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Abstract 

Vectorization support in hardware continues to expand and grow as we still continue on superscalar architectures. 

Unfortunately, compilers are not always able to generate optimal code for the hardware; detecting and generating vectorized code 

is extremely complex. Programmers can use a number of tools to aid in development and tuning, but most of these tools require 

expert or domain-specific knowledge to use. In this work we aim to provide techniques for determining the best way to optimize 

certain codes, with an end goal of guiding the compiler into generating optimized code without requiring expert knowledge from 

the developer. Initially, we study how to combine vectorization reports with iterative compilation and code generation and 

summarize our insights and patterns on how the compiler vectorizes code. Our utilities for iterative compilation and code 

generation can be further used by non-experts in the generation and analysis of programs. Finally, we leverage the obtained 

knowledge to design a Support Vector Machine classifier to predict the speedup of a program given a sequence of optimization. 

We show that our classifier is able to predict the speedup of 56% of the inputs within 15% overprediction and 50% 

underprediction, with 82% of these accurate within 15% both ways. 
 

 

 

1. Introduction 

Vectorization support in hardware continues to expand and grow as we still continue on superscalar architectures. 

Unfortunately, compilers are not always able to generate optimal code for the hardware; detecting and generating vectorized code 

is extremely complex. The Intel Compiler has its own internal heuristics used to determine whether or not code should be 

vectorized, but they do not provide direct access for the developer to see why the compiler chooses one optimization over 

another. Vectorization reports can help relay information from the compiler to the programmer. Some compilers also provide the 

capability for the programmer to aid the compiler with vectorization with the use of compiler-specific pragmas. 

The number of tools a programmer can use to aid in development continues to grow, but most of these tools require expert or 

domain-specific knowledge to use (e.g. vectorization reports). We aim to provide an iterative compilation method of determining 

the best way to optimize certain codes. Intel offers a Vectorization Optimization Guide [16] for their architecture and 

development tools, but it cannot directly carry over to other platforms. Stock et al. [28] propose using machine learning 

techniques to improve automatic vectorization. Machine learning techniques have also been applied to entire programs and 

optimization search spaces to improve execution [7][24]. This existing work is inefficient to our goal because they still require 

expert knowledge to set up or optimizations cannot be applied at a granular enough level (per loop). 

We aimed to provide a look at how we can combine vectorization reports with iterative compilation and code generation to 

show insights and patterns on how the Intel Compiler vectorizes code. We explored various vectorization optimizations to apply 

to a given code. Our goal is to provide insights which carry across various benchmarks and codes to help developers guide the 

compiler into generating good code without necessarily having expert knowledge. 

Our experiments consisted of iterative compilation of a benchmark suite designed for the evaluation of vectorizing compilers 

[20] and generated vectorization reports for each code. Categorization and mapping of different microkernels into different 

classes were performed to help classify them by how the compiler was able to improve performance. The same experiment was 
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then done on a more complex set of kernels designed for polyhedral compilers as a way to see how the work scales to larger 

programs. 

To aid with iterative compilation, we created two utilities. One is a source-to-source compiler which translates a simplified 

directive language to a specific directive language supported by a given compiler (e.g. Intel Compiler). The other utility performs 

iterative compilation among a set of optimizations to apply more than once in a given program. The creation of these utilities can 

help non-experts in the generation and analysis of programs. 

Finally, we leveraged the knowledge we obtained with the tuning work to specify a machine learning classifier to predict the 

speedup of a benchmark given a sequence of optimizations. We could then use our SVM-based predictor to choose the 

optimization sequence to apply that yields the best speedup. Experiments show that our classifier predicted the speedup of 56% 

of our benchmarks within 15% overprediction and 50% underprediction, with 82% of these accurate within 15% both ways. 

The results of this work can help programmers tailor their applications to take the most out of their vectorizable codes. The 

iterative compilation utilities can be especially useful when exploring tuning options during the code optimization phase. The 

SVM-based predictor can be used as part of a general-purpose auto-tuning strategy that does not require human interaction. 

