
GABAergic Interneurons with nonlinear dendrites: from neuronal computations 1 

to memory engrams. 2 

Authors: Alexandra Tzilivaki1,2,3,4, George Kastellakis4, Dietmar Schmitz1,2,3, Panayiota Poirazi4* 3 

Affiliations: 1) Charité – Universitätsmedizin Berlin, corporate member of Freie Universität 4 

Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, 5 

Germany 2) Einstein Center for Neurosciences Berlin, Charitéplatz 1, 10117 Berlin Germany 3) 6 

Neurocure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany4) Foundation for 7 

Research and Technology Hellas, Institute of Molecular Biology and Biotechnology, Greece. 8 

*corresponding author 9 

 10 

Abstract: GABAergic interneurons are a highly diverse class of neurons in the mammalian brain 11 

with a critical role in orchestrating multiple cognitive functions and maintaining the balance of 12 

excitation/ inhibition across neuronal circuitries. In this perspective, we discuss recent findings 13 

regarding the ability of some interneuron subtypes to integrate incoming inputs in nonlinear 14 

ways within their dendritic branches. These recently discovered features may endow the specific 15 

interneurons with advanced computing capabilities, whose breadth and functional contributions 16 

remain an open question. Along these lines, we discuss theoretical and experimental evidence 17 

regarding the potential role of nonlinear interneuron dendrites in advancing single neuron 18 

computations and contributing to memory formation. 19 
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 21 

Introduction: 22 

Interneurons (INs) constitute a highly heterogeneous class of neurons in the mammalian central 23 

nervous system(Defelipe et al., 2013; Maffei, 2017).They are characterized by significant 24 

variability in their anatomical, biophysical and molecular features(Ascoli et al., 2008). Numerous 25 

studies have investigated the extent of this variability and suggested new roles for multiple 26 

subtypes in brain circuits (reviewed in (Buzsáki et al., 2004; Maffei, 2017)). For example, several 27 

studies highlight the crucial role of INs in orchestrating the activity of neural ensembles in 28 

multiple brain areas and across various tasks, mainly via the flexible control of excitation-29 

inhibition balance(Campanac et al., 2013; Isaacson and Scanziani, 2011; Lucas and Clem, 2018). 30 

Moreover, interneuron contributions to cognitive abilities such as sensory processing, learning 31 

and memory, attention etc., have recently started to be unveiled(Feldmeyer et al., 2018; Holly et 32 

al., 2019; Kim et al., 2016; Xia et al., 2017; Xu et al., 2019).Despite their documented complexity 33 

and key role in normal brain functioning, little is known about the ways in which incoming inputs 34 

are integrated within the dendrites of most IN types. Currently, the most widely accepted 35 

conceptual model of how INs integrate incoming signals is that of a simple summing device (point 36 



neuron), according to which synaptic integration is essentially linear and independent of any 1 

local, dendritic influences.  2 

However, recent experimental and modeling studies suggest that the dendrites of some IN 3 

subtypes are anatomically and biophysically complex(Hu and Vervaeke, 2018) and can support 4 

localized, non-linear integration of incoming signals through the generation of dendritic 5 

spikes(Chiovini et al., 2014; Cornford et al., 2019; Katona et al., 2011; Tran-Van-Minh et al., 2016; 6 

Tzilivaki et al., 2019).(Figure 1, Table 1). These non-linear dendritic events were recently 7 

predicted to enable INs to act as multi-stage nonlinear integrators (Figure 2)(Tzilivaki et al., 2019), 8 

in ways that resemble their excitatory neuron counterparts (Losonczy and Magee, 2006; Poirazi 9 

et al., 2003a; Polsky et al., 2004). Such multi-stage integration was previously shown to expand 10 

the information processing capabilities of individual neurons well beyond those of a point 11 

neuron(Jadi et al., 2014; Poirazi and Mel, 2001; Poirazi et al., 2003b). Moreover, INs were shown 12 

to support plasticity induction, especially in subclasses with spiny dendrites(Abs et al., 2018; 13 

