ =
2r+1—s, as a recursive product and will show that A, 9,415, (w,) = (—1)° szl K, ,wiN,(w,) # 0,
for s =0,1,..2r + 1, for a given r = 1 in Eq. 62 to Eq. 64.

We compute the first derivative of M;(w), using s = 1. We combine the two terms in the first line
3

in Eq. 62 and write concisely in the second line using M = Z(wg — W) Ay (w), as follows.

r'=2
dMl(OJ) 2 2 3dN1(W) 2 212
B) _ 2 ) v )32 - )20
dM(w) < : 1
dluf ) = Z(wz — W) A (W), Argi(w) = —6wN;(w) = —6wAgz(w HK 1w Ny (w

(62)

We see that K,, =22r+2—p)and K1; =6 for p=1,7r=1and A131(w) = d]\;l We see
that 2r +1—s =2 for r = 1,s = 1 and hence A, 2,115, (w,) = A121(w,) = —6w, Ny (w,) 7é 0 given
that w, # 0 and N;(w,) # 0.(Result 4.6.1)

We take the derivative o in Eq. 62, using s = 2. The second term (w? —w?)" ™! = (W? —w?)!
for = 2, in the summation in the first line in Eq. 63 and hence we combine the two terms in the

first line, by including " = 1 in the summation in the second line and write concisely as follows.

fdMl w) -

2 3
I St —ty Pl (e =ty (=)

2 z
dw = dw

d2M w 3 ’
A = Z(W2 — u}2)T AQ’T/J(CO), A271’1(C«J) = —4(,&)14172 1( ) = 24W2N1 H p,1W N1

(63)

We see that Ky3 =2(2r+2—p) =4forp=2,r =1 and Ays;(w) = M%:(w) — 6wA; 31(w) and
A z1(w) = dAld#(w We see that 2r+1—s = 1forr = 1, s = 2 and hence A; 9 41-s5,(w) = Ag11(w) =
—4wA; 21 (w) = 24w? Ny (w) using Eq. 62 and Result 4.6.1 and Ag1;(w,) = 24w?N;(w,) # 0, given

that w, # 0 and Ny (w,) # 0 (Result 4.6.2)

We take the next derivative of % I

in Eq. 63 and combine the two terms as follows, using s = 3.

dSMl(W) : 2 gy A 1 1 (W) 12 2\ —1
— = D (W —w?) e Ay (@) (W = W) (—2w)

d3 M 3 ) 3
EMw) _ D (W= W) Aga(w),  Ason(w) = —2wAs1(w) = =480 Ny (w) = — [ [ Kpaw® M (w)

r'=0 p=1
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(64)

We see that K33 = 2(2r+2—p) =2for p =3,7r =1 and A3, (w ):M dwAs g1 (W),

Aso1(w) = % 6wAs31(w) and Azs;(w) = d‘%% We see that 2r+1—s=0forr=1,s =3

and hence Agar11-s,(w) = Asg1(w) = —2wAs 11 (w) = —48w3 Ny (w) using Eq. 63 and Result 4.6.2
and Az q(w,) = —48w3N;(w,) # 0, given that w, # 0 and N;(w,) # 0 .(Result 4.6.3)

We see that dQJC\lilz(w) = 0 at w = w, in Eq. 63 (Result 1.a). We evaluate B3(w) = M, ()

dw3
at w = w, and see that all terms become zero except the term with " = 0 in Eq. 64. Hence

Bs(w,) = As1(w.) # 0 using Result 4.6.3 and hence & M1 ) £ 0 at w = w. (Result 1.b).

4.8.2. r=2and s=0,1,2,3,4,5

For r = 2, we see that Ms(w) = (w? — w?)®Ny(w) where Ny(w) # 0 at w = w,. We will compute
2r+1

dsi\f and show that % = Z (w? —w?)" Ay p(w), forr = 2and s = 0,1,...(2r +1). Hence

r’'=2r4+1-—s
5

we write My(w) = Z(wz — W) Ag,a(w) where Agsa(w) = Ny(w), for s = 0.
r/=5
We define K,, = 2(2r +2 — p) # 0 where p < s and s < 2r + 1. We compute A, ,(w) for " =
2r+1—s, as a recursive product and will show that A 2,15, (w,) = (—1)° H;Zl K, ,wiN,(w,) # 0
for s =0,1,..2r + 1, for a given r = 2 in Eq. 65 to Eq. 69. We compute the first derivative of My(w)
and combine the two terms as follows, using s = 1.

dMs(w dNy(w
B (w2 - P )52 - ) (20
dM,(w > ’ !
dZQE ) = ;(wf - (UQ)T ALT/’Q(CLJ), A174,2(w) = —1OCUN2<CLJ) = —IOWA052 IHK p,2W Ng( )
(65)
We see that K,, = 22r+2—p) = 10 for p = 1,7 = 2 and A;52(w) = %{5‘"). We see that

2r+1—s=4forr=2s=1and hence Ao 41_5,(w;) = A1 42(w,) = —10w,Na(w,) # 0 given that
w, # 0 and Ny(w,) # 0.(Result 4.6.4)

We take the next derivative of 2) in Eq. 65, using s = 2. The second term (w? — w?)" ! =
(w? — w?)3 for 7' = 4, in the summation in the first line in Eq. 66 and hence we combine the two
terms in the first line, by including " = 3 in the summation in the second line and write concisely

as follows.

EMy(w) & JdA o (w , ,
T = Y —ary et A, (o2 - 2

EMo(w) N~ 5 o 2
— = D (W= W) Agpa(w),  Azsa(w) = —8wAsa(w) = 80w’ Na(w H p,200” No(w
r’'=3
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(66)

We see that Ky =2(2r +2—p) =8for p=2,r =2 and Ay 4s(w) = ledﬂ 10wA; 52(w) and
Ay 50(w) = Ml% We see that 2r+1—s = 3 for r = 2, s = 2 and hence A; 9 41-s,(w) = Ag32(w) =
—8wA; 42(w) = 80w?Ny(w) using Eq. 65 and Result 4.6.4 and A 32(w,) = 80w?Ny(w,) # 0, given
that w, # 0 and No(w,) # 0 (Result 4.6.5)

We take the next derivative of % in Eq. 66 and combine the two terms as follows, using s = 3.

PMo(w) NS0 oy dAaa(@) o — 2y
W = Z(w — W ) T + Agyrlyg(W)T (wz — W ) (-20))

d3M2(W> & 2 2\ 7/ 3
e S (@~ W) As (W), Aspa(w) = —6wAssa(w) = —480w Ny(w H p2w’ Na(w
r'=2

(67)

We see that K39 = 2(2r+2 —p) =6 for p = 3,7 = 2 and As3s(w) = dAQ% 8wAg 42(w),
A342( ) CW# 10(,014252( )andA352( ) dl‘b% Weseethat?r—i—l S_2fOI'T—2 s=3
and hence Ago 41— s,(w) = Agna(w) = —6wAs3a(w) = —480w® Na(w) using Eq. 66 and Result 4.6.5

and Ajgo(w,) = —480w? Ny(w,) # 0, given that w, # 0 and Na(w,) # 0 .(Result 4.6.6)

We take the next derivative of % in Eq. 67 and combine the two terms as follows, using s = 4.

d4M. > ydAs . ,
L) _ St -ty P e -y (20

d4M2(W) ° 2 2\ 7/ 4
—_— = Z(W — W ) A4,T/,2(w), A471,2(w) = —4(4)14372 2( ) = 480 * 4w N2 HKP oW NQ( )

p=1
(68)
We see that K40 = 2(2r +2 —p) = 4 for p = 4,r = 2. We see that 2r + 1 — s = 1 for

r=2,s=4and hence A9 11 s,(w) = Ag12(w) = —4wA3 22 (w) = 480 * 4w* Ny(w) using Result 4.6.6
and Ay o(w,) = 480 * 4wINy(w,) # 0, given that w, # 0 and Ny(w,) # 0 .(Result 4.6.7)

