The Minimum Equitable Domination Energy of a Graph

P.Rajendra and R.Rangarajan

(Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore - 570 006, India)

E-mail: prajumaths@gmail.com, rajra63@gmail.com

Abstract: A subset D of V is called an equitable dominating set [8] if for every $v \in V - D$ there exists a vertex $u \in D$ such that $uv \in E(G)$ and $|deg(u) - deg(v)| \leq 1$, where deg(u) denotes the degree of vertex u and deg(v) denotes the degree of vertex v. Recently, The minimum covering energy $E_c(G)$ of a graph is introduced by Prof. C. Adiga, and co-authors [1]. Motivated by [1], in this paper we define energy of minimum equitable domination $E_{ED}(G)$ of some graphs and we obtain bounds on $E_{ED}(G)$. We also obtain the minimum equitable domination determinant of some graph G given by $det_{ED}(G) = \mu_1 \mu_2 \dots \mu_n$ where $\mu_1, \mu_2, \dots, \mu_n$ are eigenvalues of $A_{ED}(G)$.

Key Words: Minimum equitable domination set, spectrum of minimum equitable domination matrix, energy of minimum equitable domination, determinant of minimum equitable domination matrix.

AMS(2010): 05C50.

§1. Introduction

The energy of a graph and its applications to Organic Chemistry are given in detail in two important works by I. Gutman and co-authors [5, 9]. For more details with applications on the energy of a graph, one may refer [2, 4, 6, 9]. Recently, the minimum covering energy $E_c(G)$ of a graph is introduced by Prof. C. Adiga, and co-authors [1]. Motivated by [1], in this paper we define energy of minimum equitable domination $E_{ED}(G)$ of some graphs and we obtain bounds on $E_{ED}(G)$. We also obtain the minimum equitable domination determinant of some graph G given by $\det_{ED}(G) = \mu_1 \mu_2 \dots \mu_n$ where $\mu_1, \mu_2, \dots, \mu_n$ are eigenvalues of $A_{ED}(G)$.

Let G be a graph with set of vertices, $V = \{v_1, v_2, \dots, v_n\}$ and set of edges, E. For a simple graph, i.e a graph without loops, multiple or directed edges, a subset D of V is called an equitable dominating set [8] if for every $v \in V - D$ there exists a vertex $u \in D$ such that $uv \in E(G)$ and $|deg(u) - deg(v)| \le 1$, where deg(u) denotes the degree of vertex u and deg(v) denotes the degree of vertex v. Let ED is minimum equitable domination set of a graph G.

The minimum equitable domination matrix is defined as a square matrix $A_{ED}(G) = (a_{ij})$,

¹Received December 9, 2014, Accepted August 15, 2015.

where

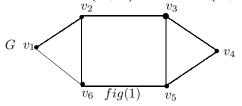
$$a_{ij} = \begin{cases} 1 & \text{if } v_i v_j \in E \\ 1 & \text{if } i = j \text{ and } v_i \in ED \\ 0 & \text{otherwise.} \end{cases}$$
 (1)

The eigenvalues of the minimum equitable domination matrix $A_{ED}(G)$ are $\mu_1, \mu_2, \dots, \mu_n$. Since the minimum equitable domination matrix is symmetric, its eigenvalues are real and can be written as $\mu_1 \geq \mu_2 \geq \dots \geq \mu_n$. The energy of minimum equitable domination of a graph is defined as

$$E_{ED}(G) = \sum_{i=1}^{n} |\mu_i|.$$
 (2)

We also obtain the minimum equitable domination determinant of some graph G given by $det_{ED}(G) = \mu_1 \mu_2 \cdots \mu_n$ where $\mu_1, \mu_2, \dots, \mu_n$ are eigenvalues of $A_{ED}(G)$.