Galván et al., 2015; Kullmann and Lamsa, 2011; Tran-Van-Minh et al., 2016) and influence both 14 

the induction and the properties of oscillatory rhythms (Allen and Monyer, 2015; Klausberger 15 

and Somogyi, 2008). For example, dendritic activity in fast spiking basket cells (FS BCs) was 16 

suggested to underlie the induction of Sharp Wave Ripples (SWRs) (Chiovini et al., 2014) in the 17 

hippocampus, a rhythm associated with memory consolidation and retrieval (Joo and Frank, 18 

2018). The above suggest that specific IN subtypes, especially those that support nonlinear 19 

dendritic events, may exhibit advanced processing capabilities at the single neuron level and play 20 

important roles in high level functions such as learning and memory. 21 

Memories are generally thought to emerge via the storage of information within specific 22 

excitatory neuronal sub-populations, known as memory engrams(Tonegawa et al., 2015).These 23 

memory engrams-although regulated by INs (Morrison et al., 2016; Stefanelli et al., 2016; Tzilivaki 24 

et al., 2019)- are typically ascribed to excitatory neurons(Wu and Mel, 2009; Wu et al., 2019).  25 

Recent findings, however, reveal that interneurons also undergo plasticity in response to learning 26 

and may thus play important roles in memory functions, presumably through the formation of 27 

inhibitory assemblies termed inhibitory engrams(Barron et al., 2017; Cummings and Clem, 2019; 28 

Froemke, 2015; Lamsa and Lau, 2019a). In this article, we summarize recent evidence regarding 29 

the nonlinear processing capabilities of ΙΝ dendrites and suggest that these features could allow 30 

INs to perform complex functions that go beyond the balancing of excitation. We also discuss 31 

how plasticity and nonlinear integration within IN dendrites can contribute to the formation of 32 

memory engrams, in ways that facilitate resource utilization. Finally, we adapted a previously 33 

published circuit model (Kastellakis et al., 2016; Tzilivaki et al., 2019) to investigate the formation 34 

of inhibitory engrams and highlight their potential role in memory formation (Figure 3). 35 

Going beyond the point (inter-)neuron dogma 36 

According to the point neuron conceptual model, incoming inputs integrate linearly at the soma, 37 

independent of their (dendritic) location. Dendritic integration is not explicitly modeled in this 38 

schema, thus the term “point neuron”. A suitable mathematical formalism for this type of 39 



computation is a single-layer artificial neural network  (ANN), whereby synaptic inputs are 1 

weighted and linearly summed at the somatic node, before going through a non-linear activation 2 

function(McCulloch  and Pitts, W., 1943).  3 

 4 

Figure 1: Nonlinear dendritic integration in Interneurons.  5 

A. CA1 Fast Spiking PV+ INs exhibit supralinear EPSP summation during SWRs (adopted from 6 

Chiovini et al 2014). B. CA1 str. Radiatum Fast spiking INs exhibit NMDA-dependent supralinear 7 

EPSP summation (adopted from Katona et all., 2011). C. Cerebellar INs exhibit sublinear EPSP 8 

summation (upper panels adopted from Abrahamsson et al 2012) and supralinear calcium 9 

accumulation (bottom panels adopted from Tran van Minh et al 2016) D. CA1 PV+ INs have two 10 

types of dendrites: those integrating inputs in a  supralinear manner and those summating their 11 

inputs linearly (adopted from Cornford et al., 2019) E. Biophysical models predict that Fast 12 

Spiking Basket Cells in both L5 mPFC and CA3 have dendrites that integrate synaptic inputs in 13 

either a supralinear or a sublinear manner. Both types of dendrites co-exist within individual FS 14 

BC models (adopted from Tzilivaki et al., 2019). 15 

 16 

Interneurons were traditionally described as point neurons, mostly due to the lack of information 17 

regarding their dendritic physiology. The complex arborization patterns of INs subtypes (Ascoli 18 



et al., 2008; Hu and Vervaeke, 2018), made it challenging to investigate dendritic integration with 1 

widely-used experimental techniques. Currently, the scarce data that exist suggest a sublinear 2 

integration of inputs within the dendrites of some IN subtypes(Abrahamsson et al., 2012; Hu and 3 