We take the next derivative of ¢ in Eq. 68 and combine the two terms as follows, using s = 5.
d5M > /dA r! /
T = e T ) 2
d5 M. ° ,
d—(jguj) = Z(wz — w2)T A577./’2(u.)), A57072(w) = —20014471,2(0)) = —480 % 4 % 2w5N2 H p,2W N2
=0
(69)

We see that K50 =2(2r+2—p) =2forp=5,r=2. Weseethat 2r+1—s=0forr=2,s=5

and hence Ao y1 s,(W) = Asp2(w) = —2wAy12(w) = —480 x 4 * 2w°Ny(w) using Result 4.6.7 and
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Aspa(w,) = —480 x 4 % 2w3 Ny(w,) # 0, given that w, # 0 and Ny(w,) # 0 .(Result 4.6.8)

We see that d4i\lﬁ(w) = 0 at w = w, in Eq. 68 (Result 2.a). We evaluate Bs(w) = d52f5(“’)
at w = w, and see that all terms become zero except the term with ' = 0 in Eq. 69. Hence

Bs(w,) = A5 02(w.) # 0 using Result 4.6.8 and hence & M2 ) £ 0 at w = w. (Result 2.b).

4.8.3. Induction Proof for each r €¢ W

For a general r € W, we see that M, (w) = (w? — w?)* !N, (w) where N,(w,) # 0. Using the
equations for » = 1 in Section [£.8.1] and r = 2 in Section , we build the equation used in
Induction hypothesis for s— for s =0,1,..(2r + 1), for each r € W, as follows. (Set r = 1,
s = 2 1in Eq. 70 and we get Eq. 63 and Result 4.6.2. Set r = 2, s = 5 in Eq. 70 and we get Eq. 69

and Result 4.6.8.)

d* M, () 2r+1
o = 3 (@ A @), Asaritsn(®) = Ay ez o (@) (—20) (20 +2 - 5)
r'=2r+1—s

Asprpr-sr(wz) = (1) H Ky wiNp(w.) #0, Ky, =22r+2—-p)#0

p=1
(70)
It is noted that we only need the coefficient A, ,.(w) corresponding to r’ = 2r + 1 — s because
the terms for ' # 0 in the equation for % for s = 2r + 1 vanish at w = w,, as shown in Eq. 74.

e Induction Hypothesis: We assume that Eq. 70 holds for s = S, for S < 2r + 1.

d5 M, (w) s, ,
— = Z (W2 —w?)" Agprr(w),  Asorii—sr(w) = As_12r12-5,(w)(—2w)(2r + 2 = S)

dw?®
r'=2r4+1-5
Asors1—sr(w:) = H WS Np(w,) #0,  Kpp =2(2r+2—p) #0
(71)
e Induction Step: We take the first derivative of Eq. 71 given by - d & QZTS( w) — ds;”swjl The

second term (w? — w?)" ! = (w2 —w?)> 5 for v’ = 2r +1 — S, in the summation in the first line

in Eq. 72 and hence we combine the two terms in the first line, by including " = 2r — S in the
summation in the second line and write concisely as follows.

2r+1
ds+1MT(w) _ i (w2 w2 r! dAsﬂ“/ﬂ”(w)

s 2 Ay )y g (! (02 = W) (- 20)
r’'=2r4+1-S5
ds+1MT w ] /
dw—5+1<) = Z (w§ - WQ)T Asiimr(W),  Asiror—sr(w) = Asorpr-se(w)(—2w)(2r +1 - 5)
r’'=2r—S

S+1
AS+1,27‘7$,T‘(WZ) = _AS,2r+lfS,r(wz)(wz)2(27’ +1-— S) - <_1)S+1 H Kp,rwarlNr(wz) % 0

p=1
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(72)

We see that Kgy1, =22r +1—S5) #0 for S < 2r +1 and we use Aga+1-g,-(w,) in Eq. 71 to
get Agi19,—s,r(w,) in Eq. 72.

We see that Eq. 72 is exactly the same as the equation we get, if we set s =S + 1 in Eq. 70.
Thus we have proved Eq. 70 by principle of mathematical induction.

e We set s = 2r in Eq. 70 and get

2r+1

d2TMT w ’
TE) = (W2 = w) A (W), Az (W) = Agp1 20 (w) (—4w)
r'=1
AQTlT wz = 27’ H TW2TN wz) 7é 0
(73)
We see that all the terms in dQT;iAf;T(w) in Eq. 73 become zero at w = w, and hence dz:i]\j;;(w) =0 at
w = w,. (Result r.a)
e We set s =2r + 1 in Eq. 70 and get
B (w 2r+1 y
) S (02— ) Ayt @), A () = Ao () (-2)
r’'=0
2r+1
A2T+1,0,r(wz) - (_1)2r+1 H Kp,rwzr+1Nr<wz) ?é 0
p=1
(74)

We see that all the terms in % in Eq. 74 become zero at w = w, except the term for ' = 0
dw?2r+

and As,410,(w.) # 0 and hence ddz—%fl # 0 at w = w,. (Result r.b)

Corollary: The Induction proof presented in this section and Result r.a and Result r.b are valid
2r+1

for each r € W. Hence we see that %22() =0atw=uw, and % # 0 at w = w,, for each

r € W, where M, (w) = (w? — w?)* TN, (w), where N,(w.) # 0, and (2r + 1) is the highest order of

the zero of M, (w) at w = w,.

Given that Gr(w,ts,tg) = M,(w) for some value of r € W and fixed choice of t, t5, we see that
—82TGSU(J°§;t2’t°) =0 at w = +w, and —82T+lai§fflt2’t°) # 0 at w = fw,, given that M(w) = Gr(w,ts,to)
is a real and even function of w, where (2r + 1) is the highest order of the zero of Gg(w,ts,to) at

w = w,(ta,tp). This induction proof continues to hold for each fixed choice of positive tg,t; € R.
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5. w:(t2,t0)to = 5 can be reached for specific %o, t,

It is noted that we do not use limy, , in this section. Instead we consider real ¢, > 0 which
increases to a larger and larger finite value without bounds. We use 0 < 0 < % below.

We write Pygq(te,to) in Eq. 20 derived assuming Statement 1, concisely as follows.

to

to
Paa(te, tg) = / Ey(7,t3)e % cos (ws (ta, to) (T — to))dr + %% / By, (7, t5) cos (ws (ta, to) (T — to))drT

—00 —00

Poaa(ta, to) + Poaa(tz, —to) =0

(75)

We note that Ey(7,ts) = Eo(T — to) — Eo(T + t3) and Ey, (7,t2) = Ey(—7,ts) = —Ey(1,t2) =
Eo(T +13) — Eo(T —t2) (using Result 3.1 in Section [3). We choose ¢, = 2ty and we choose ¢; such that
Ey(t) approximates zero for |t| > t;, given that Ey(t) has an asymptotic exponential fall-off rate of
o[e™**I] (|Appendix C.5). We choose ¢y >> t; and hence Eo(T — t3) = Eo(7 — 2to) approximates
zero in the interval (—oo,to]. Hence in the interval (—oo,ty], we see that Ey(7,ty) ~ —FEo(T + ty)
and E,, (1,ty) ~ Eo(T + t3), for sufficiently large to. We can write Eq. 75 as follows. We use
w; (ta, —to) = w.(t2,t9) (Section 2.4). We note that t, = 2¢, in the rest of this section and we
continue to use the notation w,(ts,tg) where ty = 2t.

to
Poaa(ta, o) ~ — / Eo(m + 2t0)e_2‘” cos (w,(ta, to)(T — to))dT
o X
—|—€20t0 / Eo(T + 2t0) COS (CL)Z (tQ, to)(T — to))dT
7t0—oo/
Poga(ta, —to) = Eo(1,t2)e %7 cos (w(t2, to) (T + to))dT
e Y
fe 20t / E,, (T, t9) cos (w,(t2, to) (T + to))dT

(76)

We see that the term P,q4(t2, —to) in Eq. 76 approaches a value very close to zero, as real t,
increases to a larger and larger finite value without bounds, due to the terms e~2°% and the integrals
f:sg, given 0 < 0 < % and ¢y > 0 and given that the integrands are absolutely integrable and finite
because the terms E,(7,ty)e 2" and Ej, (7,t2) = —Ey(7, t2) have exponential asymptotic fall-off rate
as || — oo(Section Hence we can ignore P,q(ts, —to) for sufficiently large ¢, and write Eq. 75,
using Eq. 76 and ty = 2¢.

