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Abstract 

The finite difference method is a mathematical construct that can be used to solve partial 

differential equations. In this study, we used the finite difference method to solve the Black-

Scholes-Merton partial differential equation to calculate options prices. Three methods were 

used: the Implicit Method, the Explicit Method, and the Crank-Nicolson Method. Using some 

code and the help of MATLAB I was able to calculate for each of the three methods listed above 

the values of both call and put options using the Black-Scholes-Merton partial differential 

equation. Furthermore, the Binomial Cox-Ross-Rubinstein Model was introduced briefly to 

conduct a comparative study using this model and the finite difference methods. An analysis was 

carried out to ascertain which of the above methods would agree with the Black-Scholes value of 

an option. It was found that only the Explicit Method, the Implicit Method, and the Binomial 

CRR Model produced similar values. A second analysis was done to compare which of the 

models would converge to the Black-Scholes value of an option given that the number of time 

intervals L and the intervals of the stock prices were increased. It was found that the Crank-

Nicolson method converged faster than the Binomial Model. Hence, we conclude that the finite 

difference model is more appropriate than the Binomial CRR model. 

 

 

 

 

 

 

 



OPTION VALUATION USING FINITE DIFFERENCE METHODS  
 

Table of Contents 

INTRODUCTION 5 

1. The Finite Difference Method 7 

Partial Differential Equations 7 

Simple Finite Difference Methods 8 

Constructing a Finite Difference Toolkit 9 

2. The Finite Difference Method and its Applications to Options 12 

Assumptions for the Implicit Finite Differencing Method 17 

Example 3.1 17 

4. The Explicit Method 19 

Assumptions for the Explicit Finite Difference Method 22 

See the code below for an illustration of how to solve the above matrix equation using MatLab.

 22 

Example 4.1 22 

5. The Crank Nicolson Method 24 

Assumptions for the Crank-Nicolson Method 27 

See the implementation of the following code for an example of the Crank-Nicolson method.

 27 

 Example 5.1 27 

5. The Binomial Method 28 



OPTION VALUATION USING FINITE DIFFERENCE METHODS  
 

one-step Binomial Model 29 

The Multi-Step Binomial Model 30 

Calculating the Option Payoffs at Maturity 31 

Discounting the Option Payoffs 32 

Example 5.1 32 

6. Analysis 34 

Table 6.1 34 

Table 6.2 35 

Conclusion 36 

References 37 

Appendix 38 

MATLAB Function: finDiffImplicit 38 

MATLAB Function: finDiffExplicit 42 

MATLAB Function: finDiffCN 46 

 

 



OPTION VALUATION USING FINITE DIFFERENCE METHODS 6 
 

INTRODUCTION 

An option is a financial instrument that gives its holder the right but not the obligation to 

either buy or sell a predetermined asset at a given time in the future. The individual who issues 

the option is referred to as the writer of the option. There are two types of options, puts and calls. 

A put option gives the holder of the option the right but not the obligation to sell a predetermined 

asset at a given point in time. On the other hand, a call option gives the holder the right but not 

the obligation to purchase a predetermined asset at a given point in time. Options are normally 

held till their expiration or maturity date. The price at which the asset will be sold or bought at 

the maturity date is called the strike price. There are two other types of options, European or 

American options. These types of options defer not regarding their payoff but their expiration 

date. European options can be exercised at any time up to the expiration date. However, 

American options can only be exercised at the expiration date.  

Options can be used both for speculating and hedging. Speculating is when a person takes a 

position in an asset to make a return based on its up or downward movement. For example, if an 

investor believes that the shares of a company will rise, he or she can purchase a call option; 

therefore, making a profit if the share price increases. If the share price does not increase, then 

the investor would decide against exercising the option. Hedging, on the other hand, allows 

individuals to offset the risk of their investment through the purchase of options. In this case, 

options allow individuals to be able to hedge the risk of that given portfolio or investment. The 

person who is usually on the other side of a hedge is the speculator. For example, security 

holders can hedge their risk if they believe that the price of their securities will decrease in the 

future. This can be done by purchasing a put option. 
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Options are traded on various exchanges. Such exchanges include the Chicago Board Options 

Exchange (CBOE), NASDAQ OMX, NYSE Euronext, the International Securities Exchange, 

and the Boston Options Exchange. Options are also traded between financial institutions and 

these exchanges are referred to as over-the-counter (OTC deals). Currently, options are traded on 

more than 2,500 different stocks. One option contract can give its holder the right to buy or sell 

100 shares. To buy and sell options, a value must be assigned to them. The assigning of these 

values is referred to as option valuation and is done with the use of various models. This research 

contains an overview of finite difference methods and their applications in option pricing. We 

will be looking at the application of this method along with the application of the Binomial 

Method. Both models apply mathematical principles and formulas to calculate the prices of both 

call and put options. 
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1. The Finite Difference Method 

 The finite difference method of option pricing involves the use of mathematical 

applications to approximate an option price’s differential equations using sets of discrete-time 

difference equations. The three finite difference methods that this study will cover include the 

explicit method, the implicit method, and the Crank-Nicolson Method.  

