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A Survey on Approximate Edge AI for Energy
Efficient Autonomous Driving Services

Dewant Katare ID , Student Member, IEEE, Diego Perino ID , Jari Nurmi ID , Senior Member, IEEE,
Martijn Warnier ID , Marijn Janssen ID , and Aaron Yi Ding ID , Member, IEEE

Abstract—Autonomous driving services depends on active
sensing from modules such as camera, LiDAR, radar, and
communication units. Traditionally, these modules process the
sensed data on high-performance computing units inside the
vehicle, which can deploy intelligent algorithms and AI models.
The sensors mentioned above can produce large volumes of
data, potentially reaching up to 20 Terabytes. This data size
is influenced by factors such as the duration of driving, the data
rate, and the sensor specifications. Consequently, this substantial
amount of data can lead to significant power consumption on the
vehicle. Similarly, a substantial amount of data will be exchanged
between infrastructure sensors and vehicles for collaborative
vehicle applications or fully connected autonomous vehicles. This
communication process generates an additional surge of energy
consumption. Although the autonomous vehicle domain has seen
advancements in sensory technologies, wireless communication,
computing and AI/ML algorithms, the challenge still exists in how
to apply and integrate these technology innovations to achieve en-
ergy efficiency. This survey reviews and compares the connected
vehicular applications, vehicular communications, approximation
and Edge AI techniques. The focus is on energy efficiency by cov-
ering newly proposed approximation and enabling frameworks.
To the best of our knowledge, this survey is the first to review the
latest approximate Edge AI frameworks and publicly available
datasets in energy-efficient autonomous driving. The insights
from this survey can benefit the collaborative driving service
development on low-power and memory-constrained systems and
the energy optimization of autonomous vehicles.

I. INTRODUCTION

Vehicles have seen a growing trend in the utilization of
sensors, advanced driver assistance systems (ADAS), and
safety features. The latest progression is towards integrating
these sensors with the state-of-the-art deep learning models
based on the sense, think, and act model, which can assist or
replace a driver by offering the highest level of autonomy [85].
The highest level of autonomy is described as the execution
of driving processes that serve self-driving functionality from
a source point to the destination point without any input
or control from a human. Full automation can be achieved
by integrating multiple sensors, such as camera, LiDAR,
global navigation satellite system, radar, and communication
modules with software-level solutions, thus providing the
automotive driving features or the advanced driver assistance
system [142], [17]. The automotive industry has already been
using several simple and complex ADAS features, improving
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the overall driver experience with the ultimate objective of
providing better road safety [344], [54]. Braking assistance,
lane departure warning, adaptive cruise control, and global
positioning system (GPS) based navigation are some of the
features that have been used since its introduction between
1990-2000 [85]. The current trend involves incorporating
deep learning and machine learning approaches within au-
tonomous vehicles to provide maximum precision and human-
level accuracy. These statistically-based learning algorithms
aim to interpret the driver’s surroundings when provided with
impartial or neutral data. Based on the characteristics of the
provided input, these algorithms classify or predict an output.

Several machine learning models have been proposed to
replace traditionally used algorithms for applications such as
collision-warning systems [58], [81], [132], object detection
[323], [155], [134], path planning [302], [136], [19], lane
change assist [159], [332], localization and mapping [216],
[379]. Although these methods solve autonomy issues in
vehicles, their scalable deployment on embedded and edge
devices and rising computational complexity cannot be over-
looked. Therefore, this survey reviews the AI algorithms
for connected vehicle applications, Edge AI approaches, and
vehicular frameworks. This survey focuses on energy-efficient
mechanisms and approximate techniques from the above-
mentioned topics. Figure 4 presents a dedicated taxonomy and
classification of topics covered in this paper. The outline of
the sections are as follows:

1) Motivation and Background: This section introduces
research trends in vehicle-edge computing. Further content
includes motivation, methodology, and research questions.

2) AI and Autonomous Driving: In this section, the funda-
mentals of machine learning & deep learning approaches are
described. Autonomous driving services such as perception,
simultaneous localization and mapping (SLAM), and vehicle-
to-everything (V2X) are reviewed and compared.

3) Edge AI for Autonomous Driving: This section dis-
cusses edge computing and edge intelligence paradigm. This
section reviews articles published on cooperative driving,
communication-efficient approaches, federated learning, Edge
AI Inference, and Edge AI optimization methods.

4) Enabling Frameworks: The discussion includes legacy
framework for autonomous driving and the Edge AI frame-
work on computation, communication, and offloading capa-
bilities. To the best of our knowledge, this survey is the first
attempt to provide a review of the latest Edge AI frameworks
for energy-efficient autonomous driving.
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Figure 1: Publication trend in autonomous driving between
2011 and May 2023 (Source: “scopus.com”)

5) Research Outlook and Open Problems: This section sum-
marises the survey by discussing open problems and potential
challenges in deploying intelligent services within the vehicle-
edge system. Further, this section contains information on
approximation opportunities and enablers for edge intelligence
approaches in autonomous driving services.

II. MOTIVATION AND BACKGROUND

Autonomous vehicles have seen phenomenal growth. Man-
ufacturers have also developed and received approval in recent
years to produce and deploy level 3 autonomous vehicles
[312]. However, there exist limitations in considering these
vehicles as connected autonomous vehicles (CAV). The cur-
rent vehicular technologies need significant development in
reliable communication, efficient computation, collaborative
intelligence, and paramount safety. This section discusses
these research trends in CAV, approximation and Edge AI.

Table I: List of acronyms used in this paper

Acronym Definition

3GPP 3rd Generation Partnership Project
4G Fourth Generation Technology
5G Fifth Generation Technology
AM Amplitude Modulation
ACC Adaptive Cruise Control

ADAS Advanced Driver Assistance Systems
AEB Anti-Emergency Braking

AECC Automotive Edge Computing Consortium
ANN Artificial Neural Network
BLE Bluetooth Low Energy

BPSK Binary Phase-shift Keying
CAN Controller Area Network
CAV Connected Autonomous Vehicle
CCK Complementary Code Keying
CNN Convolutional Neural Network

COFDM Coded Orthogonal Frequency-division Multiplexing
CPU Central Processing Unit

C-V2X Cellular Vehicle-to-Everything
DAB Digital Audio Broadcasting
DNN Deep Neural Network
DSRC Dedicated Short Range Communication
EKF Extended Kalman Filter
ETSI European Telecommunications Standards Institute

FDMA Frequency-Division Multiple Access
FCC Federal Communications Commission
FCW Forward Collision Warning
FL Federated Learning
FM Frequency Modulation

GFSK Gaussian Frequency Shift Keying
GNSS Global Navigation Satellite System
GPS Global Positioning System
GPU Graphical Processing Unit

HD Map High-definition Map
IMU Inertial Measurement Unit
ITS Intelligent Transport Systems
KF Kalman Filter
LTE Long Term Evaluation

M-QAM M-ary Quadrature Amplitude Modulation
MANO Management and Orchestration
MFG Mean-Field Game

MIMO Multiple-Input Multiple Output
ML Machine Learning
NR New Radio
NX Next Generation

NRF Neural Radiance Field
O-QPSK Offset Quadrature Phase Shift Keying

OBU On-board Unit
OFDM Orthogonal Frequency Division Multiplexing
QPSK Quadrature Phase Shift Keying
RNN Recurrent Neural Network
ROS Robot Operating System
RSU Road Side Unit
SGD Stochastic Gradient Descent

SLAM Simultaneous Localization and Mapping
TPU Tensor Processing Unit
UWB Ultra Wideband
V2G Vehicle-to-Grid
V2I Vehicle-to-Infrastructure
V2N Vehicle-to-Network
V2P Vehicle-to-Pedestrian
V2V Vehicle-to-Vehicle
V2X Vehicle-to-Everything
WiFi Wireless Fidelity

WiMAX Worldwide Interoperability for Microwave Access

A. Research Trends

The primary focus and key research areas in the automotive
domain revolve around improving performance parameters
and developing baseline models in object detection, SLAM,
and vehicular communication. To show the research trends in



Figure 2: Data generated by the automotive sensors

the autonomous driving domain, a graph is generated using
data collected from the Scopus database. For data collection,
the search is refined using popular keywords, subject area
(e.g., engineering science, mathematics, information systems),
year range, and type of publication (e.g., conference paper,
journal, books, chapters). The trend in the past decade, as
shown in Figure 1, indicates that the primary focus was
in the area of object detection (perception), owing to the
advancements in neural networks and datasets. SLAM and
vehicular communication have also evolved, with the latter
catching up because of the recent developments in 5G/6G
technology, next-generation (NG) cellular, and hybrid commu-
nication technologies. Energy-efficient techniques and Edge AI
approaches are showing a slow increase. However, the number
of publications on energy-efficient methods is still relatively
small, as previous enablers and solutions for connected vehi-
cles primarily focused on cloud computing.

Energy-Efficient keywords: Energy-efficient Edge & Ve-
hicles, AI model compression & approximation, TinyML,
Energy-efficient Edge Framework, Vehicular communication
compression & Sparsification, Low-power Vehicular-Edge.

Edge AI: Vehicle-Edge-Cloud computing, Tiny Edge, Em-
bedded intelligence, Edge artificial intelligence.

SLAM keywords: SLAM, EKF, KF, visual-slam, deep
SLAM, pose estimation, graph SLAM, vehicular localization,
vehicular mapping, Edge-SLAM, Deep-SLAM, Graph SLAM.

Communication keywords: V2X, V2V, V2I, C-V2X, 5G-
V2X, DSRC, RSU, Vehicular communication, Inter-vehicular
communication, WiMax, Vehicular Networking.

Object Detection keywords: Perception, 2D and 3D object
detection, edge analytics, traffic monitoring, classification, col-
laborative perception, cooperative perception, lane detection.

Further discussion includes a background of AI models
applied in the context of autonomous driving, software approx-
imation approaches, Edge Artificial Intelligence, and vehicular
communication. Building upon this discussion, topics are
followed by requirements and needs to address the energy-
efficient approximation in connected vehicular services.

B. Autonomous Driving

Autonomy in vehicles is achieved by deploying ADAS
features, which requires continuous sensing and computing
within the vehicle. Some ADAS features proposed with AI
models include adaptive cruise control, object classification,
obstacle detection, mapping, path planning, and SLAM. These

applications mostly depend on cameras, LiDAR, and radar
sensors, which also generate a large amount of raw data
currently processed by the vehicle computing unit. An ex-
ample of the approximate data rate from vehicle sensors is
shown in Figure 2. The data rate may vary based on the
sensor’s specification (e.g., generation, bit-rate, feature capture
properties) and the data quality. At present, the autonomy in
vehicles is defined in six levels [312], and for these levels,
the requirements and counts of the sensor are different as
high-level autonomy expects no intervention from the driver.
A count of approximate number of sensors [3], according to
autonomy levels 1-5 is shown in Table II.

Studies from [297], [147] suggest that energy consumption
from fully connected autonomous vehicles can be separated
into three categories: 1) Consumption by an autonomous
car (on-board sensors and computing devices). 2) Energy
consumption caused due to Infrastructure sensors involving
Vehicular communication and Networking. 3) Energy con-
sumption at the backend such as Edge servers, local and
central servers maintaining legacy data, and the global DNN
model. Studies [188] show that on-board energy consumption
is higher than 1000’s watts, and overall energy consumption
from a single conditional automated diving vehicle combining
all three categories could be around 2500 Wh per 100 km of
driving [147]. High on-board energy consumption is due to
the usage of compute-intensive algorithms and the processing
devices such as graphics processors, which are essential for
perception and visual applications.

The on-board computation approaches leading to power
consumption [36] demand the design of applications and
energy-efficient Edge AI systems for automated driving ser-
vices. Therefore, this survey paper focuses on identifying
currently practised AI algorithms, computation, and commu-
nication approaches that lead to high energy consumption.
Further, it includes a review of the design and implementation
of edge computing approaches for autonomous driving tasks
(e.g., Perception, HD Map, SLAM), datasets, edge-assisted
techniques, and vehicle-edge frameworks. Lastly, based on
the gathered requirement and research gaps, an Edge AI
processing pipeline is proposed, which contains the higher-
level abstraction of components involved in service implemen-
tation across vehicle-edge settings. In this survey, the levels
of autonomy is referred from the International Society of
Automotive Engineers (SAE), consisting of six levels [312]
of automation in driving, which are as follows:

1) Level 0 - No Automation: Driver dependent driving.
2) Level 1 - Driver Assistance: Driving tasks are carried

by driver with little input from the vehicle sensors, this
level introduces driving assist features.

3) Level 2 - Partial Automation: Some driving tasks are
carried by a computing unit placed in car by sensing
the vehicle surrounding. Tasks include adaptive cruise
control, autonomous emergency braking. This level still
requires the driver to maintain control over driving tasks
and regularly monitor the vehicle surrounding.

4) Level 3 - Conditional Automation: Some tasks (sens-
ing, actuation and control) are carried out by the sensors
and the computing unit placed in the car, however the



driver must be able to take control of the vehicle based
on demand and situation.

5) Level 4 - High Automation: Vehicle is capable of
performing all driving tasks by initiating communication
with other vehicles under certain conditions, but the
driver has the option to take control of vehicle.

6) Level 5 - Full Automation: Vehicle is capable of per-
forming all driving tasks by communicating with other
vehicles and infrastructure sensors under all conditions,
but the driver may have the option to control the vehicle.

Table II: Approximate cont of sensors in an autonomous car

Sensors Count Approximately Present in an Autonomous Car
Sensor Level 1 Level 2 Level 3 Level 4 Level 5

Control Units 1 1 2 3 3
Ultrasonic 5 5 9 9 9

Radar 2 4 4 8 8
Camera 0 2 5 5 5
LiDAR 0 0 1 2 2

GPS/GNSS 1 1 1 1 1
DSRC 0 1 1 1 1

V2X Module 0 1 1 1 1

C. Approximate Techniques

AI methods for implementing automated driving tasks, such
as perception and SLAM, can be categorized as computation-
ally intensive, high resource and energy-demanding, which
also makes them expensive for deployment. An estimate of
energy consumption within a vehicle by its components (e.g.,
the embedded device running DNN model, sensors such as
LiDar, and camera) is shown in Table III. For example,
currently deployed level 3 autonomous vehicles [150], [243],
[19] primarily rely on vision sensors and GPU computing
systems, consuming significant resources in terms of mem-
ory and energy, respectively. When integrating these ADAS
features into resource-constrained [101], [395], [284], [339]
and energy-constrained [361], [378], [178], [386] real-time
autonomous systems, several challenges arise.

Firstly, processing a large volume of sensor data through
DNN algorithms for autonomous driving services directly
impacts the computing efficiency of embedded systems with
limited memory. This necessitates the implementation of effi-
cient on-board inference techniques to optimize the embedded
device usage for better energy efficiency [162], [229], [271],
[282]. Secondly, the computing complexity and low latency
requirements of applications like SLAM make it necessary to
process the sensed data at the on-board computing unit rather
than relying on cloud or edge servers. Approximate and adap-
tive computing and communication techniques, such as prob-
abilistic/deterministic approximation, data aggregation, model
compression, early-exit neural networks, adaptive networks,
and sparsification can aid in improving on-board latency,
inference and communication requirements. These topics are
comprehensively covered in Section IV.

D. Edge AI

Edge AI or Edge Intelligence can be described as the com-
bination of edge computing and artificial intelligence [402]. It

Table III: Energy estimates from vehicle components [79]

Source Estimate (energy consumption)

Computing units (63 - 77) %
Camera (6 - 11) %
Radar (3 - 5) %

LiDAR (11 - 18) %
Communication units (2 - 3) %

has emerged due to the requirements of connected ecosystems
developed for applications that require the processing of
algorithms locally near the data source or edge-server. These
algorithms [278] utilize the data generated by the devices
and make independent decisions for real-time applications
without needing to connect to the centralized server or cloud
for the decision-making process. A fully connected Level 5
autonomous car will be a result of collaboration between
vehicles, vehicle-edge, edge-server, vehicle-edge-cloud com-
munications and distributed computing systems. The current
Level 1 to Level 3 autonomous vehicles highly rely on the
Graphics Processing Unit (GPU) for their applications, and the
GPU alone can consume up to 300-350Wh [36], [19], [147] of
energy per 100 km of driving, depending on the data rate and
quality of the sensors. As shown in Table II number of sensors
increases for fully-connected autonomous vehicle compared
to the current scenario; presented values are an approximate
estimate depending on OEMs and fleets [3], [19], [150].

Sensor numbers vary according to the sensor suite and re-
lated software technologies. The estimated power consumption
of each vehicle can range from hundreds to thousands of
watts, depending on the type of these sensory technologies.
According to reports [269], the amount of data transmitted
between the vehicle and the cloud can reach 10 exabytes in
the future, which is excessive compared to current practices.
The present cloud and server infrastructure are not capable of
handling and processing this in real-time within the expected
latency. Therefore, AI on Edge and task offloading can be
implemented for latency-tolerable tasks in the ecosystem.

These latency-tolerable applications can leverage the func-
tionality of distributed devices and joint inference within
the ecosystem. Models can quickly process sensor data and
decision-making while ensuring the efficient delivery of tasks
by running on specialized hardware. An example could be
urban traffic optimization and route planning by deploying
models on distributed edges located in close proximity to the
vehicles. These systems can also provide strategies to enhance
the driving experience by analysing traffic patterns and en-
vironmental conditions in real-time. Overall, AI at the edge
empowers connected autonomous vehicles with the ability to
process data locally, minimizing latency and enabling time-
critical applications for enhanced safety and performance. Op-
timized Edge AI implementation can help in achieving better
end-to-end accuracy while balancing performance and energy
consumption. The Edge AI deployment process can/may in-
volve sensing, re-training, decision-making, and collaborative
learning/inference while enabling communication with other
edge devices and servers in the environment.



E. Communications in Autonomous Vehicles

Communication within vehicles and their ecosystem has
been identified as a key enabler for deploying level 6 autonomy
[116]. An example of connected vehicles, base stations, road-
side units, edge-servers, infrastructure and remote cloud is
shown in Figure 3. Several use-cases presented within the
context of vehicle communication [218], [252], [22], [96],
[212], [52], discuss directly benefiting the perception, plan-
ning, and control related use-cases using distributed or joint-
inference. However, little attention has been given to energy
efficiency. Current communication are further categorized as:
Inter-Vehicle Communication [45], [48] & Intra-Vehicle Com-
munications [241], [226].

