

* Corresponding author. E-mail address: renato.miceli@ichec.ie

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Performance Improvement in Kernels by Guiding Compiler

Auto-Vectorization Heuristics

William Killian
a
, Renato Miceli

*b,c
, EunJung Park

a
, Marco Alvarez Vega

a
, John Cavazos

a

aUniversity of Delaware, USA
bIrish Centre for High-End Computing (ICHEC), Ireland

cUniversité de Rennes 1, France

Abstract

Vectorization support in hardware continues to expand and grow as we still continue on superscalar architectures.

Unfortunately, compilers are not always able to generate optimal code for the hardware; detecting and generating vectorized code

is extremely complex. Programmers can use a number of tools to aid in development and tuning, but most of these tools require

expert or domain-specific knowledge to use. In this work we aim to provide techniques for determining the best way to optimize

certain codes, with an end goal of guiding the compiler into generating optimized code without requiring expert knowledge from

the developer. Initially, we study how to combine vectorization reports with iterative compilation and code generation and

summarize our insights and patterns on how the compiler vectorizes code. Our utilities for iterative compilation and code

generation can be further used by non-experts in the generation and analysis of programs. Finally, we leverage the obtained

knowledge to design a Support Vector Machine classifier to predict the speedup of a program given a sequence of optimization.

We show that our classifier is able to predict the speedup of 56% of the inputs within 15% overprediction and 50%

underprediction, with 82% of these accurate within 15% both ways.

1. Introduction

Vectorization support in hardware continues to expand and grow as we still continue on superscalar architectures.

Unfortunately, compilers are not always able to generate optimal code for the hardware; detecting and generating vectorized code

is extremely complex. The Intel Compiler has its own internal heuristics used to determine whether or not code should be

vectorized, but they do not provide direct access for the developer to see why the compiler chooses one optimization over

another. Vectorization reports can help relay information from the compiler to the programmer. Some compilers also provide the

capability for the programmer to aid the compiler with vectorization with the use of compiler-specific pragmas.

The number of tools a programmer can use to aid in development continues to grow, but most of these tools require expert or

domain-specific knowledge to use (e.g. vectorization reports). We aim to provide an iterative compilation method of determining

the best way to optimize certain codes. Intel offers a Vectorization Optimization Guide [16] for their architecture and

development tools, but it cannot directly carry over to other platforms. Stock et al. [28] propose using machine learning

techniques to improve automatic vectorization. Machine learning techniques have also been applied to entire programs and

optimization search spaces to improve execution [7][24]. This existing work is inefficient to our goal because they still require

expert knowledge to set up or optimizations cannot be applied at a granular enough level (per loop).

We aimed to provide a look at how we can combine vectorization reports with iterative compilation and code generation to

show insights and patterns on how the Intel Compiler vectorizes code. We explored various vectorization optimizations to apply

to a given code. Our goal is to provide insights which carry across various benchmarks and codes to help developers guide the

compiler into generating good code without necessarily having expert knowledge.

Our experiments consisted of iterative compilation of a benchmark suite designed for the evaluation of vectorizing compilers

[20] and generated vectorization reports for each code. Categorization and mapping of different microkernels into different

classes were performed to help classify them by how the compiler was able to improve performance. The same experiment was

 Performance Improvement in Kernels by Guiding Compiler Auto-Vectorization Heuristics

 2

then done on a more complex set of kernels designed for polyhedral compilers as a way to see how the work scales to larger

programs.

To aid with iterative compilation, we created two utilities. One is a source-to-source compiler which translates a simplified

directive language to a specific directive language supported by a given compiler (e.g. Intel Compiler). The other utility performs

iterative compilation among a set of optimizations to apply more than once in a given program. The creation of these utilities can

help non-experts in the generation and analysis of programs.

Finally, we leveraged the knowledge we obtained with the tuning work to specify a machine learning classifier to predict the

speedup of a benchmark given a sequence of optimizations. We could then use our SVM-based predictor to choose the

optimization sequence to apply that yields the best speedup. Experiments show that our classifier predicted the speedup of 56%

of our benchmarks within 15% overprediction and 50% underprediction, with 82% of these accurate within 15% both ways.

The results of this work can help programmers tailor their applications to take the most out of their vectorizable codes. The

iterative compilation utilities can be especially useful when exploring tuning options during the code optimization phase. The

SVM-based predictor can be used as part of a general-purpose auto-tuning strategy that does not require human interaction.