Each finite difference method has four steps. 

1. The first step involves converting the partial differential equation into a discrete-time 

differential equation. 

2.  Specify a grid of potential current and future prices of the asset that is being evaluated. 

3. Calculate the payoff of the option given the prices within a certain range or boundary of the 

grid. 

4. Iteratively calculate the payoff of all other options including the point of the underlying price 

(base year) and the current price. The procedure to iteratively calculate the payoffs is different 

for each finite difference method. That is for the Explicit, Implicit, or Crank Difference Methods 

the valuation of the asset will utilize a different method. 

Partial Differential Equations 

 

To introduce the topic of finite difference methods, we shall first refer to partial differential 

equations. A partial differential equation can be of the form: 

a(t, x,y)Ut + b(t,x,y)Ux + (t,x,y)Uyy=f(t,x,y)                                                          (1.0)  

Where 

1. t,x, and y are the independent variables 

2. a,b,c, and f are known functions of the independent variables 
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3. U is the dependent variable and is an unknown function of the independent variables. 

4. Ut, Ux and Uyy are partial derivatives where Ut=(∂U/∂t), Ux=(∂U/∂x) and Uyy=(∂2U\∂y2) 

 

Solving a PDE involves finding the unknown function U; which is the exact solution that 

satisfies both the initial and boundary conditions. Some Partial Differential Equations do not 

have exact solutions so in these cases, an approximate solution to the exact solution U must be 

found. These approximations are usually found numerically using computer software. These 

approximations are then used as replacements for the partial derivatives within the PDE. From 

this newly defined equation, an approximate solution can then be found.  

The finite difference method works by replacing the region over which the independent 

variables of the partial differential equations stretch, with a mesh of points that are approximated 

using Taylor’s theorem.  

Given the equation (1.1) from above,  

U(x0+h)=U(x0)+hUx(x0)+h2Uxx(x0)/2!+....+hn-1Un-1(x0)/(n-1)!+O(hn),    (1.1b) 

where, 

1. Ux=dU/dx, Uxx=d2U/dx2,....., Un-1=dn-1U/dxn-1 

2. Ux(x0) is the derivative of U concerning x evaluated at x=x0. 

3. And O(hn) is an unknown error term. 

Our first step will be to reinterpret the equation given in (1.1b). To achieve this, we will truncate 

the right side of the equation which will yield the error term O(hn). 

Simple Finite Difference Methods 

Truncating after the first derivative we have: 
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U(x0+h)=U(x0) + hUx(x0) + O(h2)           

  (1.2) 

Rearranging this equation, we have: 

Ux(x0)={U(x0+h)-U(x0)}/h + O(h2)/h 

=>  Ux(x0)={U(x0+h)-U(x0)}/h + O(h)                                                                         (1.3) 

Removing the O(h) term we have 

U(x0)={U(x0+h)-U(x0)}/h  

which is the first-order approximation to the partial differential equation in (1.1b). The 

approximation is called a first-order approximation because we start at point x0 and move one 

step in the direction of x0+h. The step size is known as h, where h>0. 

Constructing a Finite Difference Toolkit 

Suppose U is a function of two variables t and x; i.e., U(t,x), where if t is constant U now 

becomes a function of one variable x. Furthermore, suppose we replace the step-variable h with 

Δx.  

Therefore, from equation (1.1b) we have 

U(t,x+Δx)=U(t,x0)+ΔxUx(t,x0)+(Δx2/2!)Uxx(t,x0)+(Δx3/3!)Uxxx(t,x0)+..+{Δx(n-1)/(n-1)}Un-

1(t,x0)+O(Δxn)               

      (1.4)         

Removing up to O(Δx2) gives, 

U(t, x0+Δx)= U(t,x0) + ΔxUx(t,x0) + O(Δx2)                                            

 (1.5) 

=> Ux(t,x0)={U(t,x0+Δx)-U(t,x0)}/Δx -O(Δx2)/Δx 

=>Ux(t,x0)={U(t,x0+Δx)-U(t,x0)}/Δx - O(Δx)                                           (1.6) 
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 Equation (1.6) holds for any values of the (t,x0). Also, for numerical schemes for PDEs, 

we are restricted to a grid of discrete x values, x1, x2, .., xN, and discrete t levels 0=t0,t1,t2... 

Furthermore, suppose that we use constant grid spacing such that xi=xi-1+Δx. Analyzing equation 

(1.6) on a grid point (tn, xi) we have  

Ux(tn,xi)={U(tn,xi+Δx)-U(tn,xi)}/Δx - O(Δx)                                                             (1.7) 

Using common subscript notation, we have: 

Un
i=U(tn,xi)                                                                                                         (1.8) 

So, equation (1.7) becomes 

Ux(tn,xi)≈(Un
i+1-Un

i)/Δx                                                                                              (1.9) 

Which is a first-order forward difference approximation to Ux(tn, xi). 

Furthermore, using equation (1.6) we derive another Finite Difference Approximation. 

