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The brain is composed of disparate neural populations that communicate and interact with one an-
other. Although fiber bundles, similarities in molecular architecture, and synchronized neural activity
all reflect how brain regions potentially interact with one another, a comprehensive study of how all
these inter-regional relationships jointly reflect brain structure and function remains missing. Here we
systematically integrate seven multimodal, multiscale types of inter-regional similarity (“connectivity
modes”) derived from gene expression, neurotransmitter receptor density, cellular morphology, glucose
metabolism, haemodynamic activity, and electrophysiology. We uncover a compact set of universal or-
ganizational principles whereby all types of inter-regional relationships reflect brain geometry and
anatomical connectivity. Connectivity modes also exhibit unique and diverse connection patterns, hub
profiles, spatial gradients, and modular organization. Throughout, we observe a consistent primacy
of molecular connectivity modes—namely correlated gene expression and receptor similarity—that
map onto multiple phenomena, including the rich club and patterns of cortical abnormalities across
13 neurological, psychiatric, and neurodevelopmental disorders. Finally, to construct a single multi-
modal wiring map of the brain, we fuse all seven connectivity modes and show that the fused network
maps onto major organizational features of the brain including structural connectivity, intrinsic func-
tional networks, and cytoarchitectonic classes. Altogether, this work sets the stage for next-generation
connectomics and the integrative study of inter-regional relationships.

INTRODUCTION

Brain connectivity classically refers to the physical neu-
ral fibers that link disparate neuronal populations.
Axonal projections can be reconstructed by imaging
fluorescently-labelled proteins that are either injected
into or genetically expressed by a cell, or by stacking
electron microscopy images of thinly sliced brain sections
[84, 89]. At the macroscale, diffusion-weighted imaging
can be used to trace large fiber bundles that connect pairs
of brain regions in vivo, which collectively constitute the
structural connectome [58, 145]. Across organisms, spa-
tial scales, and imaging techniques, the brain’s structural
architecture exhibits hallmark features including a preva-
lence of short range connections resulting in functionally
segregated modules [143], and a small number of dis-
proportionately densely interconnected hubs [157]. Ul-
timately, studying the brain’s structural connectome has
advanced our understanding of how information is trans-
mitted [8, 133], how brain structure supports function
[147], and how perturbations may result in network-
defined pathology spread [175].

However, the structural network does not account for
the molecular and physiological heterogeneity that ex-
ist in the brain. An emerging representation of con-
nectivity is feature similarity: if two brain regions ex-
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hibit similar biological features, we might expect them
to be related to one another and engaged in common
function. As a result, different types of feature sim-
ilarity are sometimes referred to as “connectivity” de-
spite the fact that they don’t represent direct axonal
connections [1]. This approach is already widely used
on the BOLD signal where haemodynamic time courses
are correlated with each other, and also exists for time-
series measures from other imaging modalities such as
magneto-/electroencephalography (MEG/EEG) and dy-
namic FDG-fPET (all called “functional connectivity”)
[25, 33, 49, 55, 75]. In cases where multiple measures of
a feature exist at each brain region, such as gene expres-
sion levels across many genes, inter-regional similarity
can be estimated with respect to a single local feature
[60, 61, 65, 112, 120, 131, 134]. In each case, the ensu-
ing region × region correlation matrix represents a form
of connectivity between brain regions.

As multiple estimates of inter-regional similarity be-
come available through emerging technologies and data
sharing efforts, it becomes possible to integrate them
into a single framework and deduce how they interact
with one another, and in what ways they are unique
or complementary. For example, brain structure is het-
erogeneously coupled to haemodynamic functional con-
nectivity along the sensory-association cortical hierarchy
[14, 163]. Information about inter-regional feature sim-
ilarity adds additional insight on how structure supports
function, and has been shown to improve the structure-
function concordance [60, 100, 114]. The advance in
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neuroimaging techniques and data sharing standards has
now made it possible to study multiple forms of inter-
regional relationships jointly, spanning a range of spatial
and temporal scales. The future of connectomics is there-
fore no longer limited to structural connectivity, but can
be approached from a multi-modal, multi-scale angle.

Here we integrate seven layers of inter-regional re-
lationships, including gene expression, receptor den-
sity, cellular composition, metabolism, electrophysiology,
and temporal fingerprints, to assemble a comprehensive,
multiscale wiring blueprint of the cerebral cortex. Al-
though they are all effectively networks reconstructed
by correlating feature similarity, hereafter we refer to
them as connectivity modes. First, we establish the com-
mon and unique manners in which connectivity modes
reflect brain structure and geometry. Next, we identify
cross-modal hubs as well as circuits that consistently dis-
play large inter-regional similarity across multiple con-
nectivity modes. We then test how different connectivity
modes capture patterns of cortical abnormalities across
13 neurological, psychiatric, and neurodevelopmental
disorders. Moreover, we show that connectivity modes
demonstrate diverse gradient and modular decomposi-
tions. Finally, we iteratively fuse all seven connectiv-
ity modes into a single multimodal network. All seven
connectivity modes are publicly available in three par-
cellation resolutions (https://github.com/netneurolab/
hansen_many_networks), in hopes of facilitating integra-
tive, multi-scale analysis of human brain connectivity.

RESULTS

For each brain feature, a similarity network can be rep-
resented as a region × region matrix. Rows and columns
represent brain regions, and elements—the edges of the
similarity network—represent how similarly two brain
regions present the specific feature. This similarity can
also be thought of as connectedness, such that two
brain regions that share similar features are considered
strongly connected. For simplicity, we therefore refer
to correlation-based similarity as “connectivity” and the
similarity networks as “connectivity modes”. To com-
prehensively benchmark cortical connectivity modes, we
construct and analyze seven different connectivity ma-
trices, spanning multiple spatial and temporal scales.
These include: (1) correlated gene expression, describ-
ing transcriptional similarity across > 8 000 genes from
the Allen Human Brain Atlas [63]; (2) receptor similar-
ity, describing how correlated pairs of brain regions are
in terms of protein density of 18 neurotransmitter recep-
tors/transporters [60]; (3) laminar similarity, describ-
ing how correlated pairs of brain regions are in terms
of cell-staining intensity profiles from the BigBrain at-
las [4, 112]; (4) metabolic connectivity, measured as
the correlation of dynamic FDG-PET (glucose uptake)
time-series [74, 75]; (5) haemodynamic resting-state
connectivity, measured as the correlation of fMRI BOLD

time-series from the Human Connectome Project (HCP)
[160]; (6) electrophysiological connectivity, measured
as the first principal component of resting-state MEG
connectivity across six canonical frequency bands from
the HCP [135, 160]; and (7) temporal profile similarity,
a comprehensive account for dynamic similarity (above
and beyond a Pearson’s correlation between time-series,
as is the case in haemodynaimc connectivity) which is
measured as the correlation between time-series features
of the fMRI BOLD signal [51, 52, 137]. To facilitate com-
parison between networks, and to mitigate differences
between data types and processing pipelines, each net-
work was parcellated to 400 cortical regions and edge
values were normalized using Fisher’s r-to-z transform
[129]. Networks were also parcellated to an alternative
functional and anatomical cortical atlas in multiple reso-
lutions (100 and 68 brain regions) for the sensitivity and
replication analyses (see Sensitivity and replication anal-
ysis).

Common organizational principles of connectivity modes

In Fig. 1a, we visualize each normalized connectivity ma-
trix as a heatmap where the colourbar limits are −3 and
3 standard deviations of the edge weight distribution
(for edge weight distributions, see Fig. S1a). Brain re-
gions are ordered by left then right hemisphere. Within
each hemisphere, regions are further stratified by their
membership in the seven canonical intrinsic functional
networks (Schaefer-400 parcellation [129, 172]). Ho-
motopic connections stand out, indicating that homol-
ogous brain regions in left and right hemispheres are
consistently similar to each other no matter the biologi-
cal feature (Fig. S1b). Previous work has hypothesized
that cortical dynamics in homotopic regions are synchro-
nized due to common brainstem input [92, 154]; our
work opens an additional hypothesis that similarities in
dynamics may also be related to similar molecular com-
position.

Visually, each connectivity mode demonstrates non-
random network organization, which we explore in sub-
sequent sections. Furthermore, similarity between brain
regions decreases as both Euclidean and geodesic dis-
tance between brain regions increases (Fig. 1b; Fig. S2),
consistent with the notion that proximal neural elements
are more similar to one another [47, 60, 67, 120, 137].
However, there is variability in how feature similarity
decreases with distance. For instance, dynamic modes
demonstrate stronger exponential relationships whereas
molecular modes demonstrate either weak exponential
or linear (in the case of laminar similarity) fits.

