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Abstract: For any graph G = (V, E) a subset D ⊆ V is a dominating set if every vertex in

V −D is adjacent to at least one vertex in D. A dominating set is said to be a complementary

tree dominating set if the induced subgraph < V −D > is a tree. The minimum cardinality

of a complementary tree dominating set is called the complementary tree domination number

and is denoted by γctd(G). In this paper, we find an upper bound for γctd(G)+χ(G) = 2p−5

and γctd(G) + χ(G) = 2p − 6, p is the number of vertices in G.
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§1. Introduction

By a graph G = (V, E) we mean a finite undirected graph without loops or multiple edges. The order

and size of G are denoted by p and q respectively. For graph theoretical terms, we refer Harary [1] and

for terms related to domination we refer Haynes et al. [2].

A subset D of V is said to be a dominating set in G if every vertex in V − D is adjacent to at

least one vertex in D. The domination number γ(G) is the minimum cardinality of a dominating set in

G. The concept of complementary tree domination was introduced by Muthammai, Bhanumathi and

Vidhya [3]. A dominating set D is called a complementary tree domination set if the induced subgraph

< V − D > is a tree. The minimum cardinality of a complementary tree dominating set is called the

complementary tree domination number of G, denoted by γctd(G) and such a set D is called a γctd set.

The minimum number of colours required to colour all the vertices such that adjacent vertices do not

receive the same colour is the chromatic number χ(G).

In this paper, we obtain sharp upper bound for γctd(G)+χ(G) = 2p−5 and γctd(G)+χ(G) = 2p−6.

We use the following previous results.

Theorem 1.1([1]) For any connected graph G, χ(G) ≤ ∆(G) + 1.

Theorem 1.2([3]) For any connected graph G with p ≥ 2, γctd(G) ≤ p − 1.
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Theorem 1.3([3]) Let G be a connected graph with p ≥ 2. γctd(G) = p − 1 if and only if G is a star

on p vertices.

Theorem 1.4([3]) Let G be a connected graph containing a cycle. Then γctd(G) = p − 2 if and only

if G is isormorphic to one of the following graphs. Cp, Kp or G is the graph obtained by attaching

pendant edges at at least one of the vertices of a complete graph.

Theorem 1.5([3]) Let T be a tree with p vertices which is not a star. Then γctd(T ) = p − 2 if and

only if T is a path or T is obtained by attaching pendant edges at at least one of the end vertices.

Theorem 1.6([4]) For any connected graph G, γctd(G) + χ(G) ≤ 2p − 1, (p ≥ 2). The equality holds

if and only if G ∼= K2.

Theorem 1.7([4]) For any connected graph G, γctd(G) + χ(G) = 2p− 2 (p ≥ 3) if and only if G ∼= P3

or Kp, p ≥ 4.

Theorem 1.8([4]) For any connected graph G, γctd(G) + χ(G) = 2p − 3 (p ≥ 4) if and only if G is

a star on four vertices or G is the graph obtained by adding a pendant edge at exactly one vertex of

Kp−1.

Theorem 1.9([4]) For any connected graph G, on p vertices, γctd(G) + χ(G) = 2p − 4 (p ≥ 5) if and

only if G is one of the following graphs.

(1) G is a star on 5 vertices;

(2) G is a cycle on 4 (or) 5 vertices;

(3) G is the graph obtained by attaching exactly two pendant edges at one vertex or two vertices

of Kp−2;

(4) is the graph obtained by joining a new vertex to j (2 ≤ j ≤ p − 2) vertices of Kp−1.

§2. Main Results

Notation 2.1 The following notations are used in this paper:

(1) Kn(p − n) is the set of graphs on n vertices obtained from Kn by attaching (p − n), (p > n)

pendant edges at the vertices of Kn.

(2) Kn(Pm) is the graph obtained from Kn by attaching a pendant edge of Pm to any one vertex

of Kn.

(3) K′
n(H) is the set of graphs obtained from Kn by joining each of the vertices of the graph H

to the same i (1 ≤ i ≤ n − 1) vertices of Kn.

(4) K′′
n(H) is the set of graphs obtained from Kn by joining each of the vertices of the graph H

to distinct (n − 1) vertices of Kn.

