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Abstract 
 

The dynamic behavior of uniform Bernoulli-Euler beam with elastically supported boundary conditions 
under moving distributed masses and resting on constant foundation is investigated in this research work. 
The governing equation is a fourth order partial differential equation with variable and singular co-
efficients. In order to solve this equation, the method of Galerkin is used to reduce the governing 
differential equation to a sequence of coupled second order ordinary differential equation which is then 
simplified by applying the modified asymptotic method of Struble. The simplified equation is solved 
using the Laplace transform technique. The analysis of the closed form solution in this research work 
shows the conditions for resonance as well as the effects of beam parameters for moving force system 
only. The results in plotted graphs show that as the axial force, foundation modulus and shear modulus 
increase, the transverse deflection of the uniform Bernoulli-Euler beam with elastically supported 
boundary conditions decreases. 
 

 
Keywords: Bi-parametric foundation; shear deformation; resonance; critical speed; natural frequency; 

beam; modified frequency. 
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1 Introduction  
 
Vibration that occurs in structural members, for instance bridges, when moving loads such as lorries, trains, 
cars etc move on them has motivated the interest of several researchers in applied mathematics and 
engineering. Most importantly, dynamic problems involving the behavior of beams on a foundation has been 
tackled earlier by various researchers. The dynamic responses of a beam acted upon by moving masses have 
been studied extensively in connection with the design of railway tracks and machining processes by Lee 
[1]. Oni and Awodola [2] investigated the dynamic behavior under moving concentrated masses of simply 
support rectangular plates resting variable Winkler elastic foundation. Kenny [3] took up the problem of 
investigating the dynamic response of infinite elastic beam on elastic foundation when the beam is under the 
influence of a dynamic load moving with constant speed. Awodola and Oni [4] investigated the dynamic 
response to moving masses of rectangular plates with general boundary conditions. Dynamic problem of a 
simply supported beam subjected to a constant force moving at a constant speed is analyzed by Olsson [5]. 
Cao and Zhong [6] solved the problem of a beam on a Pasternak foundation to distributed moving loads. 
Also Gbadeyan and Dada [7] investigated the dynamic response of plates on Pasternak foundation to 
distributed moving loads. Yin [8] worked on a reinforced Timoshenko beam on elastic foundation and 
derived its closed form solution. Yin [9] carried out work on a comparative modeling study of reinforced 
beam on elastic foundation. Awodola and Oni [10] considered a rectangular plates with general boundary 
conditions resting on a variable Winkler foundation. Adams [11] also considered the critical speeds and the 
response of a tensioned beam on an elastic foundation to repetitive moving loads. In the same vein, 
Ogunyebi [12] considered the problem of Bernoulli-Euler beam response to constant bi-parametric elastic 
foundation carrying moving distributed loads. Adeoye and Awodola [13] investigated the influence of 
rotatory inertial correction factor on the vibration of elastically supported non-uniform Rayleigh beam on 
variable foundation.  
 
In all the aforementioned, no author has ever considered dynamic behavior of beam with elastically 
supported boundary conditions except recently Oni and Awodola [14] but his work was limited to Bernoulli-
Euler beam on variable elastic foundation. None of the authors mentioned above has worked on the 
boundary conditions adopted in this research work. 
 

2 Governing Equation 
 
Considering the dynamic behavior of uniform Bernoulli-Euler beam with elastically supported boundary 
conditions under moving distributed masses and resting on constant foundation; the governing equation of 
motion is given by the fourth order partial differential equation as expressed below:  
 

��

��� ���
��

��� �(�, �)� −N
��

��� �(�, �) +µ
��

��� �(�, �)+���(�, �) − ��
��

��� U(x, t)=P(�, �)                 (2.1) 

 
where � is the spatial co-ordinate, t is the time co-ordinate, U(x,t) is the transverse displacement, EI is the 
flexural rigidity of the structure, µ is the constant mass per unit length of the non-uniform beam, N is the 
constant axial force, ��is the costant foundation modulus,��is the constant shear modulus, and P(x,t) is the 
moving distributed load. 
 

Equation (2.1) can be re-written as  
 

��

��� ���
��

��� �(�, �)� −N
��

��� �(�, �) +µ
��

��� �(�, �)+���(�, �) − ��
��

��� U(x, t) = 

 

� M�gH(x − c�t) �1 −
1

g

d

dt�
U(x, t)�                                                                                                       (2.2)

�

���

 

 
Rewriting equation (2.2) further when considering a unit mass as 
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��

��� ���
��

��� �(�, �)� −N
��

��� �(�, �) +µ
��

��� �(�, �)+���(�, �) − ��
��

��� U(x, t) 

 

+�H(x − �t) �
��

���
+ 2�

��

����
+ ��

��

���
� �(�, �) = ��H(x − ct)                                                   (2.3) 

 

The boundary conditions of the structure under consideration are first taken to be arbitrary.  
 