In this work we make the following contributions: 

1. VALT – a directive compiler used to simplify code generation across different compiler backends; 

2. autovec – an iterative compiler utility to generate different versions of the same code; 

3. Insights and categorization of benchmarks based on vectorization reports, speedup, and accuracy of different 

versions; and 

4. An SVM-based speedup predictor capable of predicting the speedup of simple loop nests within 15% accuracy 45% 

of the time. 

The rest of the paper is outlined as follows: Section 2 goes over the command-line and directive-based compiler optimizations 

which can be applied to a program. Section 3 introduces the kernels used in the evaluation of our work. Section 4 describes our 

VALT and autovec tools used for version generation. Our vectorization analysis is illustrated in Section 5. The SVM predictor 

is introduced and evaluated in Section 6. We go over related work and future work in Sections 7 and 8, respectively. The paper 

ends with the Conclusions and Acknowledgements, highlighting the main contributions of this work. 

2. Intel Compiler Optimizations 

The Intel C++ Compiler version 14.0.2 offers many optimization options for the programmer. Some of these are restricted to 

command-line flags, while others must be inserted as directives into the original code. This section addresses the relevant 

optimization flags and directives used in this work. 

2.1 Command-Line Flags 

All configurable programmer-passed optimizations happen through command-line flags. When performing code optimization, 

optimization-level flags (-O2, -O3) tend to be the most commonly used. In addition to specifying a set of optimizations to apply, 

the programmer is also able to specify the target architecture and modify the default code generation rules. Listed below are 

relevant command-line flags used in this work. 

 -O3 – apply all -O1 and -O2 optimization sets in addition to a new set. A full list of these optimizations are 

viewable from the Intel C++ Compiler reference guide [17]. 

 -xHOST – specify the architecture that we are optimizing for is the same one we are compiling on. This is equivalent 

to specifying the native architecture on your system. For our experiments, -xAVX2 would be applicable to the 

Haswell (HSW) microarchitecture and -xSSE4.2 would be applicable to the Nehalem (NHM) microarchitecture. 

 -vec / -no-vec –  specify whether or not any generated code should be vectorized. -vec permits any amount of 

generated code to be vectorized while -no-vec prevents any code from being vectorized. 

We used the command-line flags to drive native code generation for the platform we were executing on. 

2.2 Source Code Directives 

In addition to command-line flags, the Intel Compiler is also capable of processing programmer-placed directives (in C/C++ 

written as #pragma <opt>). Many of these are specific to the Intel Compiler; however, some of them are gaining support in 

other compilers such as GCC [12]. 

Here, we will look at a subset of directives offered in the Intel Compiler, specifically those that aid with vectorized code 

transformations and generation. 

 #pragma vector always – compiler will ignore the speedup factor when considering vectorization. If the 

compiler believes the code will execute slower with vectorization, it will still vectorize the loop. 

 #pragma ivdep – compiler will ignore all unproven interloop dependences. Note that all proven dependences will 

not be vectorized. 

 #pragma simd [vectorlength(n)] – compiler will ignore all dependences and reductions. Everything 

related to vectorization is left for the programmer to manage. An optional argument for simd is specifying a vector 
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length. This value is passed to the compiler to state how many safe iterations can be done at once. 

Such as in previous works [9] we used the source code directives to drive the optimization selection and modification to show 

that we can guide the vectorization heuristics to improve performance. 

3. Kernels 

To evaluate the Intel Compiler's built-in vectorization heuristics, a set of benchmarks were used to determine performance 

improvement. Two sets of benchmarks were used for this work. The first set, Test Suite for Vectorizing Compilers [20] is an 

extension and modification of a test suite for vectorizing Fortran compilers in the late 1980’s [4]. The second set of kernels are 

the Polybench kernels stemming from Pouchet’s work with Polyhedral Compilers [27]. 

3.1 Test Suite for Vectorizing Compilers 

The Test Suite for Vectorizing Compilers contains over 150 different loop nests which iterate over different access patterns, 

computations, and memory access types (e.g. single value, (un)aliased pointers). The test suite was designed to evaluate how 

well compilers were able to recognize patterns which could be vectorized and apply them. For this work, we were using this test 

suite to evaluate and see which built-in heuristics in the Intel compiler may not enable the best performance while maintaining 

numerical correctness. By issuing varying directives, we were able to relax Intel Compiler’s built-in heuristics and instead see 

how applying optimizations, perhaps unsafely by the compiler’s view, adjusts the performance of the loop nest. For sake of code 

re-use and to simplify generation and execution, each loop nest was placed in its own file. 