(5) K′′′
n (H) is the set of graphs obtained from Kn by joining all the vertices of H , each is adjacent

to at least i (2 ≤ i ≤ n − 1) vertices of Kn.

(6) F1(Kn, 2K1) is the set of graphs obtained from Kn by joining one vertex of 2K1 to i (2 ≤ i ≤
n − 1) vertices of Kn and the other vertex to any one vertex of Kn.

(7) F21(Kn, K2) is the set of graphs obtained from Kn by joining one vertex of K2 to i (1 ≤ i ≤
n − 1) vertices of Kn.

(8) F22(Kn, K2) is the set of graphs obtained from Kn by joining each of the vertices of K2 to i

(1 ≤ i ≤ n − 1) distinct vertices of Kn.
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(9) F3(Kn, 3K1) is the set of graphs obtained from Kn by joining one vertex of 3K1 to any of the

i (1 ≤ i ≤ n − 1) vertices of Kn and each of other two vertices of 3K1 to exactly one vertex of Kn.

(10) F41(Kn, K2 ∪K1) is the set of graphs obtained from Kn by joining one vertex of K2 and the

vertex of K1 to distinct (n − 1) vertices of Kn.

(11) F42(Kn, K2 ∪ K1) is the set of graphs obtained from Kn by joining one vertex of K2 to i

(1 ≤ i ≤ n − 1) vertices of Kn and the vertex of K1 to any one vertex of Kn.

(12) F43(Kn, K2 ∪ K1) is the set of graphs obtained from Kn by joining each of the vertices of

K2 ∪ K1 to vertices of Kn such that each vertex of K2 ∪ K1 is adjacent to exactly one vertex of Kn.

(13) F51(Kn, P3) is the set of graphs obtained from Kn by joining the central vertex of P3 to i

(1 ≤ i ≤ n − 1) vertices of Kn.

(14) F52(Kn, P3) is the set of graphs obtained from Kn by joining a pendant vertex and the central

vertex of P3 to the same i (1 ≤ i ≤ n − 1) vertices of Kn.

(15) F53(Kn, P3) is the set of graphs obtained from Kn by joining a pendant vertex and the central

vertex of P3 to distinct (n − 1) vertices of Kn.

In the following γctd(G) + χ(G) = 2p − 5 and γctd(G) + χ(G) = 2p − 6 are found.

Theorem 2.1 Let G be a connected graph with p (p ≥ 6) vertices then γctd(G) + χ(G) = 2p− 5 if and

only if G is one of the following graphs:

(a) G is a star (or) a cycle on 6 vertices;

(b) G ∈ Kp−3(3);

(c) G ∈ K′
p−2(K2);

(d) G ∈ F1(Kp−2, 2K1);

(e) G ∈ F21(Kp−2, K2).

Proof If G is one of the graphs given in the theorem, then γctd(G) + χ(G) = 2p − 5. Conversely,

assume γctd(G) + χ(G) = 2p − 5. This is possible only if

(i) γctd(G) = p − 1 and χ(G) = p − 4;

(ii) γctd(G) = p − 2 and χ(G) = p − 3;

(iii) γctd(G) = p − 3 and χ(G) = p − 2;

(iv) γctd(G) = p − 4 and χ(G) = p − 1;

(v) γctd(G) = p − 5 and χ(G) = p.

Case 1. γctd(G) = p − 1 and χ(G) = p − 4.

But, γctd(G) = p− 1 if and only if G is star K1,p−1 on p vertices (Theorem 1.3, [3]). For a star G,

χ(G) = 2. Therefore, χ(G) = p − 4 implies that p = 6 that is, G is a star on 6 vertices.

Case 2. γctd(G) = p − 2 and χ(G) = p − 3.

But, γctd(G) = p − 2 implies that G is one of the following graphs (a) Cp, cycle on p vertices

(b) Kp, complete graph on p vertices (c) G is the graph obtained by attaching pendant edges at least

one of the vertices of a complete graph (d) G is a path (e) G is obtained from a path of at least three

vertices, by attaching pendant edges at at least one of the end vertices of the path.