In this work we make the following contributions:

1. VALT – a directive compiler used to simplify code generation across different compiler backends;

2. autovec – an iterative compiler utility to generate different versions of the same code;

3. Insights and categorization of benchmarks based on vectorization reports, speedup, and accuracy of different

versions; and

4. An SVM-based speedup predictor capable of predicting the speedup of simple loop nests within 15% accuracy 45%

of the time.

The rest of the paper is outlined as follows: Section 2 goes over the command-line and directive-based compiler optimizations

which can be applied to a program. Section 3 introduces the kernels used in the evaluation of our work. Section 4 describes our

VALT and autovec tools used for version generation. Our vectorization analysis is illustrated in Section 5. The SVM predictor

is introduced and evaluated in Section 6. We go over related work and future work in Sections 7 and 8, respectively. The paper

ends with the Conclusions and Acknowledgements, highlighting the main contributions of this work.

2. Intel Compiler Optimizations

The Intel C++ Compiler version 14.0.2 offers many optimization options for the programmer. Some of these are restricted to

command-line flags, while others must be inserted as directives into the original code. This section addresses the relevant

optimization flags and directives used in this work.

2.1 Command-Line Flags

All configurable programmer-passed optimizations happen through command-line flags. When performing code optimization,

optimization-level flags (-O2, -O3) tend to be the most commonly used. In addition to specifying a set of optimizations to apply,

the programmer is also able to specify the target architecture and modify the default code generation rules. Listed below are

relevant command-line flags used in this work.

 -O3 – apply all -O1 and -O2 optimization sets in addition to a new set. A full list of these optimizations are

viewable from the Intel C++ Compiler reference guide [17].

 -xHOST – specify the architecture that we are optimizing for is the same one we are compiling on. This is equivalent

to specifying the native architecture on your system. For our experiments, -xAVX2 would be applicable to the

Haswell (HSW) microarchitecture and -xSSE4.2 would be applicable to the Nehalem (NHM) microarchitecture.

 -vec / -no-vec – specify whether or not any generated code should be vectorized. -vec permits any amount of

generated code to be vectorized while -no-vec prevents any code from being vectorized.

We used the command-line flags to drive native code generation for the platform we were executing on.

2.2 Source Code Directives

In addition to command-line flags, the Intel Compiler is also capable of processing programmer-placed directives (in C/C++

written as #pragma <opt>). Many of these are specific to the Intel Compiler; however, some of them are gaining support in

other compilers such as GCC [12].

Here, we will look at a subset of directives offered in the Intel Compiler, specifically those that aid with vectorized code

transformations and generation.

 #pragma vector always – compiler will ignore the speedup factor when considering vectorization. If the

compiler believes the code will execute slower with vectorization, it will still vectorize the loop.

 #pragma ivdep – compiler will ignore all unproven interloop dependences. Note that all proven dependences will

not be vectorized.

 #pragma simd [vectorlength(n)] – compiler will ignore all dependences and reductions. Everything

related to vectorization is left for the programmer to manage. An optional argument for simd is specifying a vector

 Performance Improvement in Kernels by Guiding Compiler Auto-Vectorization Heuristics

 3

length. This value is passed to the compiler to state how many safe iterations can be done at once.

Such as in previous works [9] we used the source code directives to drive the optimization selection and modification to show

that we can guide the vectorization heuristics to improve performance.

3. Kernels

To evaluate the Intel Compiler's built-in vectorization heuristics, a set of benchmarks were used to determine performance

improvement. Two sets of benchmarks were used for this work. The first set, Test Suite for Vectorizing Compilers [20] is an

extension and modification of a test suite for vectorizing Fortran compilers in the late 1980’s [4]. The second set of kernels are

the Polybench kernels stemming from Pouchet’s work with Polyhedral Compilers [27].

3.1 Test Suite for Vectorizing Compilers

The Test Suite for Vectorizing Compilers contains over 150 different loop nests which iterate over different access patterns,

computations, and memory access types (e.g. single value, (un)aliased pointers). The test suite was designed to evaluate how

well compilers were able to recognize patterns which could be vectorized and apply them. For this work, we were using this test

suite to evaluate and see which built-in heuristics in the Intel compiler may not enable the best performance while maintaining

numerical correctness. By issuing varying directives, we were able to relax Intel Compiler’s built-in heuristics and instead see

how applying optimizations, perhaps unsafely by the compiler’s view, adjusts the performance of the loop nest. For sake of code

re-use and to simplify generation and execution, each loop nest was placed in its own file.

3.2 Polybench

Polybench/C 3.2 contains 30 different static control-flow micro-benchmarks deriving from several scientific domains (e.g.

linear algebra, machine learning, image processing). As with the Test Suite for Vectorizing Compilers, we have used these

kernels to explore the potential increase in performance. No modifications were made to the original kernels; only directives

were programmatically inserted.