We next sought to relate each connectivity mode
to the brain’s underlying structural architecture. We
constructed a weighted structural connectome using
diffusion-weighted MRI data from the Human Connec-
tome Project; this network represents whether, and how
much, two brain regions are connected by white mat-
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Figure 1. Common organizational principles of connectivity modes | Each connectivity mode is represented as a normalized
similarity matrix, where elements of the matrix index how similarly two brain regions present a specific feature. (a) Connectivity
modes are shown as heatmaps, ordered according to the 400-region Schaefer parcellation [129]. The colourbar limits are −3 to
3 standard deviations of the edge weight distribution. (b) Edge weights between every pair of brain regions (i.e. upper triangular
elements) decrease with Euclidean distance across all seven connectivity modes. Darker colour represents greater density of points.
Exponential equations or Spearman correlation coefficients are shown depending on whether the relationship is better fit by an
exponential or linear function. Similar relationships with geodesic distance are shown in Fig. S2. (c) Edge weight distributions
are visualized separately for edges that also exist in the structural connectome (blue) and those that do not (grey), according to
a group-consensus structural connectome from the HCP [160]. Structurally connected brain regions show greater similarity than
regions that are not structurally connected. Boxplots represent the 1st, 2nd (median) and 3rd quartiles, whiskers represent the
non-outlier end-points of the distribution, and diamonds represent outliers (> 1.5 inter-quartile range). (d) For edges that also
exist in the structural connectome, connectivity mode edge weight increases with the strength of the structural connection.

ter streamlines. We find that, across all seven connectiv-
ity modes, brain regions that are physically connected
by white matter show greater feature similarity than
those that are not connected, suggesting that biologically
similar neuronal populations are in direct communica-
tion (Fig. 1c). These differences are greater than in a
population of degree- and edge length-preserving surro-
gate structural connectomes, indicating that the effect is
specifically due to wiring rather than spatial proximity
[21]. Finally, for the subset of edges with a structural
connection, we find a correlation between the strength of
the structural connection and each connectivity mode’s
edge weight (Fig. 1d) [70]. Altogether, we find that
connectivity modes demonstrate common organizational
principles that respect geometry, neuroanatomy, and

anatomical connectivity, regardless of imaging modality
or biological mechanism.

Structural and geometric features of connectivity modes

Although connectivity modes share organizational prop-
erties, the median correlation between them is r = 0.25
(range: r = 0.10–0.53; Fig. S3). In other words, con-
nectivity modes are not redundant. To directly compare
edge weights across connectivity modes, we converted
edge weights to ranks, such that the smallest (i.e. most
negative) edge is ranked 1 and the strongest (i.e. most
positive) edge is ranked 79 800 (equal to the number of
edges in each network). We focus on two metrics to clas-



4

Figure 2. Structural and geometric features of connectivity modes | To compare edge weights across networks, edges are
rank-transformed. (a) Edges are binned into 50 equally-sized bins of increasing Euclidean distance (1 596 edges per bin). For
each connectivity mode, the median edge rank is plotted within each bin. (b) A kernel density estimation is applied on the rank-
transformed feature similarity (edge rank) distribution of edges that also have a structural connection, for each connectivity mode.
(c) For a structural degree threshold k ∈ [5, 50], we calculate the rich club coefficient ratio and show a characteristic increase in
rich club coefficient ratio when 30 ≤ k ≤ 43. Circles indicate structural degree thresholds where the rich club coefficient ratio
is significantly greater than a null distribution of ratios calculated using a degree-preserving rewired network (1 000 repetitions).
On the right we show the set of structural edges connecting regions with structural degree ≥ 37. Edge shade and thickness are
proportional to edge weight, and point size is proportional to structural degree. The binary structural connectome is shown in the
inset. (d) For each k ∈ [5, 50] and for each connectivity mode, we calculate the median edge rank of structurally-supported edges
that connected regions with structural degree ≥ k. Circles indicate structural degree thresholds where the median rich-link edge
rank of a connectivity mode is significantly greater than the edge rank of all other structurally-supported edges (Welch’s t-test,
one-sided).

sify edges between brain regions: distance and structural
connectivity.

Spatial proximity influences inter-regional similarity,
such that proximal regions tend to share similar bio-
logical and physiological features (Fig. 1b, [21, 146].
We therefore sought to investigate how distance shapes
inter-regional feature similarity in greater detail and in
a comparative manner. We first bin all 79 800 edges
into fifty equally-sized bins (1 596 edges per bin). For
each connectivity mode separately, we calculate the me-
dian edge rank within each bin (Fig. 2a). Median edge
rank decreases as the distance between brain regions
in each bin increases, consistent with our finding in
Fig. 1b. We find two broad patterns: receptor simi-
larity, temporal similarity, haemodynamic connectivity,
and metabolic connectivity show moderate decrease of

edge strength with distance, whereas correlated gene ex-
pression, laminar similarity, and especially electrophysi-
ological connectivity demonstrate a sharper decrease of
edge strength with distance. In other words, distance
plays a unique role in shaping each individual connectiv-
ity mode, with electrophysiological connectivity, laminar
similarity, and correlated gene expression being most in-
fluenced by distance. That receptor similarity is grouped
with predominantly dynamic modes (haemodynamic ,
metabolic, and temporal similarity) may reflect the in-
fluence that receptor density has on brain dynamics.

We next shift our focus to the subset of edges
with an anatomical connection, according to the struc-
tural connectome (N = 4954 out of 79 800 edges).
For each connectivity mode, we plot the distribution
of rank-transformed feature similarity (edge rank) for
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Figure 3. Cross-modal hubs | (a) For each connectivity mode, we plot the 0.5% strongest edges. Darker and thicker edges indicate
stronger edges. Points represent brain regions and are sized according to the sum of edge weights (weighted degree). Brain views
are axial, with anterior regions at the top of the page (for coronal and sagittal views, see Fig. S4). (b) For each connectivity
mode, regional hubness is defined as the sum of rank-transformed edge weights across regions. (c) For a varying threshold of
strongest edges (0.5%–5% in 0.5% intervals), we calculate the proportion of edges that connect two regions within the same
intrinsic network (left [172]) and cytoarchitectonic class (right [166]). (d) Across all seven connectivity modes, we calculate the
median edge rank of each edge and plot the 0.5% strongest edges (left). Likewise, we calculate the median hubness (shown in
panel b), which we find is significantly correlated with evolutionary cortical expansion (r = 0.42, pspin = 0.0001) [68].

these edges that also exist in the structural connectome
(Fig. 2b). This lets us determine which connectivity
modes demonstrate the greatest coupling between high
inter-regional feature similarity and structural connectiv-
ity: namely, receptor similarity and correlated gene ex-
pression. This serves as the first indication that molec-
ular connectivity modes tend to conform most to struc-
tural connections. The primacy of molecular connectivity
modes is a finding that returns in the next analysis and
when we compare connectivity modes to disease pathol-
ogy (Connectivity modes shape disease vulnerability).

We next track how edge strength changes depend-
ing on the structural embedding of each brain region.
We focus on the brain’s rich club: a set of dispropor-
tionately interconnected high-degree brain regions that
is thought to mediate long-range information propaga-
tion and integration [50, 157]. Is this rich club archi-
tecture supported by specific biological and physiologi-
cal features? To address this question, for each struc-

tural degree threshold k ∈ [5, 50] (where structural de-
gree is defined as the number of structural connections
made by a brain region), we calculate the rich club co-
efficient ratio on the binary structural connectome: the
tendency for brain regions of degree ≥ k to be preferen-
tially connected to one another, with respect to a popu-
lation of degree-preserving surrogate networks. We find
that the rich club coefficient ratio is inflated at approxi-
mately 30 ≤ k ≤ 43, suggesting the existence of rich club
organization (Fig. 2c). This topological rich club regime
denotes a degree range where brain regions are unex-
pectedly densely interconnected [35]. Next, for each
connectivity mode at each k, we calculate the median
edge rank of all structurally-supported edges that link
two brain regions with degree ≥ k (Fig. 2d). Moreover,
we ask whether within-set edge ranks (i.e. edges con-
necting regions with degree ≥ k) are statistically greater
than all other edges (Welch’s one-sampled t-test).

We find that edges in the brain’s topological rich club
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Figure 4. Contributions of connectivity modes to disease vulnerability | Cortical abnormality profiles for thirteen neurological,
psychiatric, and neurodevelopmental disorders were collected from the ENIGMA consortium (brain plots shown in panel b; N =
21 000 patients, N = 26 000 controls [85, 151]). (a) Given a specific disorder and connectivity mode, dj represents the cortical
abnormality of region j, and cij represents the edge weight (similarity) between regions i and j. For every region i, we calculate
the average cortical abnormality of all other regions j ̸= i in the network, weighted by the edge strength (“disease exposure”;
note that we omit negative connections, such that Ni represents the number of positive connections made by region i). Next, we
correlate disease exposure and regional abnormality across brain regions (scatter plot; points represent brain regions). We show
the connectivity profiles of two example regions (highlighted in purple in the left brain network and orange in the right brain
network). (b) The analytic workflow presented in panel a is repeated for each disorder and connectivity mode, and we visualize
Spearman correlations in a heatmap. (c) This analysis is repeated for weighted structural connectivity (where we only consider
structurally-connected regions), and Euclidean distance (where we always consider all regions in the network).

regime are particularly dominated by molecular features
(e.g. laminar similarity, correlated gene expression, and
receptor similarity). Haemodynamic and electrophysio-
logical connectivity are especially weak for links between
high-degree regions, and temporal similarity is unsta-
ble. Metabolic connectivity is an additional connectiv-

ity mode that demonstrates significantly increased edge
strength for links between high-degree regions, suggest-
ing that energy consumption is synchronized between
structural hubs [5, 50, 87, 155]. Collectively, these re-
sults point to the possible biological origins of the rich
club. Namely, the rich club may reflect coordinated pat-
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Figure 5. Gradients and modules of connectivity modes | (a) The first principal component (“gradient”) of each connectivity
mode is shown on the cortex. (b) The percent variance explained for the first five principal components of each connectiv-
ity mode. (c) The Pearson’s correlation between every pair of network gradients, visualized as a heatmap. CGE=correlated
gene expression, RS=receptor similarity, LS=laminar similarity, MC=metabolic connectivity, HC=haemodynamic connectivity,
EC=electrophysiological connectivity, TS=temporal similarity. (d) The Louvain community detection algorithm is applied to each
connectivity mode across different resolution parameters (0.1 ≤ γ ≤ 6.0, in intervals of 0.1) and the number of ensuing communi-
ties is plotted as a function of γ. (e) For each connectivity mode we show a single community detection solution for a specified γ,
and we indicate the number of communities (n).

terns of inter-regional microscale similarity. On the other
hand, the rich club is not characterised by similar neural
dynamics, possibly related to the functional flexibility of
these regions [57].