Example 1.1 The figure 1 shows the graph G with vertices $\{v_1, v_2, v_3, v_4, v_5, v_6\}$. Then minimum equitable domination sets are $ED_1 = \{v_1, v_4\}$ and $ED_2 = \{v_2, v_5\}$,



$$A_{ED_1}(G) = egin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 0 & 0 & 1 \ 0 & 1 & 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 1 & 1 & 0 \ 0 & 0 & 1 & 1 & 0 & 1 \ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

characteristic polynomial of $A_{ED_1}(G)$ is $\Phi_6(G,\mu) = \mu^6 - 2\mu^5 - 7\mu^4 + 8\mu^3 + 12\mu^2$, the spectrum of $A_{ED_1}(G)$ is

$$Spec_{ED_1} = \begin{pmatrix} 3 & 2 & 0 & -1 & -2 \\ 1 & 1 & 2 & 1 & 1 \end{pmatrix}$$

and the energy of minimum equitable domination of ED_1 is $E_{ED_1} = 8$ and $det_{ED_1}(G) = 0$..

$$A_{ED_2}(G) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

characteristic polynomial of $A_{ED_2}(G)$ is $\Phi_6(G,\mu) = \mu^6 - 2\mu^5 - 7\mu^4 + 6\mu^3 + 14\mu^2 - 3$, the spectrum of $A_{ED_2}(G)$ is

$$Spec_{ED_2} = \begin{pmatrix} 3.1819 & 1.8019 & 0.4450 & -0.5936 & -1.2470 & -1.5884 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

and the energy of minimum equitable domination of ED_2 is $E_{ED_2} = 8.8578$ and $det_{ED_2}(G) =$ -3. One can note that $det_{ED_2}(G) \neq 0$ and $E_{ED_2} > E_{ED_1}$. Also the energy of minimum equitable domination depends upon the minimum equitable domination set.

§2. Bounds for the Minimum Equitable Domination Energy of a Graph

We first need the following Lemma.

Lemma 2.1 Let G be a graph with vertices $\{v_1, v_2, \ldots, v_n\}$ and let $A_{ED}(G)$ be the minimum equitable domination matrix of G. Let $\Phi_n(A_{ED}(G)) = det(\mu I_n - A_{ED}(G)) = c_0 \mu^n + c_1 \mu^{n-1} + c_2 \mu^{n-1}$ $c_2\mu^{n-2} + \cdots + c_n$ be the characteristic polynomial of $A_{ED}(G)$. Then

- (1) $c_0 = 1$;

(2)
$$c_1 = -|ED|;$$

(3) $c_2 = \begin{pmatrix} |ED| \\ 2 \end{pmatrix} - m.$

Proof (1) $c_0 = 1$ follows directly from the definition $\Phi_n(G, \mu) = \det(\mu I_n - A_{ED}(G))$, i.e $c_0 = 1$.

(2) $c_1 = \text{sum of determinants of all } 1 \times 1 \text{ principal submatrices of } A_{ED}(G),$

i.e
$$c_1 = (-1)^1$$
 trace of $A_{ED}(G) = -|ED|$.

(3) $c_2 = \text{sum of determinants of all } 2 \times 2 \text{ principal submatrices of } A_{ED}(G),$

$$i.e \ c_2 = (-1)^2 \sum_{i < j} \begin{vmatrix} a_{ii} & a_{ij} \\ a_{ji} & a_{jj} \end{vmatrix} = \sum_{i < j} (a_{ii}a_{jj} - a_{ij}a_{ji}) = \sum_{i < j} a_{ii}a_{jj} - \sum_{i < j} a_{ij}^2$$
$$c_2 = \begin{pmatrix} |ED| \\ 2 \end{pmatrix} - m. \qquad \square$$

Lemma 2.2 Let G be a connected graph and let $\mu_1, \mu_2, \dots, \mu_n$ be the eigenvalues of minimum equitable dominating matrix $A_{ED}(G)$. Then

$$\sum_{i=1}^{n} \mu_i = |ED|$$

and

$$\sum_{i=1}^{n} \mu_i^2 = 2m + |ED|.$$

Proof The sum of diagonal elements of $A_{ED}(G)$ is $\sum_{i=1}^{n} \mu_i = \text{trace}[A_{ED}(G)] = \sum_{i=1}^{n} a_{ii} = |ED|$.