Intra-vehicle communication helps understand the vehicle’s
current state by exchanging information and signals between
the sensors, actuators, and other electronic devices and com-
ponents present within the vehicle. This communication is a
combination of wired and wireless technologies. Commonly
used wired technologies include Controller Area Networks
(CAN), Digital Data Bus (D2B), Ethernet, FlexRay, Media
Oriented System Transport (MOST), Low Voltage Differential
Signaling (LVDS), Power Line Communication (PLC), Time-
Triggered Fieldbus (TTP). Conversely, the wireless communi-
cation methods for Intra-vehicle communication include WIFI,
BLE, Zigbee, and Ultra Wideband. Amongst the mentioned
wireless technologies, BLE is one of the most commonly used
by automotive manufacturers as it is a significantly proven
technology and is relatively cheap compared to WiFi. It can
transmit media relatively faster than Zigbee and comprises a
good security layer. A comparison of these communication
technologies is also shown in Table VII.

Figure 3: Communications in vehicular ecosystem across
vehicles, infrastructure, and road-side networks.

An important factor for the high use of BLE technology
is relatively low power consumption [185], [328] and it has
a large installed base and a guaranteed latency, as well as
a stable specification. Automobile components and modules,
normally connected by electrical signal wires, are increasingly
being replaced by wireless signals. A reduction of 50% in the
number of signal wires is the goal of the automotive industry.

Typically, an automobile contains about five kilometers of
wiring, so there would be many wireless signals. A hybrid
practice that uses both, wired clusters of automobile compo-
nents and wireless inter-cluster connections is becoming more
common. The infotainment panel at the vehicle dashboard is
such an example. For Inter-Vehicle communication, the present
human-driven or semi-autonomous vehicles are equipped with
communication and radio modules, which receive information
and signals mostly related to infotainment. The communication
technology has evolved from AM, FM, DAB to HD Radio
in which transmission method, media size, and quality of
service have significantly improved. Since fully connected
autonomous driving has wider communication and real-time
processing requirements as the high-performance computing
unit takes the decisions, researchers have proposed relevant
technologies such as DSRC, V2V/V2I, WiMax, 5G-NR-V2X
or C-V2X for local and long-range communication.

F. Taxonomy of Edge AI Technologies for CAV

This subsection introduces the taxonomy used in this survey
paper. First, legacy AI methods for autonomous driving are de-
scribed. Second, Edge AI and computing applications are ex-
plained. Third, the approximation approaches and compression
strategies are defined. Finally, energy-efficient mechanisms
and requirements for vehicular ecosystems are discussed. A
structure can be seen in Figure 4.

1) AI Models & Autonomous Vehicles: An autonomous
vehicle is defined as an independent system capable of routing
from source to destination by perceiving its surroundings
using sensors and processing the sensed data on intelligent
algorithms. Advancements in CAV can be associated with the
progress of vehicle sensors, embedded devices and intelligent
algorithms. These progressions have enhanced connectivity,
infotainment systems, electrification, and automation. Per-
ception sensors (camera, LiDAR, radar), positioning sensors
(GPS, GNSS), and communication modules have been used
to replace or assist driver using AI models.

• Basic Model: AI models proposed to automate/assist
driving tasks can be divided as follows:

– Machine Learning: Supervised, unsupervised, and
reinforcement are the popular techniques explored
within autonomous driving.

– Deep Learning: It is a subset of machine learning
that consists of several types of neural networks
trained on datasets to learn complex features from
unstructured or structured data.

• Model Requirements: AI models have specific require-
ments and guidelines depending on the driving tasks. For
e.g., localization, emergency braking, and detecting an
obstacle/traffic sign should be highly accurate. Within
the scope of this survey paper, the discussed model
requirements are:

– Accuracy: The principle behind using AI models is to
eliminate human error while driving and achieve an
expected level of accuracy for the driving tasks. It is
measured as a score of correct predictions/estimation
with respect to the total predictions by a model.



Figure 4: Classification of Topics Covered in This Survey

– Latency: Each driving tasks have varied execution
requirement. For e.g., detection and localization have
strict requirements of a few milliseconds(ms). For AI
models, latency (in time) is used to characterize the
performance of a model for a specific application.

– Energy: Desiring the highest level of accuracy for an
AI model and fulfilling strict latency requirements
for specific tasks generally leads to the use of high-
performance computing units, which leads to energy
consumption. Energy (Joules) can be estimated by
capturing AI models’ power consumption (Watts).

• AI models compression: These techniques enable pro-
cessing large data or AI models on resource-constrained
devices with limited computation. Lossless and lossy
compression has been explored in models and data for
vehicular tasks. Popular compression approach includes:

– Parameter reduction: Reducing parameters from the
model results in compression, which may lead to
faster training or inference by addressing model com-
plexity challenges. For e.g., pruning non-contributing
weights/layers leads model compression.

– Layer/Node reduction: To address compute and
memory requirements of models, layer/node reduc-
tion has been used as a popular approach which also
helps in balancing the model accuracy. An example
is Minimal matrix operations and parameter-sharing.

– Neural Architecture Search: This approach can be
seen as optimizing the parameters/hyper-parameter
of neural networks with a search dimension. Model
downsizing and balancing high communication
bandwidth demand within the vehicular environment
can be such search dimensions.

• Approximate Techniques: These techniques are uncon-
ventional approaches from the area of mathematics with

known applications use-case in science and engineering
(e.g., probabilistic circuits). In approximation, a bal-
anced mechanism is used to trade-off metrics/parameters
quantitatively for achieving fast computation (on-board
latency) by trading-off computing performance (preci-
sion) [89], [152], [303]. Software and model compression
approaches proposed for framework and AI models in
connected autonomous vehicles can be categorized as ap-
proximate model or approximation techniques. However,
this generalization do not address energy-efficiency (one
of the three dimensions in approximate computing) from
the viewpoint of computation and communication.

– Quantization: Vehicular applications are dependent
on intelligent algorithms, which generally use 32-
bit floating point precision for training the model
and gradient estimate. The elements can be approxi-
mated using quantization to fewer bits, reducing the
model size and decreasing the bandwidth load. The
approach is inspired by the human nervous system,
where information is stored in discrete form [306].

– Sparsification: In this approach, a vector is rep-
resented by its approximate form where the non-
zero components are equal to the corresponding
original vector. It is a compression technique often
implemented in collaborative and distributed learning
approaches such as federated learning which requires
frequent communication between the devices, in this
case, between the vehicle and edge or cloud.

– Low-rank approximation: Another technique to im-
plement reduced computation for AI models in low-
rank approximation. Tucker or Canonical polyadic
decomposition has been well used for CNN and
DNN. The technique successfully reduces the model
size, but it significantly affects model’s accuracy.



– Knowledge Distillation: An approach to approx-
imately represent a larger DNN model in com-
pressed/reduced form. Although the technique allows
the development of approximate versions of AI mod-
els, maintaining performance is an open challenge.

2) AI Tasks: Driving tasks implemented using AI mod-
els can be categorized as perception, SLAM, HD map,
path/motion planning, and communication. In this paper, these
tasks are further differentiated on the basis of data processing,
feature extraction mechanisms, and hardware used.

• Perception applications provide scene understanding and
are performed using sensors such as a camera or LiDar
at the vehicle’s on-board computing unit or at the sensor
units present within the ecosystem (e.g., CCTV cameras).
These applications are performed using CNN or DNN
models deployed on the GPU. As the models largely
consist of dense layers, the computational demand and
energy cost for deployment are relatively high.

• SLAM application enables vehicles to localize in their
surrounding using sensor data. AI models enabling
SLAM applications are also memory and compute-
intensive. The complexity further increases because of the
low inference requirement/processing of these algorithms.

• HD map sometimes also referred to as 3D map is an
evolving service/feature, which provides 3D scene view
of the vehicle surrounding. It is expected to be used with
detection and localization tasks.

• Communication in the vehicular environment is dynamic
and heterogeneous. It exists in three forms; in the vehicle,
between vehicles and within the infrastructure. With the
continuous evolution, it depends on the generation of
hardware/software and sensory technologies. High-level
autonomy is highly dependent on connected vehicles
and smart infrastructure sharing raw data, weights, and
algorithms. Similar to on-board computation, the com-
plexity in vehicular communication arises due to the large
volume of data and additional load on bandwidth.

• Path/Motion Planning is a crucial AI task that enables
the vehicle to navigate from source to destination by
avoiding obstacles. A traditionally used algorithm is A-
star. However, recent approaches involve using AI models
with vision sensors, thus combining motion planning and
path prediction by avoiding obstacles.

3) Edge AI and CAV: Initially, cloud computing was pro-
posed to facilitate computation, and decision-making for the
connected vehicles [73], [301], [116]. However, the cloud
computing approach had several challenges in transmitting
high volume or flood of data from the vehicle to the cloud, data
privacy and leakage, adversarial and poisoning attacks on the
ground truth data, and algorithms present in the cloud [116].
Therefore, an approach to bring computation near the data
source to tackle surplus data transmission to the cloud has been
proposed in the form of edge computing. This technique has
been further enhanced by proposing Edge-Intelligence, which
allows the deployment of AI applications on Edge devices to
facilitate inference near the data source. Edge AI improves
data privacy and security and shows promising aspects in

tackling the distributed computation and communication chal-
lenges for the connected vehicular ecosystem, which consists
of services such as driver’s assistance, infotainment, decision-
making, and safety-critical applications. It is further divided
into Edge training, Inference and Caching.

• Edge Training: As future vehicular applications will be
carried out in dynamically distributed and connected
environments, edge training can enable and facilitate
collaborative/joint learning within participating devices
using federated learning. It also allows re-training and
updating models.

• Edge Inference: Edge inference enables deployment of
AI model in resource-constrained devices. Considering
the complexity of deploying fully connected autonomous
vehicles and the severity, the following concerns should
be addressed:

– Latency: The vehicular environment is complex, and
many applications have strict latency requirements.
In fully connected vehicles involving AI applications,
latency includes sensor data processing, data fusion,
algorithm processing or computation, and communi-
cation between devices.

– Real-time Inference: Deploying real-time applica-
tions is essential for connected autonomous vehicles.
The adjacency of computing to the data source tack-
les the low-latency and time-sensitive requirements.
However, high computational and relative energy
costs should be considered in such deployment cases.

– Offloading: For resource-constrained devices (low
compute and battery powered), offloading data and
computation to the nearest edge servers can facilitate
local deployment, which also reduces the traffic
amount from the vehicles/edge devices to the cloud.

– Heterogeneity: In a vehicle-edge-cloud ecosystem,
heterogeneity exists in the sensed data, computing
capabilities, communication devices, and protocols.
This property poses significant challenges for de-
ployment and resource management strategies.

– Reliability: Possibility of deploying low-latency and
real-time applications makes Edge AI reliable for
vehicular applications. Also, it prevents sharing of
sensitive and safety-critical data. However, rural or
highway driving, communication, congestion, packet
delay, and bandwidth requirement are concerns.

• Edge Caching: As training/re-training, updating the
weights, and model in a distributed environment require
frequent data exchange, caching becomes an essential
and important function, which deals with the collection,
storing, processing, and real-time labelling of data.

4) CAV Frameworks: Advancements in sensory tech-
nologies, AI models, driving tasks and on-board proces-
sors/computers have resulted in the development of au-
tonomous driving frameworks. These driving frameworks
can be currently categorized as driving task/assist ori-
ented, independent application/service oriented or as compute-
communication oriented frameworks.



Table IV: Coverage and Comparison of previously published Survey

Previous Work Topics Covered
Perception SLAM Comm HD Map Dataset Edge AI Energy Efficient

This Survey Y Y Y Y Y Y Y
2018 - Autonomous Driving Cars [362] Y Y Y N N Y N
2019 - Edge Computing System [186] N N Y N N Y N
2019 - Edge Computing For AD [190] Y Y Y Y N Y N
2019 - Edge Intelligence for IoV [381] Y Y Y Y N Y N
2020 - AD: Common Practices [376] Y Y Y N Y N N
2020 - Deep Learning for AD [87] Y Y N N Y N N

2020 - Energy Aware [125] N N Y N Y Y Y
2020 - Communication-Efficient [278] Y N Y N N Y N

2021 - Edge Computing [40] N N Y N Y Y N
2021 - Edge-Benchmarking [314] N N Y N N Y Y

G. Motivation and Methodology for Choosing Literature

In past years, comprehensive surveys in emerging au-
tonomous driving technologies [362], [190], common prac-
tices [376], deep learning techniques[87], and communication-
efficient [278] approaches have been published. Despite the
increasing focus on connected autonomous vehicles, there has
been a lack of attention towards energy-efficient approaches
and software approximation techniques specifically tailored for
this domain. In [362], an overview of current and emerging
autonomous driving technologies is discussed by following the
case-study approach. While discussing emerging technologies,
the authors also briefly described the future research opportu-
nities in connected autonomous vehicles.

A comprehensive study of edge computing systems and
edge computing opportunities for autonomous driving is pre-
sented in [186], [40] and [190] respectively. The review paper
gives attention to computing architecture, software framework,
privacy, and security in vehicular communication. In a similar
context, [381] presented a review of mobile edge intelligence
techniques for vehicles and discussed edge-assisted perception,
mapping, and open issues. Articles [376], [87] covered recent
autonomous driving state-of-art AI models and techniques
in detail. Key discussed topics were machine/deep learning
models, driving safety features, system components, and archi-
tecture. The review conducted in [125] covers energy-aware
approaches for hardware and software layers in the edge
computing domain, focusing on the framework layer. Authors
in [278] presented a comprehensive review of communication-
efficient techniques for edge computing systems by focusing
on key communication challenges. In [314], authors reviewed
cloud-edge computing and frameworks that focus on applica-
tion and optimization techniques and benchmarks.

Table IV shows a comparison with related surveys. This
comparison is based on coverage of topics: deep learning prac-
tices (perception), data & compute-intensive tasks (SLAM,
Communication, High-definition Maps), datasets, applications
of Edge Intelligence, and energy-efficient approaches. The
review procedure used in preparing this literature survey is
based on the SLR approach adapted from Kitchenham and
Charters [311], also shown in Figure 5. This approach initially
demands defining research questions and objectives, followed
by identifying the search strategies. While searching the rele-
vant and related content, a connected paper search approach is

Figure 5: Approach for systematic literature review adapted
from Kitchenham and Charters [311]

followed, and the inclusion and exclusion criteria are applied
with the keywords and terms to refine the article based on
the scope and objectives. In the last two stages of the SLR
approach, the collected articles are categorically divided based
on the article’s contribution toward approximation techniques,
autonomous driving applications, and Edge Intelligence. Some
approximation techniques overlap in multiple research ques-
tions. For this case, a quantitative approach is used.

Key Questions Addressed

1) What are the current AI model development and
deployment strategies for connected vehicular
tasks/applications such as perception, SLAM,
vehicular communications, and HD maps?

2) What are the recent communication-efficient ap-
proaches that are proposed in a vehicle-edge
ecosystem for CAV?

3) Which approximation strategies are proposed as
software-level solutions for communication and
computation in vehicle-edge environments?

4) What are the techniques for developing energy-
efficient vehicle-edge frameworks that enable
vehicular services through joint inference?

III. AI & AUTONOMOUS DRIVING

AI/Machine learning approaches and techniques have been
widely used for autonomous driving tasks and services. Com-
monly used techniques are supervised learning, unsupervised
learning and semi-supervised learning [117], [25]. In su-
pervised learning a machine learning model is trained with



labelled dataset, while in unsupervised learning a machine
learning model is trained with unlabeled dataset, with the
common purpose of prediction or classification. In semi-
supervised learning a machine learning model is trained with
both labeled and unlabeled datasets. This approach is proposed
to save training time and computational resources [123], [62].

A. Perception

Autonomous vehicles driven using sensory technologies
and AI algorithms can be seen in the form of taxies from
Waymo, Zoox, Cruise etc.[3], [82]. These vehicles are mostly
dependent on Perception related tasks: segmentation, Object
classification-detection and localization. These three tasks are
currently considered as crucial element for the enablement of
autonomous driving. The object detection task can be further
divided into 2D or 3D detection, which are mainly reliable
on the line-of-sight sensors such as High-Definition Camera
[196], [392] and LiDAR [173]. 2D object detection task is gen-
erally carried using convolutional neural network and recurrent
neural network architecture which involves feature detection
and estimation of rectangle or square shaped bounding boxes
(x, y) around the detected objects in an image or video frame,
whereas the 3D detection involves estimating a cube shaped,
three dimensional bounding box in an object, by estimating
the position of the object in the 3D plane (x, y, z).

Deep learning has been widely accepted as attractive or
prominent technique for image and vision related applications
because of development of the state-of-the-art neural network
architectures [9], [149], [176], and their delivered accuracy’s.
The object detector are classified into one-stage and two-
stage detectors depending upon the backbone of training and
inference method used. Table V covers popular and recently
published object & lane detection approaches for autonomous
driving. Table V is formulated on AI model performance over
the popular driving datasets (covered in Table IX), hardware
implementation, detection methods, and speed (FPS) which
is crucial for real-time deployment. For the 3D detection the
initial approach and technique involves pre-processing of the
3D point clouds data and adopting them into the data structure
required for the existing deep learning algorithms, thus provid-
ing an output based on the algorithm. Recent researches have
proposed to process the LiDAR point clouds directly on deep
neural network without converting them to any representations.
For example [246], [245] proposed different form of deep
neural net architectures, called as Pointnets and Frustum
Pointnets respectively. These deep learning architectures have
shown higher performance and have proved as benchmark for
3D perception based detection such as object classification
and semantic segmentation. Pointnets++ architecture [247]
proposed by Qi et al. is capable of both classification and
semantic segmentation of 3D point clouds by learning the local
and global feature vector from the raw point clouds. Zhou
et al. presented VoxelNet [401], a deep learning architecture
detecting 3D bounding boxes based on reading of LiDAR
Point clouds, here the LiDAR point clouds were divided
into 3D voxel spaced equally. The architecture successfully
detects and gives high performance for the car, cyclist and

pedestrians. The most prominent 3D object detector Frustum-
Pointnet [245] is presented by Qi et al., which predicts the
bounding box on an object based on instance segmentation and
the bounding box estimation. A similar method Pointfusion
[345] is proposed by Xu et al. which utilizes the Pointnet [246]
and ResNet [296] architecture for estimating the 3D frustum
and object classification.

Figure 6: DNN pipeline to show 3D object detection using
video frames, bird-eye-view, and LiDAR point clouds.

1) 2D object Detection: 2D object detection in an au-
tonomous vehicles are primarily based on the single or mul-
tiple cameras connected to sense the environment or sur-
rounding of the car. The 2D object detection architecture or
algorithm requires the raw image as an input, and outputs
the bounding box with the class or label of the detected
object. In 2D object detection the bounding box is an axis-
aligned rectangle, which is precisely estimated on the position
of the multiple objects or classes in that image, here the
bounding box can be parameterized as (xmin, xmax, ymin, ymax)
where (xmin, ymin) are the pixel coordinates of the bottom-
left bounding box corner, and (xmax, ymax) are the pixel
coordinates of the top-right corner. An example of the un-
annotated captured image and point cloud from the KITTI
dataset [205] is shown in Figure 10; the image shows the
front camera view and the generated LiDAR point cloud.