Cross-modal hubs

Mapping hubs in the human brain has been a topic of
great interest in the last 15 years, but the majority of our
knowledge comes from anatomical and haemodynamic
connectivity [144, 158]. For a more comprehensive un-
derstanding of brain regions that make many strong con-
nections, it would be important to map their connectivity
profiles at different levels of organization. We therefore
ask whether there exist edges that are consistently high-
strength, and if so, which brain regions, which we call
cross-modal hubs, make these connections. For every
connectivity mode, we show an axial view of the 0.5%
strongest edges (Fig. 3a, see Fig. S4 for coronal and
sagittal views). Interestingly, high-strength edges vary

across connectivity modes: some networks form densely
interconnected cores (i.e. electrophysiological connec-
tivity and temporal similarity), some emphasize long-
range (i.e. haemodynamic connectivity) or short-range
(i.e. metabolic connectivity) connections, and others ap-
pear more non-specific (i.e. correlated gene expression,
receptor similarity, and laminar similarity; Fig. 3a). This
variability is also reflected in the hubness profiles of each
connectivity modality, where a brain region’s hubness is
defined as the sum of the rank-transformed edge weights
between it and all other regions (Fig. 3b). The variabil-
ity of hubness points to the importance of characterizing
network architecture from multiple complementary per-
spectives.

Are there consistencies in high-strength edges and re-
gions? Previous work has shown that the brain can be or-
ganized into modules of regions that are either function-
ally similar (“intrinsic networks” [172]) or cellularly sim-
ilar (“cytoarchitectonic classes” [164, 166]). We wanted
to know whether connectivity modes across multiple
scales emphasize edges that link brain regions within
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these functional and cytoarchitectonic networks, regard-
less of whether the connectivity mode represents brain
function or cellular composition. For a given network
classification (e.g. intrinsic networks), we call edges that
join two brain regions in the same network (e.g. the vi-
sual network) intra-class edges [134]. We then calculate
how many of the x strongest edges in a given connectiv-
ity mode overlap with intra-class edges. We let x vary
in increments of 0.5% from 0.5% to 5% of the strongest
edges in a connectivity mode.

For intrinsic networks (Fig. 3c, left), the strongest
edges in the haemodynamic network are almost en-
tirely intra-class edges (90.2% for the top 0.5% strongest
edges, and 72.2% for the top 5% edges). The strongest
edges in correlated gene expression are also primar-
ily intra-class edges (88.7% for the top 0.5% strongest
edges) but this ratio decreases to 52.8% at 5% of
the strongest edges. Meanwhile, for cytoarchitectonic
classes (Fig. 3c, right), receptor similarity, correlated
gene expression, and metabolic connectivity most max-
imize intra-class edges. Across both intrinsic and cy-
toarchitectonic networks, temporal similarity retains the
fewest intra-class edges. Nonetheless, the negative
slopes in Fig. 3c indicates that, for every connectivity
mode, strongest edges are preferentially edges that con-
nect brain regions within the same functional and cy-
toarchitectonic network (Fig. 3c). More generally, when
we consider the median edge rank across all connectiv-
ity modes, we find that consistently high-strength edges
primarily connect visual, posterior parietal, and anterior
temporal regions (Fig. 3d, left).

Finally, we focus on the brain regions: are there re-
gions that are similar to many other regions with respect
to multiple different microscale properties? We quan-
tify cross-modal hubness as the median hubness across
connectivity modes (i.e. the median across brain plots
shown in Fig. 3b). We find that transmodal regions such
as the supramarginal gyrus, superior parietal cortex, pre-
cuneus, and dorsolateral prefrontal cortex are most con-
sistently similar to other brain regions across all connec-
tivity modes (Fig. 3d, right). Interestingly, these trans-
modal regions are commonly thought of as structural
hubs but here we show that they are central at multiple
levels of organization.

Why are some brain regions highly similar to many
other regions across multiple spatial scales and biologi-
cal mechanisms? We hypothesized that cross-modal hubs
are more cognitively flexible and able to support higher-
order, evolutionarily-advanced cognitive processes. We
therefore correlated cross-modal hubness with a map
of evolutionary cortical expansion [68]. Indeed, the
identified cross-modal core coincides with brain regions
that are more expanded across phylogeny (r = 0.43,
pspin = 0.0001). In other words, brain regions that are
expanded in humans and therefore likely involved in
higher-order cognition share many features across mul-
tiple scales, suggesting they can integrate signals from a
more diverse set of neural circuits. Ultimately, hubs that

are defined using connectivity modes other than the clas-
sical structural connectome provide novel perspectives
on how regions participate in neural circuits.

Connectivity modes shape disease vulnerability

We next ask how connectivity modes shape the spatial
patterning of brain diseases. Emerging theories empha-
size that the course and expression of multiple brain
diseases is mediated by shared molecular vulnerability
[61, 169]. To address this hypothesis, we compared
connectivity modes with patterns of cortical abnormal-
ities across thirteen different neurological, psychiatric,
and neurodevelopmental diseases and disorders from the
ENIGMA consortium (N = 21 000 patients, N = 26 000
controls) [61, 85, 151].

We define the “exposure” that region i has to re-
gion j’s pathology as the product between the (i, j)-edge
strength (cij) and region j’s abnormality (dj) (Fig. 4a)
[32, 61, 136, 138]. Then the global disease exposure to
region i is the mean exposure between region i and all
other regions in the network with positive edge strength.
Finally, we correlate cortical abnormality with disease ex-
posure to determine whether the spatial patterning of
the disease is informed by a connectivity mode (Fig. 4a,
right). This analysis is repeated for each connectivity
mode and each disorder, and correlation coefficients are
visualized in Fig. 4b.

We find that correlated gene expression and recep-
tor similarity most consistently amplify the exposure of
pathology in a manner that closely resembles the corti-
cal profile of the disease. This suggests that brain re-
gions with similar molecular makeup may undergo sim-
ilar structural changes in disease [132]. By repeating
the analysis using weighted structural connectivity (in
which case we only consider structurally-connected re-
gions) and Euclidean distance between brain regions (in
which case we always consider the full network), we are
able to uncover cases where feature similarity amplifies
disease exposure more than structure or distance alone
(Fig. 4c). Cortical abnormality patterns of psychiatric
disorders in particular (e.g. MDD, schizophrenia, bipolar
disorder, OCD) are better explained by correlated gene
expression and receptor similarity than structure or dis-
tance. This integrative analysis makes it possible to hone
in on the imaging modalities and biological mechanisms
that might most reflect cortical pathology; in this case,
bringing to light the relevance of molecular rather than
dynamic modes in psychiatric disorders.

Gradients and modules of connectivity modes

We next consider how each connectivity mode is in-
trinsically organized, both in terms of axes of variation
(i.e. spatial gradients) and network modules [38, 59, 94,
112]. Principal gradients have been extensively studied
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Figure 6. Network fusion | Similarity network fusion was applied to all seven connectivity modes to construct a single integrated
network [98, 168]. (a) Toy example of similarity network fusion (SNF). SNF iteratively combines the seven connectivity modes
in a manner that gives more weight to edges between observations that are consistently high-strength across data types (black
edges). (b) The fused network. (c) Edge weight decreases exponentially with Euclidean distance. (d) Structurally connected edges
have greater edge weight than edges without an underlying structural connection, against a degree and edge-length preserving
null model (left [21]), and is correlated with structural connectivity (right). (e) For a varying threshold of strongest edges (0.5%–
5% in 0.5% intervals), we calculate the proportion of edges that connect two regions within the same intrinsic network (left),
cytoarchitectonic class (middle), and the union of intrinsic networks and cytoarchitectonic classes (right).

in the literature [20], although the amount of variance
explained by the gradient is under-appreciated compared
to its spatial patterning. Here we show that the promi-
nence of the first gradient can vary substantially across
connectivity modes (Fig. 5a). For example, the tempo-
ral similarity gradient is especially dominant (account-
ing for 73.8% of variance) while the metabolic connec-
tivity gradient is especially non-dominant (accounting
for 12.7% of variance; Fig. 5b). Furthermore, we find
that brain gradients do not all follow a uniform sensory-
association axis [73, 96, 149], rather, the first princi-
pal component of each connectivity mode varies consid-
erably (median absolute correlation between gradients

r = 0.36; Fig. 5c).