Similarly, the sum of squares of the eigenvalues of $A_{ED}(G)$ is trace of $[A_{ED}(G)]^2$,

$$\sum_{i=1}^{n} \mu_i^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \ a_{ji}$$

$$= \sum_{i=1}^{n} (a_{ii})^2 + \sum_{i \neq j} a_{ij} \ a_{ji}$$

$$= \sum_{i=1}^{n} (a_{ii})^2 + 2 \sum_{i < j} (a_{ij})^2$$

$$\sum_{i=1}^{n} \mu_i^2 = 2m + |ED|.$$

Theorem 2.3 Let G_1 and G_2 be two graphs with n vertices and m_1 , m_2 are number of edges in G_1 and G_2 respectively. Let $\mu_1, \mu_2, \dots, \mu_n$ are eigenvalues of $A_{ED_1}(G_1)$ and $\mu'_1, \mu'_2, \dots, \mu'_n$ are eigenvalues of $A_{ED_2}(G_2)$. Then

$$\sum_{i=1}^{n} \mu_i \ \mu_i' \le \sqrt{(2m_1 + |ED_1|)(2m_2 + |ED_2|)},$$

where $A_{ED_i}(G_i)$ is minimum equitable domination matrix of G_i (i = 1, 2) and ED_1 , ED_2 be minimum equitable domination sets of G_1 and G_2 respectively.

Proof Let $\mu_1, \mu_2, \dots, \mu_n$ are eigenvalues of $A_{ED_1}(G_1)$ and $\mu'_1, \mu'_2, \dots, \mu'_n$ are eigenvalues of $A_{ED_2}(G_2)$. Then by the Cauchy-Schwartz inequality, we have

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right).$$

If $a_i = \mu_i$, $b_i = \mu'_i$ then

$$\left(\sum_{i=1}^{n} \mu_{i} \mu_{i}'\right)^{2} \leq \left(\sum_{i=1}^{n} \mu_{i}^{2}\right) \left(\sum_{i=1}^{n} (\mu_{i}')^{2}\right)$$

$$\left(\sum_{i=1}^{n} \mu_{i} \mu_{i}'\right)^{2} \leq \left(2m_{1} + |ED_{1}|\right) \left(2m_{2} + |ED_{2}|\right)$$

$$\Rightarrow \sum_{i=1}^{n} \mu_{i} \mu_{i}' \leq \sqrt{\left(2m_{1} + |ED_{1}|\right) \left(2m_{2} + |ED_{2}|\right)}.$$

Hence the theorem. \Box

Theorem 2.4 Let G be a graph with n vertices, m edges. Let ED is the minimum equitable

domination set. Then

$$\sqrt{(2m+|ED|)+n(n-1)|det A_{ED}(G)|^{2/n}} \le E_{ED}(G) \le \sqrt{n(2m+|ED|)}.$$

Proof This proof follows the ideas of McClelland's bounds [6] for graphs E(G). For the upper bound, let $\mu_1, \mu_2, \dots, \mu_n$ be the eigenvalues of minimum equitable dominating matrix $A_{ED}(G)$. Apply the Cauchy-Schwartz inequality to $(1, 1, \dots, 1)$ and $(\mu_1, \mu_2, \dots, \mu_n)$ is

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right).$$

If $a_i = 1$, $b_i = |\mu_i|$ then

$$\left(\sum_{i=1}^{n} |\mu_i|\right)^2 \leq \left(\sum_{i=1}^{n} 1^2\right) \left(\sum_{i=1}^{n} |\mu_i|^2\right)$$

$$\Rightarrow \left[E_{ED}(G)\right]^2 \leq n(2m + |ED|)$$

from the above $\left(\sum_{i=1}^{n} \mu_i^2 = 2m + |ED|\right)$.

$$E_{ED}(G) \le \sqrt{n(2m + |ED|)},$$

which is upper bound.