4. Version Generation

We developed two utilities in order to help with version generation for iterative compilation. autovec is a source-to-source

compiler which translates a simplified directive language to a specific directive language supported by a given compiler (e.g.

Intel Compiler). VALT performs iterative compilation among a set of optimizations to apply more than once in a given program.

These utilities can help nonexperts in the generation and analysis of programs, and have been used here to understand the inner

workings of the compiler’s vectorization strategies.

4.1 autovec

For version generation of each kernel, we used scripts with placeholder directives to drive which optimization was to be used

on a per-loop basis. We defined our own directive language, autovec (autovectorizer), to aid with this task.

autovec directive Intel-specific pragma

permute generate each version

vl(x) simd vectorlength(x)

always vector always

ivdep Ivdep

none <nothing>

Table 1: autovec directive support and translation

Table 1 shows the possible directives we can parse and generate with autovec. When autovec is given a permute

argument before a loop, the tool will permute through all loop optimizations and generate a different version. As multiple loops

are issued with this command, the number of possible versions of a single kernel grows exponentially.

Benchmarks Versions

3 6

125 36

21 216

2 1,296

Type Count

Total 11,646

Correct 10,026

Incorrect 1,612

Compile Error 8

Table 2: Code version size and analysis for TSVC

 Performance Improvement in Kernels by Guiding Compiler Auto-Vectorization Heuristics

 4

For TSVC, the number of versions explored can be observed in Table 2. Version generation can generate unsafe code as well.

Table 2 also shows versions of code which are (a) safe and adhere to the original implementation, (b) unsafe and cause a variance

in result, and (c) invalid and could not even compile.

For Polybench we had to reduce our search space intelligently as one kernel had 10 different loops within a single loop nest.

Since some vectorization directives cannot be applied in a nested manner, we were able to reduce the search space by three

orders of magnitude.

4.2 VALT

An extension to autovec was also created with additional optimizations also permitted. VALT (vectorization and loop

transformation) enables a developer to quickly specify which vectorization and loop transformation directives to apply to a given

loop. Backends exist for both Intel compiler (Intel-specific pragmas) and CAPS compiler [5] (hmppcg directive support).

VALT directive Intel-specific pragma

vector(default) <no code emmited>

vector(none) Novector

vector(always) vector always

vector(ignore) Ivdep

vector(aligned) vector aligned

vector(temp) vector temporal

vector(nontemp) vector nontemporal

vectorsize(x) simd vectorlength(x)

loop(unroll(x)) unroll(x)

loop(jam(x)) unroll_and_jam(x)

loop(nofusion) Nofusion

Loop(dist) distribute_point

Table 3: VALT directive language translation for Intel-specific pragmas

Table 3 shows how VALT directives directly translate to Intel-specific pragmas. For this work we limited our use of VALT to

only be used for vectorization directives.

5. Vectorization Analysis

Intel Compiler v14.0.2 was used for all experiments throughout this research. Table 4 shows the machine configuration used

for both the analysis and speedup predictor.

 Analysis Predictor

Processor i7-4960HQ i7-950

Clock Rate 2.6GHz (3.8GHz) 3.06GHz

L3 Cache 6MB 8MB

On-Chip Memory 128MB –

Shared Memory 16GB DDR3-1600 24GB DDR3-1333

Table 4: Machine Configurations

All time measurements were performed in cycles so any issue related to dynamic frequency scaling affecting performance

was mitigated. Speedups were measured as compared to the “default” optimization configuration: no added directives and

compiled with -O3 -xHOST -vec. Intel vectorization reports (-vec-report6) were also obtained to aid in classification

and to see why the compiler chose not to vectorize some loop nests.

(17): loop was not vectorized: existence of vector dependence

(19): vector dependence: assumed ANTI dependence a(19) and a(18)

(18): vector dependence: assumed FLOW dependence a(18) and a(19)

(18): vector dependence: assumed FLOW dependence a(18) and a(19)

(19): vector dependence: assumed ANTI dependence a(19) and a(18)

(15): loop was not vectorized: not inner loop

(13): loop was not vectorized: not inner loop

Figure 1: A sample vectorization report

Figure 1 shows a sample vectorization report where the Intel Compiler did not vectorize the loop because of assumed vector

dependences and being unable to vectorize non-inner loops. The original benchmark’s vectorization report was compared to each

 Performance Improvement in Kernels by Guiding Compiler Auto-Vectorization Heuristics

 5

new version’s vectorization report. With this additional information, we were able to identify patterns and trends based on

1. How the optimizations applied affect performance

2. Which loop nests the Intel Compiler did not want to vectorize

3. Why the Intel Compiler did not want to vectorize

4. How the optimizations applied affected further loop optimization (e.g. loop unrolling, additional vectorization)

5.1 TSVC

There were 27 loop nests where the optimizations with the best speedup were unsafe – that is the compiler heuristics correctly

prevented unsafe code from being generated. That said, 124 loop nests had optimizations with the best speedup being safe, with

one in particular executing over 50× faster than the default.