An alternative perspective of intrinsic network orga-
nization comes from considering whether and how the
network clusters into segregated modules. We apply the
Louvain community detection algorithm to each connec-
tivity mode and, across a range of resolution parame-
ter values (γ), extract community assignments for each
brain region [12, 23]. To get a sense of the resolution
of each network (i.e. the number of communities the
network might naturally exhibit, if at all), we track the
number of communities identified by the Louvain com-
munity detection algorithm across different values of γ
(Fig. 5d). We find that the community detection solution
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for electrophysiology is highly unstable, with the number
of identified communities changing rapidly with small
changes in γ. The most stable solution at γ = 1 simply
delineates the main cortical lobes. Haemodynamic con-
nectivity and temporal similarity show a similar trend,
where partitions of greater than approximately 5 net-
works become increasingly unstable. Meanwhile, corre-
lated gene expression, laminar similarity, and receptor
similarity show more stable community solutions, where
larger changes in γ are required for the network to split
itself into more communities. We show one possible con-
sensus community detection solution for each network
in Fig. 5e, which demonstrates that the modular organi-
zation and gradient decomposition of networks tend to
be closely aligned. Collectively, this shows that each con-
nectivity mode has a unique gradient decomposition and
community structure.

Fusing connectivity modes

Each connectivity mode that we have studied so far rep-
resents a single scale of organization describing distinct
but related inter-regional relationships. Given that the
brain is integrated, how do these connectivity modes
layer onto one another to support brain structure and
function? To address this questions, we apply an un-
supervised learning technique, similarity network fusion
(SNF), to merge all seven connectivity modes into a
single multimodal network (Fig. 6a) [168]. SNF iter-
atively fuses each connectivity mode in a manner that
strengthens edges that are consistently strong and weak-
ens inconsistent (or consistently weak) edges, while giv-
ing each connectivity modality equal influence on the fu-
sion processes. Altogether, the fused network represents
a data-driven integration of each level of brain connec-
tivity.

The fused network exhibits non-random network orga-
nization including strong homotopic connectivity and a
negative exponential relationships with distance (Fig. 6b,
c). In addition, structurally connected edges have signif-
icantly stronger edge weight than non-connected edges,
against a degree- and edge-length preserving structural
null (Fig. 6d). Finally, the fused network demonstrates
a greater correlation between edge weight and weighted
structural connectivity than any of the individual con-
nectivity modes (r = 0.53). This shows how combin-
ing inter-regional similarity across multiple scales can be
used to better explain anatomical connectivity [147].

We next asked whether the strongest edges in the
fused network exist between functionally and cytoar-
chitectonically similar brain regions (Fig. 6e). We find
that nearly all (97.7%) of the top 0.5% strongest edges
in the fused network are between regions within the
same functional network. In fact, the fused network
outperforms haemodynamic connectivity—the connec-
tivity mode for which these intrinsic functional networks
are designed and optimized. Likewise, for cytoarchi-

tectonic classes, we find that the fused network retains
more intra-class edges than any other network when the
number of strongest edges considered is ≥ 2.5%. Since
the fused network represents an integrated connectivity
mode, we asked whether the strongest edges of the fused
network might simultaneously maximize intrinsic and
cytoarchitectonic intra-class edges. Indeed, when consid-
ering the top 0.5% to 5.0% strongest edges, the number
of edges that exist between regions in the same intrinsic
and cytoarchitectonic classes is consistently greatest for
the fused network. Altogether, the fused network maps
onto intrinsic networks and cytoarchitectonic classes bet-
ter than any individual network. This demonstrates how
large scale phenomena emerge from a confluence of mul-
tiple microscopic determinants.

Sensitivity and replication analysis

Finally, to ensure results are not dependent on the
parcellation, we repeated all analyses (except Fig. 4
which depends on the 68-region Desikan-Killiany par-
cellation) using the 100-region Schaefer parcellation
and the 68-region Desikan-Killiany parcellation [30, 39,
129]. We find similar results under these alternative
parcellations (Fig. S5). These coarser resolutions re-
veal dense frontal inter-connectivity in the metabolic net-
work, which was not visible at the 400-node parcella-
tion likely due to smoothing effects in dynamic PET data.
Furthermore, we share all seven connectivity modes at
these three parcellations (Schaefer-400, Schaefer-100,
Desikan-Killany-68) in hopes of facilitating integrative
connectome analyses in the future (https://github.com/
netneurolab/hansen_many_networks).

DISCUSSION

This work integrates multiple representations of brain
connectivity to establish how diverse connectivity modes
contribute to brain structure and function. We systemati-
cally document the common organizational principles of
connectivity modes, as well as their unique contributions
to brain structure and geometry. We find that molecular
connectivity modes amplify disease exposure resulting in
spatial patterns of cortical abnormality. We show that
connectivity modes demonstrate diverse dominant gra-
dients and modular structure. Finally, we derive a multi-
modal, multiscale network by parsimoniously integrating
multiple connectivity modes.

Connectomics—the study of relationships between
neural elements across multiple scales—is increasingly
becoming the dominant paradigm in neuroscience [13,
88, 145]. Numerous technological and analytic methods
have been developed to reconstruct inter-regional rela-
tionships, some focused on physical wiring, others on
molecular similarity, and others still on coherence be-
tween regional neural activity. Despite being rooted in
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common questions, these connectivity modes are often
studied in separate literatures. What network features
are unique or common to each connectivity mode re-
mains unknown and the practice of studying connectivity
modes separately has precluded a truly integrated under-
standing of inter-regional relationships.

Detailed comprehensive datasets alongside better data
sharing practices have made multi-modal, integrative ap-
proaches to studying human brain connectivity more fea-
sible [42, 86, 96, 167]. Examples include comparisons
of dynamic FDG-PET and BOLD connectivity [75, 165],
BOLD connectivity and electrophysiology [25, 26, 64,
135], structural and BOLD connectivity [70, 156], and
correlated gene expression and structural connectivity
[122]. Combining connectivity modes has also been used
to better resolve clusters of functional activation in BOLD
data [93], and inform the application of deep brain stim-
ulation to psychiatric and neurological diseases [11, 72].
Encouragingly, previous work has found that incorporat-
ing multiple perspectives of brain connectivity can re-
sult in novel discoveries, including improved generative
models of brain connectivity [110], structure-function
coupling [60, 114], epicentres of transdiagnostic alter-
ations [61, 65], and the characterization of homophilic
wiring principles [16].

Although these integrative approaches open exciting
new questions about brain organization, an important
challenge remains: how do we ensure that conclusions
are rooted in the underlying biology rather than assump-
tions and idiosyncrasies of individual data modalities?
We attempted to mitigate this challenge by repeating
analyses using other analytic choices, applying conser-
vative null models, normalizing each connectivity mode
prior to analysis (Fisher’s r-to-z transformation), and
rank-transforming edges to facilitate comparison of edge
strengths across data types. This provides a level of con-
fidence but is by no means an exhaustive verification
that data types do not influence results. Indeed, each
dataset is accompanied by its own set of limitations in-
cluding instances of false positives and negatives in dif-
fusion tractography [78, 91, 174], non-specific binding
for some PET tracers [46], and heterogeneous patterns
of signal to noise ratios across all imaging types. As open
datasets are created and shared, it will become more fea-
sible to determine how results are influenced by process-
ing choices and imaging modalities.

The study of connectomics has been dominated by a
focus on structural and haemodynamic connectivity. This
has resulted in the assumption that homologous [121],
spatially proximal [47], and structurally connected [67]
brain regions tend to be more similar. By systematically
integrating seven multi-scale perspectives of brain con-
nectivity, we show that these properties are indeed fun-
damental to brain organization but that there is consid-
erable variation across connectivity modes. For example,
the negative exponential relationship with distance is al-
most linear for molecular connectivity modes, especially
when we consider geodesic instead of Euclidean distance

(Fig. S2). A second assumption, this stemming primarily
from fMRI studies, is that the brain ubiquitously follows
a unimodal-transmodal hierarchical gradient, and can be
organized in terms of intrinsic resting-state networks.
However, we find diverse gradient decompositions and
community structures across spatial scales and biologi-
cal mechanisms. Furthermore, we find that microscale
connectivity modes (e.g. correlated gene expression, re-
ceptor similarity) are well delineated by a partition based
on cytoarchitectonic classes whereas dynamic connectiv-
ity modes (e.g. haemodynamic connectivity, electrophys-
iological connectivity) fit better into intrinsic cognitive
systems. Indeed, connectivity modes are poorly corre-
lated with one another, suggesting that each connectivity
mode provides a fundamentally different but important
view of how brain regions participate in neural circuits
at different spatial and temporal scales [15].