G cannot be one of the graphs mentioned in (b), (d) and (e), since if G ∼= Kp, then χ(G) = p and

if G is a path (or) as in (e), then χ(G) = 2 and hence p = 5.

If G ∼= Cp then χ(G) = p − 3 implies p = 5 (or) 6. But, G has at least 6 vertices and hence

G ∼= C6. Let G be a graph obtained by attaching pendant edge at at least one of the vertices of a

complete graph.
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But χ(G) = p − 3 implies that, G is the graph on p vertices obtained from Kp−3 by attaching

three pendant edges.

That is, G ∈ Kp−3(3).

Case 3. γctd(G) = p − 3 and χ(G) = p − 2.

χ(G) = p− 2 implies that either G contains or does not contain a clique Kp−2 on (p− 2) vertices.

Assume G contains a clique Kp−2 on (p − 2) vertices. Let V (Kp−2) = {u1, u2, · · · , up−2} and D =

V (G) − V (Kp−2) = {x, y}.
Since G is connected, at least one of x and y is adjacent to vertices of Kp−2. Also both x and y

are adjacent to at most (p − 3) vertices of Kp−2.

Subcase 3.1. x and y are non adjacent.

If both x and y are adjacent to same ui (1 ≤ i ≤ p−2) then V −D = V (G)−{any two vertices of Kp−2}
forms a minimum ctd-set of G, since the pendant vertices x and y must be in any ctd-set and hence

γctd(G) = p − 2.

Similarly, if both x and y are adjacent to same i (2 ≤ i ≤ p − 3) vertices of Kp−2, then the set

V (G) − {x, y, ui, uj} where ui ∈ N(x) ∩ Kp−2 and uj ∈ (N(x))c ∩ Kp−2 forms a minimum ctd-set and

hence γctd(G) = p − 4.

Let x be adjacent to at least i vertices of Kp−2, where 2 ≤ i ≤ p − 3. If y is adjacent to at least

two vertices of Kp−2, then also γctd(G) = p−4. Therefore, y is adjacent to exactly one vertex of Kp−2.

That is, G is the graph obtained by joining two non-adjacent vertices to vertices of Kp−2, such that

one vertex is adjacent to i (2 ≤ i ≤ p − 3) vertices and the other vertex is adjacent to exactly one

vertex of Kp−2. That is, G ∈ F1(Kp−2, 2K1).

Subcase 3.2. x and y are adjacent.

If N(x)∩Kp−2 and N(y)∩Kp−2 are distinct, then γctd(G) = p−4, since the set V (G)−{x, y, ui, uj},
where ui ∈ N(x) ∩ (N(y))c ∩ Kp−2 and uj ∈ (N(x))c ∩ (N(y))c ∩ Kp−2 forms a minimum ctd-set.

Therefore, N(x) ∩ Kp−2 and N(y) ∩ Kp−2 are equal. Hence, G is the graph obtained from Kp−2 by

joining the two vertices of K2 to the same i (1 ≤ i ≤ p−3) vertices of Kp−2 (or) G is the graph obtained

from Kp−2 by joining one vertex of K2 to i (1 ≤ i ≤ p− 3) vertices of Kp−2. Therefore, G ∈ K′
p−2(K2)

(or) G ∈ F21(Kp−2, K2).

If G does not contain a clique on (p − 2) vertices then it can be seen that no new graph exists.

Case 4. γctd(G) = p − 4 and χ(G) = p − 1.

χ(G) = p− 1 implies that either G contains or does not contain a clique Kp−1 on (p− 1) vertices.

Assume G contains a clique Kp−1 on (p−1) vertices. Let V (G)−V (Kp−1) = {x}. Since G is connected,

x is adjacent to at least one of the vertices of Kp−1. Also, x is not adjacent to all the vertices of Kp−2,

since otherwise G ∼= Kp. Then either V (G)−{ui, uj} (or) V (G)−{x, ui, uj}, where ui ∈ N(x)∩Kp−1

and uj ∈ (N(x))c ∩Kp−1 forms a minimum ctd-set. Hence in this case, no graph exists. If G does not

contain a clique Kp−1 on (p − 1) vertices.

Case 5. γctd(G) = p − 5 and χ(G) = p.