3.2 Polybench 

Polybench/C 3.2 contains 30 different static control-flow micro-benchmarks deriving from several scientific domains (e.g. 

linear algebra, machine learning, image processing). As with the Test Suite for Vectorizing Compilers, we have used these 

kernels to explore the potential increase in performance. No modifications were made to the original kernels; only directives 

were programmatically inserted. 

4. Version Generation 

We developed two utilities in order to help with version generation for iterative compilation. autovec is a source-to-source 

compiler which translates a simplified directive language to a specific directive language supported by a given compiler (e.g. 

Intel Compiler). VALT performs iterative compilation among a set of optimizations to apply more than once in a given program. 

These utilities can help nonexperts in the generation and analysis of programs, and have been used here to understand the inner 

workings of the compiler’s vectorization strategies. 

4.1 autovec 

For version generation of each kernel, we used scripts with placeholder directives to drive which optimization was to be used 

on a per-loop basis. We defined our own directive language, autovec (autovectorizer), to aid with this task. 

 

autovec directive Intel-specific pragma 

permute generate each version 

vl(x) simd vectorlength(x) 

always vector always 

ivdep Ivdep 

none <nothing> 

Table 1: autovec directive support and translation 

Table 1 shows the possible directives we can parse and generate with autovec. When autovec is given a permute 

argument before a loop, the tool will permute through all loop optimizations and generate a different version. As multiple loops 

are issued with this command, the number of possible versions of a single kernel grows exponentially. 

 

 

Benchmarks Versions 

3 6 

125 36 

21 216 

2 1,296 
 

Type Count 

Total 11,646 

Correct 10,026 

Incorrect 1,612 

Compile Error 8 
 

Table 2: Code version size and analysis for TSVC 
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For TSVC, the number of versions explored can be observed in Table 2. Version generation can generate unsafe code as well. 

Table 2 also shows versions of code which are (a) safe and adhere to the original implementation, (b) unsafe and cause a variance 

in result, and (c) invalid and could not even compile. 

For Polybench we had to reduce our search space intelligently as one kernel had 10 different loops within a single loop nest. 

Since some vectorization directives cannot be applied in a nested manner, we were able to reduce the search space by three 

orders of magnitude. 

4.2 VALT 

An extension to autovec was also created with additional optimizations also permitted. VALT (vectorization and loop 

transformation) enables a developer to quickly specify which vectorization and loop transformation directives to apply to a given 

loop. Backends exist for both Intel compiler (Intel-specific pragmas) and CAPS compiler [5] (hmppcg directive support). 

 

VALT directive Intel-specific pragma 

vector(default) <no code emmited> 

vector(none) Novector 

vector(always) vector always 

vector(ignore) Ivdep 

vector(aligned) vector aligned 

vector(temp) vector temporal 

vector(nontemp) vector nontemporal 

vectorsize(x) simd vectorlength(x) 

loop(unroll(x)) unroll(x) 

loop(jam(x)) unroll_and_jam(x) 

loop(nofusion) Nofusion 

Loop(dist) distribute_point 

Table 3: VALT directive language translation for Intel-specific pragmas 

Table 3 shows how VALT directives directly translate to Intel-specific pragmas. For this work we limited our use of VALT to 

only be used for vectorization directives. 

5. Vectorization Analysis 

Intel Compiler v14.0.2 was used for all experiments throughout this research. Table 4 shows the machine configuration used 

for both the analysis and speedup predictor. 

 

 Analysis Predictor 

Processor i7-4960HQ i7-950 

Clock Rate 2.6GHz (3.8GHz) 3.06GHz 

L3 Cache 6MB 8MB 

On-Chip Memory 128MB – 

Shared Memory 16GB DDR3-1600 24GB DDR3-1333 

Table 4: Machine Configurations 

All time measurements were performed in cycles so any issue related to dynamic frequency scaling affecting performance 

was mitigated. Speedups were measured as compared to the “default” optimization configuration: no added directives and 

compiled with -O3 -xHOST -vec. Intel vectorization reports (-vec-report6) were also obtained to aid in classification 

and to see why the compiler chose not to vectorize some loop nests. 