For the lower bound, by using arithmetic mean and geometric mean inequality, we have

$$\frac{1}{n(n-1)} \sum_{i \neq j} |\mu_i| |\mu_j| \geq \left(\prod_{i \neq j} |\mu_i| |\mu_j| \right)^{\frac{1}{n(n-1)}}$$

$$\sum_{i \neq j} |\mu_i| |\mu_j| \geq n(n-1) \left(\prod_{i=1}^n |\mu_i|^{2(n-1)} \right)^{\frac{1}{n(n-1)}}$$

$$\sum_{i \neq j} |\mu_i| |\mu_j| \geq n(n-1) \left(\prod_{i=1}^n |\mu_i| \right)^{2/n}.$$
(3)

Consider

$$E_{ED}(G)]^2 = \left[\sum_{i=1}^n |\mu_i|\right]^2 = \sum_{i=1}^n |\mu_i|^2 + \sum_{i \neq j} |\mu_i| |\mu_j|.$$

From (3) we have

$$[E_{ED}(G)]^{2} \ge \sum_{i=1}^{n} |\mu_{i}|^{2} + n(n-1) \left(\prod_{i=1}^{n} |\mu_{i}| \right)^{2/n},$$
$$[E_{ED}(G)]^{2} \ge (2m + |ED|) + n(n-1) |det A_{ED}(G)|^{2/n}$$

$$\Rightarrow [E_{ED}(G)] \ge \sqrt{(2m + |ED|) + n(n-1) |det A_{ED}(G)|^{2/n}},$$

which is lower bound.

Theorem 2.5 If the minimum equitable domination energy $E_{ED}(G)$ is a rational number, then $E_{ED}(G) \equiv |ED| \pmod{2}$, where ED is minimum equitable domination set.

Proof Let $\mu_1, \mu_2, \dots, \mu_n$ be the eigenvalues of minimum equitable domination matrix $A_{ED}(G)$. Then the trace of

$$A_{ED}(G) = \sum_{i=1}^{n} a_{ii} = |ED|.$$

Let $\mu_1, \mu_2, \dots, \mu_r$ be positive and remaining eigenvalues are non-positive then,

$$E_{ED}(G) = \sum_{i=1}^{n} |\mu_i| = (\mu_1 + \mu_2 + \dots + \mu_r) - (\mu_{r+1} + \mu_{r+2} + \dots + \mu_n)$$

$$= 2(\mu_1 + \mu_2 + \dots + \mu_r) - (\mu_1 + \mu_2 + \dots + \mu_n)$$

$$= 2(\mu_1 + \mu_2 + \dots + \mu_r) - |ED|$$

$$\Rightarrow E_{ED}(G) \equiv |ED|(mod 2).$$

Hence the theorem.

§3. Minimum Equitable Domination Energy and Determinant of Certain Standard Graphs

Theorem 3.1 For $n \ge 4$, the minimum equitable domination energy of star graph $S_{1,n-1}$ is $(n-2) + 2\sqrt{n-1}$.

Proof Consider the star graph $S_{1,n-1}$ with vertex set $V = \{v_0, v_1, \dots, v_{n-1}\}$. The minimum equitable domination set is $ED = \{v_0, v_1, \dots, v_{n-1}\}$. Then minimum equitable domination matrix is

$$A_{ED}(S_{1,n-1}) = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ 1 & 1 & 0 & \dots & 0 & 0 \\ 1 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & 0 & \dots & 1 & 0 \\ 1 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}_{n \times n}$$

The characteristic polynomial of $A_{ED}(S_{1,n-1})$ is

$$\Phi_n(S_{1,n-1},\mu) = \begin{vmatrix} \mu - 1 & -1 & -1 & \dots & -1 & -1 \\ -1 & \mu - 1 & 0 & \dots & 0 & 0 \\ -1 & 0 & \mu - 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & 0 & 0 & \dots & \mu - 1 & 0 \\ -1 & 0 & 0 & \dots & 0 & \mu - 1 \end{vmatrix}_{n \times n}$$

$$= -(-1)^{n+1} \begin{vmatrix} -1 & -1 & \dots & -1 & -1 \\ \mu - 1 & 0 & \dots & 0 & 0 \\ 0 & \mu - 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots \mu - 1 & 0 & 0 \\ 0 & 0 & \dots & \mu - 1 & 0 \end{vmatrix} + (\mu - 1) \begin{vmatrix} \mu - 1 & -1 & \dots & -1 & -1 \\ -1 & \mu - 1 & \dots & 0 & 0 \\ -1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & 0 & \dots & \mu - 1 & 0 \\ -1 & 0 & \dots & 0 & \mu - 1 \end{vmatrix}$$

$$\Phi_n(S_{1,n-1},\mu) = -(\mu - 1)^{n-2} + (\mu - 1)\Phi_{n-1}(S_{1,n-2},\mu). \tag{4}$$