In an effort to understand which brain regions are
consistently central across many levels of description,
we identify a set of cross-modal hubs. Brain hubs are
conventionally defined as regions with a relatively large
number of structural connections, but this definition ig-
nores the multiscale character of brain networks. Indeed,
we find that hub profiles are not redundant across bi-
ological mechanisms. Instead, we identify a subset of
brain regions that are uniquely central across multiple
levels of description. These cross-modal hubs exist in the
precuneus, supramarginal gyrus, and dorsolateral pre-
frontal cortex: association regions that most expand dur-
ing evolution and are involved in high-level cognition in-
cluding language, planning, and complex executive func-
tions [68, 171]. This may indicate that these functions
are supported by integration across multiple biological
scales. Altogether, cross-modal hubs open a new perspec-
tive on hub function: instead of being rooted only in high
structural connectivity, hubs can be classified according
to their participation in different biological systems [5].

Integrative connectomics opens the possibility of
benchmarking and comparing biological mechanisms to
one another. For example, we consistently identify a
dichotomy between molecular (e.g. correlated gene ex-
pression, receptor similarity, laminar similarity) and dy-
namic (e.g. haemodynamic and electrophysiological con-
nectivity) modes. First, molecular feature similarity
is significantly increased for links between regions of
the brain’s rich club: high-degree regions that show
dense inter-connectivity which is thought to improve
global communication efficiency and integration [157].
A transcriptional signature of rich club connectivity was
previously shown to be driven by genes involved in
metabolism, supporting the theory that the brain’s rich
club is energetically expensive [28, 36, 50]. Interestingly,
we find that metabolic connectivity is increased in rich
links, suggesting that the rich club is also synchronized
in its energy consumption [87, 155].

Second, molecular feature similarity—particularly cor-
related gene expression and receptor similarity—best
explains the spatial patterning of multiple cortical dis-
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ease abnormalities. Recent work has explored the idea
that multiple pathologies spread trans-synaptically, in-
cluding misfolded proteins, aberrant neurodevelopmen-
tal signals, and excitotoxic electrical discharge, resulting
in patterns of pathology that reflect the underlying struc-
tural architecture of the brain [138, 175]. Here we con-
sider the possibility that shared vulnerability to disease
arises not just from structural connectivity but also from
multiscale biological attributes [61]. We use changes in
cortical thickness as the marker of potential pathology
and find that when disease exposure is informed by tran-
scriptional and receptor similarity, we can reproduce the
cortical profile of multiple diseases (r > 0.5 for most).
The consistent primacy of molecular connectivity modes
demonstrates that mapping brain connectivity from the
perspective of the underlying biology—gene transcrip-
tion, receptor density, cellular composition—is just as, if
not more, informative than oft-studied dynamical modes
such as haemodynamic connectivity.

The present work should be considered alongside
some methodological considerations. First, the results
are only representative of the seven included connec-
tivity modes; future work should extend this work into
additional forms of connectivity. One exciting avenue
would be to annotate structural connectomes with mea-
sures of myelin or axon caliber derived from quantitative
MRI such as magnetization transfer (MT), T1 relaxation
rate (R1), or axon diameter [7, 90, 106]. Second, each
connectivity matrix is dependent on the quality of the
imaging modality, and each imaging method operates at
a unique spatial and temporal resolution. Results may
therefore be influenced by differences in how the data
are acquired. We tried to mitigate this by running exten-
sive sensitivity analyses. Third, in an effort to make cor-
related gene expression comparable to the other modes,
data interpolation and mirroring was conducted, poten-
tially biasing this network towards homotopic connec-
tions. Fourth, connectivity modes are compiled across
different individuals of varying ages and sex ratios. Re-
sults are therefore limited to group-averages, and moti-
vate future deep phenotyping studies of the brain across
multiple scales and modalities.

Altogether, this work combines seven perspectives
of brain connectivity from diverse spatial scales and
imaging modalities including gene expression, receptor
density, cellular composition, metabolic consumption,
haemodynamic activity, electrophysiology, and time-
series features. We demonstrate both the similar and
complementary ways in which connectivity modes re-
flect brain geometry, structure, and disease. This serves
as a step towards the next-generation integrative, multi-
modal study of brain connectivity.

METHODS

Connectivity modes

We construct cortical connectivity modes for seven dif-
ferent brain features: gene expression, receptor den-
sity, lamination, glucose uptake, haemodynamic activity,
electrophysiological activity, and temporal profiles. Each
connectivity mode is defined across 400 cortical brain
regions, ordered according to 7 intrinsic networks (vi-
sual, somatomotor, dorsal attention, ventral attention,
limbic, frontoparietal, default mode), separated by hemi-
spheres (left, right) [129]. Replication analyses were
conducted using the 100-region Schaefer and 68-region
Desikan-Killiany parcellations (all available at https://
github.com/netneurolab/hansen_many_networks). To
facilitate comparison between connectivity modes, each
connectivity mode is normalized using Fisher’s r-to-z
transform (z = arctanh(r)). We describe the construc-
tion of each connectivity mode in detail below.

Correlated gene expression

Correlated gene expression represents the transcriptional
similarity between pairs of brain regions. Regional
microarry expression data were obtained from 6 post-
mortem brains (1 female, ages 24.0–57.0, 42.50 ± 13.38)
provided by the Allen Human Brain Atlas (AHBA, https:
//human.brain-map.org [63]). Data were processed
with the abagen toolbox (version 0.1.1; https://github.
com/rmarkello/abagen [95]) using a 400-region volu-
metric atlas in MNI space.

First, microarray probes were reannotated using data
provided by Arnatkevičiūtė et al. [6]; probes not
matched to a valid Entrez ID were discarded. Next,
probes were filtered based on their expression intensity
relative to background noise [116], such that probes
with intensity less than the background in ≥ 50% of
samples across donors were discarded , yielding 31 569
probes. When multiple probes indexed the expression
of the same gene, we selected and used the probe with
the most consistent pattern of regional variation across
donors (i.e., differential stability [62]), calculated with:

∆S(p) =
1(
N
2

) N−1∑
i=1

N∑
j=i+1

r[Bi(p), Bj(p)] (1)

where ρ is Spearman’s rank correlation of the expression
of a single probe, p, across regions in two donors Bi and
Bj , and N is the total number of donors. Here, regions
correspond to the structural designations provided in the
ontology from the AHBA.

The MNI coordinates of tissue samples were updated
to those generated via non-linear registration using the
Advanced Normalization Tools (ANTs; https://github.
com/chrisfilo/alleninf). To increase spatial coverage, tis-
sue samples were mirrored bilaterally across the left and
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right hemispheres [122]. Samples were assigned to brain
regions in the provided atlas if their MNI coordinates
were within 2mm of a given parcel. If a brain region
was not assigned a tissue sample based on the above
procedure, every voxel in the region was mapped to the
nearest tissue sample from the donor in order to gener-
ate a dense, interpolated expression map. The average
of these expression values was taken across all voxels in
the region, weighted by the distance between each voxel
and the sample mapped to it, in order to obtain an esti-
mate of the parcellated expression values for the missing
region. All tissue samples not assigned to a brain region
in the provided atlas were discarded.

Inter-subject variation was addressed by normalizing
tissue sample expression values across genes using a ro-
bust sigmoid function [52]:

xnorm =
1

1 + exp(− (xg−⟨xg⟩)
IQRx

)
(2)

where ⟨x⟩ is the median and IQRx is the normalized in-
terquartile range of the expression of a single tissue sam-
ple across genes. Normalized expression values were
then rescaled to the unit interval:

xscaled =
xnorm −min(xnorm)

max(xnorm)−min(xnorm)
(3)

Gene expression values were then normalized across tis-
sue samples using an identical procedure. Samples as-
signed to the same brain region were averaged sepa-
rately for each donor, yielding a regional expression ma-
trix for each donor with 400 rows, corresponding to
brain regions, and 15 633 columns, corresponding to the
retained genes. A threshold of 0.1 was imposed on the
differential stability of each gene, such that only stable
genes were retained for future analysis, resulting in 8 687
retained genes.

Finally, the region × region correlated gene expression
matrix was constructed by correlating (Pearson’s r) the
normalized gene expression profile at every pair of brain
regions. This matrix was then normalized using Fisher’s
r-to-z transform.

Receptor similarity

Receptor similarity indexes the degree to which the re-
ceptor density profiles at two brain regions are cor-
related. Conceptually, it can be thought of as how
similarly two brain regions might “hear” the same
neural signal. PET tracer images for 18 neurotrans-
mitter receptors and transporters were obtained from
Hansen et al. [60] and neuromaps (v0.0.1, https://
github.com/netneurolab/neuromaps [96]). The recep-
tors/transporters span 9 neurotransmitter systems in-
cluding: dopamine (D1, D2, DAT), norepinephrine

(NET), serotonin (5-HT1A, 5-HT1B, 5-HT2, 5-HT4, 5-
HT6, 5-HTT), acetylcholine (α4β2, M1, VAChT), glu-
tamate (mGluR5), GABA (GABAA), histamine (H3),
cannabinoid (CB1), and opioid (MOR). Tracer names
and number of participants (with number of females in
parentheses) are listed for each receptor in Table S1.
Each PET tracer image was parcellated to 400 brain re-
gions and z-scored. A region-by-region receptor similar-
ity matrix was constructed by correlating (Pearson’s r)
receptor profiles at every pair of brain regions. This ma-
trix was then normalized using Fisher’s r-to-z transform.