 

(17): loop was not vectorized: existence of vector dependence 

(19): vector dependence: assumed ANTI dependence a(19) and a(18) 

(18): vector dependence: assumed FLOW dependence a(18) and a(19) 

(18): vector dependence: assumed FLOW dependence a(18) and a(19) 

(19): vector dependence: assumed ANTI dependence a(19) and a(18) 

(15): loop was not vectorized: not inner loop 

(13): loop was not vectorized: not inner loop 

Figure 1: A sample vectorization report 

Figure 1 shows a sample vectorization report where the Intel Compiler did not vectorize the loop because of assumed vector 

dependences and being unable to vectorize non-inner loops. The original benchmark’s vectorization report was compared to each 
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new version’s vectorization report. With this additional information, we were able to identify patterns and trends based on 

1. How the optimizations applied affect performance 

2. Which loop nests the Intel Compiler did not want to vectorize 

3. Why the Intel Compiler did not want to vectorize 

4. How the optimizations applied affected further loop optimization (e.g. loop unrolling, additional vectorization) 

5.1 TSVC 

There were 27 loop nests where the optimizations with the best speedup were unsafe – that is the compiler heuristics correctly 

prevented unsafe code from being generated. That said, 124 loop nests had optimizations with the best speedup being safe, with 

one in particular executing over 50× faster than the default. 

 

Speedup Count Total 

> 1.00× 16 151 

> 1.01× 30 135 

> 1.05× 22 105 

> 1.10× 23 83 

> 1.50× 12 60 

> 2.00× 24 48 

> 4.00× 16 24 

> 8.00× 8 8 

Table 5: Best speedup by iterative compilation 

Table 5 shows that 105 loop nests achieved a speedup greater than 5%. For speedups less than 8× the primary reason for 

improved speedup was due to reduced cache misses and SIMD instruction execution. For the case of one benchmark (s257) 

where the speedup was 57×, improved data access, SIMD instruction execution, and reduced TLB/page lookups were observed. 

(a) Good speedup observed; no invalid code generation (b) Good speedup observed with invalid code faster 

(c) No speedup observed; invalid code generation faster (d) No speedup observed; invalid code generation 

Figure 2: TSVC loop nest optimizations and speedup comparison (valid code generation is in green; invalid is in red) 

Figure 2 shows sample performance analysis of four different TSVC loop nests and demonstrate varying level of correctness. 

Figure 2a shows a loop nest where good speedup was observed with no invalid code generation. This is the ideal case. Figure 

Figure 2b shows a loop nest with good speedup observed, but the fastest speedup occurred with invalid code. Likewise, invalid 

code generation can occur with no speedup observed with valid code generation as shown in Figure 2c. Sometimes, no variation 

with valid code generation produced a speedup. In this situation illustrated by Figure 2d, any optimization either does nothing or 

produces invalid code. 

For loops which saw low (or no) speedup improvements, there were a few varying reasons why. 

1. Loops were not vectorizable by the nature of the computation. This caused unsafe code generation (and therefore 

excluded). 

2. Loops were already highly optimized by the compiler. Sometimes what the Intel Compiler did for code generation 

was already the best. This could be observed by comparing -vec and -no-vec generated code to the best-

optimized code. 

3. Improved code generation for SIMD instructions caused a bandwidth and data access issue which increased the 
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number of stalls from cache invalidation. This was verified with profiling and comparing the generated optimized 

assembly code to the default. 

Furthermore, we were able to classify TSVC loop nests into a few different categories. 

 

 

 

Figure 3 gives an overview of the category composition while the description for the categories is found here: 

1. Non-vectorizable – Loop nests which were not vectorizable. There were 16 benchmarks (11%) that are not 

vectorizable as indicated by the optimized version vectorization report and minimal/non-existing speedup observed. 

2. Known vectorization pattern – Loop nests which could be vectorized by the compiler with minimal additional 

speedup observed after optimizing. A total of 69 benchmarks (46%) fell into this category. This suggests that overall, 

the Intel Compiler is able to vectorize code well with its built-in heuristics although they are not always optimal. 