The initial condition without any loss of generality is taken as; 
 

U(�, �) = U(�, 0) = 0 = 
�

��
�(�, �) =

�

��
�(�, 0)                                                                                        (2.4)

  

3 Analytical Approximate Solution 
 
In order to solve equation (2.3) subject to the condition (2.4), one applies a special technique called the 
generalized Galerkin method is employed. The generalized Galerkin method required that the solution of 
equation (2.1) be written in the form 
 

�(�, �) =  � ��

�

���

(�)��(�)                                                                                                                     (3.1)   

 
where 
 

��(�) =  sin
���

�
+  �� cos

���

�
+  �� sinh

���

�
+ �� cosh

���

�
                                                 (3.2) 

 

is the beam function chosen so that the concerned boundary conditions are satisfied. 
  
Substituting equation (3.2) into equation (2.3), one obtains 
 

��
��

���
� ��(�)��(�)

�

���

− �
��

���
+ �

��

���
� ��(�)��(�)

�

���

+ �� � ��(�)��(�)

�

���

− ��

��

���
� ��(�)��(�)

�

���

+ � �

�

���

H(x − �t) �
��

���
� ��(�)��(�)

�

���

+ 2�
��

����
� ��(�)��(�)

�

���

+ ��
��

���
� ��(�)��(�)

�

���

� =  � ���(� − ��)��(�)��(�)

�

���

                       (3.3) 

 

rewriting equation (3.3), one obtains 
 

� ���(�)��(�)Ÿ�(�) + 
��

�
��

��(�)��(�)Ү�(�) −
�

�
��

��(�)��(�)Ү�(�)

�

���

+  
��

�
��(�)��(�)Ү�(�) −

��

�
��

��(�)��(�)Ү�(�)

+  
�

�
[��(�)��(�)Ÿ�(�) +  2�(cos ���(� − ��)��(�)��(�))Ẏ�(�)

+ ��(cos ���(� − ��)��(�)��(�))��(�)]� �� =  
�

�
���(�)��                  (3.4) 
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In order to determine  ��(�), it is required that the expression on the left hand side of (3.4) be orthogonal to 
the function��(�). Integrating (3.4), one obtains 

 

� � ���(�)��(�)Ÿ�(�) +  
��

�
��

��(�)��(�)Ү�(�) −
�

�
��

��(�)��(�)Ү�(�)

�

���

�

�

+  
��

�
��(�)��(�)Ү�(�) −

��

�
��

��(�)��(�)Ү�(�)

+  
�

�
[��(�)��(�)Ÿ�(�) +  2�(cos ���(� − ��)��(�)��(�))Ẏ�(�)

+ ��(cos ���(� − ��)��(�)��(�))��(�)]� �� =
��

�
� ��(�)��

�

�

             (3.5) 

 

equation (3.5) becomes 

 

� ���(�, �)Ÿ�(�) + [��(�, �) − ��(�, �) + ��(�, �) − ��(�, �)]��(�)

�

���

+
���

��
[���(�, �)Ÿ�(�) + 2����(�, �)Ẏ�(�) + �����(�, �)��(�)]�

=
��

�
��(�)                                                                                                                   (3.6) 

Where, 

 

��(�, �) = � W�(x)W�(x),    ��(�, �) =
��

�
� W�

��(x)W�(x)dx                                         

�

�

           (3.7)

�

�

 

 

��(�, �) =
�

�
� W�

�� (x)W�(x)dx   ,    ��(�, �) =
��

�
� W�(x)W�(x)

�

�

dx                                       (3.8)

�

�

 

 

��(�, �) =
��

�
� W�

��(x)W�(x)dx       , ��(�, �) = � W�(x)W�(x)
�

�

dx

�

�

                                          (3.9) 

 

��(�, �) = � ��
� (x)W�(x)

�

�

dx , ��(�, �) = � ��
��(x)W�(x)

�

�

dx                                                  (3.10) 

 

��(�) = � W�(x)
�

�

dx                                                                                                                                 (3.11) 

 

In order to evaluate the integrals in (3.7) to (3.11), one makes use of the Fourier series representation for the 
Heaviside function in the form 

 

�(� − ��) =
1

4
+

1

�
�

sin�(2� + 1)�(� − ��)�

2� + 1
,

∞

���

         0 < � < 1                                                  (3.12) 
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Thus, substituting equation (3.12) into the equation (3.6),after some simplifications and rearrangement one 
obtains 
 