Vervaeke, 2018; Vervaeke et al., 2012). For example, parvalbumin positive (PV+) FS BCs in the 4 

Dentate Gyrus (DG) have considerably lower somato-dendritic input resistance values compared 5 

to pyramidal neurons, a characteristic thought to dampen distal inputs and prevent the induction 6 

of local dendritic events (Nörenberg et al., 2010). In addition, the high potassium-to-sodium 7 

current ratio in the dendrites of the same INs was shown to hinder the active backpropagation 8 

of APs(Hu et al., 2010). Finally, the calcium dynamics of PV+ Basket Cells (BC), Calretinin-positive 9 

Irregular Spikers (IS) and Adapting Cells (AD) in the V1 supragranular layer result from a variety 10 

of ionic channels, making it difficult to infer their dendritic integration modes. Specifically, PV+ 11 

BCs exhibit supralinear calcium accumulation in their dendrites, mediated by CP-AMPA receptors 12 

and VGCCs while the other types exhibit NMDA-dependent calcium dynamics. Importantly, while 13 

both sodium and potassium currents were found in PV+ BCs in V1, A-type potassium channels 14 

were highly expressed in distal dendritic compartments(Goldberg et al., 2003b, 2003a). Taken 15 

together, for PV+ INs in particular, the high conductance of A-type potassium channels(Goldberg 16 

et al., 2003a; Hu et al., 2014), the relatively low density of sodium channels, especially in distal 17 

dendritic compartments(Hu et al., 2010), the low density of NMDA receptors(Camire and 18 

Topolnik, 2014; Goldberg et al., 2003b; Wang and Gao, 2009) and the weak back propagation of 19 

action potentials(Hu et al., 2010)are all strong indicators that PV+INs act as point neurons.  20 

In light of conflicting findings in the literature, however, the issue of dendritic integration in 21 

interneurons remains unsettled. For example, active backpropagation of APs has been reported 22 

in Calretinin positive irregular spikers and Adaptive cells (Goldberg et al., 2003a) while 23 

supralinear calcium accumulation was found in the dendrites of the same neurons (Goldberg et 24 

al., 2003a), in CA1 INs -driven by the GLuR2 lacking calcium permeable (CP) AMPA receptor 25 

(Camire and Topolnik, 2014) and in the thin dendrites of cerebellar INs (Tran-Van-Minh et al., 26 

2016). Moreover, NMDA-dependent (Cornford et al., 2019; Katona et al., 2011) and sodium-27 

mediated (Chiovini et al., 2014) supralinear integration of synaptic inputs, especially when 28 

activated in clusters, has also been reported in different subtypes of PV+INs (Figure 1A). The 29 

various types of dendritic integration reported thus far for INs are listed in Table 1. 30 

Interestingly, different modes of synaptic integration can also coexist within the same dendritic 31 

tree. Using computational modelling, Tzilivaki et al (Tzilivaki et al., 2019), recently predicted that 32 

dendrites of both cortical (from the Prefrontal Cortex, PFC) and hippocampal (CA3) FS BCs 33 

operate in one of two modes: supralinear or sublinear (Figure 1E). In these detailed biophysical 34 

model neurons, supralinear integration was due to the generation of local dendritic sodium 35 

spikes is some but not all dendritic branches. Specifically, while the distribution of sodium 36 

channels was uniform throughout the dendritic tree of all model neurons, dendritic spikes 37 

occurred selectively in branches with a larger volume (determined by their diameter and length) 38 

and not in thin branches, where integration was sublinear. This bimodal integration was robust 39 

to fluctuations in the conductance of voltage-gated channels, including sodium. Of note, bimodal 40 



dendritic integration was also seen experimentally in CA1 PV+INs, although in this case synaptic 1 

inputs were integrated either linearly or slightly supralinearly (Figure 1D)(Cornford et al., 2019). 2 