Speedup Count Total

> 1.00× 16 151

> 1.01× 30 135

> 1.05× 22 105

> 1.10× 23 83

> 1.50× 12 60

> 2.00× 24 48

> 4.00× 16 24

> 8.00× 8 8

Table 5: Best speedup by iterative compilation

Table 5 shows that 105 loop nests achieved a speedup greater than 5%. For speedups less than 8× the primary reason for

improved speedup was due to reduced cache misses and SIMD instruction execution. For the case of one benchmark (s257)

where the speedup was 57×, improved data access, SIMD instruction execution, and reduced TLB/page lookups were observed.

(a) Good speedup observed; no invalid code generation (b) Good speedup observed with invalid code faster

(c) No speedup observed; invalid code generation faster (d) No speedup observed; invalid code generation

Figure 2: TSVC loop nest optimizations and speedup comparison (valid code generation is in green; invalid is in red)

Figure 2 shows sample performance analysis of four different TSVC loop nests and demonstrate varying level of correctness.

Figure 2a shows a loop nest where good speedup was observed with no invalid code generation. This is the ideal case. Figure

Figure 2b shows a loop nest with good speedup observed, but the fastest speedup occurred with invalid code. Likewise, invalid

code generation can occur with no speedup observed with valid code generation as shown in Figure 2c. Sometimes, no variation

with valid code generation produced a speedup. In this situation illustrated by Figure 2d, any optimization either does nothing or

produces invalid code.

For loops which saw low (or no) speedup improvements, there were a few varying reasons why.

1. Loops were not vectorizable by the nature of the computation. This caused unsafe code generation (and therefore

excluded).

2. Loops were already highly optimized by the compiler. Sometimes what the Intel Compiler did for code generation

was already the best. This could be observed by comparing -vec and -no-vec generated code to the best-

optimized code.

3. Improved code generation for SIMD instructions caused a bandwidth and data access issue which increased the

 Performance Improvement in Kernels by Guiding Compiler Auto-Vectorization Heuristics

 6

number of stalls from cache invalidation. This was verified with profiling and comparing the generated optimized

assembly code to the default.

Furthermore, we were able to classify TSVC loop nests into a few different categories.

Figure 3 gives an overview of the category composition while the description for the categories is found here:

1. Non-vectorizable – Loop nests which were not vectorizable. There were 16 benchmarks (11%) that are not

vectorizable as indicated by the optimized version vectorization report and minimal/non-existing speedup observed.

2. Known vectorization pattern – Loop nests which could be vectorized by the compiler with minimal additional

speedup observed after optimizing. A total of 69 benchmarks (46%) fell into this category. This suggests that overall,

the Intel Compiler is able to vectorize code well with its built-in heuristics although they are not always optimal.

3. Inner-loop vectorizable – Loop nests which were not initially vectorized well but were better optimized with a

#pragma simd directive placed in an inner loop. 12 of the loop nests (8%) were observed to be inner-loop

vectorizable with a speedup of at least 2×.

4. Outermost-loop vectorizable – Loop nests which were not initially vectorized well but were better optimized with a

#pragma simd directive placed in the outermost loop of the loop nest. 54 of the loop nests (35%) were observed

to be outermost-loop vectorizable with a speedup of at least 2×.

5.2 Polybench

Polybench kernels are more complex than the TSVC loop nests. First, they can have more than one loop nest. Second, they

can operate on multiple data elements at one time, potentially causing cache contention with different data structures at the same

time. Polybench kernels can be grouped into a few different categories for the vectorization analysis:

1. Known kernel – The loop nest and access pattern match a known kernel which the Intel Compiler knows how to

optimize well. 2mm, 3mm, and gemm are all known kernels of the Intel compiler. All three of these benchmarks had

extremely high speedups when the -no-vec baseline was compared against the -vec vectorized code. Although

they had high speedups when compared to -no-vec, almost no speedup was observed when -vec was compared

to the best optimization sequence.

2. Known loop nest – The loop nest structure is identified by the compiler and the optimization is performed. trmm,

gemver, gesummv, symm, and mvt are all kernels where some or all of their loop nests are known by the compiler.