Table V: State-of-the-art DNN architectures benchmarked over KITTI and COCO datasets. The table is arranged according
to the timeline, data and method used for computation, and on-board inference speed.

Detection Type Ref Year Data Method Speed (fps) Analysis

2-D Object

Faster R-CNN [255] 2016 Camera 2Stage 17 (V100)
SSD [191] 2016 Camera 1 Stage 22 (Titan X) Dependent on the single or multiple cameras
Yolo [320] 2023 Camera 1 Stage 161 (V100) Connected to sense the environment

SqueezeNet [115] 2017 Camera 2 Stage 17 (Titan X)
SqueezeDet [337] 2017 Camera 2 Stage 30 Models are initially trained on powerful GPU
CornerNet [156] 2018 Camera 2 Stage 33 (Titan X) and later deployed on embedded device

FSAF [405] 2019 Camera 2 Stage 38
CenterNet [66] 2019 Camera 1 Stage 28 (Titan Xp) Real-time inference and SW acceleration

Bottom-up [399] 2019 Camera 1 Stage 43 (Titan X) depends on DL frameworks
Foveabox [145] 2020 Camera 1 Stage 35 (V100)
IntPred [293] 2020 Camera 1 Stage 42.8 (GTX 1080)

3-D Object

Baidu [163] 2016 LiDAR 2 Stage
Vote3deep [67] 2017 LiDAR 2 Stage 28.6

MV3D [46] 2017 Ca + Li 2 Stage 2.8 Previous approach was to transform point
PointFusion [345] 2018 Ca + Li 2 Stage 5 clouds into images and later use them

VoxelNet [401] 2018 Ca + Li 2 Stage 2 on cnn architecture
Deep 3D [177] 2018 Ca + Li 2 Stage -

IPOD [359] 2018 Ca + Li 2 Stage 37
PIXOR [356] 2018 Ca + Li 2 Stage 28.6 Frustum based approaches improved direct
Hdnet [355] 2018 Ca + Li 2 Stage 20 use of raw-point cloud on DNN however

Frustum PointNets [245] 2018 Ca + Li Fusion 2.9 lacked processing speed for real-time
Second [353] 2018 Ca + Li 2 Stage 40 embedded deployment & Applications

Squeezeseg [338] 2018 Ca + Li Fusion 50
Pointpilllars [155] 2019 Ca + Li 1 Stage 25 (GTX 1080 Ti)
PointRCNN [276] 2019 Ca + Li 1 Stage 10 Data Fusion pipelines improved the

Lasernet [206] 2019 Ca + Li 1 Stage 83 segmentation application on point clouds
Class-Balanced [404] 2019 Ca + Li 1 Stage 42
Sparse-to-dense [360] 2019 Ca + Li Fusion 10

Mono3d++ [97] 2019 Ca + Li 1 Stage 20 Approaches such as machine-learned pillar
Pointpainting [319] 2020 Ca + Li 1 Stage 2.5 encoders are learned in an end-to-end manner

SA-SSD [95] 2020 Ca + Li 1 Stage 25
Infofocus [323] 2020 Ca + Li 1 Stage 31 (GTX 1080 Ti)
3dSSD [358] 2020 Ca + Li 1 Stage 25 LiDAR 3d object detection networks heavily

SE-SSD [396] 2021 Ca + Li 1 Stage 32 rely on labeled training data
SPG [349] 2021 Ca + Li 1 Stage 41.56

Voxel-Transformer [203] 2021 Ca + Li 1 Stage 43
Pyramid-RCNN [201] 2021 Ca + Li 1 Stage - Grid based methods converts the point-

Channel-wise [274] 2021 Ca + Li 1 Stage 39 cloud unstructured data to pixel & voxel
Voxel-To-Point [167] 2021 Li 2 Stage 41 for 2D and 3D convolution processing

Voxel-RCNN [56] 2021 Ca + Li 1 Stage 40.8
Multi-View to H-3D [57] 2021 Ca + Li 1 Stage Recent approach involves using encoders

SA-Det3D [29] 2021 Ca + Li 1 Stage 36 for detection refinement of far and distant
X-View [343] 2021 Ca + Li 1 Stage 47 objects, these decoders enhances the point

CenterPoint [367] 2021 Ca + Li Fusion 16 feature through hierarchical aggregation.

Lane

Vpgnet [159] 2017 Ca 2 Stage 20
LaneNet [332] 2018 Ca 2 Stage 50 Most DNN model uses RGB Images for input

E2E Lane Det [223] 2018 Ca 1 Stage - which is challenging in real-world situation
Spatial as Deep [233] 2019 Ca + Li 1 Stage - as per changed weather & Light Condition

3DLaneNet [78] 2019 Ca + Li 1 Stage 53
Gen-LaneNet [91] 2020 Ca + Li 1 Stage 60 3D lane detection improves constraints such

Real-time Lane-det [294] 2021 Ca 1 Stage 48 as making turns or merging to another lane
Low-light Lane [281] 2021 Ca 1 Stage - with inclusion of sensors: radar, LiDAR

Benchmarked 2D object detectors for real-time applications
on camera frames include SqueezeNet [115], SqueezeDet
[337], YOLOv7 [320], and SSD [191]. These architectures
utilize convolutional neural networks (CNNs) to process the
image through filters and layers, extracting feature maps that
encompass the entire image. The selected object regions are
then mapped onto these feature maps and transformed into
region feature vectors. Based on the class scores, these detec-
tors predict the type of object and propose the corresponding
bounding box. This process allows for efficient object detec-
tion and localization in real-time scenarios.

2) 3D Object Detection: 3D object detection is dependent
upon sensors such as RGBD camera, 3D radars, LiDAR or

combined sensed values, as they can represent the vehicle
surrounding in 3D setting. For inference the raw sensed
values are processed using the deep learning algorithm, which
requires the image with length, width and depth information
or the LiDAR point cloud in sparse or dense format as an
input. The output from these deep learning algorithm are as
follows: At first it detects and classifies the object present in
the scene and secondly it predicts a 3D bounding box for
the detected objects in the line of sight. In the 3D object
detection pipeline, the backbone of the architecture uses neural
network with convolutional layers. The convolutional layers
are responsible for feature extraction method from the scenes
in the local feature map and the global feature map. The



next stage comprises of deconvolution layer. The parameters
weights obtained after the deconvolution layer are used for two
process, in first it is fused together using probabilistic approach
to generate and aggregate a score for the detected feature and
they secondly they are processed on the pooling layer to fuse
them further to obtain the detected object and the predicted
bounding box. 3D bounding box can be parameterized as (x,
y, z, l, w, h, θ). Here the (x, y, z) is the 3D coordinates of the
bounding box center, the (l, w, h) is length, width and height,
respectively of the bounding box, and θ is the yaw angle of the
bounding box. Two different approaches of 3D object detection
based on image and LiDAR point clouds is shown in Figure 6
and Figure 7, where the object detection is used using fusion
from the LiDAR point cloud and the respective camera image.

Most of the statistical or deep learning related algorithms for
near real-time 3D object detection and semantic segmentation
[133], [134] are based on PointNet [246], the models proposed
here are trained and evaluated on the KITTI dataset, which
contains images and LiDAR point clouds collected from the
forward facing stereo camera and velodyne LiDAR. Recent
point-cloud based architectures such as [155], [46], [367],
[154], [275] have made it easier to directly use the raw
point cloud for efficient detection on hardware. As reviewed
in this section, research in perception category have mainly
focused on improving accuracy of the DNN model, multi-
object detection and tracking, and implementation on em-
bedded devices, the challenges and opportunities for energy
efficient addressed from this sections are: high computational
demand, data fusion, collaborative learning models.

Takeaways

1) Computational efficiency: Existing models con-
sist of sequential convolution and fully con-
nected layers with a primary objective of achiev-
ing high accuracy on a driving dataset. De-
ployment of such models is strictly dependent
on high-performance devices which increases
the onboard, computing and energy costs. Pro-
cessing such neural networks on a resource-
constrained embedded device by maintaining
benchmark accuracy remains an open challenge.

2) Data fusion: Camera and LiDAR sensors data
is used as independent or in combination to
detect an object from the vehicular surroundings.
However, the current practices remain to process
data on individual pipelines and perform a fusion
at the last stage. This leads to excessive use of
computation resources for the same operation.

3) Domain gap: Remarkable progress in object de-
tection can be credited to intelligent algorithms
trained on automotive datasets. The sensory
technologies used for data collection frequently
change in generations (e.g., LiDAR and im-
provement in resolution). However, little atten-
tion has been given to domain adaptation of these
algorithms for the next generation of datasets.

Figure 7: Pipeline for the fusion of feature maps. The
approach is used for LiDAR and Image-based detection.

B. HD Map

High-definition map in an autonomous vehicle can provide
dynamic and static conditions, such as semantic information,
topology, and geometric information, from the vehicle sur-
rounding using cameras and LiDAR sensors [127]. One of
the key requirements in autonomous driving is to accurately
localize itself with respect to its surroundings and the infras-
tructure, and gathered information from an HD map can be
used to support this function including vehicle motion control,
motion planning, and perception [249], [250]. Therefore, maps
are essential components for level 4 and beyond autonomous
driving. Previously maps were used as a driver assistance
feature [287] to guide in navigation from source to destination.
Google and Apple were the first of the few organization to
collect street, city, and highway data which later enabled the
flexible transportation and mobility by using GPS devices or
map based applications on the regular smartphones. With the
advancement in technology and algorithms the 3D maps of
cities such as New York, Washington were created. HD maps
for autonomous driving is the result of advancements in sensor
and driving use-cases [287], [127].

Current HD maps lack specifications about the data type
or standard guidelines, such as annotated information that
should be stored while creating them. The automotive edge
computing consortium (AECC) has proposed a version of an
HD map consisting of four layers. This map version is based
on Local Dynamic Map initially proposed by the European
Telecommunications Standards Institute (ETSI). The layer
includes two static and dynamic layers, which are further
classified according to the timelines and changes expected
within the vehicular ecosystem (Figure 8). Current use-cases,
includes creating an HD map from the raw sensor data and
updating an existing map using crowd-sourced data from the
vehicles and infrastructure sensors in the vehicle-edge-cloud
setting. The four layers proposed in the AECC version [131]
are as follows:

• Permanent static layer serves as the foundation by provid-
ing a static map of the surroundings. This layer consists
of road maps, buildings, and roadside infrastructures. This



Figure 8: HD-map layers representation in ecosystem

layer consists of map data and information that does not
change frequently.

• Transient static layer contains information about scenar-
ios that may be subject to change over a few days to
a few hours. As shown in the figure 8 this layer may
contain information on the change to static layer for, e.g.,
snowfall, road construction, maintenance and accidents.

• Transient dynamic layer contains information on sur-
rounding that frequently changes. Here, change can occur
in a few minutes and last a few hours. It may contain
information on road obstacles, heavy rainfall and storms.

• Highly dynamic layer frequently changes; in a few sec-
onds to a few minutes. Thus contains information about
moving objects such as other vehicles, pedestrians and
motorcyclists. This section has not included information
requiring frequent updates that may be less than a second
interval in an HD map.

Relevant work in HD maps in using deep neural networks
includes: Hdnet, Vectornet, Exploiting sparse semantic HD
maps [127], [249], [165], [250]. Machine learning based
approach and workflow for creation of high definition semantic
map is presented in [127]. In this paper author discussed
the steps from data capture using sensors, annotations, and
map generation. Use-case such as pose estimation, traffic sign
and line mapping, lane/road marking were also discussed.
In the similar context a complete HD map framework for
autonomous driving is presented in [250]. The authors com-
prehensively presented the HD map application by describing
the pre-built maps, storage in cloud, locally built maps and
update in the global map based on change in static semantic
conditions. In this paper, the framework is distributed into on-
vehicle mapping, user-end localization, and on-cloud mapping.

For on-vehicle mapping traditional semantic method, pose
estimation, perspective transformation and local mapping have
been used [250], [305], [216]. On-cloud mapping is responsi-
ble to merge and aggregate map data from multiple vehicles.
Functions are used to merge local data timely such that the

global map is up-to-date. As the size of data and volume is not
fixed, a function to compress the map data is also implemented
at the On-cloud mapping. Lastly, the user-end localization are
vehicles requesting map information from the cloud. When
the vehicle receives the map, an algorithm to decompress map
data is implemented and data is further processed through a
semantic localization pipeline.

Researchers have also predicted that around 10% of the
roads or static conditions changes every year because of the
construction and related scenarios. Therefore, crowd-sourcing
based HD map update have been proposed to update the global
map using individual vehicles [180], [236], [383], [165], [102].
In [383], authors proposed to use sensors, such as GNSS,
IMU and camera, to detect the change in the HD map using
BiseNet architecture as semantic baseline and visual SLAM
for localization and mapping. For experiment authors used
arrow sign as an example from the surrounding and by using
vectorization and matching approach detected the change in
existing map data. Similar approach to update HD map using
edge-servers is proposed in [165]. In this paper authors dis-
cussed the issue of diminishing marginal utility and premature
convergence of map data from individual vehicles. To this end,
task distribution mechanism which uses adaptive time period
division mechanism is proposed. In the experiments using edge
devices and computing unit the effectiveness is verifies using
coverage, cost and efficiency.

A crowd-sourcing based approach to create HD map using
graph-SLAM [23] is proposed in [180]. The authors used
GNSS, odometry, point cloud data, and land marking to be
processed using a graph-SLAM algorithm. The authors used
pose estimation, smoothing filter, trajectory alignment for
the landmarks. Road model inference and lane geometry is
used to create the functions for lane boundary lines, con-
nections and point observations. To evaluate the approach,
an experiment with the ground-truth data was implemented.
Deep learning methods using crowd-source based HD map
update is proposed in [236], [102]. In [236], authors proposed
a change detection algorithm using boosted particle filter.
The particle filters are applied during the localization along
with a classification algorithm. In [102], authors proposed a
framework that maps the sensed image/frame from camera to
probabilities of HD map change. As the HD map data consist
of geometric information and lane marking, deep learning
metric is used to reduce the domain gap. In experiments
authors implemented object detector with a pixel-level change
detection from the input/sensed image, evaluated on city-scale
dataset. A combination of frames and point-cloud for mapping
is proposed on a low-power ARM and FPGA platform. This
approach improves performance through global map encoding,
LiDAR localization, and multisensor fusion [340]. Experiment
on public datasets such as Apollo shows reduced latency and
power consumption compared to other acceleration methods,
making it suitable for large-scale urban scenes.

Other interesting techniques that can be explored for HD
map creation and development are neural radiance field [208],
[299], and mean-field game [111], [110]. Instead of using three
coordinate system (x, y, z), in neural radiance field [208] a five
coordinate system including (x, y, z, α, ϕ) are used, where the



last two are viewing direction. Authors used fully connected
neural network to generate 3D scenes and frames based on the
trained 2D images. For comparative study, performing tech-
niques such as neural volumes, scene representation networks
and local light field fusion is used to directly predict a multi-
plane image for the input. The approach is very useful for
3d models of object captured from camera. Similar approach
is proposed in block-nerf[299] to represent surrounding in
large scale view. In [299], architecture layers are modified
using pose refinement, generative latent optimization, to adapt
image appearance embedding as different images could be
captured in different environment conditions. For experiments
and evaluation, authors reconstructed 3D scenes using 2.8
million images captured from camera. Interesting work us-
ing mean-field game is proposed in [111], [110]. In [111],
authors proposed a computational framework by categorizing
the scenario into microscopic and macroscopic perspective to
control velocity for vehicles, and further develop traffic flow
for autonomous vehicles. A comprehensive study is presented
to characterize equilibrium solutions in both continuous MFGs
and discrete differential games, a similar approach can be
implemented in HD map creation and update, which requires
strategic interaction between connected autonomous vehicles.

The challenges and opportunities in energy efficient ap-
proaches with HD map applications are as follows:

1) Data collection and Processing: An hour of driving ap-
proximately corresponds to 1.5TB data from a car. Pro-
cessing and interpretation of collected data requires effi-
cient algorithms and high-end computational resources.

2) Map storage and sharing: One of the primary challenge
is the design of common energy-efficient framework
for edge servers which can store and share the HD
map to the autonomous vehicle through local wireless
(802.11p), cellular or hybrid communication approach.

3) HD Map update: Approximately 10-15% of surrounding
or street scenes are expected to change because of
the development in infrastructure. Therefore an energy-
efficient approach and scheme to update the existing HD
map, rather updating the database in periodic manner.

4) Intelligent driving: The amount of information perceived
by sensors in city and highway driving is different, intel-
ligent algorithms developed for Edge server assisted HD
map update can help to identify the sensory information
needed to map and update.

Takeaways

HD map is essential and an emerging technique in
autonomous driving. Present HD maps are available
from the semantic and geometric perspective. HD
maps can be created locally every-time using vehic-
ular computing unit, but this tends to be compute
intensive. NRF, MFG and deep learning techniques
can be explored for data generation, map creation and
global HD map update. Crowd-sourced map update is
promising approach, however data merge, schedule and
aggregation approaches should be regularly optimized.

C. SLAM

Simultaneous Localization and Mapping often abbreviated
as SLAM has been widely researched in robotics, and au-
tonomous systems, including indoor applications focusing
on warehouses and manufacturing units. In an autonomous
vehicle, SLAM is a process utilizing algorithms to estimate
the real-time position of the vehicle by continuously perceiving
and sensing the environment using embodied sensors. The goal
of using SLAM is to create a virtual environment for the
vehicle by identifying the obstacles, and infrastructure, thus
assisting in creating a path for safe navigation.

In [136], [113], authors have proposed maps [236], [347],
[394], also referred to as 3D maps, in combination with
SLAM for efficient and precise localization. SLAM techniques
are mostly dependent on algorithmic approaches such as
probabilistic roadmap (PRM), rapidly-exploring random graph
(RRG), rapidly-exploring random tree (RRT), and parti-game
directed RRTs (PDRRTs). These algorithms are designed to
accurately search the subset of euclidean space over the high-
dimensional geometry by randomly building a space-filling
tree (RRT). SLAM application demands low latency (5ms
or less) and high computational resources, thus consuming a
significant amount of energy from on-board computing unit.
Recent SLAM approaches have been proposed without the use
of a Global Positioning System (GPS), and can be separated
into two categories: Filter-based techniques and Optimization-
based techniques. The filter-based category is primarily built
on the Bayes theorem, thus utilizing Probabilistic estimation
using Bayesian filters.