Laminar similarity

Laminar similarity is estimated from histological data
and aims to uncover how similar pairs of brain regions
are in terms of cellular distributions across the corti-
cal laminae. Specifically, we use data from the Big-
Brain, a high-resolution (20 µm) histological reconstruc-
tion of a post-mortem brain from a 65 year old male
[4, 112]. Cell-staining intensity profiles were sampled
across 50 equivolumetric surfaces from the pial surface
to the white mater surface to estimate laminar varia-
tion in neuronal density and soma size. Intensity pro-
files at various cortical depths can be used to approxi-
mately identify boundaries of cortical layers that sepa-
rate supragranular (cortical layers I–III) granular (corti-
cal layer IV), and infragranular (cortical layers V-VI) lay-
ers.

The data were obtained on fsaverage surface (164k
vertices) from the BigBrainWarp toolbox [113] and were
parcellated into 400 cortical regions according to the
Schaefer-400 atlas [129]. The region × region laminar
similarity matrix was calculated as the partial correlation
(Pearson’s r) of cell intensities between pairs of brain
regions, after correcting for the mean intensity across
brain regions. Laminar similarity was first introduced in
Paquola et al. [112] and has also been referred to as “mi-
crostructure profile covariance”. This matrix was then
normalized using Fisher’s r-to-z transform.

Metabolic connectivity

Metabolic connectivity indexes how similarly two brain
regions metabolize glucose over time and therefore how
similarly two brain regions consume energy. Volumetric
4D PET images of [F18]-fluordoxyglucose (FDG, a glu-
cose analogue) tracer uptake over time were obtained
from Jamadar et al. [74]. Specifically, 26 healthy par-
ticipants (77% female, 18–23 years old) were recruited
from the general population and underwent a 95 minute
simultaneous MR-PET scan in a Siemens (Erlangen) Bi-
ograph 3-Tesla molecular MR scanner. Participants were
positioned supine in the scanner bore with their head
in a 16-channel radiofrequency head coil and were in-
structed to lie as still as possible with eyes open and think
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of nothing in particular. FDG (average dose 233 MBq)
was infused over the course of the scan at a rate of 36
mL/h using a BodyGuard 323 MR-compatible infusion
pump (Caesarea Medical Electronics, Caesarea, Israel).
Infusion onset was locked to the onset of the PET scan.
This data has been validated and analyzed previously in
[75, 165].

PET images were reconstructed and preprocessed ac-
cording to [165]. Specifically, the 5700-second PET time-
series for each subject was binned into 356 3D sinogram
frames each of 16-second intervals. The attenuation
for all required data was corrected via the pseudo-CT
method [29]. Ordinary Poisson-Ordered Subset Expec-
tation Maximization algorithm (3 iterations, 21 subsets)
with point spread function correction was used to recon-
struct 3D volumes from the sinogram frames. The recon-
structed DICOM slices were converted to NIFTI format
with size 344×344×127 (voxel size: 2.09×2.09×2.03
mm3) for each volume. A 5 mm FWHM Gaussian
postfilter was applied to each 3D volume. All 3D
volumes were temporally concatenated to form a 4D
(344×344×127×356) NIFTI volume. A guided motion
correction method using simultaneously acquired MRI
was applied to correct the motion during the PET scan.
225 16-second volumes were retained commencing for
further analyses.

Next, the 225 PET volumes were motion corrected
(FSL MCFLIRT [76]) and the mean PET image was brain
extracted and used to mask the 4D data. The fPET data
were further processed using a spatiotemporal gradient
filter to remove the accumulating effect of the radio-
tracer and other low-frequency components of the sig-
nal [74]. Finally, each time point of the PET volumet-
ric time-series were registered to MNI152 template space
using Advanced Normalization Tools in Python (ANTSpy,
https://github.com/ANTsX/ANTsPy), parcellated to 400
regions according to the Schaefer atlas, and time-series
at pairs of brain regions were correlated (Pearson’s r)
to construct a metabolic connectivity matrix for each
subject. A group-averaged metabolic connectome was
obtained by averaging connectivity across subjects, and
lastly the matrix was normalized using Fisher’s r-to-z
transform.

Haemodynamic connectivity

Haemodynamic connectivity, commonly simply referred
to as “functional connectivity”, captures how similarly
pairs of brain regions exhibit fMRI BOLD activity at rest
[48]. The fMRI BOLD time-series picks up on mag-
netic differences between oxygenated and deoxygenated
haemoglobin to measure the haemodynamic response:
the oversupply of oxygen to active brain regions [82].
Functional magnetic resonance imaging (MRI) data were
obtained for 326 unrelated participants (age range 22—
35 years, 145 males) from the Human Connectome
Project (HCP; S900 release [160]). All four resting state

fMRI scans (two scans (R/L and L/R phase encoding di-
rections) on day 1 and two scans (R/L and L/R phase
encoding directions) on day 2, each about 15 min long;
TR=720 ms) were available for all participants. Func-
tional MRI data were pre-processed using HCP minimal
pre-processing pipelines [56, 160]. Specifically, all 3T
functional MRI time-series were corrected for gradient
nonlinearity, head motion using a rigid body transforma-
tion, and geometric distortions using scan pairs with op-
posite phase encoding directions (R/L, L/R) [37]. Fur-
ther pre-processing steps include co-registration of the
corrected images to the T1w structural MR images, brain
extraction, normalization of whole brain intensity, high-
pass filtering (>2000s FWHM; to correct for scanner
drifts), and removing additional noise using the ICA-FIX
process [37, 123]. The pre-processed time-series were
then parcellated to 400 cortical brain regions according
to the Schaefer atlas [129]. The parcellated time-series
were used to construct functional connectivity matrices
as a Pearson correlation coefficient between pairs of re-
gional time-series for each of the four scans of each par-
ticipant. A group-average functional connectivity ma-
trix was constructed as the mean functional connectivity
across all individuals and scans. This matrix was then
normalized using Fisher’s r-to-z transform.

Electrophysiological connectivity

Electrophysiological connectivity was measured us-
ing magnetoencephalography (MEG) recordings, which
tracks the magnetic field produced by neural currents.
Resting state MEG data was acquired for n = 33 unre-
lated healthy young adults (age range 22–35 years) from
the Human Connectome Project (S900 release [160]).
The data includes resting state scans of approximately
6 minutes long and noise recording for all participants.
MEG anatomical data and 3T structural MRI of all partic-
ipants were also obtained for MEG pre-processing. After
preprocessing and parcellating the data, amplitude enve-
lope correlations were performed between time-series at
each pair of brain regions, for six canonical frequency
bands separately (delta (2–4 Hz), theta (5–7 Hz), al-
pha (8–12 Hz), beta (15–29 Hz), low gamma (30–59
Hz), and high gamma (60–90 Hz)). Amplitude envelope
correlation is applied instead of directly correlating the
time-series because of the high sampling rate (2034.5 Hz)
of the MEG recordings. The composite electrophysiolog-
ical connectivity matrix is the first principal component
of all six connectivity matrices (vectorized upper trian-
gle), and closely resembles alpha connectivity (Fig. S7).
Finally, the matrix underwent Fisher’s r-to-z transform.
More processing details are described below.

The present MEG data was first processed and used
by Shafiei et al. [135]. Resting state MEG data was pre-
processed using the open-source software, Brainstorm
(https://neuroimage.usc.edu/brainstorm/ [150]), fol-
lowing the online tutorial for the HCP dataset (https://
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neuroimage.usc.edu/brainstorm/Tutorials/HCP-MEG).
MEG recordings were registered to individual structural
MRI images before applying the following preprocessing
steps. First, notch filters were applied at 60, 120, 180,
240, and 300 Hz, followed by a high-pass filter at 0.3 Hz
to remove slow-wave and DC-offset artifacts. Next, bad
channels from artifacts (including heartbeats, eye blinks,
saccades, muscle movements, and noisy segments) were
removed using Signal-Space Projections (SSP).

Pre-processed sensor-level data was used to construct
a source estimation on HCP’s fsLR4k cortex surface for
each participant. Head models were computed us-
ing overlapping spheres and data and noise covariance
matrices were estimated from resting state MEG and
noise recordings. Linearly constrained minimum vari-
ance (LCMV) beamformers was used to obtain the source
activity for each participant. Data covariance regulariza-
tion was performed and the estimated source variance
was normalized by the noise covariance matrix to re-
duce the effect of variable source depth. All eigenvalues
smaller than the median eigenvalue of the data covari-
ance matrix were replaced by the median. This helps
avoid instability of data covariance inversion caused by
the smallest eigenvalues and regularizes the data covari-
ance matrix. Source orientations were constrained to be
normal to the cortical surface at each of the 8 000 vertex
locations on the cortical surface, then parcellated accord-
ing to the Schaefer-400 atlas [129]. Parcellated time-
series were then used to estimate amplitude-based con-
nectivity [27]. An orthogonalization process was applied
to correct for the spatial leakage effect by removing all
shared zero-lag signals [34].