3. Inner-loop vectorizable – Loop nests which were not initially vectorized well but were better optimized with a 

#pragma simd directive placed in an inner loop. 12 of the loop nests (8%) were observed to be inner-loop 

vectorizable with a speedup of at least 2×. 

4. Outermost-loop vectorizable – Loop nests which were not initially vectorized well but were better optimized with a 

#pragma simd directive placed in the outermost loop of the loop nest. 54 of the loop nests (35%) were observed 

to be outermost-loop vectorizable with a speedup of at least 2×. 

5.2 Polybench 

Polybench kernels are more complex than the TSVC loop nests. First, they can have more than one loop nest. Second, they 

can operate on multiple data elements at one time, potentially causing cache contention with different data structures at the same 

time. Polybench kernels can be grouped into a few different categories for the vectorization analysis: 

1. Known kernel – The loop nest and access pattern match a known kernel which the Intel Compiler knows how to 

optimize well. 2mm, 3mm, and gemm are all known kernels of the Intel compiler. All three of these benchmarks had 

extremely high speedups when the -no-vec baseline was compared against the -vec vectorized code. Although 

they had high speedups when compared to -no-vec, almost no speedup was observed when -vec was compared 

to the best optimization sequence. 

2. Known loop nest – The loop nest structure is identified by the compiler and the optimization is performed. trmm, 

gemver, gesummv, symm, and mvt are all kernels where some or all of their loop nests are known by the compiler. 

Here a portion of the code is highly optimized for the access pattern. Unfortunately, sometimes the compiler’s 

heuristics prevent some optimizations from being applied (see symm and mvt). 

3. Known access pattern – The access pattern structure is identified and loop reordering is performed by the compiler to 

improve vectorization. atax and trisolv are examples of kernels where the compiler is aware of the access 

pattern and can optimize accordingly. trisolv has a triangular access pattern while atax performs a 

multiplication and transpose – both are access patterns which the Intel Compiler can optimize. 

4. Unknown – The compiler’s heuristics could not classify it into any of the three prior mentioned categories. The 

remaining kernels in general fall into this category. Here the loop nest structure cannot easily be optimized due to 

iteration dependence. If forced to vectorize, the generated code would most likely be incorrect. These are the kernels 

where the loop analysis heuristics of the compiler are used to determine potential optimizations. 

Figure 3: Categorization of TSVC loop nests 
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For every kernel which was not known, the best optimization sequence yielded unsafe optimizations. For most kernels, there 

was not a large improvement in speedup with the optimization search space. 

 

Speedup Type Right Miss Wrong Kernels 

< 1.05× Known 5 2 3 durbin, gemm, 2mm, 3mm, cholesky, lu-bench, jacobi-1d 

< 1.10× Loop Nest 4 3 2 trmm, gemver, gesummv, mvt, symm, syr2k, syrk 

< 3.00× Access 4 1 2 trmm, gemver, gesummv, mvt, symm, syr2k, syrk 

> 3.00× Unknown 6 2 4 adi, bicg, correlation, covariance, dynprog, fdtd-2d, 

floyd-warshall, grammschmidt 

Table 6: Polybench kernel classification and speedup ranges 

Table 6 shows the correlation between the classification of the Polybench kernels to a speedup range. By following the 

guidelines established the different classifications, speedup thresholds were used to determine how accurate each classification 

would be based on type. On average we were correct 50% of the time when we consider all kernels. When we ignored those that 

were wrong and instead focused on how they were classified and missed, the classification rate was 70%. 

6. SVM-Based Speedup Predictor 

Given the speedup information based on different optimizations for a collection of loop nests and kernels, an end goal would 

be to automate the prediction of the speedup of a benchmark given some input data and the optimization sequence targeted to a 

particular code. 

6.1 Performance Counters 

Performance counters have been used by Cavazos et al. [7] and Park et al. [24] for optimization selection on a larger scale, but 

never at a per-loop basis. We collected 45 different performance counters categorized into one of the following information 

areas: 

 L1, L2, and L3 cache information 

 TLB information 

 Cache line access 

 Branch instructions 

 Floating-point instructions and SIMD 

 Load-store instructions 

 Cycle/Interrupt/Stalls/Instruction information 

We used PAPI [2] for the automated collection of performance counters during execution. We modified a single, common 

header file across the benchmarks to include the performance counter selection so no benchmark codes needed changes. 