� ��(�, �)Ÿ�(�) + ��(�, �)��

�

���

(�) + ��[(
1

4
∆�(�, �)

+
1

�
�

cos(2� + 1)���

2� + 1
∆�(�, �) −

1

�

∞

���

�
sin(2� + 1)���

2� + 1

∞

���

∆�(�, �))Ÿ�(�) 

+2� �
1

4
∆�(�, �) +

1

�
�

cos(2� + 1)���

2� + 1
∆�(�, �) −

1

�

∞

���

�
sin(2� + 1)���

2� + 1

∞

���

∆�(�, �)� Ẏ�(�) 

+�� �
1

4
∆�(�, �) +

1

�
�

cos(2� + 1)���

2� + 1
∆�(�, �) −

1

�

∞

���

�
sin(2� + 1)���

2� + 1

∞

���

∆�(�, �)� ��(�)]   

=
Mg�

���

�− cos �� + �� sin �� + �� cosh �� + �� sinh �� + cos
����

�

− �� sin
����

�
− �� cosh

����

�
− �� sinh

����

�
�                                                  (3.13) 

 
where,  
 

λ� =
M

μL
                                                                                                                                                          (3.14) 

 

∆�(�, �) = � � ��(�)��(�)
�

�

��                                                                                                           (3.15) 

 

∆�(�, �) = � � sin(2� + 1)����

�

�

����                                                                                           (3.16)  

 

∆�(�, �) = � � cos(2� + 1)
�

�

��������                                                                                         (3.17)   

 

∆�(�, �) = � � ��
�

�

�

(�)��(�)��                                                                                                          (3.18) 

 

∆�(�, �) = � � sin(2� + 1)����
�

�

�

(�)��(�)��                                                                               (3.19) 

 

∆�(�, �) = � � cos(2� + 1)����
�

�

�

(�)��(�)��                                                                              (3.20) 

 

∆�(�, �) = � � ��
��

�

�

(�)��(�)��                                                                                                          (3.21) 

 

∆�(�, �) = � � sin(2� + 1)����
��

�

�

(�)��(�)��                                                                              (3.22) 

 

∆�(�, �) = � � cos(2� + 1)����
��

�

�

(�)��(�)��                                                                             (3.23)  

 

��(�, �) = ��(�, �) − ��(�, �) + ��(�, �) − ��(�, �)                                                             (3.24)   
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Setting n = m, in equation (3.13), one obtains 
 

��(�, �)Ÿ�(�) + ��(�, �)��(�) + ��[(
1

4
∆�(�, �)

+
1

�
�

cos(2� + 1)���

2� + 1
∆�(�, �) −

1

�

∞

���

�
sin(2� + 1)���

2� + 1

∞

���

∆�(�, �))Ÿ�(�) 

+2� �
1

4
∆�(�, �) +

1

�
�

cos(2� + 1)���

2� + 1
∆�(�, �) −

1

�

∞

���

�
sin(2� + 1)���

2� + 1

∞

���

∆�(�, �)� Ẏ�(�) 

+�� �
1

4
∆�(�, �) +

1

�
�

cos(2� + 1)���

2� + 1
∆�(�, �) −

1

�

∞

���

�
sin(2� + 1)���

2� + 1

∞

���

∆�(�, �)� ��(�)] 

Mg�

���

�− cos �� + �� sin �� + �� cosh �� + �� sinh �� + cos
����

�

− �� sin
����

�
− �� cosh

����

�
− �� sinh

����

�
�                                                  (3.25) 

 
Equation (3.25) is the transformed equation governing the problem of the dynamic response to -moving 
distributed masses of elastically supported Bernoulli-Euler beam resting on bi-parametric elastic foundation. 
This coupled non-homogeneous second order differential equation holds for all variant of the classical and 
non-classical boundary conditions. In what follows, two special cases of the equation (3.13) are considered. 
 

3.1 Moving force problem 
 
In moving force problem, only the load is being transferred to the structure. That is the inertia effect is 
negligible. So setting �� = 0 in the transformed equation (3.25), one obtains 
 

��(�, �)Ÿ�(�) + ��(�, �)��(�) =
Mg�

���

[− cos �� + �� sin �� + �� cosh �� + 

 

�� sinh �� + cos
����

�
− �� sin

����

�
− �� cosh

����

�
− �� sinh

����

�
]                                            (3.26) 

 
Simplifying further, one obtains 
 

Ÿ�(�) + ��
���(�) = ��[��� + cos �� − �� sin ��� − �� cosh ��� − �� sinh ���]                   (3.27) 

 
Where  
 

��� = − cos �� + �� sin �� + �� cosh �� + �� sinh ��                                                                    (3.28) 

 

�� =
���

�����(�, �)
                                                                                                                                      (3.29) 

 

��
� =

��(�, �)

��(�, �)
,                  �� � 

���

�
                                                                                                         (3.30) 

 
equation (3.27) is an approximate model, which assumes the inertia effect of the moving mass as negligible. 
 