χ(G) = p implies G ∼= Kp. But, γctd(Kp) = p − 2. Here also, no graph exists. From cases 1 - 5,

G can be one of the following graphs:

(a) G is a star (or) a cycle on 6 vertices;

(b) G ∈ Kp−3(3);
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(c) G ∈ K′
p−2(K2);

(d) G ∈ F1(Kp−2, 2K1);

(e) G ∈ F21(Kp−2, K2). 2
Remark 2.1 For any connected graph with p (3 ≤ p ≤ 5) vertices, γctd(G) + χ(G) = 2p − 5 if and

only if G is one of the following graphs.

Fig.1

Theorem 2.2 For any connected graph G with p (p ≥ 7) vertices, γctd(G) + χ(G) = 2p− 6 if and only

if G is one of the following graphs:

(a) G is a star (or) a cycle on 7 vertices;

(b) G ∈ Kp−4(4);

(c) G ∈ F3(Kp−3, 3K1);

(d) G ∈ K′
p−3(K3);

(e) G ∈ K′′
p−3(K3);

(f) G ∈ F41(Kp−3, K2 ∪ K1);

(g) G ∈ F42(Kp−3, K2 ∪ K1);

(h) G ∈ F43(Kp−3, K2 ∪ K1);

(i) G ∈ Kp−3(P4);

(j) G ∈ F51(Kp−3, P3);

(k) G ∈ F52(Kp−3, P3);

(l) G ∈ F53(Kp−3, P3);

(m) G ∈ K′′
p−3(P3);

(n) G ∈ K′′′
p−2(2K1);

(o) G ∈ F22(Kp−2, K2).

Proof If G is one of the graphs given in the theorem, then γctd(G) + χ(G) = 2p − 6. Conversely,

assume γctd(G) + χ(G) = 2p − 6. This possible, only if

(i) γctd(G) = p − 1 and χ(G) = p − 5;

(ii) γctd(G) = p − 2 and χ(G) = p − 4;

(iii) γctd(G) = p − 3 and χ(G) = p − 3;

(iv) γctd(G) = p − 4 and χ(G) = p − 2;

(v) γctd(G) = p − 5 and χ(G) = p − 1;
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(vi) γctd(G) = p − 6 and χ(G) = p.

Case 1. γctd(G) = p − 1 and χ(G) = p − 5

But, γctd(G) = p − 1 if and only if G is a star K1,p−1 on p vertices. But, for a star χ(G) = 2.

Hence, p = 7. That is, G is a star on 7 vertices.

Case 2. γctd(G) = p − 2 and χ(G) = p − 4

But, γctd(G) = p − 2 if and only if

(a) G ∼= Cp;

(b) G ∼= Kp;

(c) G is the graph obtained by attaching pendant edges at at least one of the vertices of a complete

graph;

(d) G is a path;

(e) G is obtained from of path of at least three vertices by attaching pendant edges at at least one

of the end vertices of the path.

As in case 2 of Theorem 2.1.

G is a cycle on 7 vertices (or) G is the graph on p vertices obtained from Kp−4 by attaching four

pendant edges. That is, G ∼= C7 (or) Kp−4(4).

Case 3. γctd(G) = χ(G) = p − 3

χ(G) = p − 3 implies that either G contains or does not contains a clique Kp−3 on (p − 3)

vertices. Assume G contains a clique Kp−3 on (p − 3) vertices. Let V (Kp−3) = {u1, u2, · · · , up−3}
and D = V (G) − V (Kp−3) = {x, y, z}. Each of x, y, z is not adjacent to all the vertices of Kp−3.

< D >= K3, K3, P3 (or) K2 ∪ K1.

Subcase 3.1. < D >∼= K3.

Since G is connected, every vertex of D is adjacent to at least one vertex of Kp−3. Let x be

adjacent to i (1 ≤ i ≤ p − 4) vertices of Kp−3.

If y (or) z is adjacent to at least two vertices of Kp−3, then γctd(G) ≤ p − 4. Therefore, both

y and z are adjacent to exactly one vertex of Kp−3. That is, G is the graph obtained from Kp−3 by

joining vertices of 3K1 to the vertices of Kp−3 such that one is adjacent to any of the i (1 ≤ i ≤ p− 4)

vertices of Kp−3 and each of the remaining two is adjacent to exactly one vertex of Kp−3 and hence

G ∈ F3(Kp−3, 3K1).

