

Triple junction benchmark – current state

Simon Daubner, Paul Hoffrogge, Martin Minar, Britta Nestler

www.kit.edu

Motivation

Validation

Cahn-Hilliard equation (gradient + regular solution term)

Allen-Cahn equation (gradient + double-well/obstacle term) + anisotropy of interfacial energy + temperature field

Study 1D interface in terms of

- Simulation studies
- Analytical solution
- Sharp / Thin interface asymptotics

Motivation

Motivation

Triple junction benchmark

Why a triple junction?

Multi-phase model formulation

 $\mathcal{F}_{\rm int} = \int_{V} f_{\rm grad} + f_{\rm well} \, \mathrm{d}V$

All questions of generalizing a one order parameter formulation to N phases is already encapsulated in the three phase problem!

 $= 1 - \phi_{\alpha}$

 $|\mathbf{\nabla}\phi_{lpha}|^2$

$$f_{\text{grad}}^{1} = \frac{\tilde{\kappa}}{2} \sum_{\alpha} |\nabla \phi_{\alpha}|^{2}$$

$$f_{\text{grad}}^{2} = -\sum_{\alpha} \sum_{\beta > \alpha} \kappa_{\alpha\beta} \nabla \phi_{\alpha} \cdot \nabla \phi_{\beta}$$

$$f_{\text{grad}}^{3} = \sum_{\alpha} \sum_{\beta > \alpha} \kappa_{\alpha\beta} |\phi_{\alpha} \nabla \phi_{\beta} - \phi_{\beta} \nabla \phi_{\alpha}|^{2}$$

$$[\text{Two-phase interface, N=2} \\ \phi_{\beta} = 1 - \phi_{\alpha}$$

$$\nabla \phi_{\beta} = -\nabla \phi_{\alpha}$$

$$[\kappa |\nabla \phi_{\alpha}|^{2}]$$

 $= \int_{V} \kappa |\nabla \phi|^2 + \Omega \phi^2 (1 - \phi)^2 \mathrm{d}V$

Multi-phase model formulation

$$\mathcal{F}_{\text{int}} = \int_{V} f_{\text{grad}} + f_{\text{well}} \, dV$$

$$= \int_{V} \kappa |\nabla \phi|^{2} + \Omega \phi^{2} (1 - \phi)^{2} dV$$

$$\int_{Well}^{Moelans} = \tilde{\Omega} \left(\sum_{\alpha} \sum_{\beta > \alpha} \chi_{\alpha\beta} \phi_{\alpha}^{2} \phi_{\beta}^{2} + \sum_{\alpha} \left(\frac{\phi_{\alpha}^{4}}{4} - \frac{\phi_{\alpha}^{2}}{2} \right) + \frac{1}{4} \right)$$

$$f_{\text{well}}^{\text{Toth}} = \tilde{\Omega} \left(\frac{1}{2} \sum_{\alpha} \sum_{\beta > \alpha} \phi_{\alpha}^{2} \phi_{\beta}^{2} + \sum_{\alpha} \left(\frac{\phi_{\alpha}^{4}}{4} - \frac{\phi_{\alpha}^{3}}{3} \right) + \frac{1}{12} \right)$$

$$f_{\text{well}}^{\text{Garcke}} = \sum_{\alpha} \sum_{\beta > \alpha} \Omega_{\alpha\beta} \phi_{\alpha}^{2} \phi_{\beta}^{2} + \sum_{\alpha} \sum_{\beta > \alpha} \sum_{\gamma > \beta} \Omega_{\alpha\beta\gamma} \phi_{\alpha}^{2} \phi_{\beta}^{2} \phi_{\gamma}^{2}$$

Literature review - 1

Literature review - 2

Table 3

Equilibrium angle at the triple junction and temporal evolution of the area of grain α for the MPF and CF model are compared with the analytical value for different grain boundary energy ratios $\sigma_{\alpha\beta}/\sigma_{\alpha\gamma}$, different grid spacings Δx and different interface widths ε . $\gamma_{\alpha\beta\delta}$ in the MPF potential is 3.0 for all cases.

σ	Δx , ε	θ			dA_{α}/dt			
		Anal.	MPF	CF	Anal.	MPF	CF —	
$\sigma_{lphaeta}=\sigma_{lpha\gamma}=\sigma_{eta\gamma}=0.25$	$\Delta x = 0.1$ $\varepsilon = 0.5$	120°	119°	119°	0.25	0.26 (2.8%)	0.26 (4.0%)	20 30 40
$\sigma_{lphaeta}=\sigma_{lpha\gamma}=\sigma_{eta\gamma}=0.25$	$\begin{array}{l} \Delta x = 0.2\\ \varepsilon = 1.0 \end{array}$	120°	119°	118°	0.25	0.26 (2.8%)	0.26 (4.3%)	
$\sigma_{lphaeta}=$ 0.25, $\sigma_{lpha\gamma}=\sigma_{eta\gamma}=$ 0.2	$\Delta x = 0.1$ $\varepsilon = 0.5$	103°	100°	105°	0.25	0.26 (6.0%)	0.25 (1,1%)	
$\sigma_{lphaeta}=$ 0.25, $\sigma_{lpha\gamma}=\sigma_{eta\gamma}=$ 0.2	$\begin{array}{l} \Delta x = 0.2\\ \varepsilon = 1.0 \end{array}$	103°	100°	104°	0.25	0.26 (6.0%)	0.25 (0.2%)	
$\sigma_{lphaeta}=$ 0.2, $\sigma_{lpha\gamma}=\sigma_{eta\gamma}=$ 0.25	$\Delta x = 0.2$ $\varepsilon = 0.5$	133°	135	133°	0.20	0.19 (5.9%)	0.20 (0,1%)	"Comparative study of two phase-field models for grain growth" Moelans, Wendler, Nestler (2009) doi: 10.1016/j.commatsci.2009.03.037
$\sigma_{lphaeta}=$ 0.25, $\sigma_{lpha\gamma}=\sigma_{eta\gamma}=$ 0.175	$\begin{array}{l} \Delta x = 0.2\\ \varepsilon = 1.0 \end{array}$	89 °	84°	97°	0.25	0.27 (8.9%)	0.24 (4,7%)	
$\sigma_{lphaeta}=$ 0.175, $\sigma_{lpha\gamma}=\sigma_{eta\gamma}=$ 0.25	$\begin{array}{l} \Delta x = 0.2\\ \varepsilon = 1.0 \end{array}$	139°	139°	139°	0.175	0.174 (0.6%)	0.173 (0.8%)	
$\sigma_{lphaeta}=$ 0.25, $\sigma_{lpha\gamma}=\sigma_{eta\gamma}=$ 0.36	$\Delta x = 0.2$ $\varepsilon = 1.0$	139°	139°	139°	0.25	0.25 (0.6%)	0.24 (0.8%)	