Having dendrites with different types of nonlinearities is important because the exact same input 3 

would lead to different dendritic response if it projects to a sublinear (suppressed) or a 4 

supralinear (enhanced) dendrite. Combinations of such dendritic responses would further 5 

expand the repertoire of outputs produced by a given IN. Importantly, the presence of dendrites 6 

that integrate inputs linearly would not hinder this possibility, assuming they are not the 7 

majority.  Finally, cerebellar INs were found to support sublinear EPSP summation (Abrahamsson 8 

et al., 2012; Vervaeke et al., 2012)but supralinear calcium accumulation(Tran-Van-Minh et al., 9 

2016), presenting an even more diverse behavior (Figure 1C). 10 

Overall, both experimental and modelling studies indicate that the dendrites of several IN types 11 

can integrate inputs in nonlinear ways. Consequently, the point neuron abstraction may not be 12 

a very accurate representation of how interneurons process incoming signals.  13 

 14 

Interneuron type Region Nonlinearity type Mechanism Reference 

FS interneurons CA1 

str. radiatum 

Supralinear EPSP 

summation 

NMDAcurrents Experimental(Katona et 

al., 2011) 

PV Interneurons CA1  

str. radiatum 

Linear EPSP 

summation 

- Experimental (Cornford 

et al., 2019) 

PV Interneurons CA1  

str. Oriens 

Supralinear EPSP 

summation 

NMDA 

currents 

Experimental (Cornford 

et al., 2019) 

PV interneurons CA1  

str.pyramidal

e 

Supralinear 

Ca++ & EPSP 

summation 

L type Ca++ 

currents 

Experimental (Chiovini et 

al., 2014) 

FS Basket Cells  L5 mPFC Supralinear & 

sublinear EPSP 

summation 

Na+ currents Modelling(Tzilivaki et al., 

2019) 

FS Basket Cells CA3 Supralinear & 

sublinear EPSP 

summation 

Na+ currents Modelling(Tzilivaki et al., 

2019) 

Stellate Cells Cerebellum Sublinear EPSP 

summation & 

Supralinear Ca++ 

summation 

Ca++ currents Experimental & 

modeling(Abrahamsson 

et al., 2012; Tran-Van-

Minh et al., 2016) 

Golgi Interneurons Cerebellum Sublinear  

EPSP summation 

Dendritic Gap 

junctions 

Experimental(Vervaeke et 

al., 2012) 

Table 1. Dendritic integration in various interneuron subtypes. 15 

Reducing interneurons to Artificial Neural Networks (ANNs) 16 

To assess the validity of the point neuron abstraction for FS BCs, Tzilivaki et al used a combination 17 

of biophysical modelling and machine learning(Tzilivaki et al., 2019)(Figure 2). PV+ FS BCs from 18 



two brain areas (PFC and CA3) were simulated as anatomically and electrophysiologically detailed 1 

single neurons; their response characteristics were assessed across an extensive dataset of 2 

synaptic stimuli, varying in strength and/or spatial arrangement. It was found that responses to 3 

synaptic stimuli -measured as the mean firing rate of the biophysical model cells- is best 4 

approximated by a two-stage nonlinear ANN rather than a point neuron abstraction, for all 5 

neurons tested. In these 2-stage ANN abstractions, both types of dendritic nonlinearities were 6 

incorporated as parallel hidden layers (Figure 2). While this study focused on PV+ FS BCs, it is 7 

likely that similar reductions apply to other IN subtypes. For example, Cerebellum interneurons, 8 

which are believed to be furnished with sublinear dendrites(Abrahamsson et al., 2012; Vervaeke 9 

et al., 2012),could be represented by ANNs with logarithmic activation functions in their hidden 10 

nodes. Similarly, interneurons with supralinear dendrites (Katona et al., 2011)could be described 11 

by ANNs with sigmoidal hidden units, along the lines of pyramidal neuron reductions(Häusser 12 

and Mel, 2003; Jadi et al., 2014; Poirazi et al., 2003b).  13 

Whether this or another reductionist approach is applicable to all interneuron types, remains 14 