Here a portion of the code is highly optimized for the access pattern. Unfortunately, sometimes the compiler’s

heuristics prevent some optimizations from being applied (see symm and mvt).

3. Known access pattern – The access pattern structure is identified and loop reordering is performed by the compiler to

improve vectorization. atax and trisolv are examples of kernels where the compiler is aware of the access

pattern and can optimize accordingly. trisolv has a triangular access pattern while atax performs a

multiplication and transpose – both are access patterns which the Intel Compiler can optimize.

4. Unknown – The compiler’s heuristics could not classify it into any of the three prior mentioned categories. The

remaining kernels in general fall into this category. Here the loop nest structure cannot easily be optimized due to

iteration dependence. If forced to vectorize, the generated code would most likely be incorrect. These are the kernels

where the loop analysis heuristics of the compiler are used to determine potential optimizations.

Figure 3: Categorization of TSVC loop nests

 Performance Improvement in Kernels by Guiding Compiler Auto-Vectorization Heuristics

 7

For every kernel which was not known, the best optimization sequence yielded unsafe optimizations. For most kernels, there

was not a large improvement in speedup with the optimization search space.

Speedup Type Right Miss Wrong Kernels

< 1.05× Known 5 2 3 durbin, gemm, 2mm, 3mm, cholesky, lu-bench, jacobi-1d

< 1.10× Loop Nest 4 3 2 trmm, gemver, gesummv, mvt, symm, syr2k, syrk

< 3.00× Access 4 1 2 trmm, gemver, gesummv, mvt, symm, syr2k, syrk

> 3.00× Unknown 6 2 4 adi, bicg, correlation, covariance, dynprog, fdtd-2d,

floyd-warshall, grammschmidt

Table 6: Polybench kernel classification and speedup ranges

Table 6 shows the correlation between the classification of the Polybench kernels to a speedup range. By following the

guidelines established the different classifications, speedup thresholds were used to determine how accurate each classification

would be based on type. On average we were correct 50% of the time when we consider all kernels. When we ignored those that

were wrong and instead focused on how they were classified and missed, the classification rate was 70%.

6. SVM-Based Speedup Predictor

Given the speedup information based on different optimizations for a collection of loop nests and kernels, an end goal would

be to automate the prediction of the speedup of a benchmark given some input data and the optimization sequence targeted to a

particular code.

6.1 Performance Counters

Performance counters have been used by Cavazos et al. [7] and Park et al. [24] for optimization selection on a larger scale, but

never at a per-loop basis. We collected 45 different performance counters categorized into one of the following information

areas:

 L1, L2, and L3 cache information

 TLB information

 Cache line access

 Branch instructions

 Floating-point instructions and SIMD

 Load-store instructions

 Cycle/Interrupt/Stalls/Instruction information

We used PAPI [2] for the automated collection of performance counters during execution. We modified a single, common

header file across the benchmarks to include the performance counter selection so no benchmark codes needed changes.

6.2 Experiment Configuration

We used the 151 TSVC loop nests as training data for our SVM-based speedup predictor model. For training with a support

vector machine (SVM) classifier, we need to specify our feature vector. Our feature vector consists of the 45 different

performance counters normalized to the number of instructions executed, the speedup of the vectorized code over non-vectorized

Figure 4: Best speedup by iterative compilation (incl. invalid code generation) for Polybench (mean results are in gray)

 Performance Improvement in Kernels by Guiding Compiler Auto-Vectorization Heuristics

 8

code, the optimization bit vector, and the speedup of the optimized code over vectorized code.

The feature vector is described in greater detail including composition in Figure 5. The optimization bit vector format is

described in Table 7. Each additional bit set indicates a stricter level of optimization.

Bit Configuration Optimization

00000 No Optimization

10000 #pragma vector always

11000 #pragma ivdep

11100 #pragma simd vectorlength(2)

11110 #pragma simd vectorlength(4)

11111 #pragma simd vectorlength(8)

Table 7: Optimization bit vector configuration

Multiple loops for a given code would increase the number of optimization bit vectors. Because of potential ambiguity, we

elected to have the optimizations listed in source code line order. For the case of TSVC loop nests, no loop nest exists for size

greater than 4. To simplify training and classification, any loop nests of size less than 4 were padded with 0 indicating no further

optimization to be applied.

Table 4 presents the machine configuration we used to collect all training data for prediction.

6.3 Prediction Results

The predictor model we used targets single loop nests, so using the Polybench programs with this model was not applicable.

Instead, we favored the TSVC loop nests to see how well our support vector machine model would be able to predict speedup.