Replacing Δx with -Δx we have 

U(t, x0-Δx)= U(t,x0) - ΔxUx(t,x0) + O(Δx2)        

   (1.10) 

=>Ux(t,x0)={U(t,x0)-U(t,x0-Δx)}/Δx -O(Δx2)/Δx 

=>Ux(t,x0)={U(t,x0)-U(t,x0+Δx)}/Δx - O(Δx) 

Therefore, 

Using the previous notation of Un
i≈U(tn, xi) and evaluating at points (tn, xi) we have, 

Ux(tn,xi)~(Un
i - Un

i-1)/Δx  

Which is the first-order backward approximation to Ux(tn, xi). 
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By increasing the order of the Taylor approximation we can find a more accurate approximation 

of the partial differential equation. To find a second-order central difference approximation for 

Ux(tn, xi) we truncate equation (1.4) to O(Δx3), subtract this new expression from equation (1.4) 

and then evaluate this equation at the points (tn, xi). 

Starting from the initial equation (1.4) we have: 

U(t,x+Δx)=U(t,x0)+ΔxUx(t,x0)+(Δx/2!)Uxx(t,x0)+(Δx/3!)Uxxx(t,x0)...+{Δxn-1/(n-1)}Un-

1(t,x0)+O(Δxn)            

        (1.11) 

Removing up to O(Δx3) gives: 

U(t, x0+Δx)= U(t,x0) + ΔxUx(t,x0) +(Δx/2!)Uxx(t,x0) + O(Δx3)                                    (1.12) 

Subtracting equation (1.12) from equation (1.4), evaluating at the points (tn, xi) and proceeding 

with the appropriate substitutions we get, 

Ux(tn,xi)≈(Un
i+1 - Un

i-1)/2Δx          

    (1.13) 

which is the second-order central difference finite difference approximation to the equation 

Ux(tn, xi). 

In addition to the second-order central difference FD approximation, there is also the second-

order symmetric difference FD approximation to Ux(tn, xi). 

Truncating equation (1.4) to O(Δx4) and doing the necessary steps we get, 

Uxx(tn,xi)≈(Un
i+1 - 2Un

i+ Un
i-1)/(Δx2).                                                      

 (1.14) 

The above results can be used to form a finite difference toolkit with the partial derivatives 

concerning x. 
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Similarly, a finite difference toolkit can be formed in terms of t. That is, for a forward difference 

FD approximation we have Ut(tn, xi)≈(Un+1
i - Un

i)/Δt.  (1.15) 

Secondly, for a first-order backward difference FD approximation, for an equation, we have 

Ux(tn, xi)≈(Un
i - Un-1

i-1)/Δx.          

    (1.16) 

For a second-order central difference FD approximation for an equation concerning t, we have 

Ut(tn,xi)≈(Un+1
i-Un-1

i)/2Δt .                                                                                      (1.17) 

And lastly, for a second-order symmetric FD approximation for an equation concerning t, we 

have 

Utt(tn,xi)≈(Un+1
i-2Un

i+Un-1
i)/Δt2.         

   (1.18) 
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2. The Finite Difference Method and its Applications to Options 

 The finite difference method comprises three methods; the implicit method, the explicit 

method, and the Crank-Nicolson method. Each of these finite difference methods is comprised of 

four steps: 

1. Discretizing the differential equation 

2. Specifying a grid of current potential and future prices for the underlying asset. This grid 

ranges from the minimum price of the underlying to its maximum price from today to the 

maturity date of the option. 

3. Calculating the option payoff at certain points on the boundaries of the grid. 

4. Iteratively determining the price of the option at the various underlying prices. 

 

 The steps that have been described above are common to each of the three methods of 

option pricing. The only difference lies in the iterative valuation of the option prices within the 

points of the defined grid. 

 One partial differential equation that describes the price of options about an underlying 

asset is the Black-Scholes-Merton partial differential equation. This equation combines the value 

of an asset S with an option with price f(s,t). 

The equation is denoted as follows:  

rf
SS

f
rS

t

F
=




+




+




2

2
22 f

S
2

1


                                                              

 (2.0) 

One method of solving this equation is to use one of the three finite difference methods 

mentioned above. This can be done by substituting the partial derivatives with the appropriate 
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difference equations. The difference equation that is used differs based on the finite difference 

method that is being employed. That is, the implicit, explicit, and Crank-Nicolson methods all 

use different combinations of difference approximations to find the solution to the above PDE. 

The finite difference method is used whenever the exact solution to the partial differential 

equation cannot be found.  