unclear; primarily because the integrative properties of most interneuron subtypes are largely 15 

unknown. Dendritic integration depends on both anatomical and electrophysiological features, 16 

which vary among interneuron subtypes(Defelipe et al., 2013). Thus, the first step towards an 17 

accurate mathematical reduction of interneurons, is the detailed characterization of their 18 

dendritic integration modes. Dendritic compartmentalization is also critical for understanding 19 

how a neuron computes under conditions of widespread, in vivo like synaptic input that is 20 

distributed over multiple branches. Pyramidal neurons, for example, are highly 21 

compartmentalized, with their dendrites acting largely as independent integration 22 

units(Losonczy and Magee, 2006; Poirazi et al., 2003b; Polsky et al., 2004). A similar analysis has 23 

yet to be performed for most interneuron types and will certainly influence the choice of 24 

mathematical reduction. If the dendrites of an IN sub-type communicate with one another, e.g. 25 

due to diffusion phenomena or the presence of gap junctions(Hu and Vervaeke, 2018; Tamas et 26 

al., 2000; Vervaeke et al., 2012), the ANN reduction will have to be adjusted to include 27 

interconnections among hidden layers/nodes. Finally, dendritic excitability is not static. During 28 

different developmental stages, INs undergo changes in their morphology, connectivity, 29 

membrane properties etc., which can greatly alter their integration profiles (Hu et al., 2017).Thus, 30 

a mathematical reduction for a given IN subtype may need to be specific to the developmental 31 

stage of the animal(Biane et al., 2021). 32 



Overall, appropriate ANN reductions for interneurons can be generated given sufficient 1 

information about the modes of dendritic integration and the extent of intercommunication 2 

between dendrites, under defined developmental stages. Experimental approaches are critical 3 

for providing such information and assessing whether and which interneuron subtypes could 4 

express a nonlinear arithmetic in the awake, behaving animal. 5 

 6 

Figure 2: Nonlinear dendritic integration in PV+ FS BCs, as predicted by computational models. 7 

A. Hippocampal FS BCs were recently predicted by biophysical modelling to consists of two types 8 

of dendrites: large-diameter ones that integrate synaptic inputs supralinearly, via the induction 9 

of sodium spikes and thin-diameter ones that integrate inputs sublinearly, mainly due to the 10 

dampening effects of potassium channels. B. Because of their dendritic nonlinearities, FS BC can 11 

be reduced to a 2-stage Artificial Neural Network (ANN) abstraction, whereby the two types of 12 

dendrites are described as parallel hidden layers. This reduction was shown to capture the 13 

responses of detailed biophysical models of FS BCs to thousands of synaptic inputs much better 14 

than a linear ANN. Figure adapted from (Tzilivaki et al, 2019). 15 

 16 

Next steps in dissecting the interneuron arithmetic 17 

Technical advances have now made it possible to dissect the nonlinear arithmetic profile of 18 

different types of INs, in vitro and/or in vivo. Towards this goal, experimental approaches such as 19 

glutamate uncaging(Abrahamsson et al., 2012), coupled to calcium and/or voltage 20 



recordings(Tran-Van-Minh et al., 2016) can be used to map the dendritic integration mode in 1 

response to targeted stimulation. Patch clamp techniques can also be used to characterize the 2 

electrophysiological properties and spatial distribution of the different conductances found 3 

within interneuron dendrites, while the arborization profile of dendrites and their 4 

synapses/spines can be mapped with electron microscopy techniques.  5 

It remains challenging, however, to experimentally assess how different arrangements of inputs 6 

would affect dendritic and neuronal integration in either individual neurons or neurons emended 7 

into circuits. Such stimulation patterns can be achieved via the use of holographic laser 8 

stimulation(Yang et al., 2018). When applied in vivo, where numerous other factors can influence 9 

responses, even such advanced techniques cannot delineate specific contributions. Detailed 10 

biophysical modelling, heavily constrained by experimental data, can be used to address such 11 

technically challenging questions. 12 

Finally, the extensive variability among different IN types should be considered when assessing 13 