Now change n to n-1 in (1), we get

$$\Phi_{n-1}(S_{1,n-2},\mu) = -(\mu - 1)^{n-3} + (\mu - 1)\Phi_{n-2}(S_{1,n-3},\mu).$$
(5)

Substitute (5) in (4),

$$\Phi_n(S_{1,n-1},\mu) = -2(\mu - 1)^{n-2} + (\mu - 1)^2 \Phi_{n-2}(S_{1,n-3},\mu)$$
(6)

Continuing this process, we get

$$\Phi_n(S_{1,n-1},\mu) = -(n-4)(\mu-1)^{n-2} + (\mu-1)^{n-4}\Phi_4(S_{1,3},\mu)
= -(n-4)(\mu-1)^{n-2} + (\mu-1)^{n-4}[(\mu-1)^2(\mu^2-2\mu-2)]
\Phi_n(S_{1,n-1},\mu) = (\mu-1)^{n-2}[\mu^2-2\mu-(n-2)].$$

The spectrum of minimum domination energy of a graph is

$$Spec_{ED}(S_{1, n-1}) = \begin{pmatrix} 1 + \sqrt{n-1} & 1 & 1 - \sqrt{n-1} \\ 1 & n-2 & 1 \end{pmatrix}.$$

The energy of minimum equitable domination of a graph is

$$E_{ED}(S_{1, n-1}) = (n-2) + 2\sqrt{n-1}, \ n \ge 4.$$

Theorem 3.2 Let $K_{s,t}$ be complete bipartite graph with s+t vertices and energy of minimum equitable complete bipartite graph $E_{ED}(K_{s,t})$ is

$$E_{ED}(K_{s,t}) = (s+t-2) + 2\sqrt{st}$$

if
$$|s-t| \ge 2$$
, $s,t \ge 2$.

Proof Let complete bipartite graph $K_{s,t}$ with $|s-t| \geq 2$ where $s,t \geq 2$ with vertex set $V = \{v_1, v_2, \cdots, v_s, u_1, u_2, \cdots, u_t\}$. The minimum equitable domination set is $ED = \{v_1, v_2, \cdots, v_s, u_1, u_2, \cdots, u_t\}$. Then

The characteristic polynomial of $A_{ED}(K_{s,t})$ is

$$\Phi_{s+t}(K_{s,t},\mu) \ = \ \begin{vmatrix} \mu-1 & 0 & \dots & 0 & 0 & -1 & -1 & \dots & -1 & -1 \\ 0 & \mu-1 & \dots & 0 & 0 & -1 & -1 & \dots & -1 & -1 \\ 0 & 0 & \dots & 0 & 0 & -1 & -1 & \dots & -1 & -1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \mu-1 & 0 & -1 & -1 & \dots & -1 & -1 \\ 0 & 0 & \dots & 0 & \mu-1 & -1 & -1 & \dots & -1 & -1 \\ -1 & -1 & \dots & -1 & -1 & \mu-1 & 0 & \dots & 0 & 0 \\ -1 & -1 & \dots & -1 & -1 & 0 & \mu-1 & \dots & 0 & 0 \\ -1 & -1 & \dots & -1 & -1 & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -1 & \dots & -1 & -1 & 0 & 0 & \dots & \mu-1 & 0 \\ -1 & -1 & \dots & -1 & -1 & 0 & 0 & \dots & \mu-1 & 0 \end{vmatrix}$$

$$= \ \begin{vmatrix} (\mu-1)I_s & -J_{s\times t}^T \\ -J_{t\times s} & (\mu-1)I_t \end{vmatrix},$$