Using the approximate solutions to equation U(tn, xi) from the previous section; however, 

shifting from a two-variable function to a one-variable function and representing U in terms of a 

different function f we have: 

The first-order forward difference FD approximation: 

)(
)()(

)( hO
h

xfhxf
xf +

−+
=

                                                                     (2.1) 

The first-order backward difference FD approximation: 

)(
)()(

)( hO
h

hxfxf
xf +

−−
=

                                                                     (2.2) 

The central difference FD approximation: 

)(
2

)()(
)( 2hO

h

hxfhxf
xf +

−−+
=

                                                          (2.3) 

The second-order approximation: 

)(
)()(2)(

)( 2

2
hO

h

hxfxfhxf
xf +

−+−+
=

        

 (2.4) 

 Our next step in discretizing the partial differential equation in (2.0) would be to replace 

the partial derivatives with our approximations.  
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 The next step in valuing options using the finite difference method is to specify a grid of 

the potential future values of the given underlying asset prices. This is done by plotting a graph 

of the underlying asset price against very small movements in time. Consider the grid as follows: 

 

 As is shown in the diagram, the time to expiration is divided into N equal intervals, where 

the expiration date is t. Furthermore, the initial asset value to the maximum asset value is divided 

into M equal intervals. Therefore, we are left with a grid made up of N+1 levels of time and M+1 

prices. 

 The third step as discussed above is to determine the value of the option at the boundaries 

of the grid.  

Consider the diagram below, 

 



OPTION VALUATION USING FINITE DIFFERENCE METHODS 17 
 

To determine the value of the option at the boundaries of the grid, we consider when the 

underlying asset S has price Smax when the underlying asset S has price Smin and lastly the value 

of the underlying asset at the expiry date. 

 

3. The Implicit Finite Difference Method 

 For the Implicit Difference Method, we shall discretize the Black-Scholes-Merton partial 

differential equation 

rf
SS

f
rS

t

F
=




+




+




2

2
22 f

S
2

1


          

   (3.0) 

using the approximations given above. Please note that the Black-Scholes-Merton Equation is a 

formula linking the value of an option to the value of an underlying asset. We shall discretize the 

Black-Scholes-Merton Equation is discretized using the following formulas:  

The first-order forward difference approximation for Ft: 

t

ff

t

f jiji



,,1 −
=



 +

          

     (2.4) 

The first-order central difference FD approximation for Fs: 

S

ff

S

f jiji

2

1,1, −+ −
=





         

     (2.5) 

And the standard approximation for Fss: 
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2

,1,1,

2

2

)(

2

S

fff

S

f jijiji



−+
=



 −+

         

   (2.6) 

Please note that I denote steps in time, while j denotes steps in the price of the underlying asset. 

Therefore, the Black-Scholes-Merton formula using the above approximations is: 

ij

jijijijijijiji
rf

S

fff
Sj

S

ff
Srj

t

ff
=

−+
+

−
+

− −+−++

2

,1,1,221,1,,,1

)(

2
)(

2

1

2 





  

(2.7) 

 

Which eventually reduces to, 

 

aj*fi,j-1 + bj*fi,j + cj*fi,j+1 = fi+1,j          

    (2.8) 

 

Where, 

aj*=½ ẟt(rj-σ2j2) 

bj*=1+ẟt(σ2j2+r) 

cj*=½ ẟ(-rj-σ2j2) 

 From the above equations, it is then known that the value of three different options at 

time t is dependent upon the value of the underlying asset at time t+1. 
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See the following diagram: 

 

 This diagram illustrates what was discussed above, where the option prices of the 

underlying asset price are dependent on the price of the option at time i+1. The unknown values 

of the option are being considered at prices j-1,j, and j+1 and are dependent on or can be found 

using the option price at time i+1. Therefore, using the value of the option at expiry we can then 

find the price of an option at Δt before. Consequently, we can find the price of the option at 2Δt 

before expiry using the price of the option at Δt. Working backward, we can eventually find the 

price of the option today. 

The above equations can be represented in matrix form. That is, 

BFi=Fi+1+Ki where i is from N-1 to 0 (2.9) 

Where  
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And  

  

 

We shall use the matrix form of the equation to solve 

for the option prices. 

 

Assumptions for the Implicit Finite Differencing Method  

 To properly calculate options prices, it is important to ensure that the matrix equation in 

(2.9) is stable. Stability is ensured when the infinity norm of the matrix B^-1 is less than or equal 

to 1. This will enable the successive values of equation Fi to converge to a number less than 

infinity. 

See the following code for an example of how to price options using the Implicit Finite 

Difference Method: 

 

Example 3.1 

 

Consider pricing a European Call and Put option with the following parameters, X = $60, S0 = 

$50, r = 5%, σ = 0.2, and T = 1. 
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The Black-Scholes price for the Call option is $1.624, and the Put option is $8.697 

See the following MATLAB implementation for the Implicit FDM method: 

>> cPrice = finDiffImplicit(60,50,0.05,0.2,0:1:100,0:0.01:1,'CALL') 

cPrice=1.5826 

>> pPrice = finDiffImplicit(60,50,0.05,0.25,0:1:100,0:0.01:1,'PUT') 

pPrice=8.698 

4. The Explicit Method 

 For the explicit method, we shall use the Black-Scholes-Merton partial differential 

equation,  

rf
SS

f
rS

t

F
=




+




+




2

2
22 f

S
2

1


         

   (4.0) 

to derive a way to price an option. This will be done by approximating the values of the partial 

derivatives using the FD approximations. Using the finite difference approximations derived 

above we have: 

The first-order backward FD approximation for Ft: 

t

ff

t

f jiji



,1, −−
=





          

   (4.1) 

The first-order central difference FD approximation for Fs. 
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S

ff

S

f jiji

2

1,1, −+ −
=





          

   (4.2) 

And the standard approximation for Fss. 