Qlte) = Poga(tarto) + Poalts, —to) ~ / o7 + 2to)e27 cos (w. (t, to) (7 — to))dr

to
+€20t0 / Eo(T + 2t0) COSs (U)Z<t2, to)(T — to))dT ~ 0

—0o0

(77)



We substitute 7+ 2tg =t, 7 =t — 2ty and dr = dt in Eq. 77 and write as follows.

3to

Q(to) ~ —etoto / Eo(t)e 7" cos (w(ta, to)(t — 3tg))dt

—00

3to
20t / Ey(t) cos (w.(t2, to)(t — 3to))dt = 0

(78)

We multiply Eq. 78 by e=37% and ignore the last integral for sufficiently large t,, given that
e2otoe=30t — =0t and \ffioo Eo(t) cos (w,(ta, to) (t — 3to))dt] < f?’to |Eo(t)|dt < [ |Eo(t)|dt is finite.
(link and |[Appendix C.1)

3to
S(to) = Q(tg)e 7" ~ —e' / Eo(t)e 7" cos (w.(ta, to) (t — 3t))dt = —e"™ R(ty) ~ 0
3to - 3to
R(ty) = cos (w.(ta2, t0)3to) / Eo(t)e 27" cos (w, (ta, to)t)dt + sin (w.(ta, to)3to) / Eo(t)e " sin (w, (ta, to)t)dt

(79)

In Section it is shown that 0 < w,(t2,%y) < oo, for all |ty] < oo, for each non-zero value of
ty. For tg > 0, we see that w,(t2,t0)tg > 0. In Section {4} it is shown that w,(t2, %) is a continuous
function of variable ¢y and t5, for all 0 < ¢y < co and 0 < t5 < co. Hence w,(ts, o)ty is a positive
continuous function.

We require w, (o, %)ty = 5 in Section (3| for a specific ty = to. and ty = t5. = 2to.. To show
that w.(t2,%9)to = 5 can be reached, we assume the opposite case that w.(ts,to)to < 5 for all
0 <ty < oo and ty = 2t; (Statement C) and show that this leads to a contradiction.

Let w;(t2,t0)to = KF(ta,ty), where 0 < K < F and 0 < F(ty,1)) < 1 is a positive continuous

function for 0 <ty < oo and ty = 2y, such that w,(t2, %)ty < 5. Hence w.(t2,ty) = %ﬂ?to)

We choose t3 such that Eq(t)e™2°" is vanishingly small and approximates zero for |t| > 3 Result
5.a), given that Ey(t)e 2" has an asymptotic exponential fall-off rate of o[e=0I*] (
.We choose ty >> t3 and note that t3 is independent of t,. As ty increase without bounds, in
the interval |t| < t3, we see that the term cos (w,(t2,%)t) ~ 1 and sin (w,(ta,t0)t) = w.(te,to)t ~ 0
(Result 5.b), given that w,(t2, to)t = KF(tQ’tO)t < KF(?’tO)t‘“’ << 1, because tg >> t3 and F(tq,ty) < 1.
Hence we write Eq. 79 as follows, using Result 5.2 and Result 5. b

3to t3
R(to) =~ cos (wz(tg,to)Bto)/ Eo(t)e 7" cos (w,(ta, to)t)dt = cos (3KF(t2,t0))/ Ey(t)e 27t dt
(80)
For sufficiently large to, the integral R(to) ~ cos (3K F(ts,t0)) ffig FEo(t)e2°tdt remains finite, be-
cause cos (ws(t2, o)3to) oscillates in the interval [—1,1] and [ Eg(t)e***dt > 0 (|[Appendix C.1)
and does not approach zero exponentially, as real ¢y increases to a larger and larger finite value
without bounds. This is explained in detail in Section 5.1

_t3
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The term €™ in S(ty) = —e“™R(ty) in Eq. 79 increases to a larger and larger finite value ex-
ponentially as t, increases, and hence the term S(tg) approaches a larger and larger finite value
exponentially, given that R(t;) does not approach zero exponentially and hence S(ty) and Q(t¢) in
Eq. 78 and P,y4(t2, to) + Poaa(t2, —to) in Eq. 75 cannot equal zero, to satisfy Statement 1, in this case.

Hence Statement C is false and hence w,(ts,to)ty = 5 can be reached for specific values of ¢,

and ty = 2ty as finite ¢y increases without bounds, given that w,(ts, o)ty is a continuous function
of variable tg and t,, for all 0 < t; < oo and 0 < t5 < 0.

5.1. Aty = ffii Eo(t)e™27 cos (w,(t2, to)t)dt does mot have exponential fall off rate

We compute the minimum value of the integral A( to = [0 0 Bo(t)e=27t cos (w, (ta, to)t)dt in
Eq. 79 , for sufficiently large t3 and tg >> t3 and 0 < 0 < 5. We note that t2 = 2ty and note that ¢3
is independent of ¢, below. We split A(ty) as follows.

Alto) = Blts, to) + Cl(ts, to) + D(ts, to)

—t3 t3
B(ts, ty) = / Ey(t)e 27" cos (w,(ty, to)t)dt, Cl(ts,ty) = / Ey(t)e 27" cos (w. (ty, to)t)dt

00 —t3

3to
Dits, to) = / Eo(£)e=27 cos (. (fa, to)t)dt
t3
(81)
We see that Ey(t)e=27" > 0 for lt| < oo and FEy(t)e " is an absolutely integrable function (
pendix C.1) and hence Co(t3) = [7} FEo(t)e *"'dt >0 (Result 5.1.1).

Given that w,(ts,ty) = %jto) where 0 < K < 7 and 0 < F(t3,%p) < 1 in previous subsection
and ty >> t3, we see that w,(ts,to)t = KF(fg’tO)t < KF(?O’tO)“ << 1 in the interval |t| < t3 and
hence cos (wz<t2,t0)t) ~ 1 and cos (w;(t2,%)t) > 3 in the interval [¢| < ¢3. Hence we can write

Clts, to) = f Eo( b cos (w,(ta, to)t)dt > CO(t?’) > 0, using Result 5.1.1. (Result 5.1.2).

We see that \B(tg,to | = | [ Eo(t)e 27" cos (ws(ta, to)t)dt| < [~ |Eg(t)e~27!|dt ~ 0 (link) and
|D(t3,t0)| = |ft3t0 Ye~ 27t cos (w,(ta, to)t)dt| < jf;to |Eo(t)e 27 dt ~ 0, for sufficiently large 3 and
to >> t3, given that EO( )e~27t has an asymptotic exponential fall-off rate of o[e=%%I*l] (
C.5) and Ey(t)e=27" > 0 for |¢t| < oo (|Appendix C.1)).

As we increase t3 to t; and ty to t;, >> t5, we see that C(t5,t;) > C(t3,t9) > 0, using Result 5.1.1
and Result 5.1.2, given that Fy(t)e " > 0 for |t| < oo (Result 5.1.3).