where $J_{t\times s}$ is a matrix with all entries equal to one,

$$\Phi_{s+t}(K_{s,t},\mu) = |(\mu-1)I_s| |(\mu-1)I_t - (-J)\frac{I_s}{\mu-1}(-J^T)|$$

$$= (\mu-1)^{s-t} |(\mu-1)^2I_t - JJ^T|$$

$$= (\mu-1)^{s-t} P_{JJ^T}[(\mu-1)^2]$$

$$= (\mu-1)^{s-t} P_{sJ_t}[(\mu-1)^2],$$

where P_{sJ_t} is the characteristic polynomial of the matrix sJ_t

$$\Phi_{s+t}(K_{s,t},\mu) = (\mu - 1)^{s-t} [(\mu - 1)^2 - st] [(\mu - 1)^2]^{t-1}$$

$$= (\mu - 1)^{s-t} (\mu - 1)^{2t-2} [\mu^2 + 1 - 2\mu - st]$$

$$\Phi_{s+t}(K_{s,t},\mu) = (\mu - 1)^{s+t-2} [\mu^2 - 2\mu - (st - 1)]$$

is the characteristic polynomial of minimum equitable domination matrix of $K_{s,t}$. The spectrum of minimum equitable domination matrix of $K_{s,t}$ is

$$Spec_{ED}(K_{s, t}) = \begin{pmatrix} 1 + \sqrt{st} & 1 & 1 - \sqrt{st} \\ 1 & s + t - 2 & 1 \end{pmatrix}.$$

The minimum equitable domination energy of a graph is

$$E_{ED}(K_{s,t}) = (s+t-2) + 2\sqrt{st}.$$

A crown graph S_n^0 for an integer $n \geq 3$ is the graph with vertex set $\{v_1, v_2, \ldots, v_n, u_1, u_2, \cdots, u_n\}$ and edge set $\{v_i u_i : 1 \leq i, j \leq n, i \neq j\}$. Therefore S_n^0 coincides with the complete bipartite graph $K_{n,n}$ with horizontal edges removed [1].

Theorem 3.3 For $n \ge 3$, the minimum equitable domination energy of the crown graph S_n^0 is equal to $2(n-2) + \sqrt{n^2 - 2n + 5} + \sqrt{n^2 + 2n - 3}$.

Proof Consider crown graph S_n^0 with vertex set $V = \{v_1, v_2, \dots, v_n, u_1, u_2, \dots, u_n\}$. The minimum equitable domination set is $ED = \{v_1, u_1\}$.

Then the minimum equitable domination matrix of S_n^0 is same as the minimum domination matrix of S_n^0 by [7]. Therefore

$$E_{ED}(S_n^0) = 2(n-2) + \sqrt{n^2 - 2n + 5} + \sqrt{n^2 + 2n - 3}.$$

Theorem 3.4 For $n \ge 2$, the minimum equitable domination energy of complete graph K_n is $(n-2) + \sqrt{n^2 - 2n + 5}$

Proof Consider the complete graph K_n with vertex set $V = \{v_1, v_2, \dots, v_n\}$. The minimum equitable domination set is $ED = \{v_1\}$. Then the minimum equitable domination matrix of K_n is

same as the minimum domination matrix of K_n by [7]. Therefore,

$$E_{ED}(K_n) = (n-2) + \sqrt{n^2 - 2n + 5}.$$

Let us obtain the minimum equitable domination determinant of some graph G given by $det_{ED}(G) = \mu_1 \mu_2 \cdots \mu_n$, where $\mu_1, \mu_2, \cdots, \mu_n$ are eigenvalues of $A_{ED}(G)$.

Proposition 3.5 Let $S_{1,n-1}$ $(n \ge 4)$, K_n $(n \ge 2)$ be the star and complete graphs with n vertices, respectively, S_n^0 $(n \ge 3)$, is crown graph with 2n vertices and $K_{s,t}$ $(|s-t| \ge 2)$ be the complete bipartite graph with s+t vertices. Then

- (1) $det_{ED}(S_{1,n-1}) = -(n-2);$
- (2) $det_{ED}(K_n) = (-1)^{(n-1)};$
- (3) $det_{ED}(K_{s,t}) = (1 st);$
- (4) $det_{ED}(S_n^0) = (-1)^{n-1}(3-2n)$.