the generality of experimental findings and their utilization in building models. As previously 14 

mentioned, interneuron families like PV+ interneurons(Que et al., 2021) consist of multiple 15 

subtypes with potentially very different active membrane properties and consequently 16 

arithmetic profiles. Thus, apart from categorizing interneurons based on their postsynaptic target 17 

groups (namely perisomatic, axonal or dendritic targeting), the dendritic integration mode could 18 

also serve as a feature for a more accurate cell-type classification. 19 

The added value of nonlinear dendrites in interneuron arithmetic 20 

While the above studies suggest that certain types of INs can integrate synaptic inputs in 21 

nonlinear ways and these ways can be described by abstract mathematical models, their 22 

potential contribution to neuronal and circuit function remains largely unexplored. One frequent 23 

misconception is that linear and sublinear dendritic integration are essentially equivalent and 24 

that only supralinear dendrites advance neuronal computations. This is far from the truth. 25 

Dendrites with sublinear activation functions are also quite powerful: they are theoretically 26 

predicted to solve numerous non-linearly separable functions and have been associated with the 27 

effective integration of coincident inputs (Cazé et al., 2013; Tran-Van-Minh et al., 2015, 2016). 28 

Supralinear integration in the dendrites of PV+ neurons on the other hand was recently shown 29 

to stabilize the formation and function of CA1 cell assemblies (Cornford et al., 2019).  30 

According to biophysical modelling, dendritic nonlinearities underlie the preference of FS BCs to 31 

distributed rather than spatially clustered synaptic inputs (Tzilivaki et al., 2019). This unintuitive 32 

finding is opposite to that seen in pyramidal model neurons, whereby clustered synaptic input 33 

drives stronger somatic responses (Poirazi et al, 2003b). This discrepancy can be explained by the 34 

very small dendritic diameter, the high conductance of A type potassium channels and the 35 

presence of both sub- and supralinear dendrites in FS BCs (Hu et al., 2014; Tzilivaki et al., 2019). 36 

Of note, preference to disperse synaptic input was also seen in Cerebellar INs (Abrahamsson et 37 



al., 2012) while increased responses to clustered synaptic input were seen in Entorhinal cortex 1 

INs(Schmidt et al., 2017). 2 

Overall, these findings suggest that dendritic nonlinearities may underlie the expression of 3 

different types of input-sensitivity to distinct IN subtypes. Regardless of the exact way in which 4 

dendritic nonlinearities influence neuronal output, their presence suggests important processing 5 

advantages like the ability to solve non-linear computations (Jadi et al., 2014; Poirazi and Mel, 6 

2001; Tran-Van-Minh et al., 2015).  7 

Plasticity in interneurons with nonlinear dendrites and possible contributions to memory 8 

engrams 9 

Nonlinear dendritic integration is maximally exploited by neuronal circuits when used in 10 

conjunction with localized plasticity rules, as the latter tunes responses to stimuli of behavioral 11 

relevance. Evidence for synaptic plasticity in INs dates back to 1982, when Long-Term-12 

Potentiation (LTP) was successfully induced by tetanic stimulation in CA1 INs in vivo (Buzsaki and 13 

Eidelberg, 1982) and in the Dentate Gyrus  (DG) (Kairiss et al., 1987; Tomasulo and Steward, 14 

1996). This interest was recently renewed for INs in the hippocampus and cortical areas in 15 

rodents (for further reading see (Abs et al., 2018; Chistiakova et al., 2019; Lamsa and Lau, 2019b), 16 

including the confirmation of  plasticity in DG INs (Hainmüller et al., 2014; Ross and Soltesz, 2001). 17 

Several of these studies highlighted the diversity of IN plasticity, stemming from the variety of 18 

active conductances and their heterogeneous distribution across different subtypes (Ascoli et al., 19 