As we increase t3 to t; and to to t{, >> t4, we see that |B(t5, )| < |B(ts,to)| and |D(t4,1)] <
|D(t3,t9)| approach zero (Result 5.1.4), given that Fy(t)e 2" has an asymptotic exponential fall-
off rate of o[e™"%"] (|Appendix C.5) and Ey(t)e=27* > 0 for |t| < oo (|Appendix C.1)).

Hence we see that A(to) f3t° Eo( b cos (w,(ta, to)t)dt > % — |B(ts, to)| — |D(ts, to)| =~
% > (0 using Result 5.1.2, Result 5.1.3 and Result 5.1.4.
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For example, we choose t3 = 10 such that Ey(t)e 2! is vanishingly small and approximates

zero for |t| > t3. Given that Eg(t) > 0 for [t| < oo ([Appendix C.7) and the term e~2°" has

a minimum value of e !l for 0 < ¢ < I, we see that the integral Cy(t3) = fig Eo(t)e 2tdt >
2 fg‘s Eo(t)e_“'dt > Cyo = 0.42 where Cy is computed by considering the first 5 terms n = 1,2,3,4,5

2,2t

in Ey(t) = 3.°° [An?nie® — 6mn?e*]e ™" e2. Hence Cy(ts) > 0.42. (Matlab simulation))

Hence we see that A(ty) = ff’i‘; Eo(t)e 27" cos (w(ta, to)t)dt > 02— | B(ts, t)|—|D(ts, to)| ~ 0.21.
As tg increases without bounds, we see that A(ty) does not have exponential fall off rate.
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6. Strictly decreasing Ey(t) for t > 0

Let us consider Eo(t) = ®(t) = 3.2 [dn?nte® — 6mn?e*]e ™" ez in Eq. |1} whose Fourier
Transform is given by the entire function Ey,(w) = ( +iw). It is known that ®(t) is positive for
[t] < oo and its first derivative is negative for ¢ > 0 and hence ®(t) is a strictly decreasing function
for t > 0. (link). This is shown below. We take the term 27n? out of the brackets.

Ey(t) = 0(t) = Y _[4nn'e" — 6rn?e]e ™" e2 Z2m2 —m?e o3 2rn2ett — 3¢
n=1
(82)
We show that X (t) = Eo(t) is a strictly decreasing function for ¢ > 0 as follows.
e In Section , it is shown that the first derivative of X (t), given by X0 ) < 0 for t > t. where

1 X _
t, = 5log% and y, = 3.16.

e In Section it is shown that, ( <0Ofor0<t<t,.

(t) is strictly decreasing for all t > 0 and Ey(t) = 2X (t)
is strictly decreasing for all t > 0.

6.1. dX(t <0 fort>t,

We consider X (t) = 220 = Y p2e ™ es[2mn2et — 3¢%] in Eq. 82 and take the first
derivative of X (t). We note that Fy(t) and X (t) are analytic functions for real ¢ and infinitely
differentiable in that interval. We compute dX(t below and take the term e* out, in the last line
below.

1
g mne ™ o5 [8an2et — 66 + (2mn’e — 36%)(2 2mn2e?)]
2p—mn%e? 5 2t 4t 3 2,46t
E ™moe e2[8mn?e* — 6e* + (mn’e —5¢ — dr*nte% 4 6mne™)]

= 15
= Zﬂn%_mge €7 [—4mne® 4 15mn%e* 5 —e?]

15

= ZWnQe_”"Q eze’ H—dn?n*e® + 15mn2e® 5 —]

(83)

We substitute y = me?* in Eq. 83 and define A(y) such that d)gt(t) = e
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- 15
= Z n2eY[—4n*y? + 15n%y — ?] (84)

We see that A(y) = 0 at y = m which Corresponds to t = 0 given y = me?* and dX( t) = 7Te5tA(y),

given that dX M — 0 at t = 0. Because X (t (t) = Eo® is an even function of variable t( Appendlx C.8I)

2
d)flt(t) is an odd function of variable ¢.

and hence

The quadratic expression B(y,n) = (—4n*y*+15n?y—<) in Eq. has roots at y = —13n2Ev225n1-120n"

-y
(15/108) dB(y n _
8n2

y = g%. The second derivative of B(y,n) given by

. We see that the first derivative of B(y,n) is given by
d? B y n)

—8nty + 15n? is zero at

= —8n*, is negative for all y and n > 1

and hence B(y, n) is a concave down function for each n, which reaches a maximum at y = g% and

given the dominant term —4n*y? in Eq. , We see that B(y,n) < 0, for y > (15+\/ﬁ) > 3. 16 =1,

for n > 1 and hence A(y) < 0 for y > y.. Usmg y = me?t and dX aX(t) — We%A(y) we see that ¢ ( ) <0

for ¢ > $log % = t.(Result 1). (concave down function)

We show in the next section that %t(t) < 0 for 0 <t <t,. It suffices to show that %Z(Jy) < 0 for
T<y< yz = 3.16 and hence A(y) < 0 for 7 < y <y, = 3.16, given that A(y) =0 at y = 7. [ We
use y = me?t ddX D= wes Aly) and%t(t):()attzo.]

6.2. ZU <0 for0<t<t,

It is shown in this section that dA(y < 0 for m < y < 3.16 and hence A(y) < 0 for 7 < y < 3.16

[8] , given that A(y) =0 at y = . We take the derivative of A(y) in Eq. [84 and take the factor n?
out of the brackets in the last line below.

15
Zn e Y[=8ny + 15n° + (—4n'y? + 1502y — ?)(—nQ)]

= 45
-8 15+ 4 — 15 n? 2 _923p? —
E: n*y + 15 + 4n'y ny+ Ene nty ny+2]

(85)

We examine the term C(y,n) = nle™""¥(4n*y? — 23n%y+ %) in Eq. 85 in the interval 7 < y < 3.16
and show that %‘Ly) =C(y,1)+>..2,C(y,n) <0, as follows. We want the maximum value of C(y, n)
and we consider the maximum value of positive terms and minimum value of absolute value of nega-
tive terms in the paragraphs below.

For n = 1, we see that C(y, 1) = e7¥(4y* — 23y + L) = 4y’e ¥ — 23ye ¥ + Le™¥ < 0 in the interval
7 <y < 3.16 as follows. Given that 3.162 < 10 and 7 > 3.14, in the mterval m <y < 3.16, we see

that C(y,1) < 4% 10e™?1 — 23 % 3.14e7 316 4 L7314 = —0.3588 < —6e 3 = Cipas(1) where Craq(1)
is the maximum value of C(y, 1) in the interval 7 <y < 3.16.

45
C(y,1) = e ¥ (4y* — 23y + ?) < —6e3 7<y<3.16 (86)
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For n > 1, in the interval 7 <y < 3.16, we can write C(y,n) as follows, given that = > 3.14 and
3.16% < 10 and the term —23n%y < 0 is omitted below, given that we want the maximum value of
C(y,n). We write the term 2 < 4n* % 0.5 and e 0147% 4 10.5 < 10 for n > 2 .

45
C(y,n) =n'e "¥(An'y? — 23ny + 7) < nte ™ (4n*((3.16)% + 0.5)) < 4nle =3 e 01 4 10.5 < 40ne

(87)
We want to show that < ) =C(y,1)+> 72, C(y,n) <0 in the interval 7 < y < 3.16. Using
Eq. [86| and Eq. 87, we erte as follows. We multiply both sides by e® in the second line below.
dA G G 2
# =C(y,1) + Z C(y,n) < —6e™> + 2407186’3”
Y n=2 n=2
284w _ 6+Z40833n
dy n=2
(88)
We want to show that e3“-% dA( ) < 0 in the interval 7 < y < 3.16. We compute log (n¥¢3=3"") as

follows. We note that f(z) = loga: is a concave down function whose second derivative given by
—x% < 0 for |z| < oo and we can write f(x) = logz < f(zo) + f (w0)(z — xp) using its tangent line
equation. We see that f'(x) = 1. We set 2 = n and xp = 2 and get logn < log 2 + 3(n — 2) below.