6.2 Experiment Configuration 

We used the 151 TSVC loop nests as training data for our SVM-based speedup predictor model. For training with a support 

vector machine (SVM) classifier, we need to specify our feature vector. Our feature vector consists of the 45 different 

performance counters normalized to the number of instructions executed, the speedup of the vectorized code over non-vectorized 

Figure 4: Best speedup by iterative compilation (incl. invalid code generation) for Polybench (mean results are in gray) 
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code, the optimization bit vector, and the speedup of the optimized code over vectorized code. 

The feature vector is described in greater detail including composition in Figure 5. The optimization bit vector format is 

described in Table 7. Each additional bit set indicates a stricter level of optimization. 

 

Bit Configuration Optimization 

00000 No Optimization 

10000 #pragma vector always 

11000 #pragma ivdep 

11100 #pragma simd vectorlength(2) 

11110 #pragma simd vectorlength(4) 

11111 #pragma simd vectorlength(8) 

Table 7: Optimization bit vector configuration 

Multiple loops for a given code would increase the number of optimization bit vectors. Because of potential ambiguity, we 

elected to have the optimizations listed in source code line order. For the case of TSVC loop nests, no loop nest exists for size 

greater than 4. To simplify training and classification, any loop nests of size less than 4 were padded with 0 indicating no further 

optimization to be applied. 

Table 4 presents the machine configuration we used to collect all training data for prediction. 

6.3 Prediction Results 

The predictor model we used targets single loop nests, so using the Polybench programs with this model was not applicable. 

Instead, we favored the TSVC loop nests to see how well our support vector machine model would be able to predict speedup. 

We tested our trained models with leave-one-out cross validation (LOOCV). For a given loop nest found in the TSVC set, we 

constructed a model based on the other 150 loop nests and compared the model’s prediction to the actual speedup observed for 

the model. The same procedure was done for all other loop nests. 

To evaluate our model, we defined a metric to compare our predicted speedup to the best actual speedup observed. This 

metric is defined as: 

 

𝐸 =  
𝑆𝑏𝑒𝑠𝑡 − 𝑆𝑝𝑟𝑒𝑑

𝑆𝑝𝑟𝑒𝑑

 

 

When E is less than 0, then our predictor overestimated speedup. Likewise, any value greater than 0 indicates our predictor 

underestimated the speedup. 

 

Percentile Type Count 

0.15 Under 45 

0.50 Under 15 

1.00 Under 12 

2.00 Under 16 

> 2.00 Under 27 

0.15 Over 24 

> 0.15 Over 12 

Table 8: Speedup Predictor Accuracy 

Table 8 shows how our predictor performs with the count of each benchmark in each area. 84 of the 151 loop nests were 

accurate within 15% overprediction and 50% underprediction. 5 of the overpredictions were on loop nests which were non-

vectorizable. 

The SVM-based predictor cannot accurately predict speedup for over 44% of the loop nests. For 46% of the loop nests, the 

Figure 5: SVM feature vector description and format 
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speedup predictor is accurate within 15%. Analysis of the types of loop nests and their predicted speedup did not show a 

correlation between the types of benchmarks which were under-predicted vs. over-predicted. 

7. Related Work 

The closest work related to this research is Stock’s article on Using machine learning to improve automatic vectorization 

[28]. The major limiting contribution of this work is the scope of the class of loops which the model is able to optimize (tensor 

and stencils). Their training model is derived from information within the inner-most loop and vectorization information. A 

takeaway from their work was the importance of (a) a single feature alone does not correlate to good performance and (b) a 

weighted rank model always outperformed SVM. Additional work has been divided into three main categories: Vectorization, 

Compiler Optimization, and Machine Learning. 

7.1 Vectorization 

Callahan [4] created an initial set of micro-benchmarks to evaluate the vectorization capability of compilers. The benchmarks 

were written in Fortran and the case study was performed at the infancy of SIMD in consumer, general-purpose hardware. 

Maleki et al. [20] extended the original benchmark suite to support C as well as the addition of several more micro-benchmarks. 