Some of the commonly used approaches are: Kalman
Filter, Extended Kalman Filter (EKF), Unscented Kalman
Filter (UKF). In the same category other used techniques are
particle-filters such as FastSLAM, Rao-Blackwellized Particle
filters and Monte Carlo filters, commonly practised as learning
algorithms for dynamic Bayesian networks. Table VI shows
a list of popular slam approaches that are based on line of
sight sensors, radar, and their fusion. Recently visual or 3D
SLAM approaches have been a popular method to localize
the vehicle within the environment. The table categorizes the
type of SLAM techniques such as 2D SLAM (Camera) or 3D
SLAM (RGBD camera and LiDAR). Depending on the input
data, a grid, voxel, or point cloud map is used for projection
or visualization of SLAM methods. The Optimization-based
category for SLAM is primarily based on Graph SLAM, which
is also motivated by the Bayesian theorem and is primarily a
graphical representation of it by utilizing the matrix form and
thus relating the state of the vehicle within the environment.
The matrix consists of values or information related to vehicle
pose, which can be used to solve the localization problem.

The techniques utilizing Graph SLAM are: Oriented fast
and Rotated Briefs-SLAM (ORB SLAM), Large-Scale Direct
Monocular SLAM (LSD-SLAM). Other commonly used tech-
niques are based on deep learning practices such as: CNN-
SLAM, DeepFusion, Deepfactors, Structured-SLAM, DRM-
SLAM. These practices are promising bases on their evalua-
tion and performance on driving datasets such as KITTI, how-
ever, they still pose a challenge based on efficient and faster



Table VI: The table shows deep learning models proposed for vehicular SLAM application. It also includes approaches
proposed within the indoor environment, which are scalable for the outdoor scenes.

Comparison of SLAM techniques for Autonomous Driving Services

Reference Type Method Projection Localization Real-time Compute
Power Environment

Real-time Loop [104] 2D SLAM EKF Grid Map Good Yes Low Indoor
Duality-based [39] 2D SLAM Graph Grid Map Medium Yes Medium Indoor

Particle Grid-mapping[88] 3D SLAM Particle Grid Map Good No - Outdoor
Tiny SLAM [84] 3D SLAM Particle Point Cloud Map Good Yes Low Indoor

Rotating 3D SLAM[71] 3D SLAM Particle Point Cloud Map Good Yes High Indoor
Surfel-Based [23] 3D SLAM Graph Point Cloud Map Medium Yes High -

CPFG-SLAM [124] 2D SLAM Probabilistic Grid Map Good Yes High Indoor
IMLS-SLAM [60] 3D SLAM Least-Square Point cloud Excellent No Low -
MC2-SLAM [237] 3D SLAM Scan-Map Point Cloud map Medium Yes High -

LIMO [86] 3D SLAM Probabilistic Point Cloud Map Good Yes - -
STEAM-L [302] 3D SLAM Scan-Map Point Cloud Map Medium Yes - -
M3RSM [228] 3D SLAM Scan-Scan Point Cloud Good Yes Low Indoor + Outdoor
LOAM [379] 3D SLAM Particle Point Cloud Excellent - Low Indoor

V-LOAM [380] 3D SLAM Particle Point Cloud Good Yes Low Indoor + Outdoor
ORB-SLAM [216] 3D SLAM Graph Point Cloud Excellent Yes High Indoor + Outdoor
Deepfactors [54] 3D SLAM Probabilistic Depth Map Good Yes High Indoor
CodeSLAM [31] 2D SLAM Keyframe Map Good Yes Low Indoor

Structured-SLAM [172] 2D SLAM Graph Plane Segmentation Good Yes High Indoor
CNN-SLAM [305] 3D SLAM Graph Semantic Excellent Yes High Indoor
LOAM Livox [181] 3D SLAM Graph Point Cloud Good Yes High Outdoor

F-LOAM [321] 3D SLAM Map-matching Voxel Excellent Yes Low Indoor + Outdoor
DV-Loam [329] 3D SLAM Frame-Frame Point Cloud Excellent Yes High Outdoor

LR-UNet-ResNet [68] 3D SLAM Frame-Frame Semantic Excellent Yes Low Outdoor

computation scenarios required in non-identical practical driv-
ing situations. Compared to SLAM approaches involving point
clouds, visual SLAM is a more preferred approach in terms of
cost which uses significantly less expensive cameras compared
to LiDARs. A low-rank convolutional neural network (CNN)
architecture for real-time semantic segmentation in vehicle
SLAM applications is proposed using a combination of UNet
and ResNet model [68]. This method utilizes tensor decompo-
sition techniques to achieve a balance between complexity and
accuracy. The implementation is benchmarked on Raspberry
Pi 4, NVIDIA Jetson Nano 2 GB to meet low-power, low-cost
requirements while ensuring optimal performance. The model
achieves test accuracy of 85.46%, with a device storage cost
around 2 MB. However, visual SLAM may not be precise
and as accurate as point clouds based SLAM approaches,
but it is significantly faster on standard computing devices
[329]. To overcome computing challenges: a low-complexity
projection method and column-scanning scheduler, a high-
parallel method for coarse-grain feature point detection, and a
high-parallel conditional priority queue for fine-grain feature
point selection is proposed in [289]. Experimental results on
the KITTI dataset demonstrate superior accuracy and energy
efficiency compared to state-of-the-art implementations on
GPU and FPGA platforms, achieving 584 FPS and energy
efficiency improvements of 11.7x and 9.0x, respectively.

A disadvantage of visual SLAM is being sensitive to the
changes in the scenes, illumination and appearance. The
accuracy and precision of proposed SLAM approaches could
perform differently in dynamic or bad weather conditions.
In terms of advantage, visual SLAM has better graphic
coverage than point-clouds unless multiple LiDAR are used.
Deployment of SLAM in Edge AI environment bring several

challenges and opportunities, key points can be highlighted as:

Takeaways

1) Computation: In general the SLAM applica-
tion demands high computation cost for smaller
maps, several problems with respect to pro-
cessing and accuracy can be encountered with
respect to non-ideal conditions and size of data
captured for processing. At present powerful
GPU devices are required for processing, which
brings the overall cost of vehicles high.

2) Latency time: For real-time execution, latency
must be lower than 5 ms if incorporated using
Edge or Cloud Computing.

3) Algorithm: DNN approaches used for SLAM
makes it suitable to operate in familiar environ-
ment. However, change in location, weather and
daylight conditions can bring additional com-
plexities as the sensed output will be inconsistent
and DNN model will not be able to process it.

4) Execution: Future connected vehicles are ex-
pected to execute services in distributed manner
(at the vehicle, edge-server or cloud). With the
current DNN algorithms, computational, latency
and network bandwidth requirement, it is more
realistic to process and execute SLAM at the
vehicles on-board computing unit.



Table VII: Long Range Communication Technologies for Autonomous Driving

Long Range Communication Technologies

Technology Standard Spectrum Range Modulation Latency (ms) Security Field Trial

DSRC 802.11p 5.8 - 5.9 GHz 1 Km OFDM 100 B Yes

C-V2X 3GPP 800/1800 MHz 5 Km SC-FDMA 10 B Yes

WiMax 802.16 2.5 GHz 50 Km MIMO, OFDM 10 B Yes

5G NR V2X 3GPP 24 - 86 GHz 5 Km OFDM 1 A Yes

Short Range Communication within Vehicles

Technology Standard Spectrum Range Modulation Latency (ms) Security Bit rate

WiFi 802.11 ac 5 GHz 100 m 1, 2, 3, 5, 7 NA 24-bit CRC 1 Gb/s

BLE 802.15.1 2.4 GHz 30 - 50 m 4 4 - 6 24-bit CRC 1 - 24 Mb/s

ZigBee 802.15.4 2.4 GHz 75 - 100 m 1, 6 30 16-bit CRC 20 - 250 Kb/s

UWB 802.15.3 3.1 - 10.6 GHz 75 m 1, 7 NA 32-bit CRC 10 Mb/s

Modulation Type (Short Range Communication) - “BPSK = 1, CCK = 2, COFDM=3, GFSK = 4, M-QAM = 5, O-QPSK = 6, QPSK = 7”

D. Vehicular Communication

Communication within vehicular environment plays a key
role in self-driving functionality [283]. V2X or vehicle to
everything communication is another key factor in the self-
driving vehicle ecosystem that allows and enables the com-
munication between vehicles to any relevant entity in the en-
vironment for example pedestrians, traffic lights, data centres.
V2X comprises of several sub-components and standards such
as V2V (Vehicle to Vehicle Communication), V2I (Vehicle to
infrastructure), V2P (Vehicle to Pedestrian), V2N (Vehicle to
Network), and V2G (Vehicle to Grid) has also been included
considering the electric vehicles, charging stations and their
involvement in the infrastructure. The Ideal system in V2X
communications comprises of pair of radio devices often
called as On-Board units (OBU), and Road-side units (RSU).
OBU’s are placed in the car, sharing car-related information
to the RSU and receiving the traffic or surrounding related
information from it. Some of the popular modules include
[313], [295] which has already been released in the past
4 years. Also hybrid communication approaches combined
with cellular technology (CV2X) [248], Dedicated Short-range
communication modules (DSRC) [138], [107], [74], also with
the LTE based systems and 5G [1], [286], [215], [218] has
been proposed. In [118] authors explored reliable connected-
vehicle services using wireless local area network, ad-hoc
network or hybrid communication architectures using cellular
connectivity. To estimate the time duration for connection
establishment probabilistic model implementing single-hop
communication link in vehicular networks [137] is explored.
To further ensure the reliability of communication in vehic-
ular ecosystem a reliable emergency message dissemination
scheme (REMD) [26], has been presented by authors. Results
from REMD scheme shows high reliability which is around
99% in each hop with low overhead, delivering the message
for time-critical applications meeting the low-latency require-
ments for sensitive applications. The authors also employ
the zero-correlated unipolar orthogonal codes to combat the
hidden terminal problem. In the approach the periodic beacons

are exploited, to precisely estimate the reception quality of
802.11p wireless link in each cell; then, uses this information
to determine the optimal number of broadcast repetitions
in each hop. In addition, to ensure reliability in multi-hop,
cooperative communication within the network is also enabled,
The simulation results show that REMD outperforms the
existing well-known schemes for reliable communication.

The initial vehicular communication was developed con-
sidering the local wireless networks such as dedicated short-
range communication or Wi-Fi (802.11p) which is an updated
version of 802.11b to enable wireless access in a vehicular
environment. However based on the scalability some other
versions such as C-V2X[248] were proposed which operates
in both the 5.9GHz spectrum and also in the cellular spec-
trum thus providing channels for long-range communication
between vehicles and the surroundings, Table VII shows some
of the popular long-range communication technologies. The
solutions consisting of proposed combinations can provide
low-latency, high reliability and throughput demand [107].
Also to overcome these challenges another approach such as
next-generation V2X (NG V2X) or New radio technology
(NR V2X) [218] has been proposed, as per the results, these
approaches overcome the challenges and have better network
performance and parameters. Key communication technologies
proposed for vehicular communication are discussed below.

DSRC: One of the initial technology proposed for medium-
range vehicular communication is dedicated short-range com-
munication (DSRC). This technology can be used in au-
tonomous vehicles to deploy applications within a transmis-
sion range of 25-100 meters. It is a sub-protocol within
vehicle-to-everything (V2X) that can enable communication
between vehicle-to-vehicle (V2V). V2V supports automated
message propagation and exchange of vehicle information
(e.g., velocity, acceleration, separation distance, the direction
of travel) with nearby vehicles. The purpose of exchang-
ing these messages and vehicle information is to improve
traffic conditions and to implement safety applications, such
as collision avoidance and safe overtaking [76]. With the
increase in message transmission capability, recently proposed



methods also include cooperative perception using V2V com-
munication [105], [369]. Potential driving and safety-critical
applications developed and tested with DSRC are collision
warning systems and emergency braking [138], [107], [8].
However, with the evolution of next-generation vehicular com-
munication technologies and use-cases requiring high-volume
data transmission, the technology has not been widely adopted
by automotive manufacturers and communication providers.
Approximately two decades ago for the development of com-
munication applications, Federal Communications Commis-
sion (FCC) proposed reallocating spectrum in the 5.9 GHz
band to serve the evolving needs of transportation communi-
cation better. The proposal designates the lower 45 MHz for
unlicensed uses like Wi-Fi, allowing for larger channels and
supporting innovative applications. The remaining 30 MHz
would be reserved for transportation-related communications
technologies, prioritizing automotive safety. Additionally, the
upper 20 MHz would be allocated for Cellular Vehicle to
Everything (C-V2X) technology, which enables direct com-
munication between vehicles and other entities on the road.
This proposal has received support from major stakeholders
such as policymakers, consumer groups, and industry [256].

C-V2X: Cellular-V2X is based on the sidelink LTE radio
interface enabling point-to-point communication with nearby
vehicles and devices. As described in 3GPP, C-V2X generally
operates in two channels i.e., 10 MHz or 20 MHz, and
includes LTE-V2X and 5G-V2X [248]. C-V2X utilizes a time-
frequency resource structure, where the time is divided into
1ms sub-frames, and the frequency channel is divided into 180
kHz wide resource blocks. These resource block exists in the
same sub-frame and can be further clustered into sub-channels
[1]. Resource allocation schemes and optimization techniques
were proposed in [1], [248] to improve network latency per-
formance. Network performance measurements and scenario-
in-loop field-testing method for 5G-V2X were presented in
[292], where applications for testing involved braking, obstacle
detection, and tracking. A shortcoming in C-V2X technology,
in comparison to DSRC is that the vehicles cannot process
and exchange messages directly, as it is dependent on the LTE.
Another flaw in the current approach is the inability to work in
remote or geo-locations with poor cellular/network coverage.

NR V2X: New Radio (NR) V2X is designed to complement
the applications that are not fully supported in C-V2X because
of varied latency, bandwidth and throughput requirements
[218]. NR V2X use-cases comprises of efficient and reliable
delivery of aperiodic messages, which was not very well sup-
ported in C-V2X [252], [22]. As compared to V2X, NR V2X
also supports groupcast and broadcast transmission methods
which are specifically required for applications such as vehicle
platooning [218], [22], [52]. The development in this category
will bring several opportunities for urban and highway driving
services, such as platooning, predictive planning, and real-time
edge analytics involving traffic flow management and forecast-
ing. Several challenges exist in vehicular communication in
terms of latency, privacy, and reliability.

Lessons Learned

1) Latency: In an urban driving scenario, multiple
vehicles could be in the same location and will
be communicating with the local edge server.
This situation brings a challenge for real-time
low latency applications such as SLAM, which
requires transmission of huge data from vehicle
sensor to edge server and vice versa.

2) Privacy: In vehicular communication, some sen-
sitive information such as vehicle registration
number, vehicle health, real-time status along
with sensors data, and statistic models is shared.
Sharing this information exposes a threat of
data poisoning, model weights manipulation and
adversarial attack on the system.

3) Collaborative application: As mentioned a local
edge server will be communicating with multiple
vehicles, and the vehicle is also communicating
with a peer vehicle for the applications im-
plementing collaborative driving. The collabora-
tive driving applications require data aggregation
methods and processing practices at the edge
server to combine similar data from multiple
sensors sources and have a common prediction.

E. Energy Efficient Approaches in Autonomous Driving

Autonomous systems such as robots, unmanned aerial ve-
hicle are mostly powered by fixed battery source. The same
assumption can be made for the future vehicles depending
upon the availability of fuels and planning of the future
sustainable transportation systems. For the current deployed
autonomous vehicle, It is important to consider the energy re-
quired and used by sensors, automotive embedded processors
and embedded devices, such as GPU, TPU and CPU while
sensing the surrounding data and processing of algorithms.
The energy consumed from the processor and devices can be
derived by sampling the power consumption at the training of
deep neural network model or architecture [77]. Another brute
force method could be to use power measurement devices with
the embedded devices during the inference, and log the power
consumption over the processing of algorithm. However these
approaches are not very much effective as the autonomous
driving ecosystem consists of heterogeneous types of devices,
in which some might not be equipped with TPU or GPU,
therefore it is important to consider a neutral method to
calculate the power usage, in which power consumption from
each of these devices or nodes is categorically calculated [267]
based on the type of processor. To estimate the total power
consumption for heterogeneous devices in distributed learning
settings, a summation of the total training time on each of them
can be used along with energy consumption through commu-
nication. However, the limitations can be encountered, as the
training time between participating devices can significantly
vary and the fundamental of federated learning is based on the
communication rounds between the devices and the ultimate
convergence rate.



Based on the computational ability, only certain available
devices are chosen for training during each communication
round, as based on the specification the participating devices,
they might not offer the equal computational capability[2].
Also another factor in case of distributed training is the
total time needed to train the model as it highly depends
upon the communication efficiency between the participating
devices and the server. It is important to note that in addition
to the on-board energy consumption, these approaches also
brings into account the energy consumption caused due to
communication between devices, network stations and server
[147]. Figure 9 is shown based on compare and contrast
approach, to merge the content and show an overlap of energy-
efficient methods covered in this survey paper. As shown the
topics are divided into machine learning based application for
autonomous driving services, Edge computing based methods
for autonomous driving and the vehicular communication.
As these approaches have varied system demands, based on
latency, memory and computational requirement, an attempt
to show the overlapped area where software approximation
can be applied has been made. The emerging areas are
Tiny ML (promotes deep learning in compressed form in
embedded processors), Distributed Machine Learning & FL
which implements collaborative training and inference among
several embedded and edge devices. Mobile Edge computing
has also emerged as a popular topic which allows processing
of data and decision making process close to the Edge thus
overcoming latency and memory drawbacks. Rest of this sec-
tion discusses computing-efficiency and compression methods.

1) Computing Efficiency: DNN based vision oriented sys-
tems such as object classification, 3D object detection and
SLAM are usually computational intensive, high resource and
energy consuming tasks. The computing complexity relatively
increases for real-time applications when these larger weight
DNN are implemented on the embedded systems with limited
memory [153]. For example the currently deployed level 3
autonomous vehicles [150], [243] are mostly dependent on
vision sensors systems and consumes significant resources in
terms of memory and energy. The scalability of these applica-
tions on embedded systems with fully connected cooperative
autonomous vehicles is yet to be known incorporating full
ADAS features. With the implementation of fully connected
autonomous driving, the common assumption is the complex
calculation and usage of deep/dense neural network will
increase the calculation time, thus making some real-time ap-
plications difficult to process within the required latency, and
on the other hand, the large weights of the neural network will
also bring challenges to some embedded systems with limited
memory [303], [152], [89], [253], [316]. Therefore, there is a
need to implement and develop low-weight and compressed
neural network for efficient and low-latency calculations.

2) Compression: Compression is an approximation tech-
nique which can be implemented for the model and the
data to allow the real-time inference on resource constrained
devices. Some of the popular compression technique in deep
learning involves pruning, low-rank approximation, quanti-
zation, knowledge-distillation, sketching. Deep Compression
[94] proposed by Han et. al, implements combination of

pruning, quantization and Huffman coding on the state-of-art
deep neural network such as Alexnet, VGG-16 by maintaining
the architecture accuracy. In federated learning practices along
with the deep learning approximation technique, the compres-
sion is also implemented in communication algorithms using
sparsification of gradients. In this section this survey paper
discusses these compression approaches by also mentioning
some popular inference methods for resource constrained
embedded devices.