2

,1,1,

2

2

)(

2

S

fff

S

f jijiji



−+
=



 −+

        

  (4.3) 

Where the indices i represent points in time while the indices j represent points in the stock 

prices.  

Replacing the partial differential equations with the appropriate approximations we have 

ij

jijijijijijiji
rf

S

fff
Sj

S

ff
Srj

t

ff
=

−+
+

−
+

− −+−+−

2

,1,1,221,1,,1,

)(

2
)(

2

1

2 






 

(4.4) 

Which eventually reduces to: 

fi-1,j=ajfi,j-1 + bjfi,j + cjfi,j+1          

    (4.5) 

 

Where, 

aj=½ẟt(σ2j2-rj) 

bj=1+ẟt(σ2j2+r) 

cj=½ ẟ(σ2j2+rj) 

 From the above equations, given the option price at time t, we can then calculate the 

value of the option price at time t-1. Similarly to the implicit method, we can then find the value 
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of the option given the price/prices at a given point in the future. The difference between the 

implicit and explicit finite difference methods is that for the explicit method, we use values of 

the option in the future to calculate the prices of options for different underlying asset prices. On 

the other hand, for the implicit method, we used the value of the option at the expiry date to find 

option prices for their respective underlying asset prices. 

What was described above can be seen in the following diagram: 

 

Where the values of the option at time i-1 are ascertained from the values of the options at their 

respective asset prices. Furthermore, this diagram implies that given option payoffs at the expiry 

date we can then find the value of the option Δt before expiry. Furthermore, by working 

backwards we can then find the value of the option at time t=0; which is today’s price. 

A matrix formulation for the above equation (3.4) can be expressed as follows: 

Fi-1=AFi+Ki where i  is from N to 1.          

  (4.6) 

Where equation (3.5) can be expressed as 

 



OPTION VALUATION USING FINITE DIFFERENCE METHODS 24 
 

 

 

 

Equation (4.6) will be used to solve for option prices. 

Assumptions for the Explicit Finite Difference Method 

 To solve the matrix equation in (4.6), we need to verify that the equation is stable. 

Stability can be verified by finding the infinite norm of matrix A. If the infinite norm of the 

matrix A is less than or equal to 1 then the equation is stable. That is, the LHS of the equation 

converges to a solution because the successive values of Fi will get smaller and smaller, therefore 

converging.  

  

See the code below for an illustration of how to solve the above matrix equation using 

MATLAB.  

Example 4.1 
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Consider pricing a European Call and Put option with the following parameters, X = $60, S0 = 

$50, r = 5%, σ = 0.2, and T = 1. 

The Black-Scholes price for the Call option is $1.624, and the Put option is $8.697 

The implementation of the Explicit FDM using MATLAB is as follows: 

>> cPrice = finDiffExplicit(60,50,0.05,0.2,0:1:100,0:0.001:1,'CALL') 

cPrice=1.621 

>> pPrice = finDiffExplicit(60,50,0.05,0.2,0:1:100,0:0.001:1,'PUT') 

pPrice=8.695 
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5. The Crank-Nicolson Method 

 The Crank-Nicolson Method is based on both the implicit method and the explicit 

method. It represents the average between the two methods. 

Consider the grid below, 

 

 

Figure 5.1: Grid of the Price Points for the Crank-Nicolson Method 

  

 In the explicit method the price of the option at fi-1,j is found using the values of the 

option at nodes fi,j+1, fi,j and fi,j-1. Whilst in the implicit method the values of the option at nodes 

fi-1,j+1, fi-1,j and fi-1,j-1 are found using the option value at node fi,j. However, in the Crank-Nicolson 

method, the option values of the nodes on the left side are based on each node on the right side. 

That is the prices of the option at nodes fi-1,j+1, fi-1,j and fi-1,j-1 are based on the option values at the 

nodes fi,j+1, fi,j and fi,j-1. To derive the Crank-Nicolson equations we consider the price of the 

option at the node fi-1/2,j. (Please note that a price will not be computed for this node. On the 

contrary, this point will be used for notational purposes and will not appear in the final equation.) 
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Consider the Black-Scholes-Merton partial differential equation. We aim to discretize this 

equation: 
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Using the following approximations: 

1. The Central Approximation for Ft. 

)( 2,1,,2/1
to

t

ff

t

f jijiji



+

−
=



 −−

        

    (5.2) 

2. A Central Approximation for Fs. 

 

 

 

 

(5.3) 

3. And using a standard approximation for Fss. 

 

(5.4) 

Substituting these equations into the Black-Scholes-Merton equation and reducing it we have: 
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   (5.5) 

where:              

         

  

                       (5.6) 

 The above equation (5.2), when expanded for all values of i and j, leads to M-1 equations. 

Therefore we can then solve these simultaneous equations to calculate the value for f at each 

node. To solve the above we shall use the matrix representation as found below: 

Consider the matrix equation below: 

CFi-1=DFi+Ki-1+Ki 

Where i is from N to1. 