1
log (n%¢*="") = 8logn + (3 — 3n?) < 8(log2+ 5 (n —2)) + (3 - 3n%)
log (n®e*~%"") < 8log2 + 4n — 5 — 3n?

(89)

We note that g(z) = 4z —5—3z? in Eq. 89 is a concave down function (concave down function)),
whose second derivative given by —6 < 0 for all  and we can write g(x) < g(zo) + ¢ (20)(x — o)
using its tangent line equation. We see that ¢'(z) = 4 — 62. We set 2 = n and 29 = 2 and get
g(n) < g(2) + [4 — 6x],—2(n — 2) = =9 — 8(n — 2) and write Eq. 89 as follows. We take the exponent
e on both sides in the second line below.

log (n®e®>*"") < 8log2 — 9 — 8(n — 2) < 8log2 — 1+ 8(1 — n)
n8€3—3n2 < e8log2—1+8(1-n) _ 98,—18(1-n)

(90)
We substitute the result in Eq. 90 in Eq. 88 and simplify as follows.
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dA >
63# < —6+40x 287! Z eS1-m)

3dAlY -
d;)< —6 4+ 40 * 2%~ *682678”
dA(y) B 678*2
3 81 4 8
—= < —6+40%*2% —_—
‘ dy A 1—e8
dA(y) Sy, e
3 8 -1
dy < —6 440 % 2% g
dA(y)
3 8 —1
a0 < —6440 % 2% *68—1
(91)
We multiply Eq. 91 by —1 and write as follows.
dA 8 -1 256
¢ d;y) (e . ) et 14 d0e 5 o 2352 (92)
We see that e3 d’zgf’) (< o D < 0 in Eq. |92, given that e > 2 and hence d’z?(f’) < 0, in the interval
7 <y < 3.16, given that €3 3lef=1) > 0. Given that A(y) = 0 at y = 7, we see that A(y) < 0 in Eq.
, for m <y < 3.16 and d)ét — % A( ) < 0 in the interval 0 <t < t,.(Result 2)
In Section E it is shown that <X < 0 for ¢t > ¢, (from Result 1). In this section, we have shown
that dX(t <0for0<t<t,. Hence ) <0 for all t > 0.

Hence Ey(t) = 2X(t) is a strictly decreasing function for ¢ > 0.
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7. Hurwitz Zeta Function and related functions

We can show that the new method is not applicable to Hurwitz zeta function and related zeta
functions and does not contradict the existence of their non-trivial zeros away from the critical line
given by Re[s] = 5. The new method requires the symmetry relation £(s) = £(1 — s) and hence
&(3 +iw) = (3 —iw) when evaluated at the critical line s = § +iw. This means (3 +iw) = Eo,(w) =
Eou(—w) and Eo(t) = Ey(—t) (|Appendix C.8) where Ey(t) = 3.°°, [4n’ntet — 6mne®|e ™ e2
and this condition is satisfied for Riemann’s Zeta function.

It is not known that Hurwitz Zeta Function given by ((s,a) = > m satisfies a symmetry
m=0

relation similar to £(s) = £(1 — s) where £(s) is an entire function, for a # 1 and hence the condition
Ey(t) = Eo(—t) is not known to be satisfied [6]. Hence the new method is not applicable to Hurwitz
zeta function and does not contradict the existence of their non-trivial zeros away from the critical
line.

Dirichlet L-functions satisfy a symmetry relation £(s,x) = e(x)é(1 — s,x) [7] which does not
translate to Ey(t) = Eo(—t) required by the new method and hence this proof is not applicable to
them. This proof does not need or use Euler product.

o0

We know that ((s) = > -L= diverges for Re[s] < 1. Hence we derive a convergent and entire
m=1
> 2 1 > n?2
function £(s) using the well known theorem F(x) = 1 + 2 E e = 7(1 +2Y e ™), where
x
n=1 n=1

x > 0 is real [](link) and then derive Ey(t) = Y2°° [4n’nte¥ — 6nn2e®|e ™" ez, In the case of

Hurwitz zeta function and other zeta functions with non-trivial zeros away from the critical
line, it is not known if a corresponding relation similar to F'(x) exists, which enables derivation of
a convergent and entire function £(s) and results in Fy(t) as a Fourier transformable, real, even and
analytic function. Hence the new method presented in this paper is not applicable to Hurwitz zeta
function and related zeta functions.

The proof of Riemann Hypothesis presented in this paper is only for the specific case of Rie-
mann’s Zeta function and only for the critical strip 0 < |o| < 3. This proof requires both E,(t)
and E,,(w) to be Fourier transformable where E,(t) = Ey(t)e~7" is a real analytic function and uses
the fact that Fy(t) is an even function of variable ¢ and Ey(t) > 0 for |¢t| < oo ([Appendix C.7)) and
Ey(t) is strictly decreasing function for ¢ > 0 (Section [f]). These conditions may not be satisfied
for many other functions including those which have non-trivial zeros away from the critical line and
hence the new method may not be applicable to such functions.
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Appendix A. Derivation of E,(t)

Let us start with Riemann’s Xi Function &(s) evaluated at s = 3 + w given by & (% ) =
Eo,(w). Tts inverse Fourier Transform is given by Fy(t) = 5= [ EOW w)e“tdw = > [ArPniet

292t t .
6rn?e)e ™ ¢ e2 using Eq. .

We will show in this section that the inverse Fourler Transform of the function & ( +o0+iw) =
By (w), is given by E,(t) = Eo(t)e " where 0 < |o] < 1 is real. We use Ep,(w) = Eg,(w —ic) below.

5(% +0+iw) = 6(; +i(w —i0)) = Epy(w) = Eyo(w — i0)
Ep(t) - % /Oo Epw((«d)eiwtdw = % /OO E0w<w _ Z'o.)eiwtdw

/

We substitute w’ = w — io in Eq. A.1 as follows. We get w = ' +i0 and dw = dw'.
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E,(t) = e"ti/ Eoo(w)e™  dw’ (A.2)
2m —00—10
We can evaluate the above integral in the complex plane using contour integration, substituting
w' =z =z + 1y and we use a rectangular contour comprised of C; along the line z = [—o0, 00|, Cy
along the line z = [00, 00 — i0], C3 along the line z = [co — i0, —00 — i0] and then Cy along the line
z = [—00 — i0, —oc]. We can see that Ey,(z) = &(3 + iz) has no singularities in the region bounded
by the contour because £(5 + iz) is an entire function in the Z-plane.

We use the fact that Eo,(2) = (5 +1i2) =&(5 —y+ix) = [*o Eo(t)e #'dt = [T Fy(t)evie 'dt,
goes to zero as © — oo when —o < y < 0, as per Riemann-Lebesgue Lemma (link), because
Ey(t)e¥" is a absolutely integrable function for real #( [Appendix A.1)). Hence the integral in Eq.
vanishes along the contours C5 and C}. Using Cauchy’s Integral theroem, we can write Eq. as
follows.

—0 1 > w
By(t) = e o /_OO o (') duw
E,(t) = Ey(t)e " = Z[47T2 Lt — Grn2ee ™ ez !
n=1

Thus we have arrived at the desired result E,(t) = Ey(t)e 7"

Appendiz A.1. E,(t) = Ey(t)e’" is an absolutely integrable function

We see that Ey(t) > 0 and finite for —oo < t < oo (|Appendix C.7). Hence E,(t) = Eo(t)e?" > 0
and finite for all —co < ¢ < o0, for —o <y <0 and 0 < [o| < 5 (Result 11).