Solving equation (3.27) using Laplace transform and convolution theory and taking into account equation 
(3.1), one obtains 
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�(�, �) = �
MgL

μλ
�

A�(m, k)

�

���

×
1

��
�(��

� − ��
�)

{���(1 − cos ���)(��
� − ��

�) + (��
� − ��

�) 

[��
�(cos �� � − cos ���) − ����(�� sin ��� − �� sin ���)] − (��

� − ��
�) 

�B�β
�
�(cosh α�t − cos β

�
t) + C�β

�
(β

�
sinh α�t − α� sin β

�
t)�} 

  × [sin
���

�
+ A� cos

���

�
+ �� sinh

���

�
+ C� cosh

���

�
 ]                                                                 (3.31) 

 
equation (3.31) represents the transverse-displacement of Bernoulli-Euler beam with elastically supported 
end conditions on a bi-parametric elastic foundation. 
 

4 Discussion of the Analytical Solutions 
 
For this undamped system, it is desirable to examine the phenomenon of resonance. From equation 
 

�� = α�                                                                                                                                                            (4.1) 
 
Where 
 

α� =
���

�
                                                                                                                                                          (4.2) 

that is 
 

�� =
���

�
                                                                                                                                                          (4.3) 

 

5 Illustrative Examples 
 
5.1 Clamped-elastic boundary conditions 
 
At a clamped end, both deflection and slope vanish. Thus, when the Bernoulli-Euler beam is clamped 
at � = 0 and elastically supported at � = �, the conditions are expressed as 
 

�(0, �) = 0 = ��(0, �)                                                                                                                                  (5.1) 
 

at the end � = 0 
 

and 
  

��� − ����(�, �) = 0 = ����(�, �) + ���(�, �)                                                                                       (5.2) 
 

at the end � = � 
 
and for the normal modes  
 

��(0) = 0 = ��
� (0)                                                                                                                                    (5.3) 

 

at the end � = 0 
 

and 
 

��
��(�) − ����

� (�) = 0 = ��
���(�) + ����(�)                                                                                    (5.4) 

 
at end � = � 
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which implies that 
 

��(0) = 0 = ��
�(0)                                                                                                                                    (5.5) 

 
and 

��
��(�) − ����

�(�) = 0 = ��
���(�) + ����(�)                                                                                  (5.6) 

 
Using (5.3) and (5.4), it can be shown that at � = 0, 
 

�� = −��and      �� = −1                                                                                                                         (5.7) 
 
and at � = �, one obtains 
 

�� =
��

�
[ ��� ���  ���� ��] � ��[��� �� � ���� ��]

��
�

[��� ��� ���� ��] � �� [��� ��� ���� ��]
=

��
�

�� [��� ��� ���� ��] � ��[���� ��� ��� ��]

���
�

�� [��� ��� ���� ��] � ��[��� ��� ���� ��]
     

= −��                                                                                                                                                       (5.8) 
 
From (5.8)one obtains 
 

tan �� = tanh ��                                                                                                                                          (5.9) 
 
Hence, we have  
 

�� = 3.927, �� = 7.069, ��=10.21,…                                                                                                 (5.10) 
 
Using(5.7) , (5.8) and (5.10)in equation(3.40),one obtains the displacement response respectively to a 
moving force and a moving mass of clamped-elastic ends Bernoulli-Euler beam on a constant foundation. 
 

5.2 Free elastic boundary conditions 
 
For free end at � = 0 and elastically supported at � = �, the conditions are expressed as  
 

���(0, �) = 0 = ����(0, �)                                                                                                                           (5.11) 
 
at the end � = 0 
 
and 
 

���(�, �) − ����(�, �) = 0 = ����(�, �) + ���(�, �)                                                                           (5.12) 
 
at the end � = � 
 
For normal modes 
 

��
��(0) = 0 = ��

���(0)                                                                                                                               (5.13) 
 
at� = 0 
 
and 
 

��
��(�) − ����

� (�) = 0 = ��
���(�) + ����(�)                                                                                  (5.14) 
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at end � = � 
 
which implies that 
 

��
��(0) = 0 = ��

���(0)                                                                                                                               (5.15) 
 
and 

��
��(�) − ����

�(�) = 0 = ��
���(�) + ����(�)                                                                                  (5.16) 