2008; Kullmann and Lamsa, 2007; Lamsa et al., 2007).  20 

In addition to the plasticity of synaptic connections, the intrinsic excitability of inhibitory neurons 21 

is also plastic (Ross and Soltesz, 2001). Basket cells in the DG, for example, exhibit long-term 22 

increases in their resting membrane potential following high-frequency stimulation of their 23 

glutamatergic inputs. This long-lasting depolarization, which enhances the efficacy of EPSPs to 24 

fire the interneuron, results from changes in the Na+ /K+ ATPase pump function and requires the 25 

activation of calcium-permeable AMPA receptor. Similarly, brief repetitive stimulation of the CA3 26 

Schaffer collaterals causes long-term increase in the intrinsic excitability of PV+ basket cells in 27 

CA1 (Campanac et al., 2013). Whether such an increase in intrinsic excitability can be localized 28 

within specific dendrites, as in pyramidal cells (Losonczy et al., 2008), remains unknown. 29 

The above establish the presence of plasticity mechanisms in INs but do not explain how 30 

nonlinear dendrites and plasticity may work together to advance circuit computations.  31 

Effects of interneuron dendrites on excitatory and inhibitory memory engrams 32 

Memories are typically thought to be stored in excitatory neuronal engrams(Tonegawa et al., 33 

2015), often consisting of multiple cell assemblies (Ghandour et al., 2019; Sun et al., 2020). 34 

However, recent studies suggest that INs can also form strongly connected engram 35 

populations(Barron et al., 2017). These inhibitory engrams are proposed to emerge as balancing 36 

replicas of the excitatory populations, aiming to: a) prevent excessive activation of excitatory 37 



engram cells and b) make memories quiescent, namely stored in a “latent” form that can be 1 

available upon context-relevant activation (Barron et al., 2017). In line with this hypothesis, 2 

inhibitory engrams in the human hippocampus were suggested to protect from memory 3 

interference (Koolschijn et al., 2019). Yet, a well-defined theory on the role of inhibitory engram 4 

cells in memory formation is missing. Moreover, the cellular and sub-cellular mechanisms 5 

underlying the formation of these inhibitory engrams, their cell-type composition, input 6 

characteristics and wiring configurations, all remain unclear. It has been suggested that induction 7 

of LTP in IN dendrites and decreased disinhibitory input may underlie the creation and 8 

stabilization of inhibitory engrams (Barron et al., 2017) while gap junctions(Fukuda and Kosaka, 9 

2003), through their role as network synchronizers (Tamas et al., 2000; Traub et al., 2001), are 10 

another candidate mechanism. Finally, PV+INs were shown to control the size of excitatory 11 

engrams in the lateral amygdala (Morrison et al., 2016), whereas SST+ INs were proposed to do 12 

the job in the Dentate Gyrus(Stefanelli et al., 2016). Overall, these findings call for a deeper 13 

investigation of the mechanistic underpinnings of inhibitory engram neurons and their 14 

contributions to memory processes. Given that nonlinear dendrites and synaptic plasticity are 15 

key players in memory processes(Kastellakis et al., 2015), these phenomena should be 16 

extensively studied not only in excitatory but also in inhibitory neurons. 17 

 18 

Towards this goal, we can draw inspiration from studies that revealed strong links between 19 

subcellular dendritic processes in pyramidal neurons and the properties of excitatory memory 20 

engrams. Modelling and experiments for example, suggest that nonlinear dendrites and 21 

structural plasticity underlie the binding of associated information (Legenstein and Maass, 2011) 22 

and the linking of information across time (Kastellakis et al., 2016). Increased synapse clustering 23 

within nonlinear dendrites has also been associated with faster learning and increased sparsity 24 

of excitatory engrams(Frank et al., 2018). The respective role of IN dendrites in memory engrams 25 

has recently started to be investigated: FS BCs with nonlinear dendrites were predicted to enable 26 

the encoding of new memories within a smaller, sparser and less excitable excitatory neuronal 27 

population, thus increasing sparsity and storage capacity(Tzilivaki et al., 2019). These 28 

nonlinearities were also predicted to reduce the overlap between the excitatory population 29 

engrams of memories formed close in time. This reduction in population overlap is thought to 30 

decrease the probability of interference, in line with experiments (Koolschijn et al., 2019).  31 