Eo(t ) has an asymptotic exponential fall-off rate of o[e™*°] ( |[Appendix C.5) and hence
E,(t) = Ey(t ) ¥ has an asymptotic exponential fall-off rate of ofe~(*: 5+y)|t|] ole™!], for —o <y <0
and 0 < |o| < 1. Hence Ey(t) = Ey(t)e¥" decays exponentially, at ¢ — +oo.(Result 12)

Using Result 11 and 12, we can write [°°_|E,(t)|dt is finite and E,(t) is an absolutely integrable
function ( |Appendix C.6|) and its Fourler transform E,,(w) goes to zero as w — =£o00, as per
Riemann Lebesgue Lemma (link).

Appendix B. Derivation of entire function £(s)

In this section, we will start with Riemann’s Xi function £(s) and take the inverse Fourier Trans-
2t

form of £(1 + iw) = Eo,(w) and show the result Ey(t) = 300 [dn*nte® — 6mne?]e ™ ez,
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We will use the equation for £(s) derived in Ellison’s book ”Prime Numbers” pages 151-152 which

uses the well known theorem 1 + 2w(z) = \%(1 + 2w(1)), where w(z) = Ze"m% and z > 0 is
n=1
real.[4] (link).
]_ ]_ 0 s 1—s dl’
£(s) = 55(s = DI(S)75¢(s) = 51 +S(5—1)/ (22 + 272 Jw(z)—]
2 2 2 : :c

(B.1)

We see that £(s) is an entire function, for all values of s in the complex plane and hence we get
an analytic continuation of £(s) over the entire complex plane. We see that £(s) = (1 — s) [4].

Appendiz B.1. Derivation of E,(t) and Ey(t)

o0
Given that w(z) = Y e ™%, we substitute z = e*, € — 2dt in Eq. B.1 and evaluate at s =
n=1
1 .
5 T 0 + 1w as follows.

2,2t

1 1 1 1 > & . 4
ﬂ§+a+w0:§H+%§+U+MM—§+U+M{A S et (e erteiet 4 chemotemivt ] (B.2)

We can substitute ¢ = —t in the first term in above integral and simplify above equation as follows.

1 1 1 - ,
£+ o +iw) =5+ (=5 +0° —w +iw(20)) / Z —nte 0T e te T gy

2 2 4
/ —efat 71wtdt]

(B.3)
We can write this as follows.
f(l—i—a—i-iw) = 1—F(—l—l—(72—c02—i-iw(20)) Oo[i e~ +Z *ezu(t))e e dt
2 2"\ 4 A
(B.4)

t 2

We define A(t) = [Z e e T u(—t) + Z e ™ e3u(t)]e~t and get the inverse Fourier

transform of £(3 + o + ZoJ) in above equation glven by E,(t) as follows. We use dirac delta function

5(1).

1 o, dA(t)  d?A(t)
E,(t) = 5(S(zf) + (_Z +0?)A(t) + 20 o T
At) = [Z 6_”"267%6_7%(—25) + Z e_m%%e%u(t)]e_”t
n=1 n=1
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We compute the derivatives of A(t) as follows.

dA(t) < . 1 — . 1
% = ; e e e{e’“t[—i — o+ 2mnfe” Hu(—t) + nz:; e e%e"’t[i — o —2mn*e*u(t)
AL o - 1
dt2( ) — ; 6—7'(77,26 2t67t6 [ 471'712 —2t + (_5 — o+ 27Tn26—2t)2]u(_t)
- : 1
+ Z e ez [~ 4mn2e + (2 —2mn2e®)?u(t) + Agd(t)
n=1

We use Ay = [48],-04 — [4G2]iz0- = Z e (L —o—2mn?— (-1 —o+2m?)) = > e (1
n=1

47n?). We can simplify above equation as follovvs.

AL |
dt2 Z e e _”t[4 + 0+ o +4drinte ™ — 6mnle* — domnie” H|u(—t)
n=1
°° 1
+ Z e‘”"ge%e%e_"t[z + 0% — o + 4n*net — 6mn%e® + domne®| Z e (1 — 47n?)]

(B.7)

We use the fact that F(z) = 14+2w(z) = \%(1+2w(%)), where w(z) = 3 ™% and x > 0 is real

n=1

[4], and we take the first derivative of F/(x) and evaluate it at = 1. We see that 3. e~ ™ (1—47n?) =

—% (|Appendix B.2[) and hence dirac delta terms cancel each other in Eq. B% written as follows.

1 1, dA(t) | d*A(t)
Ep(t) = 50(0) + (= + o) AWM) + 20— = + =5

e 2 72t = 1 1

§ : —mn?e = —(ﬂf[_Z ‘|‘02 _|_20(_§ —0'—{—27T7’L2€_2t)

1
+Z + 0 + o +ar*nte ™ — 6mn’e " — domnie *|u(—t)

1 1 1
+ Z e_m%%e%e_"t[—z + o2 + 20(5 — 0o —2mn%e*) + = 1 + 0% — o +4r*nte! — 6mn2e? + 4omn?e®u(t)

= Ze”m% Yo7 e D(t, n)u(—t) + Z e ez Ot n)u(t)
n=1

(B.8)

We cancel the common terms in Eq. B.8 and simplify above equation as follows.
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1 1
C(t,n) = —= + 0> + 0 —20° — domn’e” + = + 0> — o + 4r°n'e! — 6mne® + domn®e®
C(t,n) = 4r’*n*e* — 6mn’e?

2 —2t

1 1
D(t,n) = ~1 + 0% — 0 —20° +4omn’e " + 1 + 0% + o +4r*nte ™ — 6rne " — domnie”
D(t,n) = 4x’n'e ™ — 6rn’e
(B.9)
We see that D(t,n) = C(—t,n). Hence we can write as follows.
Ep(t) = [Eo(—t)u(—t) + Eo(t)u(t)]e™"
Ey(t) = Z C(t, n)e‘””ge%e% = Z[47r2n4e4t - 67m262t]e_7m262te%
n=1 n=1
(B.10)

We use the fact that Ey(t) = Eo(—t) (|Appendix C.8) we arrive at the desired result for E, () as

follows.
Ey(t) = Z[47T2n464t — 6mn2e®)e ™ ez
n=1
E,(t) = Ey(t)e 7" = Z[47T2n4e4t — 6ﬂn262t}e_””262t656_”t
n=1
(B.11)
Appendiz B.2. Derivation of > e_””2(1 —4mn?) = —%

n=1

o0

In this section, we derive 3 ™™ (1 — 47n?)
n=1

—=(142w(2)), where w(z) = > e~ ™% and z > 0 is real [4], and we take the first derivative of F(x)

fx 1
n=

We use the fact that F(z) = 1 4 2w(x)

1
= —3.

Fla) =1+ 20(x) = %(1 4 2w(i))

— ) 1 - 21
F(z) = 1+226_7mz= —(1—1—226_”” x)
n=1 \/E n=1

dF(.I') - 2\ —mniz 1 - 2\ —mn2l 1 = —mn2l —1,1
- :2;(—7m Je :ﬁ;(%m Je w(ﬁ)—i—(l%—Q;G x)(7)$—%

(B.12)
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We evaluate the above equation at x = 1 and we simplify as follows.

[d];:(::)]I:l =2 Z(—mfﬂ)e*fm? _ Z(an2)e*’m2 + (142 Zeﬂnz)(—?l)

n=1
o0 5 1
Do (- dmn?) = —3
n=1

(B.13)
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Appendix C. Properties of Fourier Transforms

Appendiz C.1.  Ey(t),h(t) are absolutely integrable functions and their Fourier Trans-
forms are finite.