Figure 9: Overlap of ML-Driving Services, Communication
and Edge Computing

Low-rank Approximation: A direct mathematical ap-
proach to compress a dense neural network is low-rank ap-
proximation. As traditional neural network are developed on
filters and layer comprising of several matrix, factorization
[291], [258] and decomposition [59], [119], [90], [334], [14],
[351], [117], [158] of these matrix has helped in reducing the
parameters from the neural network, the popular approaches
involves singular value decomposition [117], [90], tucker
decomposition [141] and canonical polyadic decomposition
[21]. For decomposition the approach can be targeted to reduce
the parameter for overall dimension reduction or targeting
a channel through decomposing the relevant filter. In [90]
authors proposed a method in which convolutional filter with
low rank are decomposed into several depth-wise and point-
wise filter. With this approach the large scale model size is
compressed and could be easily deployed on mobile and edge
devices, however accuracy loss for the network is higher as few
high ranked filter could still be decomposed in this approach
based on the assumption from a neighbor low-ranked filter.
Another approach to prevent accuracy loss is implementing
sparse regularization [211], [14] in an hierarchical manner as
this approach can enhance network learning by grouping the
filter which can be decomposed based on magnitude. Other
techniques [117], [158] involves finding kernel or filter with
low magnitude during training to enhance the model learning



(Accuracy) and later applying a singular value decomposition
to achieve a better compression ratio.

Pruning: Pruning is originally a technique applied in
agriculture or horticulture to remove certain parts of tree
or plant (branch, leaves, stubs) which are not effectively
contributing. Inspired from this idea, researcher has applied
and implemented pruning in convolutional or deep neural
network to compress and reduce the overall parameter of these
neural networks and to enable deployment an easy process on
resource constrained embedded device for real-time applica-
tion which also requires smaller models with fast computation
process. In current practice there are two popular approach for
pruning, removal of weights [162], [126], [200], [99], [100],
[98], [182] and removal of neurons [298], [372], [166], [197],
[164], [194], [219] respectively. Removal of weights from
neural network does not affect the accuracy of model as only
those weights are removed which have a magnitude close to
zero. Since the implementation of weights removal is based on
sparse matrix computation, in some cases it requires dedicated
processors to apply this method in neural network [200], [162].
For these methods authors have also proposed Structured
Sparsity Learning (SSL) framework designs for hardware (e.g.
mobile computing, FPGA framework) [162]. In [99], [98] the
approach covers pruning the soft-filter where filters are pruned
while training a DNN model in iterative manner after the
model has been trained for an epoch, based on the magnitude
or score. The methodology used for scoring the filter is based
on (l1 or l2) normalization. Once the model is pruned, there are
changes in the hyper-parameter and dimension of the network,
therefore it is important to adjust them by reconstructing the
pruned filter using forward and backward propagation. The
second approach which involves removal of neurons is based
on heuristic methods and directly impacts the accuracy and
overall performance of the neural network however the model
performance can be optimized with the fine-tuning [346], [342]
or model retraining practices.

Quantization: Uniform and non-uniform quantization tech-
niques are popular methods to compress an AI model. In
the uniform quantization technique [72], [49], [398], a linear
approach is used to distribute the quantized values over
the space uniformly. While in non-uniform quantization, the
logarithmic or exponential approach is used to distribute the
quantized values non-uniformly. Methods to quantize deep
neural network non-uniformly is presented in [129], [357],
[179], [121], which is based on quantization interval learning.
Here the quantization intervals are parameterized over the
intervals, and the obtained function is applied over the weights
and activation of the deep neural network to achieve model
compression. Quantization has also helped reduce CNN’s
overall weight and size, which consists of many convolutional
layers. Quantization for layers has been proposed in [5], [406],
[83], [235] by using the statistical parameter or scaling factor
for the layer. This granular based approach can significantly
reduce the model size, however it also results in relative loss
of model accuracy as a kernel or filter containing important
feature will loose its weights because of another kernel or filter
with no feature present in the same layer. A better approach
to counter this problem is quantization in group [375], [272],

[374], where kernel or filter with no feature or weights can be
grouped together and removed. This approach maintains the
architecture accuracy but requires additional scaling parameter
for each layer. Recent used approach in granular quantization
is with channels [112], in this approach the length of activation
and weights are scaled for each channel to reduce the overall
weight [170], [397] for each convolution filter during training.
The scaling factor is applied on input feature maps and output
feature maps of the channels as they have different lengths,
which results in parameter reduction without loss in accuracy.
Some applications require to modify or rearrange the param-
eter of convolution or deep neural network after the model is
trained, this approach is often termed as quantization aware
training and post-training quantization. Quantization aware
training process includes retraining the model with methods
such as: straight through estimator [69], [407], [366], target
propagation [225], [157], [55], regularization [220], [262].

Knowledge-Distillation: Another efficient approach of de-
ploying large sized neural network to edge devices is Knowl-
edge distillation. This technique [6], [310], [365], [238], [210],
[128], [50], [261], [187] consists of two processes, in first part
the large model is trained over a complete set of dataset on
high performing devices, which results in output feature maps
predictions. In the second process a compressed version of
the large model is trained over the dataset (sampled form +
ground truth), which results in output feature maps predictions,
which is then combined with the output feature maps of larger
model thus providing knowledge (distilled) from larger model
to the compressed one by still marinating accuracy and net
loss. Some approaches involves [261] direct correspondence
between layer of large and smaller model sometimes also
referred as utilising the soft probabilities from larger network
to train smaller network rather than the ground truth, as this
information not only contains the output feature maps but also
the activation maps thus making the smaller network learning
faster. This approach has shown potential for transferring the
large models from high performance devices to edge devices or
embedded processors, but to achieve high model compression
ratio with soft probabilities or direct correspondence is still
a challenge. As the other approaches such as pruning and
quantization is capable of balancing a trade-off between ac-
curacy and compression ratio. Some approaches [140], [227],
[175] also involves using combination of multiple compression
techniques: knowledge distillation, pruning, and quantization
to achieve better accuracy and compression ratio.

3) Role of Edge AI: This section discusses the influence of
edge computing and related applications on autonomous driv-
ing. As the volume of data keeps on growing with the number
of sensors, a research direction is focused on processing data
near the sensing device. Cloud computing, cloud centralized
intelligence [195], [270] was initially proposed as solution
for fully connected autonomous driving, however the latency
requirement for time sensitive applications and the expected
bandwidth (Table VIII shows comparison of Edge and Cloud
intelligence) for data transmission became a challenge. To
address this challenge Edge Intelligence has been proposed
as a suitable solution, which allows processing of data closer
to the edge device rather than in a centralized cloud.



Table VIII: Edge Intelligence & Cloud Intelligence
parameters comparison for Self-driving vehicles

Parameters Vehicular Edge
Intelligence

Cloud
Intelligence

Architecture Heterogeneous ASIC
Accelerator

CPU, GPU,
TPU, FPGA

Computing
Performance Medium High

Storage Limited Highly Scalable
Power Consumption Low High

Context-Aware
Computing Applicable Not Applicable

Architecture Topology Distributed Centralized
Deployment Cost Low High

Reliability High High
Security High Limited

Communication Wireless Wireless + Optical
Computation Locally Central Server

Bandwidth Requirement Low transmission rate High transmission rate
Latency Low High

In [402] the authors presented in detail about the motivation
and benefits of using edge intelligence where the primary
concepts highlighted and can be linked with autonomous
vehicles are: the volume of data generated by vehicle senors at
the edge device need machine and deep learning approaches
for processing and decision making process thus proposing the
concept of AI at the Edge. The concept has been proposed in
several stages where the primary focus is on transmission of
sensed data to the server or cloud for processing and decision
making. The first stage contains the parameters of cloud
intelligence shown in Table VIII, thus allowing training and
inference via a centralized cloud. The second stage comprises
of edge-server joint training and inference. In this stage
depending upon the requirement and processing ability the
model can be jointly trained at the edge and server or at the
server and inference occurs at both using distributed learning
and computing methods.

The last stage of edge intelligence allows the training and
inference occurrence on the device itself or near the device
(edge) through data offloading and real-time compressed sens-
ing approaches [387]. For autonomous driving applications
Pi-Edge [301] and AVe [73] are the two initial proposed
framework consisting of driving services with data offloading
and resource allocation techniques. Later proposed edge AI
framework for autonomous driving [300], is also influenced by
Pi-Edge and proposed data offloading and resource allocation
scheme, thus allowing edge-server joint inference using hybrid
communication architecture. However the framework misses
energy saving mechanism and the assumptions on trade-off
which data offloading and compression brings on the end-to-
end accuracy of the model. In [259], [260] the authors propose
intelligent edge architecture for autonomous driving vehicles
with OpenStack and ETSI open-source MANO. Using the
architecture the allocated and resources of edge devices can
be visualized at the server or cloud and also allows managing
of mutli-access edge and mobile computing, thus allowing to
free edge device memory from raw data using offloading.

In [116] the authors proposes an edge architecture with
low latency communication and resource allocation scheme
for compute intensive tasks. Using the reference architecture

the authors designed an advanced autonomous driving com-
munication protocol to enhance and facilitate communication
between edge device, servers, data centers and the centralized
cloud. Here the cloud contains legacy or ground truth data
contributed from the vehicle sensors, servers, infrastructure
sensors and the vehicular surrounding. For the decision mak-
ing process a deep reinforcement learning approach is used
for training and inference. The edge frameworks, offloading
schemes and approximations are comprehensively covered in
section IV and V.

F. An overview of Dataset for Autonomous Driving

An important requirement to develop machine/deep learning
based autonomous driving services or tasks is dependent
dataset. Several datasets has been made available by the
universities research groups, and the automotive companies
in the last decade. In this article an attempt to categorise
these datasets has been made on the basis of sensors and the
driving application which can be derived as a result. Based on
convolutional neural network, one of the most researched topic
is object detection containing several classes such as pedestri-
ans, traffic signs, lane, vehicles (cars, truck, ambulance, school
bus). The advancement in minor features recognition from the
image or video frames also resulted in development of applica-
tions such as: vehicle model detection, license plate classifier,
and other cooperative applications. Some of the commonly
used datasets are KITTI [205], Cityscapes [53] and PASCAL
VOC [317]. After 2017 high quality data comprising of multi
sensors primarily camera and LiDAR has been collected and
released for development of advanced applications targeting
level 5 autonomy [106], [290] also shown in Figure 10.

To prevent developing biased AI models, the traffic scenes
or data were also combined from multiple continents, countries
and cities. The EU Long-term dataset [354] is collected in
several location within Europe, nuscenes [37] collected in
Singapore and USA, comprises of multi-sensor suite. Argo-
verse [41] dataset collected by Ford is one of the unique
datasets which also provides functionality to try and test
the high definition map applications based on LiDAR and
camera sensors. However, the class imbalance remains an open
challenge that has not been addressed for training AI models
[135].

As the sensor/data fusion approach is being researched for
low powered embedded devices, the driving tasks, such as
adaptive cruise control, path planning, and SLAM has involved
usage of radar sensor values with the LiDAR point clouds and
the camera frames. Radarscenes [266], Astyx HiRes [207],
Ford multi av[4], Neolix [324], Pixset [61], are some datasets
which provides the annotations on data based on these three
sensors. Similarly another high quality dataset also comprising
of HD Map annotation has been made publicly available by the
Deep Route AI targeting the level 4+ Full-stack self-driving
system. Table IX shows list of open-sourced datasets available
for the AI model development and testing.



Table IX: Publicly available dataset for autonomous driving. URL’s were last accessed on 10-June-2023.

Year Dataset Sensors Included
Camera LiDAR Radar GPS/GNSS IMU HD MAP URL

2012 - 2022 KITTI [205] Y Y N N Y N KITTI
2015 - 2019 KAIST Dataset [51] Y Y N Y Y N KAIST

2016 HD1K [143] Y Y N N N N HD1K
2016 CVC-14 [130] Y N N N N N CVC-14
2016 Brain4Cars [120] Y N Y Y N N Brain4Cars
2016 JAAD [146] Y N N N N N JAAD
2016 Cityscapes [53] Y N N Y Y N CITYSCAPES
2016 Udacity Y N N N N N UdaCity

2016 - 2019 comma.ai driving dataset [264] Y N Y Y Y N Comma datasets
2017 TRoM [192] Y N N N N N TRoM
2017 Raincouver [309] Y N N N N N Raincouver
2017 VPGNet [159] Y N N Y N N VPGNet
2017 TuSimple Y N Y N N N TuSimple
2017 TorontoCity [326] Y Y N N N N TorontoCity
2017 CityPersons Y N N N Y N CityPersons
2017 Mapillary Vistas [221] Y N N N N N Mapillary Vistas
2017 Multi-spectral (Univ of Tokyo) [92] Y N Y N N N Multi-spectral
2018 CULane [233] Y N N Y Y N CULane
2018 DBNet [47] Y Y Y Y Y N DBNet
2018 IDD [315] Y N N N N N IDD
2018 MVSEC (U Penn) [403] Y Y N N N N MVSEC
2018 NightOwls [222] Y N N N N N NightOwls
2018 Road Damage [199] Y N N N N N Road Damage
2018 Wilddash [377] Y N N N N N wildDash

2018 - 2020 BDD-100K [370] Y Y N Y Y N Berkeley
2018 - 2020 ApolloScape [113] Y Y N Y Y N Apollo
2018 - 2020 Honda Driving [239] Y Y N Y Y N HDD

2019 Argoverse [41] Y Y N N N Y Argo
2019 Astyx HiRes [207] Y Y N N N N Astyx
2019 BLVD [352] Y Y N N N N BLVD
2019 Boxy Driving [24] Y N N N N N BOSCH
2019 EuroCity [34] Y N N N N N Eurocity Persons
2019 EU Long-term Dataset [354] Y Y Y Y Y N EU Dataset
2019 IceVisionSet [240] Y Y N Y N N IceVision
2019 StreetLearn [209] Y N N N N N Street Learn
2019 PandaSet Y Y N Y N N PandaSet
2019 WoodScape [368] Y Y N Y Y N WoodScape
2019 Unsupervised Llamas - Bosch [25] Y Y N Y N N Bosch
2020 4−Seasons [336] Y N N Y Y N 4-Seasons
2020 A*3D [242] Y Y N N N N ASTAR-3D
2020 nuScenes [37] Y Y Y Y Y Y nuscenes
2020 POSS [234] Y Y N N N N POSS
2020 DDD20 [108] Y N N Y Y N DDD20
2020 Highway Driving [139] Y N N N N N Kaist
2020 Lyft Level 5 [106] Y Y N N N Y lyft
2020 Brno Urban Dataset Y Y Y Y Y N BRNO
2020 Ford Multi AV [4] Y Y N Y Y Y Ford Seasonal
2020 A2D2 [80] Y Y N N N N Audi
2020 LIBRE [38] Y Y Y Y Y N LIBRE
2020 Toronto-3D Y Y N Y Y N Toronto-3D
2021 NEOLIX [324] Y Y Y Y Y N Neolix
2021 CADC [244] Y Y N Y Y N CADC
2021 RadarScenes [266] Y N Y Y Y N RadarScenes
2021 CARRADA [230] Y N Y N N N CARRADA
2021 Waymo [290] Y Y N N N Y Waymo Open
2021 SODA10M [93] Y N N N N N SODA10M
2021 PixSet:LeddarTech [61] Y Y Y Y Y N PixSet
2021 ONCE [202] Y Y N N N N ONCE
2021 Deep Route AI Y Y Y Y Y Y Deep Route
2021 DurLAR[169] Y Y N Y Y N DurLAR
2022 MUAD[75] Y N N N N N MUAD
2022 SHIFT Y Y N N Y N SHIFT
2022 Rope3D[364] Y Y N Y N N Rope3D
2022 CODA[168] Y Y N Y N N CODA
2022 View-of-Delft [232] Y Y Y Y Y N Delft-View
2023 LiDar-CS [70] N Y N N N Y LiDar-CS
2023 ZoD [11] Y Y N Y Y N ZoD
2023 Race-Car [151] Y Y Y Y Y N Race-Car

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
https://irap.kaist.ac.kr/dataset/
http://hci-benchmark.iwr.uni-heidelberg.de/
http://adas.cvc.uab.es/elektra/enigma-portfolio/cvc-14-visible-fir-day-night-pedestrian-sequence-dataset/
http://brain4cars.com/
https://github.com/ykotseruba/JAAD/tree/master
https://www.cityscapes-dataset.com/
https://github.com/udacity/self-driving-car/tree/master/datasets
https://github.com/commaai/comma2k19
http://www.tromai.icoc.me/
https://www.cs.ubc.ca/~ftung/raincouver/index.html
https://github.com/SeokjuLee/VPGNet
https://github.com/TuSimple/tusimple-benchmark/issues/3
https://arxiv.org/abs/1612.00423
https://github.com/CharlesShang/Detectron-PYTORCH/tree/master/data/citypersons
https://www.mapillary.com/dataset/vistas
https://www.mi.t.u-tokyo.ac.jp/static/projects/mil_multispectral/
https://xingangpan.github.io/projects/CULane.html
http://www.dbehavior.net/
https://idd.insaan.iiit.ac.in/
https://daniilidis-group.github.io/mvsec/
https://www.nightowls-dataset.org/
https://github.com/sekilab/RoadDamageDetector/
https://wilddash.cc/
https://bdd-data.berkeley.edu/
http://apolloscape.auto/index.html
https://usa.honda-ri.com/H3D
https://www.argoverse.org/index.html#download-link
https://www.astyx.com/development/astyx-hires2019-dataset.html
https://github.com/VCCIV/BLVD
https://boxy-dataset.com/boxy/
https://eurocity-dataset.tudelft.nl/
https://epan-utbm.github.io/utbm_robocar_dataset/
http://oscar.skoltech.ru/
https://sites.google.com/view/streetlearn/dataset
https://scale.com/resources/download/pandaset
https://woodscape.valeo.com/dataset
https://unsupervised-llamas.com/llamas/
https://www.4seasons-dataset.com/dataset
https://github.com/I2RDL2/ASTAR-3D
https://www.nuscenes.org/nuscenes
http://www.poss.pku.edu.cn/semanticposs.html
https://sites.google.com/view/davis-driving-dataset-2020/home
https://sites.google.com/site/highwaydrivingdataset/
https://self-driving.lyft.com/level5/data/
https://github.com/Robotics-BUT/Brno-Urban-Dataset
https://avdata.ford.com/home/default.aspx
https://www.a2d2.audi/a2d2/en/dataset.html
https://sites.google.com/g.sp.m.is.nagoya-u.ac.jp/libre-dataset
https://github.com/WeikaiTan/Toronto-3D#download
https://gas.graviti.cn/dataset/graviti-open-dataset/NeolixOD
http://cadcd.uwaterloo.ca/
https://radar-scenes.com/
https://arthurouaknine.github.io/codeanddata/carrada
https://waymo.com/open/
https://soda-2d.github.io/index.html
https://leddartech.com/solutions/leddar-pixset-dataset/
https://once-for-auto-driving.github.io/download.html
https://gas.graviti.cn/dataset/graviti-open-dataset/DeepRoute
https://collections.durham.ac.uk/collections/r2gq67jr192
https://muad-dataset.github.io/
https://github.com/SysCV/shift-dev
https://thudair.baai.ac.cn/rope
https://coda-dataset.github.io/
https://tudelft-iv.github.io/view-of-delft-dataset/
https://github.com/lidar-perception/lidar-cs
https://github.com/zenseact/zod
https://github.com/linklab-uva/RACECAR_DATA


Lessons Learned

1) Adversity: Popular datasets do not include un-
expected or undesirable uncertainties, as it is
difficult to estimate a ground truth for them.
Similarly, there is a limited representation of
diverse weather and light conditions in datasets.
An AI model trained/validated on such a dataset
might not be generalisable.