We tested our trained models with leave-one-out cross validation (LOOCV). For a given loop nest found in the TSVC set, we

constructed a model based on the other 150 loop nests and compared the model’s prediction to the actual speedup observed for

the model. The same procedure was done for all other loop nests.

To evaluate our model, we defined a metric to compare our predicted speedup to the best actual speedup observed. This

metric is defined as:

𝐸 =
𝑆𝑏𝑒𝑠𝑡 − 𝑆𝑝𝑟𝑒𝑑

𝑆𝑝𝑟𝑒𝑑

When E is less than 0, then our predictor overestimated speedup. Likewise, any value greater than 0 indicates our predictor

underestimated the speedup.

Percentile Type Count

0.15 Under 45

0.50 Under 15

1.00 Under 12

2.00 Under 16

> 2.00 Under 27

0.15 Over 24

> 0.15 Over 12

Table 8: Speedup Predictor Accuracy

Table 8 shows how our predictor performs with the count of each benchmark in each area. 84 of the 151 loop nests were

accurate within 15% overprediction and 50% underprediction. 5 of the overpredictions were on loop nests which were non-

vectorizable.

The SVM-based predictor cannot accurately predict speedup for over 44% of the loop nests. For 46% of the loop nests, the

Figure 5: SVM feature vector description and format

 Performance Improvement in Kernels by Guiding Compiler Auto-Vectorization Heuristics

 9

speedup predictor is accurate within 15%. Analysis of the types of loop nests and their predicted speedup did not show a

correlation between the types of benchmarks which were under-predicted vs. over-predicted.

7. Related Work

The closest work related to this research is Stock’s article on Using machine learning to improve automatic vectorization

[28]. The major limiting contribution of this work is the scope of the class of loops which the model is able to optimize (tensor

and stencils). Their training model is derived from information within the inner-most loop and vectorization information. A

takeaway from their work was the importance of (a) a single feature alone does not correlate to good performance and (b) a

weighted rank model always outperformed SVM. Additional work has been divided into three main categories: Vectorization,

Compiler Optimization, and Machine Learning.

7.1 Vectorization

Callahan [4] created an initial set of micro-benchmarks to evaluate the vectorization capability of compilers. The benchmarks

were written in Fortran and the case study was performed at the infancy of SIMD in consumer, general-purpose hardware.

Maleki et al. [20] extended the original benchmark suite to support C as well as the addition of several more micro-benchmarks.

Maleki then manually modified some codes that did not vectorize which could ultimately be vectorized. Our work builds on

Maleki’s contribution by automatically relaxing vectorization heuristics to properly vectorize certain benchmarks.

Henretty [13] was able to improve vectorization of stencil applications with a compiler focused on stencil codes, but does not

extend to other types of kernels. Nuzman [23] improved performance of kernels with outer-loop vectorization on CBE and

PowerPC architectures. Our work extends this by targeting Intel microarchitectures automatically with the use of the #pragma

simd directive.

Holewinski [15], Evans [10], and Barik [3] used trace information to determine vectorization potential and automate the

selection of vector instructions. Hohenauer [14] proposed a framework to enable retargetable compilers to emit more appropriate

SIMD instructions. McFarlin et al. [21] automatically vectorized FFT kernels. Both of these works focused on modifying or

constructing a compiler to perform the optimizations. McFarlin’s work is limited in scope to FFT kernels while Hohenauer’s

work cannot be easily extended to new architectures or compilers.

7.2 Compiler Optimization

Kong et al. used Polyhedral transformations to help drive improved vectorization [18]. This method can help improve

performance, but it does not help determine where or why existing compilers cannot better optimize certain code. Pouchet et al.

[26] used iterative and model-driven optimizations to drive auto-parallelization. The same can be done for auto-vectorization.

7.3 Machine Learning

Park et al. [24][25], Dubach et al. [8], and Cavazos et al. [6][7] focused on using machine learning methods to construct

prediction models based on performance counters. Park extended the existing work by using graph-based program

characterization. Agakov [1] used machine learning to reduce and eliminate branches of optimizations being applied. Work has

also been done in the area of finding which features to use for machine learning models for optimized compilation [19].

8. Future Work

We plan to continue development of VALT to support multiple compiler backends and extend autovec to other types of

directive-based optimizations. PGI Compilers have their own directive language; we could construct a backend for VALT to emit

the PGI directives for cross-compiler analysis on the same architecture. autovec could also switch from an iterative code

generator to an auto-tuner capable of some intelligent selection of optimizations to explore, thus we could consider its inclusion

in general-purpose auto-tuning frameworks [11][22].