The inverse Fourier Transform of the function Ep,(w) = &(3 + 0 + iw) is given by E,(t) =

22

Eo(t)e ot = 5= [7 Jedw. In Eq. m we see that Fy(t) = Y oo [dr?ntet —6mn?e?]e ™ ¢ ¢
0 and finite for all —00 < t < oo( |Appendix C.7). Hence E,(t) = Ey(t)e”?" > 0 and finite for all
—o0 <t < o0.

t
2 >

It is shown in [Appendix C.5|that Ey(t) has an asymptotic exponential fall-off rate of o[e=1°I"]]

and hence E,(t) has an asymptotic exponential fall-off rate of ole ==} > oe~I] for 0 < |o| < 1.
Hence E,(t) = Ey(t)e™" goes to zero, at t — +oo and we showed that E,(t ) > 0 and finite for all
—00 < t < oo in the last paragraph. (Result 21) Hence E,,(w f E,(t)e~™'dt, evaluated at
w = 0 cannot be zero. Hence E,,(w) does not have a zero at w=0and hence wo # 0.

Given that £(3 40 +iw) = E »(w) is an entire function in the whole of s-plane, it is finite for real w
and also for w = 0. Hence E,,,(0) = [*_ E,(t)dt is finite. Using Result 21, we can write [*_|E,(t)|d¢
is finite and E,(t) is an absolutely 1ntegrable function and its Fourler transform Epw( ) goes to
zero as w — 100, as per Riemann Lebesgue Lemma |(link).

Using the arguments in above paragraph, we replace o in E,(t) by 0 and 20 respectively and see
that Fy(t) and Eo(t)e " are absolutely integrable functions and the integrals [~ |Eo(¢)|dt < oo

and [7_|Eo(t)e *!|dt < .

Given that E,(t) = Ey(t)e " is an absolutely integrable function, its shifted versions are abso-
lutely integrable and we see that E,(t, t) = e "2 E,(t—ts) —e"2 E,(t+ts) = (Eo(t—t2)— Eo(t+t2))e "
in Eq. 6 is an absolutely integrable function, for a finite shift of t5. ( We substitute ¢t — ¢t = 7 and
dt = dr and get [*_|E,(t — t2)|dt = [*°_|E,(7)|dT and hence E,(t — t5) is an absolutely integrable
function, given that E »(t) is absolutely integrable. Same argument holds for E,(t + t2).)

We can see that h( ) = e“tu(—t) +e_"tu(t) is an absolutely integrable function because h(t) > 0
for veal t and [*_[h(t)|dt = [ h(t)dt = [[° h(t)e™ ™" dt]u=0 = [;25 + s)w=0 = 2, is finite for
0 <o < % and 1ts Fourler transform H (w) goes to zero as w — +00, as per Riemann Lebesgue

Lemma (link).

Appendiz C.2. Convolution integral convergence

Let us consider h( })L = e7'u(—t) + e "u(t) whose first derivative given by %gt) = oe’lu(—t) —

oe %tu(t) and Ay = [ PO oy — [d};i)]t:o, = —20 and hence %gt) is discontinuous at t = 0, for

o8
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0 < o0 < 3. The second derivative of h(t) given by hy(t) has a Dirac delta function Ayd(t) where
Ap = —20 and its Fourier transform Hs(w) has a constant term Ay, corresponding to the Dirac delta
function.

This means h(t) is obtained by integrating ho(t) twice and its Fourier transform H (w) has a term
(;‘1—0)2 (link) and has a fall off rate of & as |w| — oo and [~ H(w)dw converges.(Result B.2)

Let us consider the function g(t,ta,t0) = f(t,ta,to)e " u(—t) + f(t,t2,to)e” u(t) in Eq. 6 and

its first derivative given by dg(Lf’tO) = [—oe 7 f(t,ta, to) + e‘”tm] (—t) + [oe? f(t,ta, to) +

et dlbdtolly (1), We get [Ll20)], = —5 f(0, 1y, to)+[LE220)),  and [9bl2l)], o = 5 f(0, 15, o)+

[dLlato)], o (Result B.2.1).

We note that f(t,ts,t0) is a continuous function in Eq. 6 and get [W] —0r = [W] _

dg(t, tz,to)]

and get [ =0+ — [W]t:of = 20 f(0,ta,t9) using Result B.2.1. Hence % is discon-

tinuous at t =0, for 0 < o < %, if £(0,ta,t9) # 0.

We can see that the first derivatives of g(t,t2, %), h(t) are discontinuous at t = 0 and hence
G(w, ta, to), H(w) have fall-off rate of —; as |w| — oo, using Result B.2. Hence the convolution
integral below converges to a finite value for real w, for the case f(0,ts, ) # 0.

1 1

—/ G(w' ta, to)H(w — W' )dw' =
oo 2m

F(w7t27t0) = o

—I[G(w, ta, tg) * H(w)] (C.1)

If £(0,t5,t9) = 0, and if the N*" derivative ofg(t ta,to) is discontinuous at t = 0 where N > 1,
we see that G(w, tQ,to) has fall-off rate of (N+1> as |w| — oo |Append1x C. 3[) G(w,tg, ) has a
minimum fall-off rate of 2 as |w| — oo for this case. Hence the convolution integral in Eq.
converges to a finite value for real w.

Appendiz C.3.  Fall off rate of Fourier Transform of functions

Let us consider a real Fourier transformable function P(t) = P, (t)u(t) + P_(t)u(—t) whose

(N — 1) derivative is discontinuous at ¢ = 0. The (N)™ derivative of P(t) given by Py(t)
has a Dirac delta function Agd(t) where Ay = [detjvpi — de:V]ij(t)]t:o and its Fourier transform

Py, (w) has a constant term A, corresponding to the Dirac delta function.

This means P(t) is obtained by integrating Py (t), N times and its Fourier transform P, (w) has a
v (link) and has a fall off rate of % as |w| — oco.

We have shown that if the (N — 1) derivative of the function P(t) is discontinuous at ¢ = 0
then its Fourier transform P, (w) has a fall-off rate of _ as |w| — oo .

Appendiz C.4. FExponential Fall off rate of analytic functions.

We know that the order of Riemann’s Xi function (1 + iw) = Ep,(w) = Z(w) is given by

O(wAe’%) where A is a constant [3] (Titchmarsh pp256-257 and Titchmarsh pp28-31).

29


https://web.stanford.edu/class/ee102/lectures/fourtran#page=15
https://web.stanford.edu/class/ee102/lectures/fourtran#page=15
https://www.ocf.berkeley.edu/~araman/files/math_z/titchmarsh_p2.png
https://www.ocf.berkeley.edu/~araman/files/math_z/Titchmarsh_pp28_31.pdf

We consider z(t) = Eo(t)e 2" and its Fourier transform is given by X (w) = [*°_ Fy(t)e *7'e~“!dt =
[ Eo(t)emiwmi2oltqy = EOw(w —i20) = &(5 +i(w —i20)) = £(5 + 20 + zw) = Eo.(w — i20). Hence
both FEy,(w) and X(w) = Ey,(w — i20) have exponential fall-off rate O(wAe’%) as |w| — oo
and they are absolutely integrable ([Appendix C.6)) and Fourier transformable, given that they are
derived from an entire function £(s).

Given that £(s) is an entire function in the s-plane, we see that X (w) is an analytic function
which is infinitely differentiable which produces no discontinuities for real w and 0 < 0 < 3 Hence
its inverse Fourier transform z(t) has fall-off rate faster than limy; ., - ar, as [t| — oo (
and hence z(t) = Ey(t)e 2" should have exponential fall-off rate of e 2l as |t| — oo, where
B > 0 is real.

Appendiz C.5. Exponential Fall off rate of x(t) = Ey(t)e "

We can write Ey(t) = Y2°° [4n°ntet — 6mn®e*]e ™" ez in Eq. Ias follows. We take the term

2mn2e® out of the brackets below. In the term e~ ™"¢" we use Taylor series expansion around ¢ =

0 r
for % = Z ( ' ) , given that e?! is an analytic function for real ¢.
Iy
r=0

- t
E 2mn2e* [2mn2e® — 3le ™ ez

2
2 2 t
= g 2mn2e[2mn2e® — 3lem™ 120 o= (B + g ) e

(C.2)

We take the term e~2™ out of the summation, corresponding to n = 1 and then take the term
t 9t .
2mette2 = 2mez out and write Eq. C.2 as follows.