Proof w.k.t $det_{ED}(G) = \mu_1 \ \mu_2 \cdots \mu_n$, where $\mu_1, \mu_2, \cdots, \mu_n$ are eigenvalues of G.

Case 1. $det_{ED}(S_{1,n-1}) = (1 + \sqrt{n-1})^1 \ 1^{n-2} \ (1 - \sqrt{n-1})^1 = -(n-2)$, where $n \ge 4$. Case 2.

$$det_{ED}(K_n) = \left(\frac{(n-1) + \sqrt{n^2 - 2n + 5}}{2}\right)^1 (-1)^{n-2} \left(\frac{(n-1) - \sqrt{n^2 - 2n + 5}}{2}\right)^1$$
$$= (-1)^{n-1}, where \ n \ge 2.$$

Case 3. $det_{ED}(K_{s,t}) = (1 + \sqrt{st})^1 (1)^{s+t-2} (1 - \sqrt{st})^1 = (1 - st)$, where $|s - t| \ge 2$. Case 4.

$$det_{ED}(S_n^0) = \left(\frac{(n-1) \pm \sqrt{n^2 - 2n + 5}}{2}\right)^1 \left(\frac{(3-n) \pm \sqrt{n^2 + 2n - 3}}{2}\right)^1 (1)^{n-2} (-1)^{n-2}$$
$$= (-1)^{n-1} (3 - 2n),$$

where $n \geq 3$.

Theorem 3.6 If the graph G is non-singular (i.e no eigenvalues of $A_{ED}(G)$ is equal to zero) then $E_{ED}(G) \ge n$, (non-hypoenergetic).

Proof. Let $\mu_1, \mu_2, \dots, \mu_n$ are non-zero eigenvalues of $A_{ED}(G)$. Then inequality between the arithmetic and geometric mean, we have

$$\frac{dv}{dx} \frac{|\mu_1| + |\mu_2| + \dots + |\mu_n|}{n} \geq (|\mu_1| |\mu_2| \dots |\mu_n|)^{1/n}$$
$$\frac{1}{n} E_{ED}(G) \geq (det A_{ED}(G))^{1/n}.$$

The determinant of the $A_{ED}(G)$ matrix is necessary an integer. Because no eigenvalues is zero, $|det A_{ED}(G)| \ge 1$ then $|det A_{ED}(G)|^{1/n} \ge 1$. Therefore $E_{ED}(G) \ge n$.

Acknowledgement We acknowledge duly that the present research work is supported by the UGC-BSR Fellowship, Government of India, grant No.F.7-349/2011 and UGC-SAP, DRS-I, No. F.510/2/DRS/2011(SAP-I).

References

- [1] C.Adiga, A.Bayad, I.Gutman and Shrikanth. A. S, The minimum covering energy of a graph, Krag. J. Sci., 34 (2012), 39-56.
- [2] R.B.Bapat, Graphs and Matrices, Hindustan Book Agency (2011).
- [3] R.B.Bapat, S.Pati, Energy of a graph is never an odd integer, Bull. Kerala Math. Assoc., 1 (2011), 129-132.
- [4] D.M.Cvetkovic, M.Doob and H.Sachs, Spectra of Graphs, Theory and Application, Academic Press, New York, USA, 1980.
- [5] I.Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz, 103 (1978), 1-22.
- [6] B.J.McClelland, Properties of the latent roots of a matrix: The estimation of π -electron energies, J. Chem. Phys., 54 (1971), 640-643.
- [7] M.R.Rajesh Kanna, B.N.Dharmendra and G.Sridhara, The minimum dominating energy of a eraph, *Int. J. of Pure and Appl. Math.*, 85(4), 2013, 707-718.
- [1] V.Swaminathan and K.M.Dharmalingam, Degree equitable domination on graphs, *Krag. J. of Math.*, 35 (1) (2011), 191-197.
- [9] X. Li, Y.Shi and I. utman, Graph Energy, Springer New York, 2012.