We intend to switch to a graph-based speedup predictor as the SVM-based predictor did not perform as well as we hoped.

Using a graph-based speedup predictor would also allow to extend the classes of micro-benchmarks to go beyond simple loop

nests (those provided in TSVC) and extend to non-perfectly-nested loops (such as Polybench).

Due to increased support of vectorization directives such as #pragma simd and #pragma ivdep we will be able to

extend this existing work directly to compilers such as GCC 4.9. In addition to considering other compilers, we could explore

architectures with wider vectorization sizes such as the Intel Xeon Phi (Knight’s Corner) and the upcoming Knight’s Landing

microarchitecture where AVX-512 is supported in GCC and Intel Compiler.

 Performance Improvement in Kernels by Guiding Compiler Auto-Vectorization Heuristics

 10

Conclusions

In this paper we provided techniques, both manual and automatic, for determining the best way to optimize programs

regarding their vectorization capabilities. Initially, we studied how to combine vectorization reports with iterative compilation

and code generation and summarized our insights and patterns on how the compiler vectorizes code. The utilities we developed

for iterative compilation and code generation can be further used by non-experts in the generation and analysis of programs.

Finally, we leveraged the obtained knowledge to design a Support Vector Machine classifier to predict the speedup of a program

given a sequence of optimization. We showed that our classifier is able to predict the speedup of 56% of the inputs within 15%

overprediction and 50% underprediction, with 82% of these accurate within 15% both ways.

The results of this work can help programmers tailor their applications to take the most out of their vectorizable codes. The

iterative compilation utilities can be especially useful when exploring tuning options during the code optimization phase. The

SVM-based predictor can be used as part of a general-purpose auto-tuning strategy that does not require human interaction.

Overall, the contributions introduced in this paper can help programmers guide the compiler into generating optimized code

without requiring expert knowledge on the compiler inner workings or the underlying architecture.

Acknowledgements

This work was supported by the European Union’s Seventh Framework Programme for research, technological development

and demonstration under grant agreement no. RI-283493. The authors would like to thank the FP7 AutoTune project (grant

agreement no. 288038) for their collaboration in this work.

References

[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. O’Boyle, J. Thomson, M. Toussaint, and C. Williams. Using

machine learning to focus iterative optimization. In Code Generation and Optimization, 2006. CGO 2006. International

Symposium on, pages 11 pp.–, March 2006.

[2] I. C. L. at University of Tennessee. Performance application programming interface. Online, Dec 2014.

[3] R. Barik, J. Zhao, and V. Sarkar. Automatic vector instruction selection for dynamic compilation. In Proceedings of the 19th

International Conference on Parallel Architectures and Compilation Techniques, PACT ’10, pages 573–574, New York,

NY, USA, 2010. ACM.

[4] D. Callahan, J. Dongarra, and D. Levine. Vectorizing compilers: A test suite and results. In Proceedings of the 1988

ACM/IEEE Conference on Supercomputing, Supercomputing ’88, pages 98–105, Los Alamitos, CA, USA, 1988. IEEE

Computer Society Press.

[5] CAPS Entreprise. Caps compilers. Online, May 2014.

[6] J. Cavazos, C. Dubach, F. Agakov, E. Bonilla, M. F. P. O’Boyle, G. Fursin, and O. Temam. Automatic performance model

construction for the fast software exploration of new hardware designs. In Proceedings of the 2006 International

Conference on Compilers, Architecture and Synthesis for Embedded Systems, CASES ’06, pages 24–34, New York, NY,

USA, 2006. ACM.

[7] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. O’Boyle, and O. Temam. Rapidly selecting good compiler optimizations

using performance counters. In Code Generation and Optimization, 2007. CGO ’07. International Symposium on, pages

185–197, March 2007.

[8] C. Dubach, J. Cavazos, B. Franke, G. Fursin, M. F. O’Boyle, and O. Temam. Fast compiler optimization evaluation using

code-feature based performance prediction. In Proceedings of the 4th International Conference on Computing Frontiers, CF

’07, pages 131–142, New York, NY, USA, 2007. ACM.

[9] B. Eagan, G. Civario, and R. Miceli. Investigating performance benefits from openacc kernel directives. In M. Bader, A.

Bode, H.-J. Bungartz, M. Gerndt, G. R. Joubert, and F. Peters, editors, Parallel Computing: Accelerating Computational

Science and Engineering (CSE), volume 25 of Advances in Parallel Computing, pages 616–625. IOS Press, 2014.

[10] G. C. Evans, S. Abraham, B. Kuhn, and D. A. Padua. Vector seeker: A tool for finding vector potential. In Proceedings of

the 2014 Workshop on Programming Models for SIMD/Vector Processing, WPMVP ’14, pages 41–48, New York, NY,

USA, 2014. ACM.