> t)2 t)3
Eo(t) = Ire—2mt % an 2mn? — 367215]e*ﬂn26727r(n271)t677rn2((2!2) +20° (C.3)

For t > 0 we see that the term correspondmg ton =1 in Eq. [C.3] has an asymptotic fall-off rate
of ofe=(7= )t] > ole™!']. The terms corresponding to n > 1 have higher fall-off rates, due to the
term e~ 27" 11,

Hence we see that Fy(t) has an asymptotic fall-off rate of o[e™'?!], for t > 0. Given that

Ey(t) = Eo(—t)( [Appendix C.8), we see that FEy(f) has an exponential asymptotic fall-off rate
of o[e=11],

Similarly, Ey(t)e~2* has an asymptotic exponential fall-off rate of o[e~(1=29)] > o[e=05]  for
0< o] <3 .

The above results which show exponential fall-off rates for above mentioned functions, continue
to hold, as |t| increases to a larger and larger finite value, without bounds.
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Appendiz C.6. Absolutely integrable functions

We see that a real function y(¢) which is finite for all ¢ and has an asymptotic falloff rate of O[%]

is an absolutely integrable function, given that [~ |y(t)|dt = f:oz ly(t)|dt + f O)dt+ [ [y(t)|at
is finite, for non-zero and finite 7', because when we mtegrate the integrand \y( )\ with order O[]
, we get the result O[], which is finite at the limit ¢ = +7 and the result O[1] is zero at the
limit t — 4o00. If y(¢) has an exponential asymptotic falloff rate, when we integrate the integrand
ly(t)| with order O[e=*"] for real A > 0, we get the result O[+e 4] which is finite at the limit
t = T and the result is zero at the limit ¢ — +oo and hence y(t) is an absolutely integrable function.

Appendiz C.7.  Ey(t) >0 for —oo <t < o0

For 0 < t < oo, we can show that Eyg(t) = Y oo, f(t,n) > 0 where f(¢t,n) = [4r*ne? —
6rnle 2t] —wn2@2f€2 — 91mn2e 2t[27m2 2% 3]6 mn2e2t

e2 as follows.

The sum is positive because each summand f(t,n) is positive for finite n, and each summand
is positive because the term 2mn2e* — 3 > 0 for all ¢t > 0 and n > 1, given that # > 3 and
2mn2ete—™¢* o5 > () for 0 < t < oo and finite n > 1.(Result B.7.1)

For t = 0 and n = 1, we see that f(0,1) = 27[2r — 3]e™™ > 0.

2

For t = 0 and for each finite n > 1, we see that f(0,n) = 2mn?[27n? — 3je™™ > 0.

2.2t

For 0 < ¢ < oo and for each finite n > 1, we see that f(t,n) = 2rn2e*[2rn2e? —3]e~ ™" ez > (),
using Result B.7.1.

As n — oo, f(t,n) tends to zero, for 0 < t < co due to the term e~™¢*. We do summation over
n and see that the sum of the terms >~ f(t,n) > 0.

Hence Ey(t) = >, f(t,n) >0 for 0 <t < 0.
Given that £(3 + iw) = Ep.(w ) is an entire function in the whole of s-plane, it is finite for real w

and also for w = 0. Hence Ey, (0 f Ey(t)dt is finite. We see that Ey(t) is an analytic function
for real t. Hence Ey(t) => -, f(t n) > 20 is ﬁmte for 0 <t < 0.

Given that Ey(t) = Eo(—t)(|Appendix C.8)), we see that Ey(t) > 0 and finite for all —oco < t < 0.

Appendiz C.8. FEy(t) is real and even

We see that £(5 +iw) = Egu(w) = Eou(—w) (Result 13) because £(s) = (1 — s) (link) and hence
5(% +iw) = f(% — iw) when evaluated at s = % +jw.

We take the Inverse Fourier transform of Fy,(w) and use Ey,(w) = Eg,(—w) from Result 13 and
then substitute w = —w’ in the integrand, as follows.
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1 > ) 1 R .
Ev(t) = 5 / Eou(0)e ' = o / B (—)e™ du

1 o / . /
_ 5/_00 Fou(w)e tde = Bo(—1)

(C.4)

We see that Fy(t) in Eq. [1] is real and Ey(t) in Eq. C.4 is even and hence we have derived the
result that Ey(t) is a real and even function of variable ¢.

Appendix D. Properties of Fourier Transforms Part 1

In this section, some well-known properties of Fourier transforms are re-derived.

Appendiz D.1. Fourier transform of Real g(t)
In this section, we show that the Fourier transform of a real function g(t), given by G(w) =

Gr(w) + iG(w) has the properties given by Ggr(—w) = Gg(w) and G;(—w) = —Gr(w). We use the
fact that g(t) is real and cos (wt) is an even function of w and sin (wt) is an odd function of w below.

Gw) = /00 g(t)e “tdt = Gr(w) +iGr(w)
Gr(w) = /oo g(t) cos (wt)dt = Gr(—w)
Grlw) = — / gt sin (wt)dt = —Gr(—w)

(D.1)

Appendiz D.2. Ewven part of g(t) corresponds to real part of Fourier transform G(w)

In this section, we take the even part of real function g(t), given by geven(t) = 3[g(t) + g(—1)]
and show that its Fourier transform is given by the real part of G(w).

G(w) = /_00 g(t)e ™ dt = Gr(w) +iGr(w)

o0

/_ " Geuen()e 1t = / ) %[g(t) +g(—t)]e "dt = @ + % /_ " gty

[e.9] —00

(D.2)
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We substitute ¢ = —t in the second integral in Eq. D.2. We use the fact that Gr(—w) = Gr(w)
and G;(—w) = —G(w) for a real function g(¢). ([Appendix D.1)

- » Gw) |1 [> . Glw) G(-w)
1wt _ - wt —
/_ geven(t)e dt = 5 + 5 /_OO g(t)e dt 9 + 5

= 2 [GR(w) +iG1(w) + Cr(—w) +iCr(~w)] = 5[Ga(w) +iCr(w) + Calw) — iG1(w)] = Calv)
(D.3)

Appendiz D.3. Odd part of g(t) corresponds to imaginary part of Fourier transform
G(w)

In this section, we take the odd part of real function g(t), given by goga(t) = 3[g(t) — g(—t)] and
show that its Fourier transform is given by the imaginary part of G(w).

Gw) = /_OO g(t)e ™“dt = Gr(w) +iG(w)

[e.e]

| goattetae= [~ Jigte) = gt-otetar = E2 - 2 [ g(-pyera

o — 00 —00

(D.4)

We substitute ¢ = —t in the second integral in Eq. D.4. We use the fact that Gr(—w) = Ggr(w)
and Gj(—w) = —Gr(w) for a real function ¢(¢). (|Appendix D.1))

/oo Goda(t)e™ "' dt = @ - %/Zg(t)ei“’tdt - G(QW) N G(;w)

_ %[GR(W) G (W) — Grl(—w) — iGr(—w)] = %[GR@J) F G (W) — Gr(w) + G (w)] = iGr(w)
(D.5)

Appendiz D.4. Fourier transform of a real and even function ¢(t)

In this section, we show that the Fourier transform of a real and even function g(¢), given by
G(w) is also real and even. We use the fact that [~ g(¢) sinwtdt = 0 because g(t) is even and the
integrand is an odd function of variable t.

G(w) = /_oo g(t)e “tdt = /_oo g(t) coswtdt — i/oo g(t) sinwtdt

[e.9] [e.9] —00

G(w) = /_OO g(t) coswtdt

o0

(D.6)

We see that G(w) = ffooo g(t) coswtdt is real function of w, given that g(¢) and the integrand are
real functions. We see that G(w) is an even function of w because coswt is a even function of w.
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