2) Biases: The majority of the datasets are collected
from urban driving conditions. This does im-
prove the accuracy and development of an AI
model for urban driving scenarios but also brings
significant challenges to the model’s adaptabil-
ity to diverse and dynamic conditions such as
highway driving or severe weather conditions.

3) Disparity: A form of bias can be inherited
in AI models due to the disparity of anno-
tated classes. Popular driving datasets gener-
ally discuss the number of scenes, annotations,
and bounding boxes covered for training-testing.
However, they lack a discussion on diversity and
the distribution of classes covered. For example,
the annotations of vehicles, and traffic signs are
much higher represented as compared to cyclists,
motorcyclists, or pedestrians.

4) Data fusion and Collection format: Statistical
models are developed and adapted as per the for-
mat of datasets. Current datasets vary in logging
approaches which brings challenges to model or
cross-data transformation which can also create
a bias on the developed AI algorithm.

IV. EDGE AI FOR AUTONOMOUS DRIVING

Edge computing systems have already been used and tested
IoT use-cases or applications, which require relatively less
computation, and power [174], [389]. Hardware manufacturers
such as Nvidia, IBM, Intel, Qualcomm, NXP has developed
and released edge computing hardware with respect to the
dedicated tasks such as speech recognition and vision based
applications. For autonomous driving the edge intelligence
demands data processing pipeline which should be capable of
data management, analysis and data storage. Popularly used
vehicle edge computing devices include Nvidia’s Jetson and
Xavier Platform. These devices are largely used in combina-
tion with on-board sensors such as: cameras, LiDAR, radar,
IMU, GNSS and V2X module or router for communication
with other devices and server. As per current description the
subsystems required to enable fully connected autonomous
vehicle comprises of: the autonomous vehicle containing
cellular or edge connectivity, the roadside units connected
with the infrastructure, Edge server, the micro data centers,
and lastly the cloud or main server having connectivity with
all the mentioned subsystem and the autonomous vehicle, a
description and layers are shown in Figure 11. It is important
to note that the introduction of vehicular edge computing and
intelligence [373], have further strengthened the scope and

Figure 10: Frames and point clouds from popular datasets.
Images are from Lyft, KITTI, nuScenes, ApolloScape, and
ONCE dataset[106], [205], [37], [113], [202], respectively.

area of vehicle-to-everything communication (V2X) [1], [212].
The key components for enabling edge artificial intelligence
for autonomous driving includes edge training, inference,
caching, optimization, and communication. Vehicular commu-
nication has already been covered in the previous section,
however distributed approaches such as federated learning
remains, therefore this section first discusses Edge training and
inference, Edge computing-based applications for autonomous
driving, and recently proposed federated learning approaches,
cooperative and collaborative autonomous driving.

A. Edge Computing and Intelligence

The future of autonomy in vehicle has been previously pro-
posed with centralized cloud [270] and machine/deep learning
algorithms deployed at cloud [195], however transmitting the
large volume data from the vehicle to cloud and receiving the
model weights from cloud to vehicle brings latency issues for
the time critical applications such as SLAM. This technical
challenges leads to bringing artificial intelligence closer to
the edge using distributed learning, in this context edge



Figure 11: Edge AI layers for connected vehicles

device (present in vehicle) and edge-server (present in vehicle
surrounding), corresponding abstraction of Edge AI layer is
shown in Figure 11. Some of the proposed collaborative appli-
cations and approaches includes perception [44], SLAM [103],
[348], [10], HD map [383], collision warning systems[58],
[81] and path planning [308].

In cooperative perception applications at edge, F-cooper
[44] provides collaborative object detection using high level
fusion from multiple vehicles LiDAR point clouds. For object
detection authors used voxel feature fusion (as shown in
Figure 6), and spatial feature fusion approach. The object de-
tection methods were lightweight and allows the transmission
and sharing over dedicated short range communication. The
presented approach is deployed in the edge device and the
method was tested using real-world data. Similar approach is
presented in [20], here the authors proposes an early fusion
scheme and late fusion scheme. The early fusion scheme is
used for detecting the objects and the late fusion scheme is
used to propose the bounding box on the detected objects. For
testing the proposed approach the authors used the synthetic
dataset over a T-junction and roundabout vehicle environ-
ment. For evaluation of the proposed schemes the precision,
communication cost and on-board computational latency has
been compared. An approach based on value-anticipating
networking is proposed in [105], here the vehicle based on
previous learning decides about transmitting the sensed infor-
mation to other vehicle. Another cooperative perception [18]
is proposed using deep reinforcement learning for connected

autonomous vehicles. The proposed model uses scheme to
select sensed data for transmission amongst the connected
vehicles. The authors further develops a cooperative vehicle
simulation platform for object detection and communication.

Similar to perception, collaborative SLAM using edge-
server[348] has been proposed for highly automated vehicles.
As mentioned previously SLAM suffers with high computa-
tional demand and low latency requirement. To overcome com-
putational requirement cloud-based SLAM has been proposed
[265], however some drawbacks in centralized approach are
the extreme low latency requirement and the current uplink
bandwidth. Edge assisted SLAM [103], [348], [10] approaches
includes efficient computation, task scheduling algorithms,
data offloading and sharing strategies. The backbone used
in [348], [10] is ORB-SLAM [216] and ORB-SLAM2 [217]
which provides the algorithm centimeter level localization
accuracy. The approach uses distribution of SLAM block from
ORB-SLAM2, across the edge-device and server thus over-
coming the edge-device(on-board) computational complexity
and processing the computation at the edge-server. To further
improve the results and high precision, approaches involving
crowd-source semantic mapping or fusing the results with HD
map [180] can be proposed.

B. Edge Training and Optimization

In collaborative learning setting for autonomous driving,
training or retraining a model will be common practice as
edge devices present in vehicles collaborate to train, a deep
neural network model with the help of server acting as
mode of parameter or weight updates for edge devices. For
autonomous driving the edge training and optimization model
should consist of model that needs to be trained, training
acceleration methods, optimization parameters and model un-
certainty estimation. Inspired from this, an edge training and
optimization process consist of training dataset present as
either raw-sensed values or as the legacy data, and the tunable
parameters. For edge devices training can be organized for an
individual edge device or for group of edge devices [388].
While training a model on single edge device no inputs or
parameters exchange occurs, however in group training the
participating edge devices communicates and share the model
weights and parameters as per the set iterations.

The computational demand and memory requirements for
individual training is much higher, therefore using distributed
and collaborative learning approach, attention has been given
to group training [363] to address the computational de-
mand. In the group training of devices an attention is also
given to communication-efficient approaches to better energy-
efficiency, improve the communication round and decrease the
training time. In [304], authors proposed a stochastic gradient
descent method for improving the convolutional neural net-
work training on the edge devices. The approach consist of
sparse methods to improve the convergence rate and overall
performance parameters of the model. To implement com-
pression the gradient sparsification methods are used, which
reduces the communication cost by identifying the gradients
needed to share. To counter the convergence rate, which can be



caused by the frequent sparse updates, a momentum residual
is proposed. For evaluation, a model training using MNIST
dataset was implemented.

C. Edge Inference

Edge inference is the process of converting raw sensed data
into decision making task by processing them over the AI
models deployed on edge device. As mentioned previously
the approach is already being used for perception, SLAM,
HD map and video analytics applications. Data flow and
process of edge inference is shown in Figure 12. As covered
in Section II, most of the existing AI models for perception
and SLAM are developed on the devices/machines which are
powerful and consist of high-end graphic processing units
and excessive memory. Therefore to make the AI model
deployment possible on resource constrained embedded/edge
device [327], [160], compression and software approximation
approaches are implemented on the pre-trained models [307].

Figure 12: Edge Assisted Autonomous Driving Inference

Current Edge Inference practices for autonomous vehicles
can be classified into three categories: local Inference on
the edge device (vehicle), inference at Server, and joint-
inference at the vehicle and server [402]. In the case of
local inference, the sensing and decision-making process is
performed on-board, this approach is currently in practice
and requires large memory space and expensive computation
devices [116]. Local inference is very useful for lightweight
applications such as on-board speech recognition. However,
for heavy computational tasks, this approach suffers from
computational complexity, data storage, and energy consump-
tion problems. In server based inference, the sensing takes
place on the vehicle or infrastructure sensors, and the data is
uploaded to Server using wireless communication. The server
is deployed with heterogeneous computing devices, processing
the received data on the deep learning model, which are
responsible for decision making process [114]. An example
of analytics oriented applications are presented in [387], [65],
which contains of edge framework deploying edge intelligence
based on a hierarchical manner. The approach is very useful
to bring down the on-board computational cost and energy
consumption, however, this practice brings challenges based
on latency for time-critical applications, privacy, and security
of data and model which is being shared over a wireless

channel. Also, communication delay can be encountered from
a corresponding server if it is responsible for the processing
of data from too many vehicles at the same time. Edge-
Server joint inference for connected vehicular applications is
proposed in [300], [325]. In these proposed approaches, the
sensing takes place on-board, and based on the available on-
board computational resources, part of the computation and
decision-making process takes place on-board, which contains
a lightweight or compressed AI model, and the remaining takes
place at the server, which contains the global or dense model.
After the model weights are generated individually, using an
aggregation approach the model weights are combined and the
decision process takes place. Edge-assisted SLAM, perception,
HD map updates are some practiced and proposed methods.
Some of the frameworks and approaches proposed in this cat-
egory are [43], [42]. In these approaches, the common practice
is to split and partition the deep neural network amongst the
participating devices and server. Resource allocation scheme
[224], [198], communication-efficient algorithms [122], [278],
task scheduler [214], [371], early-exit models[152], [316] and
heterogeneity-aware layer[189], [382] are proposed in Edge-
Server joint inference to take advantage of on-board and
server resource to implement energy-efficient approaches. For
further optimization of joint inference methods, a hardware
acceleration approach such as parallel computation using
heterogeneous architecture device [378], [193] is proposed.
In similar category, software acceleration approaches [267],
[224] involve resource management, Edge AI pipeline design,
approximating compilers, and compression of models.

Lessons Learned from Subsections A, B and C:

1) Latency: For functional-safety applications, la-
tency is a key parameter. Applications such as
obstacle detection, adaptive cruise control, emer-
gency braking, localization requires strict la-
tency. This property can be considered as one of
reason for shift from vehicular cloud intelligence
to edge computing and Edge AI applications.

2) Heterogeneous Networks: Connectivity within
the ecosystem can be separated from short-range
to long-range communication. Within the dy-
namic operational environment, proposed com-
munication and delivery schemes should be ca-
pable of adapting to the diverse distributed net-
work (Base stations, V2X, Cellular (4G/5G/6G),
road-side units, edge-servers, cloud etc.).

3) Resource Management: Similar to a heteroge-
neous network, computing devices within the
vehicle-edge ecosystem is also expected to be
distributed. Devices may consist of distributed
CPU, GPU, FPGA, TPU, and accelerators. Re-
source allocation and management schemes at
the edge-server are required to process the
sensed and transmitted data. Deployed resource
allocation and management schemes can also
counter other challenges such as excessive en-



ergy consumption from computing, data filtra-
tion, pseudo labeling, re-training approaches and
update for the global AI model.

4) Joint-Inference: Strict latency, network band-
width constraint and high volume data in con-
nected vehicular applications provide an op-
portunity to focus on approaches that allows
computation distributions at the vehicular and
edge-server level. Early-exit DNN, federated
learning, data aggregation and model partition
approaches are the potential solutions when
combined with communication-efficient AI ap-
proaches and mechanisms.

D. Federated Learning and Autonomous Driving

Concept and applications of federated learning were initially
proposed in [144], [204], with the aim of training a large
machine learning model in a distributed manner across several
devices to accelerate the process. In recent years exploration
and scope of federated learning have been further extended
to reducing the communication costs [42], [122], enabling
privacy preserving methods and enhancing security of the
model and data [63], [224], [33], [363], and resource al-
location/management schemes for the participating devices
[341], [171], [224]. For connected and autonomous driving
applications federated learning have also been proposed with
edge computing to jointly utilize the computation power of
edge servers, and to take advantage training the model with
dynamically distributed data over the edge devices, by further
encouraging privacy preserving methods at the edge node
or system level. Based on communication and computation
approaches, the research topic covered below are further
categorized as: “Communication efficient algorithms” [62],
[144], [43], [42], [263], [391], “Resource constrained devices”
[273], [327], [198], [341], [330], [161], “Heterogeneity aware”
[224], [171], [63], [307], [43], “Energy efficient approaches”
[214], [16], [277], [254].

Resource constrained: Edge device-server joint inference
and optimization [341], [330], [273], involving edge device
computation capability and associated local model accuracy
with minimum cost. The resource in this context is computa-
tion, power capability and communication overhead between
edge device and server. Joint optimization is prioritized using
vehicle parameters such as position and velocity to ensure a
round of communication and parameter update with local edge
server. The system [341] comprises of connected autonomous
vehicles where edge device handles the initial computation
requiring less resources and offloads the heavy computational
tasks to the distributed edge servers in the urban driving
scenario, with local model training, selected model aggregation
[363], computation complexity and weights transmission as
primary matrices. For computation optimization a self-adaptive
global best harmony search (SGHS) algorithm is used. For on-
device resource allocation combination of SGHS and on-board
computing and transmission power optimization algorithm is
used to enhance the local model accuracy.

Heterogeneity Aware: In collaborative driving the data
obtained from multiple sources such as infrastructure sensors,
legacy data available in server or from other vehicle sensors
is of heterogeneous form [122]. This basis and requirement
bring heterogeneity aware distributed learning as a primary
criterion for fully connected autonomous driving. Federated
learning by choosing edge devices is addressed by [224],
[307], [43] to counter the computational capability and com-
munication bandwidth. In the approach edge server randomly
chooses the client for model aggregation and requests for
current communication and computation resource available for
processing, based on the received information the edge server
distributes the model parameters to the edge devices with
high available resources for the model aggregation and which
uses batch normalization approach for updating the global
model. Another distributed approach is studied in [63] where
the heterogeneous data is combined in subsets to minimize
the aggregation loss from edge devices and improve the
convergence, combination of these approach is also followed
in [171], where low latency communication is ensured through
quadratic convex functions.

Communication efficient: A semi-supervised federated
learning (SSFL) is proposed in [62], to alternatively train
the statistical model at the edge server with unlabeled data
using semi-supervised fixmatch [123], [390] and mixmatch
learning method [28]. For acceleration and better convergence
of local model, static batch normalization technique is used
which is adaptation of batch normalization [123] and group
normalization[390]. In alternative training the local model at
edge server is aggregated by retraining with the ground truth
or legacy data to enhance the model accuracy at each round of
training and in the next round of communication between the
node and server the aggregated model weights are transmitted
to update the global model and legacy data. Similar joint learn-
ing method is proposed in [43], [42], where the local model
is re-trained over edge devices and is transmitted over cellular
network to the base stations for global model aggregation. To
minimize the model learning loss and to collectively use the
communication bandwidth, the base station categorically select
the edge device using greedy approach by proposing a resource
allocation and power allocation schemes at base station and
edge device respectively. For the power allocation scheme
at the edge devices two primary criteria: retraining of local
model and power needed for model or weights transmission is
considered. Other proposed method includes sparsification of
data and gradient, quantization for minimizing communication
bandwidth, which has been discussed below.

1) Sparsification: For collaborative or federated learning
the commonly used approaches for sparsification is to com-
press the gradient and/or the data. Edge computing or process-
ing near the edge is being adopted as a popular approach for
an autonomous vehicle. Instead of transmitting the data or raw
data, the model weights processed at the edge is transmitted
to the devices participating in communication. Reducing the
transmission time [15] or using efficient delivery scheme,
such as REMD is also proposed as communication-efficient
approach in FL setting [118]. Another approach [333], [400]
proposed in FL use-case is to use of a lower-limit value in



which the gradients with certain magnitude and greater than
the predefined lower-limit are sent from the edge to the server
and the left-over gradients are not used to weight or model
aggregation. Using this approach the compression on the
up-link and down-link communication can be implemented.
However, the challenge is to choose the favorable lower-limit
value, as similar to soft-filter pruning, the quantization and
selection of the wrong lower-limit value can directly impact
the overall model aggregation, which may provide an overall
reduced model size but decreases the accuracy.

To overcome the previous challenge, stochastic gradient
descent with k-sparsification is proposed in [285], by reducing
the data and model size and also improving convergence
through error compensation for the transmission taking place
between edge and server. A similar approach is used in [7], the
method proposes to fix the sparsity rate. The communication
or transmission of the gradient is only enabled for a fraction
of the gradient with the highest magnitudes and keeping the
unused gradient in the container. The sparsity rate used by
the authors is p = 0.001, and this approach has relatively
less impact the learned model overall accuracy and perfor-
mance. To further overcome this performance gap, authors in
[184] proposed modifications to the existing approach through
deep gradient compression. Deep gradient compression uses
approaches such as: momentum correction, local gradient
clipping, for the convolutional neural network and recurrent
neural network. Results show that gradients are compressed
by ratio of 270-660 following a hierarchical approach, without
slowing down the model convergence. Sparsification methods
were initially proposed with the function of improving and
promoting distributed and parallel training among the cloud
and data-centers. However, these methods lacked model con-
vergence and aggregation as a scope which is currently a most
essential metrics for the federated and distributed machine
learning. Similarly, attention should be given to the number of
edge devices participating in the transmission and the server
participating in collaborative training. As the study in [184]
shows the communication between the edge and server will
not be compressed and reduced if the number of devices
participating in training is less than the chosen sparsity value.