[11] G. Fursin, R. Miceli, A. Lokhmotov, M. Gerndt, M. Baboulin, A. D. Malony, Z. Chamski, D. Novillo, and D. Del Vento.

Collective mind: Towards practical and collaborative auto-tuning. Scientific Programming, 22(3), Sept. 2014.

[12] GCC Team. Gcc 4.9 release series changes, new features, and fixes. Online, May 2014.

[13] T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet, J. Ramanujam, and P. Sadayappan. A stencil compiler for short-vector

simd architectures. In Proceedings of the 27th International ACM Conference on International Conference on

Supercomputing, ICS ’13, pages 13–24, New York, NY, USA, 2013. ACM.

[14] M. Hohenauer, F. Engel, R. Leupers, G. Ascheid, and H. Meyr. A simd optimization framework for retargetable compilers.

ACM Trans. Archit. Code Optim., 6(1):2:1–2:27, Apr. 2009.

[15] J. Holewinski, R. Ramamurthi, M. Ravishankar, N. Fauzia, L.-N. Pouchet, A. Rountev, and P. Sadayappan. Dynamic trace-

based analysis of vectorization potential of applications. In Proceedings of the 33rd ACM SIGPLAN Conference on

 Performance Improvement in Kernels by Guiding Compiler Auto-Vectorization Heuristics

 11

Programming Language Design and Implementation, PLDI ’12, pages 371–382, New York, NY, USA, 2012. ACM.

[16] Intel Corporation. A guide to auto-vectorization with intel c++ compilers. Online, April 2012.

[17] Intel Corporation. User and reference guide for the intel c++ compiler 14.0. Online, September 2013.

[18] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and P. Sadayappan. When polyhedral transformations meet simd

code generation. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’13, pages 127–138, New York, NY, USA, 2013. ACM.

[19] H. Leather, E. Bonilla, and M. O’Boyle. Automatic feature generation for machine learning-based optimising compilation.

ACM Trans. Archit. Code Optim., 11(1):14:1–14:32, Feb. 2014.

[20] S. Maleki, Y. Gao, M. Garzaran, T. Wong, and D. Padua. An evaluation of vectorizing compilers. In Parallel Architectures

and Compilation Techniques (PACT), 2011 International Conference on, pages 372–382, Oct 2011.

[21] D. S. McFarlin, V. Arbatov, F. Franchetti, and M. Püschel. Automatic simd vectorization of fast fourier transforms for the

larrabee and avx instruction sets. In Proceedings of the International Conference on Supercomputing, ICS’11, pages 265–

274, New York, NY, USA, 2011. ACM.

[22] R. Miceli, G. Civario, A. Sikora, E. César, M. Gerndt, H. Haitof, C. Navarrete, S. Benkner, M. Sandrieser, L. Morin, and F.

Bodin. Autotune: A plugin-driven approach to the automatic tuning of parallel applications. In P. Manninen and P. Öster,

editors, Applied Parallel and Scientific Computing, volume 7782 of Lecture Notes in Computer Science, pages 328–342.

Springer Berlin Heidelberg, 2013.

[23] D. Nuzman and A. Zaks. Outer-loop vectorization: Revisited for short simd architectures. In Proceedings of the 17th

International Conference on Parallel Architectures and Compilation Techniques, PACT ’08, pages 2–11, New York, NY,

USA, 2008. ACM.

[24] E. Park, J. Cavazos, and M. A. Alvarez. Using graph-based program characterization for predictive modeling. In

Proceedings of the Tenth International Symposium on Code Generation and Optimization, CGO ’12, pages 196–206, New

York, NY, USA, 2012. ACM.

[25] E. Park, L.-N. Pouche, J. Cavazos, A. Cohen, and P. Sadayappan. Predictive modeling in a polyhedral optimization space.

In Code Generation and Optimization (CGO), 2011 9th Annual IEEE/ACM International Symposium on, pages 119–129,

April 2011.

[26] L. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, and P. Sadayappan. Combined iterative and model-driven

optimization in an automatic parallelization framework. In High Performance Computing, Networking, Storage and

Analysis (SC), 2010 International Conference for, pages 1–11, Nov 2010.

[27] L. N. Pouchet. Polybench/c: the polyhedral benchmark suite. Online, March 2012.

[28] K. Stock, L.-N. Pouchet, and P. Sadayappan. Using machine learning to improve automatic vectorization. ACM Trans.

Archit. Code Optim., 8(4):50:1–50:23, Jan. 2012.