Where 
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And 

 

Assumptions for the Crank-Nicolson Method 

 A necessary assumption that is required to solve equation (5.1) is for both stability and 

convergence. These properties are necessary to ensure that numerical solutions to these equations 

can be found. That is, they converge on a solution. See the following equation: 

 

 That is the infinite norm of the inverse of C times the matrix D is less than equal to 1. 

When this equation holds the successive values of Fi get smaller and smaller and therefore the 

algorithm converges 

See the implementation of the following code for an example of the Crank-Nicolson 

method. 

 

Example 5.1 
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Consider pricing a European Call and Put option with the following parameters, X = $60, S0 = 

$50, r = 5%, σ = 0.2, and T = 1. 

Implementing the formula for the Crank-Nicolson method in MATLAB we have: 

>> cPrice=finDiffCN(60,50,0.5.0:1:100,0:0.1:1,’Call’) 

cPrice=1.6216 

>> pPrice=finDiffCN(60,50,0.5,0.2,0:1:100,0:0.01:1,’PUT’) 

pPrice=8.6952 

5. The Binomial Method 

Binomial Models are by far the simplest methods of option pricing. Within this method there are 

three main steps involved in pricing options: 

1. Calculate the potential future price of the underlying asset at expiry. 

2. Calculate the option payoff at expiry for each of the underlying asset prices. 

3. Discount the payoffs back to today to determine the value of the option today. 

The first step in creating the binomial model is to create a true containing the potential future prices 

of the underlying asset. This can be achieved by using risk-neutral pricing, constructing a one-step 

binomial model, and using a multi-period binomial tree. 

Consider the One-Step Binomial Model below: 
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From the above diagram, we have the following: 

● S0: The Price of the Stock today 

● p: The probability of a rise in the stock price. 

● u: The factor by which the stock price rises 

● d: The factor by which the stock price falls. 

 

Assuming that the price of an asset today is S0 given a step of Δt in the future we have that the 

price of the stock can either be Su (S0u) or Sd (S0d) where the Su is the price of the stock given 

that it rises over the interval Δt and Sd is the price of the stock given that it decreases over the 

time interval Δt. The stock price S0 follows that of a random walk and the probability that this 

price will rise over the given interval is p. Similarly, the probability that the stock price will fall 

is 1-p. 

One-step Binomial Model 

 

For the one-step binomial model, three main equations are used to solve for the parameters p, u, 

and d where: 

pu + (1-p)d=erΔt          

    (6.1)  
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Equation (6.1) arises out of the requirement that the expected return of the binomial model is 

equal to the expected return in a risk-neutral world. 

The second equation, 

pu2 + (1-p)d2 - erΔt=sigma squaredΔt        

 (6.2) 

ensures that the variance in a risk-free world is equal to the variance of the binomial model. 

The third equation was devised by Cox, Ross, and Rubinstein. That is, 

u=1/d            

    (6.3) 

Rearranging the parameters above we get: 

 

These formulas are the equations for the Cox-Ross Rubinstein model. 
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The Multi-Step Binomial Model 

Consider the two-step binomial model below: 

 

In the above model, the initial price of the stock is S0. The stock price can either move up to Su 

or down to Sd in the first period. In the second period, the stock price can increase from Su to Suu 

or decrease from Su to Sud. Additionally, the price can rise from Sd to Sdu or fall from Sd to Sdd. 

If Sud=Sdu then the tree is said to be recombining. If not then the tree is non-recombining. 

Because options prices are normally calculated over hundreds of thousands of periods, non-

recombining trees are not usually calculated in practice due to financial constraints or a lack of 

resources.  

Equation (6.3) ensures that the CRR binomial model generates a recombining tree. 

A multi-step binomial model can be represented by the below: 
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The period from S0 to node S0u3 is the time from today to the expiry of the option. This period is 

split between the nodes to allow the calculation of the potential future stock prices at the various 

nodes. That is the tree contains all the potential future values of the stock from today to its 

maturity date. 

Calculating the Option Payoffs at Maturity 

The next step in the binomial pricing model is to calculate the payoffs of the options. The 

payoffs for a simple put and call are: 

Put: VN=max(X-SN,0) 

Call: VN=max(SN-X,0) 

where, 

● N designates a node at expiry 

● VN is the option value 

● X is the strike price 

● SN is the value of the underlying asset 
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Discounting the Option Payoffs 

The last step in the Binomial Pricing model is to discount the option values back to today. This 

can be done using a method called backwards induction which involves starting from the expiry 

date and working sequentially back in time to calculate the option prices at each of the nodes. 

Using the appropriate formula the result follows: 

European Put or Call: Vn= e-rΔt(pVu+(1-p)Vd) 

American Put: Vn = max(X-Sn,e-rΔt(pVu+(1-p)Vd)) 

American Call: Vn = max(Sn-X,e-rΔt(pVu+(1-p)Vd)) 

where 

● n designates a node before expiry. 

● Vn is the option value. 

● X is the strike. 