To motivate further research exploring the potential contributions of nonlinear IN dendrites in 32 

memory engrams, we adapted the (Tzilivaki et al., 2019) model to account for calcium and 33 

protein-dependent plasticity in excitatory and inhibitory synapses impinging on pyramidal and 34 

interneuron models. We then trained the network model to encode a single associative memory, 35 

comprised of two input streams projecting randomly to excitatory model neurons. After learning, 36 

we assessed the properties of engram neurons, namely those excitatory and inhibitory neurons 37 

that responded to the presentation of one of the two input streams. Engram populations were 38 

studied under two conditions: when FS BCs were equipped with linear dendrites vs. Nonlinear 39 

dendrites (as in Tzilivaki et al, 2019). Results shown in Figure 3 reveal that, in network 40 

configurations where FS BCs are equipped with nonlinear dendrites, the size of the excitatory 41 



engram population is smaller (Figure 3B, top left) while the size of the respective inhibitory 1 

assembly is larger (Figure 3B, middle left), compared to network configurations with linear 2 

dendrites in FS BCs. However, the combined engram population, consisting of both excitatory 3 

and inhibitory neuronal assemblies is significantly smaller in the nonlinear vs. the linear 4 

configuration (Figure 3B, bottom left). On the contrary, the sparsity of all engram populations 5 

(Figure 3B, right) is significantly higher in the nonlinear compared to the linear case. Overall, 6 

these simulations suggest that nonlinearities in the dendrites of FS BCs can affect the size of both 7 

excitatory and inhibitory engram populations in opposite ways, with the net effect being the 8 

storage of memories within fewer neurons, in significantly sparser networks. Moreover, these 9 

simulations predict a tight link between subcellular features (i.e. dendritic nonlinearities) and 10 

network-level computations (in this case memory formation) and call for a more detailed 11 

investigation of how IN dendrites can contribute to higher order functions. Whether the 12 

abovementioned predictions hold true in real neurons remains an open question, which we hope 13 

will be addressed by future experimental investigations. 14 

 15 

Figure 3: Properties of excitatory and inhibitory engrams in a network model of associative 16 

memory encoding. A. We adapted a previously published model (Tzilivaki et al, 2019) to account 17 

for inhibitory calcium and protein-dependent plasticity, and assessed the properties of memory 18 

engrams during recall of the memory separately for inhibitory and excitatory populations (See 19 

supplementary information). B Left column: Size of the engram population for excitatory, 20 



inhibitory and combined (both excitatory and inhibitory) populations of neurons. Right column: 1 

Firing rate sparsity measured according to the Treves-Rolls sparsity metric for each type of 2 

engram population (higher is sparser). **: p <0.005, ***: p < 0.005 t-test. 10 simulation trials are 3 

shown in box plots. 4 

 5 

Concluding remarks 6 

In conclusion, accumulating new evidence shows that the dendrites of some IN subtypes support 7 

nonlinear integration of incoming signals. These nonlinearities, in conjunction with a variety of 8 

plasticity processes, endow specific subtypes with the ability to integrate inputs as multilayer 9 

artificial neural networks. As such, it is possible that interneurons can undertake new roles: like 10 

their excitatory neuron counterparts, they too can learn to solve challenging computational tasks 11 

and contribute to efficient learning and information storage. The extent to which interneurons 12 

act as powerful information processing players in the behaving animal remains unknown. This is 13 

largely because the computations that take part inside their dendritic trees have yet to be 14 

described. Are interneurons the alter egos of excitatory cells, implementing similar computations 15 

with the goal of balancing the two opposite forces that dominate brain functioning? Or do they 16 

have additional new roles that are just beginning to be addressed? Do their dendrites drive 17 

rhythm generation in ways that facilitate learning and memory functions, or do they simply tune 18 

in to network-level effects? In the quest of finding answers to these questions, targeted 19 

characterization of dendritic processing in combination with computational modelling and 20 

mathematical reductions can get to the core of what it is that interneurons compute.  21 
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