Subcase 3.2. < D >∼= K3.

Since G is connected, at least one vertex of K3 is adjacent to vertices of Kp−3. If there exist

vertices ui, uj ∈ Kp−3 such that ui ∈ N(x)∩ (N(y))c ∩Kp−3 and uj ∈ (N(x))c ∩ (N(y))c ∩Kp−3, then

the set V (G) − {x, y, ui, uj} is a γctd-set of G and hence γctd(G) = p − 4.

Similarly in the case, when ui ∈ N(y)∩(N(z))c and uj ∈ (N(x))c∩(N(y))c (or) ui ∈ N(z)∩(N(x))c

and uj ∈ (N(z))c ∩ (N(x))c in Kp−3.

Therefore, either (i) N(x)∩Kp−3 = N(y)∩Kp−3 = N(z)∩Kp−3 (or) (ii) N(x)∩Kp−3, N(y)∩Kp−3,

N(z)∩Kp−3 are mutually distinct and each has (p− 4) vertices. That is, G is the graph obtained from

Kp−3 by joining each of the vertices of K3 either to the same i (1 ≤ i ≤ p− 4) vertices of Kp−3 (or) to

distinct (p − 4) vertices of Kp−3. Therefore, G ∈ K′
p−3(K3) (or) G ∈ K′′

p−3(K3).

Subcase 3.3. < D >∼= K2 ∪ K1.
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Let x, y ∈ V (K2) and z ∈ V (K1) since G is connected, at least one of the vertices of K2 and z is

adjacent to vertices of Kp−3. Denote G ∩ Kp−3 by G1.

(i) Let one of x and y, say x be adjacent to vertices of Kp−3. That is, degG1(y) = 1.

Let x be adjacent to at least two vertices of Kp−3. That is, degG1(x) ≥ 2. Assume degG1(z) ≥ 2.

If there exist ui, uj ∈ Kp−3 such that ui ∈ N(x)∩N(z) and uj ∈ (N(x))c∩(N(z))c or if N(x)∩Kp−3 =

N(z)∩Kp−3 and if each set has (p−4) vertices, then γctd(G) = p−4. Therefore, we have the following

cases:

(a) N(x) ∩ Kp−3 and N(z) ∩ Kp−3 are distinct, and each set has (p − 4) vertices or

(b) degG1(z) = 1. That is, G is the graph obtained from Kp−3 by joining exactly one of the

vertices of K2 and a new vertex to distinct (p − 4) vertices of Kp−3 or G is the graph obtained from

Kp−3 by attaching a pendant edge and joining exactly one vertex of K2 to i (1 ≤ i ≤ p− 4) vertices of

Kp−3. That is, G ∈ F41(Kp−3, K2 ∪ K1) or G ∈ F42(Kp−3, K2 ∪ K1).

(ii) If each of x, y, z is adjacent to at least two vertices of Kp−3, then either V (G)−{x, y, z, ui, uj},
where ui ∈ N(x) ∩ (N(y))c ∩ (N(z))c ∩ Kp−3 and uj ∈ N(z) ∩ (N(x))c ∩ (N(y))c ∩ Kp−3 (or) V (G) −
{x, y, ui, uj}, where ui ∈ N(x)∩ (N(y))c ∩Kp−3 and uj ∈ (N(x))c ∩ (N(y))c ∩Kp−3 is a γctd-set of G.

Similarly, if either N(x) ∩ Kp−3 = N(y) ∩ Kp−3 = N(z) ∩ Kp−3 and 2 ≤ |N(x) ∩ Kp−3| ≤ p − 4.

(or) N(x) ∩ Kp−3, N(y) ∩ Kp−3, and N(z) ∩ Kp−3 are distinct and each set has the same number i

(2 ≤ i ≤ p − 4) of elements, then also γctd(G) = p − 4.

Hence, each of x, y and z is adjacent to exactly one vertex of Kp−3. That is, G is the graph

obtained from Kp−3 by attaching a pendant edge and joining two vertices of K2 to vertices of Kp−3

such that each is adjacent to exactly one vertex of Kp−3. Hence, G ∈ F43(Kp−2, K2 ∪ K1).