● Sn is the price of the underlying asset. 

● p is the probability of an upward price movement. 

● Vu is the option value from node upper node at n+1. 

● Vd is the option value from the lower node at n+1. 

● r is the risk-free interest rate. 

● Δt is the step size between time slices of the model. 

See the code below for an implementation of the Cox Ross Rubinstein Model. 

Example 5.1 

Consider pricing a European Call option with the following parameters, X = $60, S0 = $50, r = 

5%, σ = 0.2, Δt = 0.01, N = 100. 
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Using the following MATLAB implementation for the Binomial Cox Ross Rubinstein Model we 

have: 

>> oPrice=binPriceCRR(60,50,0.05,0.2,0.01,100,’CALL’,false) 

oPrice= 1.628 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



OPTION VALUATION USING FINITE DIFFERENCE METHODS 37 
 

6. Analysis 

Combining the results above we create the tables below, where the parameters for the European 

call option are X = $60, S0 = $50, r = 5%, σ = 0.2, and T = 1. To use the Binomial Cox Ross 

Rubinstein method we add the parameters Δt = 0.01, N = 100. 

Note: We shall compare the option prices of the four models concerning the Black Scholes value 

of a call option. 

Consider the following table: 

Table 6.1 

Stock 

Price 

Black-Scholes value 

of Equation 

Implicit 

Method 

Explicit 

Method 

Crank-Nicolson 

Method 

Binomial CRR 

Method 

$50 $1.6237 $1.5826 $1.6209 $1.6216 $1.6279 

$60 $6.2704 $5.6352 $6.259 $6.2641 $6.2584 

$70 $13.9353 $10.1133 $13.7997 $13.8731 $13.9346 

$80 $23.1795 $10.7415 $22.5200 $22.7579 $23.1783 

$90 $32.9821 $6.8721 $30.8951 $31.3900 $32.9807 

$100 $42.9375 $38.0492 $38.0492 $38.0492 $42.9372 

 

Note: The Black-Scholes value of the call option was calculated using the built-in MATLAB 

code [Call, Put] = blsprice(Price, Strike, Rate, Time, Volatility). 

Table 6.1 shows that for different stock prices the Explicit, the Crank-Nicolson, and the 

Binomial CRR method generally agree with the Black-Scholes value of an option whereas the 

Implicit Method did not generate similar values. 
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Furthermore, we can look at the convergence of the four models concerning the Black Scholes 

value of the option.  

For the values of M and L where M is the number of intervals up to the maximum stock price 

and L is the number of intervals up until the expiry date where L=2M we shall calculate using 

the different models the price of a call option above with stock price $50 and strike price $60 

relative to the Black Scholes value of $1.6237. 

Table  

M L Implicit 

Method 

Explicit 

Method 

Crank-

Nicolson 

Method 

Binomial 

CRR Method 

10 20 $1.3236 $1.4413 $1.4791 $1.5710 

20 40 $1.5046 $1.5655 $1.5741 $1.6104 

30 60 $1.5487 $1.5967 $1.6011 $1.6310 

40 80 $1.5652 $1.6080 $1.6110 $1.6136 

50 100 $1.5732 $1.6133 $1.6156 $1.6279 

 

From the above table 6.2, we can see that as M and L get larger the accuracy of the Crank 

Nicolson Finite Difference Method compared to the Binomial CRR method gradually increases. 

That is, the Crank-Nicolson method converges to the actual option price faster than the Binomial 

CRR model. Therefore we conclude that the Crank-Nicolson method of Finite Differencing is 

more stable than the Binomial CRR Model. 
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Conclusion 

Options are financial instruments that are useful in the purchasing of stocks. There are many 

ways to price these options. Three of these ways were assessed in detail and one method was 

briefly spoken about. Out of the four methods that were introduced, through my analysis, I 

discovered that only three of these methods returned consistent values: namely the Explicit 

method, the Crank-Nicolson method, and the Binomial CRR method. Furthermore, of these three 

methods, it was discovered that the Crank-Nicolson method is more appropriate in the pricing of 

options when the number of intervals for both time and the stock price increases. 
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Appendix 

Implicit Finite Difference Method Code: 

MATLAB Function: finDiffImplicit 

function oPrice = finDiffImplicit(X,S0,r,sig,Svec,tvec,oType) 

% Function to calculate the price of a vanilla European 

% Put or Call option using the implicit finite difference method 

% 

% oPrice = finDiffImplicit(X,r,sig,Svec,tvec,oType) 

% 

% Inputs: X - strike 

%       : S0 - stock price 

%: r - risk-free interest rate 

%: sig - volatility 

%: Svec - Vector of stock prices (i.e. grid points) 

%: tvec - Vector of times (i.e. grid points) 

%       : oType - must be 'PUT' or 'CALL'. 

% 

% Output: oPrice - the option price 

% 

% Notes: This code focuses on details of the implementation of the 

%        implicit finite difference scheme. 

%        It does not contain any programmatic essentials such as error 
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%        checking. 

%        It does not allow for optional/default input arguments. 

%        It is not optimized for memory efficiency, speed, or 

%        use of sparse matrices. 