2) Quantization: Along with the usage for compression
of deep neural network, the approach is also used in
communication-efficient algorithms, with the goal of minimiz-
ing the communication bandwidth between the edge device
and server. Quantization in communication applications with a
federated learning setting, can approximate the weight updates
on edge devices by limiting the update to a certain set of
values. One such implemented approach on independent and
identical distributed data is signSGD [27]. In the proposed
method authors quantized each gradient update to the allocated
binary sign and reduced the bit size, with a value of 32. It is
important to note that signSGD also implements compression
at the server by approximating the gradient received from
edge devices and further contains investigation and theoretical
analysis of algorithm in distributed machine-learning setting.
In this approach the participating devices transmits the infor-
mation of the associated gradient to the local server which
transmits back the updated and aggregated gradient sign to

the participating devices for the local model aggregation. The
analysis shows that this approach achieve a similar variance
score in comparison to other contemporary methods and has
a better convergence rate to a stationary point of a general
non-convex function. Similar approaches of scalar quantization
through stochastic methods are proposed in PowerSGD[318],
ATOMO [322], TernGrad[335], QSGD [12], [13].

ATOMO [322] and QSGD [12] propose to quantize the
gradients with a better convergence rate allowing faster dis-
tributed training of neural networks, which is highly suit-
able for enabling collaborative learning within the vehicle-
edge environment. However, the performance analysis in the
vehicle-edge surrounding should consider trade-off such as
accuracy-efficiency-reliability for safety-critical and real-time
applications while accuracy-energy for the latency tolerable
applications. While deploying such methods focus can be
also given to compression ratio and convergence rate, as
for communication and federated learning within autonomous
vehicles it is necessary to consider compression in uplink
and downlink transmission and communication. In [12], [13]
authors theoretically analyse the quantized stochastic gradient
descent to balance the trade-off with federated learning param-
eter: convergence and communication cost. In this approach,
the edge devices are allowed to adjust the number of bits
transmitted in each iteration of communication according to
the variance. As shown in [12] the device in a federated setting
can transmit around 2.8n+32 bits in one communication round
(here n is the number of parameters in model). This setting
leads to 5x approximate bandwidth saving. Similarly, to speed
up the training amongst participating devices an approach is
presented by [268] to perform gradient quantization using
one bit, which can make the distributed training to be 10x
faster. For evaluation in [268], authors used neural network
with speech recognition which is highly anticipated use-case
in autonomous driving [300], [301].

Dedicated uplink compression has been explored in [279]
by using the quantization theory. In this work authors explores
the transmission of trained model by identifying the available
channel bandwidth through quantization scheme. The authors
further propose an encoding-decoding approach consisting of
partitioning, dithering, quantization and entropy coding at the
encoding function and entropy decoding, dither subtraction,
collecting and model recover at the decoding function. The
evaluation of proposed quantization system is demonstrated
through numerical study which shows error is mitigated
through federated averaging and high federated learning per-
formance gains. Contrary approach to scalar quantization
methods, for the uplink and donwlink compression is vector
quantization method [280]. As compare to scalar methods,
vector quantization offers dimension reduction along with the
quantization scheme in federated learning setting. In the vector
quantization method [280], numerical studies similar to [279]
were conducted. The method comprises of encoding strategy
similar to [279] and analysis using probabilistic quantization.
However a different decoding step of dither subtraction is
applied to reduce the distortion and minimize the error. The
approach also involves using of lossless source coding scheme
in entropy coding and entropy decoding to generate non-



uniform distribution of the quantized outputs.

Lessons Learned:

1) FL using Edge: Collaborative or joint-learning
applications, such as Edge computing and Edge
AI, complements federated learning. The advan-
tages of using these techniques in conjunction
with each other allow a reduction in commu-
nication bandwidth to the cloud and also pro-
mote privacy by not sharing/transmitting sensi-
tive data.

2) Compression: It is extremely challenging to
implement traditional federated learning tech-
niques within conventional edge devices. Model
compression approaches have been explored to
accelerate the training/inference by reducing the
computational complexity and requirement.

3) Re-Training: AI models deployed for connected
vehicle applications can often encounter unseen
data. Property of FL to retrain the model and
update the weights through convergence benefits
use-cases, such as HD map update.

4) Communication Reduction: Current federated
learning approaches focus on reducing the com-
munication overhead through compression by
overlooking the exploration of protocols that are
lightweight in nature.

3) Overcoming Communication Overhead: An open chal-
lenge for autonomous vehicles in federated or distributed
learning environment is overcoming the computational com-
plexity and communication overhead. Federated averaging
[204] proposes methods to reduce the communication fre-
quency to overcome communication delay by not initiating
communication between device and server after every iter-
ation. Rather the federated averaging method computes the
weight for every participating device using multiple iterations
of stochastic gradient descent. Implementing the approach on
convolutional neural network and recurrent neural network,
the analysis shows that communication between participating
devices can be delayed upto 100 iterations by still maintaining
the convergence rate. A key requirement for this convergence
rate is that the data should be independent and identically dis-
tributed between the participating devices. The communication
round can be further increased with a higher delay, but as a
trade-off it increases the computational cost on participating
devices. As shown in above subsections, the work to overcome
communication overhead combines the use of sparsification
and gradient quantization [33], [307], [171]. These methods
however do not have a better convergence rate.

A ternary quantization-based federated learning approach is
proposed in [273] to overcome the communication overhead
in uplink and downlink communication. The quantization
method is implemented on the participating devices and the
server thus implementing local training and global model
update through weights. This approach also reduces the model
complexity for the edge and server devices. For evaluation

authors performed simulation considering the battery pow-
ered vehicle with connected autonomous driving capability to
achieve fast inference and low communication overhead thus
making inference possible on resource-constrained embedded
and edge devices [62], [198].

Challenges for vehicular services:

Distributed learning has been a popular approach to
tackle computation and communication challenges.
Federated learning has provided alternative methods
to re-train and deploy AI models with low communi-
cation and computation cost in dynamically distributed
heterogeneous settings. Deployment of connected au-
tonomous driving services (e.g. OTA update, traffic
monitoring, and forecast) using federated learning ap-
proaches will enhance the privacy of data used for
training and can also prevent attacks on the AI model.
However, for real-time applications such as vehicle
localization, and mapping, challenges exist in terms of
computational resource requirement, latency, and com-
munication bandwidth. A typical SLAM application
in the vehicular application is deployed using large
sensed data from a camera, LiDAR, and radar. The
data size is approximately in gigabytes and should be
processed by the AI model in less than 5ms, which
also makes it challenging to transmit it to a nearest
participating device for computation.
Deployment of FL using Edge AI for vehicles can be
considered as an optimization problem. The complex-
ity further increases when energy-efficiency is consid-
ered as a direct parameter. A major challenge currently
encountered for optimizing such efficient applications
with FL context is the unavailability of the real-world
large-scale dataset. As the problem has to be tackled by
considering the communication and computing cost.

V. ENABLING FRAMEWORKS FOR AUTONOMOUS DRIVING
SERVICES

Due to the limited computation, storage, and communication
resources of edge nodes, as well as the privacy, security,
low-latency, and reliability requirements of AI applications,
a variety of autonomous driving oriented edge AI system
architectures have been proposed and investigated for efficient
training and inference. This section gives a comprehensive
survey of different Edge AI frameworks and their related
architecture. It starts with a general discussion on different
architectures and categorically comparison.

A. Autonomous Driving Framework

Since the development of deep neural network supporting
perception and SLAM applications, researchers have focused
on the design and development of simulators, software often
referred to as a framework. Nvidia Drive [32], Waymo [3],
ApolloAuto [19] are some commercially released driving
frameworks supporting vehicular applications. Autoware [136]
based on ROS is developed for an embedded platform that



Figure 13: Sense-Think-Act model, which has been used as a backbone for autonomous driving frameworks [136], [350].

was released in 2018. OpenCDA [350], is one of the recently
released and most complete open-sourced driving frameworks
consisting of communication modules, real-time feedback and
a simulation environment, thus providing a platform for co-
operative driving applications. Following section details the
architecture and components of these frameworks.

1) Autoware: Autoware [136] is ROS [251] based frame-
work. It is developed on the concept of the sense-think-act
model, also shown in Figure 13. It is primarily designed for
vehicles driving in urban areas. Autoware is dependent upon
perception-based sensor suites such as cameras and LiDAR
for enabling object detection, tracking, and localization using
deep neural networks. The sensed information is fused from
both sensors to also create 3D maps around the vehicle,
which helps in precise localization by combining it with
SLAM algorithms and sensors such as GNSS and IMU. The
other major components are planning and control, which is
based on probabilistic robotics utilizing deep neural networks.
The software can be installed on the autonomous embedded
platform containing Ubuntu operating system by using ros
packages and dependencies to enable self-driving functionality
in urban scenarios. Additional software module development
and sensors integration such as radar is in progress which is
required for the highway and related driving scenarios.

2) Apollo Software Platform: Apollo software platform has
seen multiple revisions since its release, the currently avail-
able version integrates processing components: localization,
perception, prediction, planning, control, and communication
(V2X). At present, the platform incorporates deep learning
models to perform major tasks through a dedicated comput-
ing unit comprising of CPU and GPU. One of the unique
components of this platform is HD Map which can be also
be tracked on the generic display monitor to perform and
visualize accurate localization. The platform can be easily in-
tegrated with autonomous embedded platforms running UNIX
operating systems. However, one of the important to calibrate
with respect to the sensors and computing hardware installed
on-board. The components in the apollo framework [19]:

Perception: The perception module majorly focuses on
obstacle detection, traffic lights and lanes. The perception
module is mostly performing 3D object detection and is imple-

mented using a deep neural network focusing on the region
of interest on the high precision map. The output from the
object detection module comprises 3D bounding boxes around
the object based on the class, height, width and probability of
the detected object. In the background a detection to track
algorithm is used in order to identify the individual objects
with respect to the timestamps, this timestamp is logged in the
system and later serve as feedback to improve the accuracy
for the similar detected objects. The perception module utilises
the data fusion strategy using the Kalman filter.

Localization: In the platform, multisensory fusion local-
ization is used which is based on GPS, IMU, LiDAR, radar,
and HD maps. The localization module is based on the
fusion approach of the Kalman filter comprising of two-step
prediction update cycle. It comprises of two major blocks, the
GNSS localization which provides the position and velocity
information and the LiDAR localization which provides the
position and heading information. Finally, the inertial naviga-
tion solution is used for the prediction step of the Kalman filter,
while the GNSS and LiDAR localization is used to update the
measurement step of the Kalman filter.

HD Map: The high definition map [102] component in
apollo comprises legacy data collected by sensors containing
information related to road definitions, intersections, lanes,
traffic signals. It is used to reduce the computational demand
of the hardware by integrating the existing information of
the street or lane the vehicle is currently driving on. In the
apollo platform, it is also used as a safety feature providing
centimetre level accuracy in localization of the vehicle. The
steps involved in the development and publication of HD Maps
include sensor data sourcing, processing, object detection and
manual verification. In case of road or lane change, the existing
platform utilises updates of HD maps in data centres through
crowd sourcing which can involve data collected by other
autonomous vehicles, smartphones and other sensors on the
intelligent map production platform.

Simulation: Along with the on-device implementation,
apollo platforms also provides the function to virtually cre-
ate the driving scenarios by choosing the above-mentioned
modules, dedicated deep neural networks and test driving



scenarios, validate, and optimise the existing models. The
simulation results of the driving scenario can be logged which
can be further utilised as feedback for the development of
algorithms and tackling the false-positive scenarios.

3) OpenCDA: OpenCDA [350] is one of the driving frame-
works designed for cooperative driving with simulation and
prototyping capability, it contains three major components
which are: cooperative driving system, co-simulation tools and
scenario manager. In the background the cooperative driving
system is also based on the sense, think, act model and
comprises of perception, communication, planning and control
as the fundamental blocks to enable individual as well as coop-
erative driving. There is an application layer also present which
is responsible for enabling cooperative perception, cooperative
localization, platooning, and cooperative merge. For the sec-
ond component i. e. simulation part, this framework utilises
CARLA [64] for autonomous driving simulation and SUMO
[148] for traffic simulations, and with combined integration
of these two, the traffic scenes and simulation can be created
for example vehicle platooning, traffic merge. The simulation
tools exchanges information with the sensor and processed
data, it continuously provides the HD map data to the system
and receives control commands. The third component which is
scenario manager exchanges information with simulation tools
and cooperative driving system, to evaluate the cooperative
driving states, and trigger special event and provide it to the
simulation tools. The framework is developed in python and
is also scalable for the 64-bit OS UNIX system.

4) Openpilot: This is another framework in the category of
conditional or partial automation. The framework is developed
by http://comma.ai/ [30] and was released in 2017, and with
revisions and additions of new features from 2017-2021,
it is primarily dependent upon vision sensors and provides
assistance to the driver with the driving services such as
adaptive cruise control (ACC), forward collision warning
(FCW), lane departure warning (LDW), and automated lane
centring. The framework is dependent upon the services or
components which can be divided as: Sensors and actuators,
Neural network runners, Localization and calibration, Control,
and System Logging & miscellaneous services. The versions
of the framework can be integrated into embedded devices
supporting the android or UNIX operating system.

5) Autopilot: Autopilot [150] provides assistance to the
driver by sensing the environment around the vehicle through
high definition automotive cameras and ultrasonic sensors. The
software stack comprises of assistance and safety features
such as automotive emergency braking, collision warning
(front, rear and side), obstacle detection and also include
smart navigation systems thus providing actuation and control.
The framework on the backend uses a deep neural network
performing object detection, semantic segmentation, and depth
estimation to further provide the feedback and output for
motion and path planning algorithm which suggests optimal
route and actuate according to the destination set in the
navigation. The software framework was initially designed to
support the driver for highway driving scenarios and is also
being tested for urban driving conditions.

6) CARMA: This framework [35] falls in the category of
cooperative driving by enabling connected vehicles. The soft-
ware stack is programmed in C++ programming languages and
is configured using the ROS environment for the Ubuntu oper-
ating system. The framework utilises the Autoware citeAuto-
ware for enabling level 3 automation capability and addition-
ally contains a communication module in the sensing layer
which includes DSRC, V2X and cellular connectivity, thus
initiating communication and exchange of information with
other vehicles, infrastructure and the cloud. The cooperative
feature of this platform consists of four levels of planning for
the vehicle which includes route planning, maneuver planning,
trajectory planning and command planning.

7) AutoC2X: AutoC2X [308] is a cooperative driving
framework that is a combination of two software: Auto-
ware citeAutoware and OpenC2X citeOpenC2X developed
for cooperative driving applications. OpenC2X is cooperative
intelligent transport system software that is open source and is
helpful for prototyping solutions such as traffic management,
and platooning. AutoC2X setup comprises of pair of devices
which is a computing unit and router, installed with AutoC2X-
AW and AutoC2X-OC software at the car and infrastructure
respectively. The flow of information can be from car to infras-
tructure or from infrastructure to car. For the test experiment,
the authors enabled cooperative driving services such as per-
ception, coordinate transformation, localization, path planning
through a proxy cooperative awareness V2X messages. The
results from the experiment show that cooperative perception
messages using AutoC2X were delivered within 100 ms.

Lessons Learned:

1) Stack: The discussed autonomous driving frame-
work incorporates popular deep-learning algo-
rithms to perform perception, localization, map-
ping and path-planning tasks.

2) Resource: These frameworks require an onboard
high-performance computing device with exten-
sive memory capacity to process large-volume
data and deploy intelligent algorithms such as
CNN, DNN, or RNN.

3) Energy: The presence of extreme resources and
computing devices results in high on-board en-
ergy consumption, which has been overlooked.

4) Communication: Initially proposed driving
frameworks lacked the presence and usage of
a communication unit/module, which is highly
important to enable collaborative driving and
fully autonomous vehicle.

B. Application oriented Frameworks
In autonomous driving frameworks, the other proposed

approaches are tasks oriented and are strongly influenced
by distributed or collaborative learning approaches. Popular
research directions for an energy-efficient edge in these cat-
egories are data partition, model partition, Offloading, and
communication. In the data partition method[270], the col-
laborative compressed sensing approaches are used, which

http://comma. ai/


allows the distribution of data amongst participating devices,
thus leveraging repetitive computational load on an individual
device. Model partition approaches[288] utilize resource al-
location schemes[387], which are based on the availability of
computing resources at the participating devices. A large DNN
model is split into smaller forms for collaborative training
and inference. Using the server as the central or primary
mode of communication in edge-server joint inference appli-
cations computation offloading-based edge inference systems
[213], [393], [109] has been proposed. The approach involves
offloading data or offloading a part of the inference load
or the entire task to the edge server in the surrounding. In
this context, communication and resource-aware techniques
are also implemented, which decides on choosing a server
amongst the available server based on latency.

Lessons Learned:

1) The approach proposed in these application-
oriented frameworks for connected vehicles con-
siders either data reduction or model reduction,
which can result in energy-saving mechanisms
from either computation delay or communica-
tion perspective. However, for energy-efficient
connected vehicles, both metrics need joint op-
timization and acceleration.

2) The communication approach proposed in these
use-cases generally considers ideal conditions in
communication. However, the communication in
the vehicular ecosystem is often dynamic and
heterogeneous, which consists of several low,
and mid-range protocols with minor differences
in distances. Therefore, another limitation of
these frameworks is the inability to work in
dynamic network conditions.

3) Similar shortcomings can be seen in computation
as well. Edge in the vehicular ecosystem is con-
structed from heterogeneous devices with differ-
ent computing abilities. AI models proposed in
these application-oriented frameworks does not
account for computing heterogeneity which may
lead to miscellaneous cost.

C. Energy-Efficient Edge Frameworks

1) OpenVDAP: Open vehicular data analytic platform
(OpenVDAP) [384] is a data analysis framework developed
for connected autonomous vehicles (CAV) with the design
requirements of edge computing. The services included in
OpenVDAP are real-time diagnostics, advanced driver assis-
tance systems, infotainment, and other quality-of-experience
services. The platform is developed to deal with low latency
applications in autonomous driving by collaborating with the
other edge nodes (other vehicles), base stations, local servers,
and the cloud in the driving environment. With respect to the
application, the platform consists of on-board heterogeneous
computing, a communication unit, an edge-based vehicle op-
erating system (EdgeOSv), a driving data integrator, and edge

computing aware libraries for vehicular data processing. The
primary purpose of using these components is to intelligently
allocate the on-board computing resource to the algorithms for
the data processing, implement the data offloading strategies
and also enable communication between the vehicle and
infrastructure.

2) CAVBench: The benchmark suite [331] was proposed
to evaluate the performance of edge computing frameworks
and software in connected autonomous driving services. Ap-
plications or services included in the CAVBench are object
detection, tracking, SLAM, battery diagnostic, edge video
analytics, and speech recognition, which are similar to the
components included in OpenVDAP [384]. The services and
deep learning algorithm associated are evaluated based on
latency (on-device processing), and power consumed as these
can help in the development of an end-to-end autonomous
driving application. For the evaluation purpose, the state-of-art
algorithms such SSD [191], ORB-SLAM [216] were imple-
mented and resulted in observations such that the priority is to
be given real-time applications with the latency demands for
instances the demand for localization and processing is greater
than the tracking. Therefore, the system demands a processing
layer or container to execute the driving data and tasks in a
hierarchical manner. The observation also shows end-to-end
deep learning applications can decrease the processing latency
of computing units with heterogeneous structures. Therefore,
distributed algorithms can perform better than the baseline for
some of the autonomous driving services.