Subcase 3.4. < D >∼= P3.

Since G is connected, at least one of the vertices of P3 is adjacent to vertices of Kp−3. Let x and

z be the pendant vertices and y be the central vertex of P3.

(i) Assume exactly one of x, y, z is adjacent to vertices of Kp−3. If degG1(x) ≥ 2, then γctd(G) =

p− 4. Hence, degG1(x) = 1. That is, G is the graph obtained from Kp−3 by attaching a path of length

3 at a vertex of Kp−3 (or) that is, G ∈ Kp−3(P4) (or) G is the graph obtained from Kp−3 by joining

the central vertex of P3 to i (1 ≤ i ≤ p − 4) vertices of Kp−3, that is, G ∈ F51(Kp−3, P3).

(ii) Assume any two of x, y, z are adjacent to vertices of Kp−3.

(a) If x and z are adjacent to vertices of Kp−3, then γctd(G) = p − 4.

(b) Let x and y be adjacent to vertices of Kp−3. If there exist vertices ui, uj ∈ Kp−3 such that

ui ∈ N(x) ∩ (N(y))c and uj ∈ (N(x))c ∩ (N(y))c, then also γctd(G) = p − 4. Therefore, either

(a) N(x) ∩ Kp−3 = N(y) ∩ Kp−3 or

(b) N(x) ∩ Kp−3 and N(y) ∩ Kp−3 are distinct and each set has (p − 4) vertices. That is, G is

the graph obtained from Kp−3 by joining one pendant vertex and the central vertex of P3 to the same

i (1 ≤ i ≤ p − 4) vertices of Kp−3 (or) G is the graph obtained from Kp−3 by joining one pendant

vertex and the central vertex of P3 to the distinct (p − 4) vertices of Kp−3. i.e., G ∈ F52(Kp−3, P3) or

G ∈ F53(Kp−3, P3).

(iii) Assume x, y and z are adjacent to vertices of Kp−3. As in Subcase 3.3, if N(x) ∈ Kp−3 =

N(y) ∩ Kp−3 = N(z) ∩ Kp−3 and 1 ≤ |N(x) ∩ Kp−3| ≤ (p − 4) or N(x) ∩ Kp−3, N(y) ∩ Kp−3 and

N(z) ∩ Kp−3 are distinct and each of these sets are distinct and has (p − 4) vertices. Hence, G is the

graph obtained from Kp−3 by joining each of the vertices of P3 to distinct (p − 4) vertices of Kp−3.
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That is, G ∈ K′′
p−3(P3).

If G does not contain a clique Kp−3 on (p− 3) vertices, then it can be verified that no new graph

exists.

Case 4. γctd(G) = p − 4 and χ(G) = p − 2.

χ(G) = p−2 implies that G either contains or does not contains a clique Kp−2 on (p−2) vertices.

Assume G contains a clique Kp−2 on p − 2 vertices. Let V (G) − V (Kp−2) = {x, y}. If x and y are

non-adjacent then as in Subcase 3.1 of Theorem 2.1, G is the graph obtained from Kp−2 by joining

two non-adjacent vertices to vertices of Kp−2 such that each is adjacent to at least i (2 ≤ i ≤ p − 3)

vertices of Kp−2. That is, G ∈ K′′′
p−2(2K1).

If x and y are adjacent, then as in subcase 3.2 of Theorem 2.1, G is the graph obtained from

Kp−2 by joining each of the vertices of K2 to i (1 ≤ i ≤ p − 3) distinct vertices of Kp−2. That is,

G ∈ F22(Kp−2, K2). If G does not contains a clique on p − 2 vertices, then no new graph exists. For

the cases γctd(G) = p − 5 and χ(G) = p − 1 and γctd(G) = p − 6 and χ(G) = p, no graph exists.

From cases 1 - 4, we can conclude that G can be one of the graphs given in the theorem. 2
Remark 2.2 For any connected graph with p (4 ≤ p ≤ 6) vertices, γctd(G) + χ(G) = 2p − 6 if and

only if G is one of the following graphs.

Fig.2
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Fig.3
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