Temporal profile similarity

Temporal profile similarity was first introduced by, and
obtained from, Shafiei et al. [137] and represents how
much two brain regions exhibit similar temporal fea-
tures, as calculated on fMRI time-series. Note that al-
though this connectivity mode is derived from the same
imaging modality as haemodynamic connectivity, it is
fundamentally different from haemodynamic connectiv-
ity as it represents a comprehensive account of dynamic
similarity (Pearson’s r = 0.24, Fig. S3). This is in contrast
to haemodynamic connectivity which measures the Pear-
son’s correlation between the time-series themselves.
Specifically, we used the highly comparative time-series
analysis toolbox, hctsa [51, 52] to perform a massive fea-
ture extraction of the parcellated fMRI time-series (see
Haemodynamic connectivity) at each brain region of each
participant. The hctsa package extracted over 7 000 lo-
cal time-series features using a wide range of operations
based on time-series analysis. The extracted features
include, but are not limited to, distributional features,
entropy and variability, autocorrelation, time-delay em-
beddings, and nonlinear features of a given time-series.
Following the feature extraction procedure, the outputs

of the operations that produced errors were removed
and the remaining features (6 441 features) were nor-
malized across nodes using an outlier-robust sigmoidal
transform. We used Pearson’s correlation coefficients to
measure the pairwise similarity between the time-series
features of all possible combinations of brain areas. As
a result, a temporal profile similarity network was con-
structed for each individual and each run, representing
the strength of the similarity of the local temporal finger-
prints of brain areas. This matrix was then normalized
using Fisher’s r-to-z transform.

Structural connectivity

Diffusion weighted imaging (DWI) data were obtained
for 326 unrelated participants (age range 22-35 years,
145 males) from the Human Connectome Project (HCP;
S900 release [160]) [37]. DWI data was pre-processed
using the MRtrix3 package [153] (https://www.mrtrix.
org/). More specifically, fiber orientation distributions
were generated using the multi-shell multi-tissue con-
strained spherical deconvolution algorithm from MRtrix
[40, 77]. White matter edges were then reconstructed
using probabilistic streamline tractography based on the
generated fiber orientation distributions [152]. The tract
weights were then optimized by estimating an appro-
priate cross-section multiplier for each streamline fol-
lowing the procedure proposed by Smith et al. [142]
and a connectivity matrix was built for each partici-
pant using the 400-region Schaefer parcellation [129].
A group-consensus binary network was constructed us-
ing a method that preserves the density and edge-length
distributions of the individual connectomes [22, 101,
102]. Edges in the group-consensus network were as-
signed weights by averaging the log-transformed stream-
line count of non-zero edges across participants. Edge
weights were then scaled to values between 0 and 1.

Disease exposure

Patterns of cortical thickness from the ENIGMA consor-
tium and the enigma toolbox were available for thirteen
neurological, neurodevelopmental, and psychiatric dis-
orders (https://github.com/MICA-MNI/ENIGMA; [61,
85, 151]), including: 22q11.2 deletion syndrome (N =
474 participants, N = 315 controls) [148], attention-
deficit/hyperactivity disorder (ADHD; N = 733 partici-
pants, N = 539 controls) [71], autism spectrum disor-
der (ASD; N = 1571 participants, N = 1651 controls)
[161], idiopathic generalized (N = 367 participants),
right temporal lobe (N = 339 participants), and left tem-
poral lobe (N = 415 participants) epilepsies (N = 1727
controls) [170], depression (N = 2148 participants,
N = 7957 controls) [130], obsessive-compulsive disor-
der (OCD; N = 1905 participants, N = 1760 controls)
[24], schizophrenia (N = 4474 participants, N = 5098

https://neuroimage.usc.edu/brainstorm/Tutorials/HCP-MEG
https://www.mrtrix.org/
https://www.mrtrix.org/
https://github.com/MICA-MNI/ENIGMA
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controls) [159], bipolar disorder (N = 1837 participants,
N = 2582 controls) [66], obesity (N = 1223 partici-
pants, N = 2917 controls) [111], schizotypy (N = 3004
participants) [81], and Parkinson’s disease (N = 2367
participants, N = 1183 controls) [83]. The ENIGMA (En-
hancing Neuroimaging Genetics through Meta-Analysis)
Consortium is a data-sharing initiative that relies on stan-
dardized processing and analysis pipelines, such that
disorder maps are comparable [151]. Altogether, over
21 000 participants were scanned across the thirteen dis-
orders, against almost 26 000 controls. The analysis was
limited to adults in all cases except ASD where the corti-
cal abnormality map is only available aggregated across
all ages (2–64 years). The values for each map are z-
scored effect sizes (Cohen’s d) of cortical thickness in pa-
tient populations versus healthy controls. Imaging and
processing protocols can be found at http://enigma.ini.
usc.edu/protocols/. Local review boards and ethics com-
mittees approved each individual study separately, and
written informed consent was provided according to lo-
cal requirements.

We calculate disease exposure for every disease and
network, after masking the network such that all edges
with negative strength are assigned a strength of 0. For
a given network and disease, disease exposure of a node
i is defined as,

Di =
1

Ni

Ni∑
j ̸=i,j=1

dj × cij (4)

where Ni is the number of positive connections made by
region i, dj is the cortical abnormality at region j, and
cij is the edge strength between regions i and j. This
analysis was repeated after regressing the exponential fit
in Fig. 1b from each network, to ensure results are not
driven by distance (Fig. S6).

Community detection

For each connectivity mode, communities were identi-
fied using the Louvain algorithm, which maximizes posi-
tive edge strength within communities and negative edge
strength between communities [23]. Specifically, brain
regions were assigned to communities in a manner that
maximizes the quality function

Q(γ) =
1

m+
[w+

ij − γp+ij ]δ(σi, σj)

− 1

m+ +m−

∑
ij

[w+
ij − δp−ij ]δ(σi, σj) (5)

where w+
ij is the network with only positive correlations

and likewise for w−
ij and negative correlations. The term

p±ij = (s±i s
±
j )/(2m

±) represents the null model: the ex-
pected density of connections between nodes i and j,

where s±i =
∑

j w
±
ij and m± =

∑
i,j>i w

±
ij . The variable

σi is the community assignment of node i and δ(σi, σj)
is the Kronecker function and is equal to 1 when σi = σj

and 0 otherwise. The resolution parameter, γ, scales the
relative importance of the null model, making it easier
(γ > 1) or harder (γ < 1) for the algorithm to un-
cover many communities. In other words, as γ increases,
increasingly fine network partitions are identified. We
tested 60 values of γ, from γ = 0.1 to γ = 6.0, in incre-
ments of 0.1. At each γ, we repeated the algorithm 250
times and constructed a consensus partition, following
the procedure recommended in Bassett et al. [12].

Similarity network fusion

First introduced by Wang et al. [168], similarity net-
work fusion (SNF) is a method for combining multiple
measurement types for the same observations (e.g. pa-
tients, or in our case, brain regions) into a single simi-
larity network where edges between observations repre-
sent their cross-modal similarity. For each data source,
SNF constructs an independent similarity network, de-
fines the K nearest neighbours for each observation,
then iteratively combines the networks in a manner that
gives more weight to edges between observations that
are consistently high-strength across data types. We
used snfpy (https://github.com/rmarkello/snfpy [98]),
an open-source Python implementation of the original
SNF code provied by Wang et al. [168]. A brief descrip-
tion of the main steps in SNF follows, adapted from its
original presentation in Wang et al. [168].

In the present report, the seven data sources to
be fused are the seven connectivity modes (correlated
gene expression, receptor similarity, laminar similar-
ity, metabolic connectivity, haemodynamic connectivity,
electrophysiological connectivity, and temporal similar-
ity). First, similarity networks for each connectivity
mode is constructed where edges are determined using a
scaled exponential similarity kernel:

W(i, j) = e
−

ρ2(xi,xj)

µϵi,j (6)

where W(i, j) is the edge weight between regions i and
j, ρ(xi, xj) is the Euclidean distance between regions i
and j, µ ∈ R is a hyperparameter that is set empirically,
and

ϵi,j =
ρ̄(xi, Ni) + ρ̄(xj , Nj) + ρ(xi, xj)

3
(7)

where ρ̄(xi, Ni) is the average distance between xi and
all other regions in the network. Note that µ is a scaling
factor that determines the weighting of edges between
regions in the similarity network, and is set to µ = 0.5 in
the present report.

Next, each W is normalized such that:

http://enigma.ini.usc.edu/protocols/
http://enigma.ini.usc.edu/protocols/
https://github.com/rmarkello/snfpy
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P(i, j) =

{
W (i,j)

2
∑

k ̸=i W (i,k) , j ̸= i
1
2 , j = 1

(8)

Finally, a sparse matrix S of the K nearest (i.e. strongest)
neighbours is constructed:

S(i, j) =

{
W (i,j)∑

k∈Ni
W (i,k) , j ∈ Ni

0, otherwise
(9)

In other words, the matrix P encodes the full information
about the similarity of each region to all other regions
(within a given connectivity mode), whereas S encodes
only the similarity of the K most similar regions to each
region. K is SNF’s second hyperparameter, which we set
to one tenth the number of regions in the network (40).

The similarity networks are then iteratively fused. At
each iteration, the matrices are made more similar to
each other via:

P(v) = S(v) ×
∑

k ̸=v P
(k)

m− 1
× (S(v))T, v = {1, 2, . . . m}

(10)
After each iteration, the generated matrices are re-
normalized as in Equation 8. Fusion stops when the ma-
trices have converged or after a specified number of iter-
ations (in our case, 20). Regions xi and xj will likely be
neighbours in the fused network if they are neighbours
in multiple similarity networks. Furthermore, if xi and
xj are not very similar in one data type, their similarity
can be expressed in another data type.