3) π-Edge: To enable the computational intensive tasks
simultaneously on resource-constrained embedded systems, π-
Edge [301] is proposed which enables edge intelligence on the
low powered embedded devices using the operating system π-
OS. As the present embedded devices contain heterogeneous
computing structure [389], [257], the authors proposed a
heterogeneity aware run-time and scheduling layer to execute
the tasks by targeting the on-board energy efficiency. The
framework also contains a component that enables the commu-
nication between edge-node and server and also performs the
data offloading tasks to save the on-board power consumption.
For offloading experiments, authors used applications and
data from object detection and speech recognition, as their
latency demand (requires approx 100 ms) is more compared
to SLAM applications (should be performed within 4−5 ms).
The offloading algorithm is implemented through collaboration
between edge-node(vehicle) and the server where it categori-
cally searches for edge-node where data can be offloaded and
estimate a time required for this application along with the
needed computational resources. If the server is not capable
of offloading the data the information is shared over the
network with the purpose of executing the offloading task on
the next available local server. The results were demonstrated
by integrating the framework on Nvidia Jetson devices which
consume 11 W of power.

4) MobileEdge: As connected autonomous vehicles are
processing and integrating multiple driving services at the
same time, the vehicle computing unit can face significant
load because of computational complexity. To address these
issues several distributed computing approaches in the vehic-



ular ecosystem has been proposed. MobileEdge [325] is one
such edge computing framework that utilises the main vehicle
computing units and the other resource-constrained edge-node
or devices such as raspberry pi or Hikey970, present in
the vehicular ecosystem. The architecture of the MobileEdge
framework consists of two processes one which is executed
on the vehicle computing unit and the second process which
occurs on the random edge-node. The vehicle computing unit
further consists of a management system and device resource
monitor, the on-board task scheduler and the task execution
process. while the edge-node consists of resource monitor,
task receiver and task execution process. The communication
between the vehicle computing unit and edge-node is initiated
over the local wireless network. The resource monitor on both
devices is responsible to track the system usage and being
aware of the power consumed. The task scheduler manages
the incoming raw data from the sensors and passes them for
execution or to offload it to free resources. The task executor
process the driving services associated such as video analytics
or speech recognition. Task receiver module which is present
on the edge-node receives offloaded data from the vehicle-
computing unit and pass it to task execution module of edge-
node, by implementing the distributed computing application.

5) LoPECS: LoPECS [300] is another low power edge
computing system for real-time autonomous driving. It has
addressed the challenges of implementing computational in-
tensive tasks on resource-constrained embedded devices and
can be considered as an extension of π-Edge as it replaces the
π-OS with the real-time OS which is lightweight as compared
to traditional used ROS. The architecture of LoPECS con-
tains four major layers: services classification, runtime layer,
heterogeneous aware layer and edge-server coordinator. The
services classification layer helps in the identification of tasks
and features which needs real-time execution and associated
power consumption. The second layer is runtime which con-
tains the real-time OS, architecture-aware scheduler and API.
The architecture-aware scheduler can be further categorized
into the inter-core scheduler and inner-core scheduler. This
scheduler helps in processing the incoming data and acts as
a data pipeline to the systems GPU, CPU, video and audio
accelerator. The last layer is the edge-server coordinator and it
performs the data and algorithm management strategies by en-
abling communication in the vehicular environment. This layer
is also responsible to implement data offloading strategies.
For the evaluation purpose, the framework combining SLAM,
object detection and speech recognition is implemented on
Nvidia Jetson TX1 (15 W capacity) with consuming 3.5 W
on GPU, and 4.2 W on CPU from these tasks and still allows
resource and memory for implementing other driving tasks.

6) AC4AV: AC4AV [385] framework is designed for con-
nected autonomous vehicles and proposes the access control
techniques for the autonomous vehicle. The framework also
utilises a data processing and abstraction method in which
the sensed data from the sensors is identified and applied for
access related applications. The primary purpose is to protect
the sensed data from phishing attacks or being maligned
from the vehicle environment. The architecture of AC4AV
comprises of three-layer to prevent the raw sensor data from

unauthorized access which are: access control engine, action
control, and lastly a logger database. The access control engine
provides dynamic authentication to access the data and also
incorporates a data processing layer that identifies the type of
data and its relevant use in the autonomous driving services, as
the vehicle is sensing from several sensors and the same data
can be used for multiple algorithms. The action control service
layer is responsible for two tasks which are action capturing
and responding. The last layer is the logger database which
captures and records the actions. The information from the
logger database can be used as an audit for future actions
as it can help in improving latency for targeted applications.
The implementation is based on publishing and subscribing,
a classic approach for message and communication within
an embedded environment. A similar framework autonomous
vehicular edge [73], is based on ant colony optimization,
which includes offloading and task scheduling strategies with
a decentralized approach. In this paper, the task scheduling
strategies use a generalization assignment problem and is
categorized according to the driving priority and latency de-
mand. The computational complexity using a greedy algorithm
and ant colony optimization were analysed in which the
computational power is measured along with the latency and
ant colony optimization results in latency less than 1 ms.

Key Takeaways and Lessons Learned:

1) OS: Traditional autonomous driving frameworks
used ROS or similar open-source systems in-
tegrated with Unix to deploy CAV. In contrast
to the on-board vehicular frameworks, the dis-
cussed edge frameworks are integrated using a
custom lightweight OS to reduce computational
delay for computing-intensive applications on
resource-constrained devices.

2) Scheduler: As the vehicular services are
hierarchy-oriented and require execution within
a short timeframe. These edge frameworks fo-
cused on integrating a scheduling algorithm also
sometimes referred to as the runtime layer to op-
timize the data processing for vehicular services.

3) Communication: The discussed edge frame-
works mostly used the combination of OBU
and RSU to exchange vehicle data and model
weights. A few frameworks also used local
wireless networks (802.11b) installed custom-
arily at the road intersection to initiate com-
munication. However, the frameworks lacked
testing the communication heterogeneity using
the combination of edges such as base stations,
RSU, cellular stations, and embedded devices
integrated with wireless modules. Strict latency
transmission of information to The communi-
cation approach proposed in these use-cases
generally considers ideal conditions in commu-
nication. However, the communication in the
vehicular ecosystem is very dynamic and het-



erogeneous, which consists of several low, and
mid-range protocols with minor differences in
distances. Therefore, another limitation of these
frameworks is the inability to work in dynamic
network conditions.

4) Data: A shortcoming in the edge frameworks is
the inability to handle high-volume data from the
vehicle sensors in case of collaborative inference
between multiple vehicles. These frameworks do
not propose any modules to offload or aggregate
the sensed data at the edge. This may result in
flood of data at the edge and repetitive compu-
tation for the redundant data.

VI. RESEARCH OUTLOOK AND OPEN PROBLEMS

This survey studies a comprehensive and categorized review
of approximation techniques and energy-efficient methods
for autonomous driving services. The perspective and basis
on selection of topics is based on previously and recently
proposed AI and Edge Computing approaches for the driving
services considering model size and real-time deployment
for the low powered embedded devices, and the relevant
conclusive factor of these approaches is based on the heavy
computation complexity which results into high energy con-
sumption on embedded devices. The main question asked in
this survey is, What are the current approaches and trends
which can promote the concept of Level 5 self-driving by
enabling the Artificial Intelligence at the Edge Devices with
an energy-efficient approach. During the process, some of
the secondary questions related to development of model,
Optimization and Inference approaches such as Federated
learning were explored. However there are some research
gaps and open problems which needs to be considered such
as: Data management and process techniques on the Edge
devices, Categorization for autonomous driving use-cases for
real-time use-cases, autonomous driving tasks hierarchical
categorization and energy implications of them. These topics
are covered in the following subsections.

A. Connected Vehicle Service and Case-Study
1) HD-Map: Vehicle drivers has been regularly using 2-

D map (for example: Google Maps, Apple Maps) with the
cellular technologies to have a precise and short duration travel
within or between the cities. For Self-driving vehicle this is
been replaced by High Definition maps or 3D maps which are
a result of mapping the roads and infrastructure using high
definition cameras and LiDAR sensors to localize the vehicle
precisely in the 3D environment and by saving the information
over the data centers or cloud services. The average roads or
dynamic scenes in a developed country changes only 5% -
13% [102] over the year, due to construction or any other
dynamic events. Therefore an approach can be implemented
along with SLAM technique to update the previous captured
HD Map in the cloud based on change in the scenarios. Lately,
research approaches [383] has been proposed to have a DNN
model to update the HD map data available in the cloud from
the crowd-sourced data.

2) Vehicular Networks and Communication: For Edge-
Assisted autonomous driving learning a cooperative approach
needs to be implemented and practiced for collaborative
decision making. Federated Learning has been proposed as
potential solution for this problem, however open directions
remains on the topics including common framework and
deployment for heterogeneous vehicular networks, resource
allocation using Federated Learning, communication, comput-
ing, and caching strategies for FL, data privacy and model
security, collaborative intelligence.

B. Enablers for Edge Application in Autonomous Driving

1) Data Management for Edge-Assisted Services: The cur-
rent autonomous driving practices involves individual im-
plementation of tasks such as Classification, Detection or
Localization. One of the reason associated with individual
processing is non-availability of data management techniques
and practices for the edge devices. If data management tech-
niques can be proposed a heterogeneity aware layer can be
integrated to serve as a data flow between the Sensor and DNN
algorithm. Having Data Management techniques for the Edge-
devices can simultaneously enhance the collaborative driving
functionality and also improve the offloading strategy thus
enabling each vehicle to make independent decisions and also
share the output for cooperative driving use-case. Real-time
compression of streaming data (from IoT/camera) and to be
stored on the Edge for tracking or monitoring.

2) Collaborative Edge Intelligence: The limited data band-
width over wireless communication may lead to failure with
decision making process in an autonomous cars as in case
of cooperative driving the autonomous vehicle should con-
tinuously transmit data between the vehicle and the cloud.
Implementing AI at the Edge on large scale can enable
autonomous cars to efficiently process data and also enabling
communication between vehicles, to overcome the network
and communication related issues, distributed edge computing
and federated learning approaches can be implemented which
can enable the data processing and computation close or
near to the vehicle as compare to the approaches in cloud
computing where the processing and computation takes place
in the centralized cloud. With the computation occurring close
to the vehicle challenges and critical requirement such as
accuracy, low-latency, reliability, power, and energy consump-
tion, of autonomous vehicles [183] can be achieved. However,
bringing services near the vehicles’ network where connectiv-
ity of the cars and their data is increasing at a tremendous
rate often becomes highly crucial due to scalability issues in
terms of functionality, administration, and load. Moreover, the
connectivity among a large number of devices results in a flood
of data production that can hinder the edge node to perform
analytic on such a large-scale data by meeting strict latency
requirements of autonomous cars. An adequate consideration
must be given to resolve the edge-related issues for enabling
successful deployment of autonomous cars.

3) Training and Inference at the Edge: As covered in this
survey, the volume of data from the sensors and the quality
of data is rapidly changing and increasing depending upon the



change in dynamic layer. To ensure the adaptability of Edge
AI algorithm for a new or different data from the autonomous
driving services environment, it becomes necessary to perform
and implement AI model training and inference at the edge.
As this will ensure the real-time update of legacy or ground-
truth data available near Edge and will also ensure the timely
update of global model by exchanging binary weights with
the backend cloud. The training and inference approach at
the edge device can counter two major challenges: Inference
latency which can be caused when the model is trained over
other device or system (for example cloud) and Secondly the
privacy as on device training will prevent the data from being
shared over cloud.

4) Common Edge Framework: The implementation of ap-
proach such as Federated Learning, in autonomous driving
demands a common Edge AI framework to be implemented
across entities involved. A common edge framework across
Vehicles, Edge Server, Infrastructure Sensors and Centralized
cloud needs to be deployed to increase the efficiency and ac-
curacy of applications. A common edge framework can bring
the performance of individual devices to optimum level with
need-basis collaboration from the vehicles and infrastructure
sensor, Also it is important for privacy and security features.

C. Energy Efficiency Evaluation of DNN Implementation on
embedded devices

Resource Constrained Devices: Deep neural networks
have delivered competitive accuracy for detection, segmen-
tation, mapping and localization-related tasks for autonomous
driving and with the advancement, in libraries and frameworks,
they have also been deployed on resource-constrained devices
such as smartphones, FPGA. However, there are several draw-
backs which cannot be overlooked. The best-in-class accuracy
from the state-of-the-art DNN is delivered at the extreme
computational cost caused during training and inference [231]
which significantly increases the overall energy consumption
in the autonomous driving ecosystem. Literature covered in
this survey shows several methods that have been proposed
to improve the accuracy and speed of DNN processing by
optimizing metrics involved, for example optimizing the bi-
nary weights and operations involved in complex layer such
as convolutional, Fire modules. These approaches do not
necessarily make a significant improvement on the embedded
device deployment and applications. Therefore there is an
open requirement to propose an efficient DNN model for
autonomous driving training and inference applications which
simultaneously tackle the problem of low latency applications
by overcoming the challenge of data and the energy consumed.

Real-time applications such as SLAM or vision related tasks
requires low latency and high precision by the embedded
devices. The relevant literature covered in this survey mostly
exploits high-end GPU which is cost-intensive for large scale
deployment. To enable these tasks on edge embedded devices
a combined software and hardware acceleration approaches
can be proposed which integrates data offloading strategies
and energy or power saving techniques by simultaneously
enhancing the accuracy and performance of these resource-
constrained devices.

D. Outlook of Edge AI Pipeline

Takeaways and lessons learned from this survey highlight
the need for an Edge AI processing pipeline that can process
large volumes of data to carry out decision making processes.
Figure 14 shows an overview of the Edge AI processing
pipeline envisioned for future connected autonomous driving
services, where the design of this pipeline corresponds to the
joint processing of data at the vehicle on-board computing
unit and at the Edge-server. In the proposed scenario, the AI
processing pipeline consists of four major components. The
first component comprises of the sensing unit present in the
vehicle (camera, LiDAR, radar, GPS, and the communication
unit (on-board unit + cellular connectivity), which is capturing
data from the vehicles surrounding.

The second component consists of computation and
decision-making process, it involves an edge device placed
in the vehicle processing the data through a deep neural
network thus enabling driving services such as perception,
SLAM and communications. The computation and decision-
making process is a complex task while incorporating energy-
efficient autonomous driving service through edge intelligence.
Therefore, it is necessary to highlight the process which
consumes a significant amount of on-board energy. Further, the
computation and decision-making process is divided into data
processing pipeline and computing respectively. The data pro-
cessing pipeline is assigned with tasks, such as offloading, la-
belling, real-time compression, legacy data update and sharing
the refined data with other entities involved in the surrounding,
such as other vehicles, or edge servers. The processes carried
out in the data processing pipeline can solve the primary
concern of memory and power for resource-constrained edge
embedded devices. The computing part involves processing the
refined data over a deep neural network to generate the weights
for driving applications. With the possibility of optimizing
deep neural networks further acceleration and approximation
techniques such as deep neural network model compression,
data fusion or approaches such as early exit deep neural
networks can be used. It is important to note that tasks such
as SLAM, object-tracking, obstacle detection has low-latency
and high bandwidth requirements, which makes it necessary
and practical to process sensed data at the vehicle’s on-board
computing unit for these tasks instead of processing at the
edge or remote cloud. Therefore, one of the inputs from the
vehicle sensors bypasses the data processing pipeline and is
directly used for computational purpose.

The third component of the proposed edge AI processing
pipeline consists of an edge server that is responsible for the
processing of large-volume data and enabling communication
in the vehicular ecosystem. The communication here can be
categorized as: vehicle to edge server (for sharing of raw data),
Edge server to a vehicle (for sharing of DNN model weights
and refined or processed data), Edge server to infrastructure,
and lastly edge server to backend cloud. To reduce the exten-
sive on-board energy consumption in an autonomous vehicle,
it is important to process the computationally intensive tasks
over the edge-server, which implements lossless compression,
optimization, and software approximation approach, which can



Figure 14: Edge-assisted driving services: The pipeline consists of on-board vehicle sensors in the car, the computation and
decision-making process, Edge-server, infrastructure sensors & devices, and the remote cloud.

help in achieving overall end-to-end energy efficiency.
The fourth component consists of roadside infrastructure

which includes a sensor suite (CCTV, traffic lights, LiDAR,
communication unit, GPS) similar to the vehicle and helps
in tasks and applications such as smart traffic flow, traffic
monitoring, map update etc. As illustrated in Figure 14 the
component also comprises of similar data processing pipeline
executing tasks such as offloading, labeling, real-time data
compression and data or model sharing over wired com-
munication with the edge server and backend cloud. The
backend cloud is communicating with the vehicle, server and
infrastructure sensors in case of DNN model update, or legacy
data update. To improve the accuracy and enable collaborative
driving, the model weights and data update should be shared
between the backend cloud, vehicle and edge server over
wireless and wired networks respectively.

VII. CONCLUSION

This paper has explored and reviewed autonomous driv-
ing applications of perception, SLAM, HD map, vehicular

communications, and inference approaches deployed on au-
tonomous embedded platforms and edge devices. Attention
has been given to exploring the currently available datasets
and autonomous driving frameworks. Focusing on the im-
pact of computational complexity and energy-efficiency on
resource-constrained devices, we highlight the communication
efficient approaches and software approximation techniques,
including low-rank approximation, pruning, quantization and
sparsification, which aim at reducing the statistical model
parameters for inference. In addition, we also covered the
energy-efficient deployment of AI applications on resource-
constrained devices using allocation schemes, heterogeneity-
aware mechanisms and federated learning. Our purpose is
to provide a dedicated review of energy-efficient approaches
for connected autonomous driving, ranging from vehicular
communication, edge computing, approximation techniques
to novel software-hardware frameworks. Besides identifying
research gaps, we highlight the existing challenges and open
problems that deserve further research investigations from the



community. Finally, based on the identified gaps, we envision
an Edge AI processing pipeline to share our outlook on
potential development of energy-efficient applications for level
4 and beyond edge-assisted autonomous driving applications.
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Ananda Theertha Suresh, and Dave Bacon. Federated learning:
Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[145] Tao Kong, Fuchun Sun, Huaping Liu, Yuning Jiang, Lei Li, and
Jianbo Shi. Foveabox: Beyound anchor-based object detection. IEEE
Transactions on Image Processing, 29:7389–7398, 2020.

[146] Iuliia Kotseruba, Amir Rasouli, and John K. Tsotsos. Joint attention
in autonomous driving (JAAD). CoRR, abs/1609.04741, 2016.

[147] Michael Krail, J Hellekes, U Schneider, E Dütschke, M Schellert,
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