 
Thus, it can be shown that  
 
 �� = 1    and 
 

�� =

��

�
[sinh �� − sin ��] + ��[cosh �� + cos ��]

��

�
[cosh �� − cos ��] − �� [sinh �� − sin ��]

=

��
�

��
[cos �� − cosh ��] − ��[sin �� + sinh ��]

��
�

��
[sin �� + sinh ��] + ��[cos �� + cosh ��]

= ��                               (5.17) 

 
From (5.17)one obtains 
 

tan �� = tanh ��                                                                                                                                       (5.18) 
 
Hence, we have  
 

�� = 3.927, �� = 7.069, ��= 10.21, …                                                                                    (5.19) 
 
Using (5.17)  and (5.19) in equation (3.40), one obtains the displacement response respectively to a moving 
force of free-elastic ends Bernoulli-Euler beam on a constant foundation. 
 

6 Numerical Results and Discussion 
 
To illustrate the analysis presented in this, Bernoulli-Euler beam is taken to be of length L = 12.192m, the 
load velocity c = 8.128m/s and modulus of elasticity � = 2.109 × 10���/� , the moment of inertia 
� = 2.37698 × 10����. 
 

6.1 Graphs for clamped-elastic boundary conditions 
 
Fig. 1 display the effect of foundation modulus on the displacement profile of clamped elastic Bernoulli-
Euler beam under the action of load moving at constant velocity for moving distributed forces. The graph 
shows that the response amplitudes decrease as the value of Ko increases. 
 
Fig. 2 display the effect of shear modulus on the deflection profile of clamped elastic Bernoulli-Euler beam 
under the action of load moving at constant velocity for moving distributed forces. The graph shows that the 
response amplitudes decrease as the value of Go increases. 
 
Fig. 3 display the effect of axial force on the displacement profile of clamped elastic Bernoulli-Euler beam 
under the action of load moving at constant velocity for moving distributed forces. The graph shows that the 
response amplitudes decrease as the value of No increases. 
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Fig. 1. Displacement profile of a clamped elastic uniform Bernoulli- Euler beam on variable 
foundation and traverse by moving distributed for for fixed values of No and Go and  

various values of Ko 
 

 
 

Fig. 2. Displacement profile of a clamped elastic uniform Bernoulli- Euler beam on constant 
foundation and traverse by moving distributed force for fixed values of No and Ko and  

various values of Go 
 

6.2 Graphs for free-elastic boundary conditions 
 
Fig. 4 display the effect of foundation modulus on the displacement profile of free elastic Bernoulli-Euler 
beam under the action of load moving at constant velocity for moving distributed forces. The graph shows 
that the response amplitudes decrease as the value of Ko increases. 
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Fig. 3. Displacement profile of a clamped elastic uniform Bernoulli- Euler beam on constant 
foundation and traverse by moving distributed force for fixed values of  Go and Ko and  

various values of No 
 

 
 

Fig. 4. Displacement profile of a free elastic uniform Bernoulli- Euler beam on constant foundation 
and traverse by moving distributed for for fixed values of No and Go and various values of Ko 

 
Fig. 5 displays the effect of shear modulus on the displacement profile of free elastic Bernoulli-Euler beam 
under the action of load moving at constant velocity for moving distributed forces. The graph shows that the 
response amplitudes decrease as the value of Go increases. 
 
Fig. 6 display the effect of axial force on the displacement profile of free elastic Bernoulli-Euler beam under 
the action of load moving at constant velocity for moving distributed forces. The graph shows that the 
response amplitudes decrease as the value of No increases. 
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Fig. 5. Displacement profile of a free elastic uniform Bernoulli- Euler beam on constant foundation 
and traverse by moving distributed for for fixed values of No and Ko and various values of Go 

 

 
 

Fig. 6. Displacement profile of a free elastic uniform Bernoulli- Euler beam on constant foundation 
and traverse by moving distributed for for fixed values of  Ko and Go and various values of No 

 

7 Conclusion  
 
In this research work, the problem of assessing the dynamic behavior of uniform Bernoulli-Euler beam with 
elastically supported boundary conditions under moving distributed masses and resting on constant 
foundation is considered. The close form solution of the governing fourth order partial differential equation 
with variable and singular coefficients of uniform Bernoulli-Euler beam for moving force is presented. The 
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solutions are analyzed and resonance conditions are obtained for the problem. The results in plotted curves 
show the effects of axial force, shear modulus and foundation modulus on the beam for moving force 
problem only.  
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