After the fusion process, we confirm that no single net-
work exerts undue influence on the final fused network
by repeating the fusion process while excluding a sin-
gle network. The minimum correlation (Spearman r)
between the leave-one-out fused network and the com-
plete fused network is 0.958. In addition to this, we
confirm that alternative K and µ parameters would not
make large difference to the fused network. We test
K ∈ [20, 59] and µ ∈ [0.3, 0.8] and find that these al-
ternative fused networks are highly correlated with the
original (minimum Spearman r = 0.924).

Null models

Spin tests Spatial autocorrelation-preserving permu-
tation tests were used to assess statistical significance
of associations across brain regions, termed “spin tests”
[3, 97, 162]. We created a surface-based represen-
tation of the parcellation on the FreeSurfer fsaverage
surface, via files from the Connectome Mapper toolkit
(https://github.com/LTS5/cmp). We used the spherical
projection of the fsaverage surface to define spatial co-
ordinates for each parcel by selecting the coordinates of

the vertex closest to the center of the mass of each par-
cel [163]. These parcel coordinates were then randomly
rotated, and original parcels were reassigned the value
of the closest rotated parcel (10 000 repetitions). Parcels
for which the medial wall was closest were assigned the
value of the next most proximal parcel instead. The
procedure was performed at the parcel resolution rather
than the vertex resolution to avoid upsampling the data,
and to each hemisphere separately.

Network randomization Structural networks were
randomized using a procedure that preserves the den-
sity, edge length, degree distributions of the empirical
network [21, 162]. Edges were binned according to Eu-
clidean distance (10 bins). Within each bin, pairs of
edges were selected at random and swapped, for a total
number of swaps equal to the number of regions in the
network multiplied by 20. This procedure was repeated
1 000 times to generate 1 000 null structural networks,
which were then used to generate null distributions of
network-level measures.

Code and data availability

All code and data used to perform the analyses are avail-
able at https://github.com/netneurolab/hansen_many_
networks.

Competing interests

The authors declare no competing interests.

Acknowledgements

We thank Vincent Bazinet, Zhen-Qi Liu, Filip Milisav,
Laura Suarez, and Andrea Luppi for their comments
and suggestions on the manuscript, the Monash Uni-
versity Neural Systems and Behviour Lab for insightful
discussion, and all individuals involved in making the
employed open-source datasets available. BM acknowl-
edges support from the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC), Canadian In-
stitutes of Health Research (CIHR), Brain Canada Foun-
dation Future Leaders Fund, the Canada Research Chairs
Program, the Michael J. Fox Foundation, and the Healthy
Brains for Healthy Lives initiative. JYH acknowledges
support from the Helmholtz International BigBrain An-
alytics & Learning Laboratory, the Natural Sciences and
Engineering Research Council of Canada, and The Neuro
Irv and Helga Cooper Foundation. SDJ acknowledges
support from the National Health and Medical Research
Council of Australia (APP1174164). The funders had no
role in study design, data collection and analysis, deci-
sion to publish or preparation of the manuscript.

https://github.com/LTS5/cmp
https://github.com/netneurolab/hansen_many_networks
https://github.com/netneurolab/hansen_many_networks


18

[1] Aertsen, A., Gerstein, G., Habib, M., and Palm, G.
(1989). Dynamics of neuronal firing correlation: modu-
lation of" effective connectivity". Journal of neurophysi-
ology, 61(5):900–917.

[2] Aghourian, M., Legault-Denis, C., Soucy, J., Rosa-Neto,
P., Gauthier, S., Kostikov, A., Gravel, P., and Bedard,
M. (2017). Quantification of brain cholinergic dener-
vation in alzheimer’s disease using pet imaging with [18
f]-feobv. Molecular psychiatry, 22(11):1531–1538.

[3] Alexander-Bloch, A. F., Shou, H., Liu, S., Satterthwaite,
T. D., Glahn, D. C., Shinohara, R. T., Vandekar, S. N.,
and Raznahan, A. (2018). On testing for spatial corre-
spondence between maps of human brain structure and
function. NeuroImage, 178:540–551.

[4] Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H.,
Dickscheid, T., Rousseau, M.-É., Bludau, S., Bazin, P.-L.,
Lewis, L. B., Oros-Peusquens, A.-M., et al. (2013). Big-
brain: an ultrahigh-resolution 3d human brain model.
Science, 340(6139):1472–1475.

[5] Arnatkeviciute, A., Fulcher, B. D., Oldham, S., Tiego, J.,
Paquola, C., Gerring, Z., Aquino, K., Hawi, Z., Johnson,
B., Ball, G., et al. (2021). Genetic influences on hub
connectivity of the human connectome. Nature Commu-
nications, 12(1):1–14.
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Figure S1. Distributions of normalized edge weight for each connectivity mode | (a) Edge weight distributions of each
normalized connectivity mode. (b) Edge weight distributions for homotopic (N = 200 edges; blue) and non-homotopic (N =
79 600; grey) edges. Significance was determined using two-tailed Welch’s t-test.

Figure S2. Relationship between edge strength and geodesic distance | Edge weights between pairs of brain regions within the
same hemisphere decrease with geodesic distance across all seven connectivity modes. Darker colours represent a greater density
of points. This relationship is better fit with an exponential rather than linear function (exponential equations shown on top). Note
that geodesic distance—the distance along the surface of the brain between two regions—is only computed within hemispheres so
between-hemisphere edges are excluded from the analysis.
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Figure S3. Edge-wise correspondence between connectivity modes | Pearson’s correlation of the upper triangle of every pair of
connectivity modes included in the analyses.

Figure S4. Alternative views of the strongest edges in each connectivity mode | For each connectivity mode, we plot the 0.5%
strongest edges. Darker and thicker lines indicate stronger edges. Points represent brain regions and are sized according to the
sum of edge weights (weighted degree). Here we show sagittal, coronal, and axial views to complement Fig. 3a.
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Figure S5. Replication using alternative parcellations | Analyses were repeated using (a) the 100-region Schaefer parcellation
and (b) the 68-region Cammoun parcellation (regionally equivalent to the Desikan-Killiany atlas) [30, 39, 129]. We show each
network as well as the the 5% (for Schaefer) or 10% (for Cammoun) strongest edges of the network.

Figure S6. Contributions of connectivity modes to disease vulnerability | We repeat the procedure in Fig. 4 after regressing the
exponential relationship with Euclidean distance (shown in Fig. 1b) from each connectivity mode.
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Figure S7. MEG connectomes across frequency bands | Amplitude envelope correlations were performed between time-series
at each pair of brain regions for six canonical frequency bands separately (delta (2–4 Hz), theta (5–7 Hz), alpha (8–12 Hz), beta
(15–29 Hz), low gamma (30–59 Hz), high gamma (60–90 Hz). The electrophysiological connectivity mode used in the present
analyses is the first principal component of the vectorized upper triangles of all six frequency-dependent connectivity matrices. On
the right we show Pearson’s correlations between the six frequency-dependent connectivity matrices and the principal gradient,
showing that the first gradient is a good proxy for electrophysiological connectivity.

Receptor/
transporter Neurotransmitter Tracer Measure N References

D1 dopamine [11C]SCH23390 BPND 13 (7) [79]
D2 dopamine [11C]FLB-457 BPND 92 (49) [125, 126, 139, 141, 173]
DAT dopamine [123I]-FP-CIT SUVR 174 (65) [44]
NET norepinephrine [11C]MRB BPND 77 (27) [18, 31, 41, 124]
5-HT1A serotonin [11C]WAY-100635 BPND 35 (17) [128]
5-HT1B serotonin [11C]P943 BPND 88 (24) [10, 53, 99, 103, 104, 115, 127, 128]
5-HT2A serotonin [11C]Cimbi-36 Bmax 29 (14) [19]
5-HT4 serotonin [11C]SB207145 Bmax 59 (18) [19]
5-HT6 serotonin [11C]GSK215083 BPND 30 (0) [117, 118]
5-HTT serotonin [11C]DASB Bmax 100 (71) [19]
α4β2 acetylcholine [18F]flubatine VT 30 (10) [9, 69]
M1 acetylcholine [11C]LSN3172176 BPND 24 (11) [105]
VAChT acetylcholine [18F]FEOBV SUVR 30 (18) [2, 17, 60]
mGluR5 glutamate [11C]ABP688 BPND 123 (71) [43, 60, 140]
GABAA/BZ GABA [11C]flumazenil Bmax 16 (9) [108]
H3 histamine [11C]GSK189254 VT 8 (1) [54]
CB1 cannabinoid [11C]OMAR VT 77 (28) [45, 107, 109, 119]
MOR opioid [11C]carfentanil BPND 204 (72) [80]

TABLE S1. Neurotransmitter receptors and transporters included in receptor similarity | BPND = non-displaceable binding
potential; VT = tracer distribution volume; Bmax = density (pmol/ml) converted from binding potential (5-HT) or distributional
volume (GABA) using autoradiography-derived densities; SUVR = standard uptake value ratio. Values in parentheses (under N)
indicate number of females. This table is adapted from Table 1 of [60].
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