Maleki then manually modified some codes that did not vectorize which could ultimately be vectorized. Our work builds on 

Maleki’s contribution by automatically relaxing vectorization heuristics to properly vectorize certain benchmarks. 

Henretty [13] was able to improve vectorization of stencil applications with a compiler focused on stencil codes, but does not 

extend to other types of kernels. Nuzman [23] improved performance of kernels with outer-loop vectorization on CBE and 

PowerPC architectures. Our work extends this by targeting Intel microarchitectures automatically with the use of the #pragma 

simd directive. 

Holewinski [15], Evans [10], and Barik [3] used trace information to determine vectorization potential and automate the 

selection of vector instructions. Hohenauer [14] proposed a framework to enable retargetable compilers to emit more appropriate 

SIMD instructions. McFarlin et al. [21] automatically vectorized FFT kernels. Both of these works focused on modifying or 

constructing a compiler to perform the optimizations. McFarlin’s work is limited in scope to FFT kernels while Hohenauer’s 

work cannot be easily extended to new architectures or compilers. 

7.2 Compiler Optimization 

Kong et al. used Polyhedral transformations to help drive improved vectorization [18]. This method can help improve 

performance, but it does not help determine where or why existing compilers cannot better optimize certain code. Pouchet et al. 

[26] used iterative and model-driven optimizations to drive auto-parallelization. The same can be done for auto-vectorization. 

7.3 Machine Learning 

Park et al. [24][25], Dubach et al. [8], and Cavazos et al. [6][7] focused on using machine learning methods to construct 

prediction models based on performance counters. Park extended the existing work by using graph-based program 

characterization. Agakov [1] used machine learning to reduce and eliminate branches of optimizations being applied. Work has 

also been done in the area of finding which features to use for machine learning models for optimized compilation [19]. 

8. Future Work 

We plan to continue development of VALT to support multiple compiler backends and extend autovec to other types of 

directive-based optimizations. PGI Compilers have their own directive language; we could construct a backend for VALT to emit 

the PGI directives for cross-compiler analysis on the same architecture. autovec could also switch from an iterative code 

generator to an auto-tuner capable of some intelligent selection of optimizations to explore, thus we could consider its inclusion 

in general-purpose auto-tuning frameworks [11][22]. 

We intend to switch to a graph-based speedup predictor as the SVM-based predictor did not perform as well as we hoped. 

Using a graph-based speedup predictor would also allow to extend the classes of micro-benchmarks to go beyond simple loop 

nests (those provided in TSVC) and extend to non-perfectly-nested loops (such as Polybench). 

Due to increased support of vectorization directives such as #pragma simd and #pragma ivdep we will be able to 

extend this existing work directly to compilers such as GCC 4.9. In addition to considering other compilers, we could explore 

architectures with wider vectorization sizes such as the Intel Xeon Phi (Knight’s Corner) and the upcoming Knight’s Landing 

microarchitecture where AVX-512 is supported in GCC and Intel Compiler. 

 

 



 Performance Improvement in Kernels by Guiding Compiler Auto-Vectorization Heuristics 

 10 

Conclusions 

In this paper we provided techniques, both manual and automatic, for determining the best way to optimize programs 

regarding their vectorization capabilities. Initially, we studied how to combine vectorization reports with iterative compilation 

and code generation and summarized our insights and patterns on how the compiler vectorizes code. The utilities we developed 

for iterative compilation and code generation can be further used by non-experts in the generation and analysis of programs. 

Finally, we leveraged the obtained knowledge to design a Support Vector Machine classifier to predict the speedup of a program 

given a sequence of optimization. We showed that our classifier is able to predict the speedup of 56% of the inputs within 15% 

overprediction and 50% underprediction, with 82% of these accurate within 15% both ways. 

The results of this work can help programmers tailor their applications to take the most out of their vectorizable codes. The 

iterative compilation utilities can be especially useful when exploring tuning options during the code optimization phase. The 

SVM-based predictor can be used as part of a general-purpose auto-tuning strategy that does not require human interaction. 

Overall, the contributions introduced in this paper can help programmers guide the compiler into generating optimized code 

without requiring expert knowledge on the compiler inner workings or the underlying architecture. 
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