"Calibration of a multi-phase field model with quantitative angle measurement" Hötzer et. al.,

Literature review - 3

Literature review - 4

$$v_n(x) = M_B \sigma_B \kappa(x) = M_B \sigma_B \frac{-y''(x)}{1 + (y'(x))^2)^{1.5}}$$

$$v_x = M_B \sigma_B \frac{(\pi - 2\theta)}{H} = M_B \sigma_B \frac{2}{H} \arcsin\left(\frac{\sigma A}{2\sigma_B}\right)$$

Fig. 1. Tri-crystal arrangement moving with steady-state velocity in horizontal direction. The existence of an unambiguous analytical solution enables a quantitative accuracy evaluation for anisotropic grain growth predictions. (Online version in color.) "Discussion of the Accuracy of the Multi-Phase-Field Approach to Simulate Grain Growth with Anisotropic Grain Boundary Properties" Eiken (2020) doi: 10.2355/isijinternational.ISIJINT-2019-722

Literature review - summary

- Large zoo of model notations and formulations
- Analytical solution for triple junction theoretically well-known but still confusion within scientific community
- Varying simulation setups and varying metrics

Fig. 3. Variations in relative error $(V - V_{th})/V_{th}$ depending on boundary energy ratio σ_A/σ_B , as calculated from different phase-field models. (Online version in color.)

What can we learn?

S. Daubner, P. W. Hoffrogge, M. Minar, and B. Nestler. Triple junction benchmark for multiphase-field and multi-order parameter models. Computational Materials Science, 219:111995, 2023

Metrics

- Total interfacial energy $\mathcal{F}_{int}(\phi, \nabla \phi) = \int_{V} f_{grad}(\phi, \nabla \phi) + f_{pot}(\phi) dV$ $\epsilon = |\mathcal{F}^{n} \mathcal{F}^{n-1}| / \mathcal{F}^{n}$
- Dihedral angle θ is computed from position of the triple point. The numerical triple point is defined by the intersection of isolines $\varphi_{\alpha} = \varphi_0$ and $\varphi_{\beta} = \varphi_0$
- Spurious occurrence of φ_{α} , φ_{β} and φ_0 in the respective other two-phase interface

Multi-order parameter models

Multiphase-field models

Steady-state triple junction

Metrics

- Steady-state velocity is measured at left boundary $V = |(y_{\phi_0=\phi_{\alpha}}^{x=0})^n - (y_{\phi_0=\phi_{\alpha}}^{x=0})^{n-1}|/\Delta t$
- Dihedral angle θ is computed from position of the profile height. The numerical triple point is defined by the intersection of isolines $\varphi_{\alpha} = \varphi_0$ and $\varphi_{\beta} = \varphi_0$
- (Mis-)match of numerical and analytical results for grain boundary geometry is measured by L2-norm

$$||y_{\text{numeric}} - y_{\text{analytic}}||_2 = \frac{1}{W} \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i^{\text{numeric}} - y_i^{\text{analytic}})^2}$$

Steady-state triple junction

Multi-order parameter models

Steady-state triple junction

Multiphase-field models

What else could we learn?

Triple junction benchmark

Karlsruhe Institute of Technolog

Possible studies

- Comparison of various model formulations
- Comparison of discretization, quantification of discretization error
- Evaluate computational cost/ efficiency (between various codes/ implementations)

Steady state triple junction

Static

triple

Triple junction benchmark

Modifications to the benchmark

 Add driving force → solidification triple junction

Modify pairwise phase mobilities

 $M_{\alpha\beta} = M$ $M_{\alpha0} = M_{\beta0} = 0$

N. Enugala, Dissertation, 2021 "Some refinements in the phase-field and sharp interface treatments of eutectic growth"

Thank you for your attention!

Any Questions?

I thank all my colleagues who are involved in this work through vivid discussions. Special thanks to Paul Hoffrogge, Britta Nestler, Daniel Schneider and Ephraim Schoof.

This work contributes to the research performed at CELEST (Center for Electrochemical Energy Storage Ulm-Karlsruhe) and was funded by the German Research Foundation (DFG)

Comparison of Moelans and Toth potentials