  

% Author: Phil Goddard (phil@goddardconsulting.ca) 

% Date  : Q4, 2007 

  

% Get the number of grid points 

M = length(Svec)-1; 

N = length(tvec)-1; 

disp(M) 

disp(N) 

% Get the grid sizes (assuming equispaced points) 

dt = tvec(2)-tvec(1); 

  

% Calculate the coefficients 

% To do this we need a vector of j points 

j = 0:M; 

sig2 = sig*sig; 

aj = (dt*j/2).*(r - sig2*j); 

bj = 1 + dt*(sig2*(j.^2) + r); 

cj = -(dt*j/2).*(r + sig2*j); 
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% Pre-allocate the output 

price(1:M+1,1:N+1) = nan; 

  

% Specify the boundary conditions 

switch oType 

    case 'CALL' 

        % Specify the expiry time boundary condition 

        price(:,end) = max(Svec-X,0); 

        % Put in the minimum and maximum price boundary conditions 

        % assuming that the largest value in the Svec is 

        % chosen so that the following is true for all time 

        price(1,:) = 0; 

        price(end,:) = (Svec(end)-X)*exp(-r*tvec(end:-1:1)); 

    case 'PUT' 

        % Specify the expiry time boundary condition 

        price(:,end) = max(X-Svec,0); 

        % Put in the minimum and maximum price boundary conditions 

        % assuming that the largest value in the Svec is 

        % chosen so that the following is true for all time 

        price(1,:) = (X-Svec(end))*exp(-r*tvec(end:-1:1)); 

        price(end,:) = 0; 

end 
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% Form the tridiagonal matrix 

B = diag(aj(3:M),-1) + diag(bj(2:M)) + diag(cj(2:M-1),1); 

[L,U] = lu(B); 

  

% Solve at each node 

offset = zeros(size(B,2),1); 

for idx = N:-1:1 

    offset(1) = aj(2)*price(1,idx); 

    % offset(end) = c(end)*price(end,idx); % This will always be zero 

    price(2:M,idx) = U\(L\(price(2:M,idx+1) - offset)); 

end 

  

% Calculate the option price 

oPrice = interp1(Svec,price(:,1),S0); 
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Explicit Finite Difference Method Code: 

MATLAB Function: finDiffExplicit 

function oPrice = finDiffExplicit(X,S0,r,sig,Svec,tvec,oType) 

% Function to calculate the price of a vanilla European 

% Put or Call option using the explicit finite difference method 

% 

% oPrice = finDiffExplicit(X,r,sig,Svec,tvec,oType) 

% 

% Inputs: X - strike 

%       : S0 - stock price 

%: r - risk-free interest rate 

%: sig - volatility 

%: Svec - Vector of stock prices (i.e. grid points) 

%: tvec - Vector of times (i.e. grid points) 

%       : oType - must be 'PUT' or 'CALL'. 

% 

% Output: oPrice - the option price 

% 

% Notes: This code focuses on details of the implementation of the 

%        explicit finite difference scheme. 

%        It does not contain any programmatic essentials such as error 

%        checking. 
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%        It does not allow for optional/default input arguments. 

%        It is not optimized for memory efficiency, speed, or 

%        use of sparse matrices. 

  

% Author: Phil Goddard (phil@goddardconsulting.ca) 

% Date  : Q4, 2007 

  

% Get the number of grid points 

M = length(Svec)-1; 

N = length(tvec)-1; 

% Get the grid sizes (assuming equispaced points) 

dt = tvec(2)-tvec(1); 

  

% Calculate the coefficients 

% To do this we need a vector of j points 

j = 1:M-1; 

sig2 = sig*sig; 

j2 = j.*j; 

aj = 0.5*dt*(sig2*j2-r*j); 

bj = 1-dt*(sig2*j2+r); 

cj = 0.5*dt*(sig2*j2+r*j); 

  

% Pre-allocate the output 
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price(1:M+1,1:N+1) = nan; 

  

% Specify the boundary conditions 

switch oType 

    case 'CALL' 

        % Specify the expiry time boundary condition 

        price(:,end) = max(Svec-X,0); 

        % Put in the minimum and maximum price boundary conditions 

        % assuming that the largest value in the Svec is 

        % chosen so that the following is true for all time 

        price(1,:) = 0; 

        price(end,:) = (Svec(end)-X)*exp(-r*tvec(end:-1:1)); 

    case 'PUT' 

        % Specify the expiry time boundary condition 

        price(:,end) = max(X-Svec,0); 

        % Put in the minimum and maximum price boundary conditions 

        % assuming that the largest value in the Svec is 

        % chosen so that the following is true for all time 

        price(1,:) = (X-Svec(end))*exp(-r*tvec(end:-1:1)); 

        price(end,:) = 0; 

end 

  

% Form the tridiagonal matrix 
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A = diag(bj);  % Diagonal terms 

A(2:M:end) = aj(2:end); % terms below the diagonal 

A(M:M:end) = cj(1:end-1); % terms above the diagonal 

  

% Calculate the price at all interior nodes 

offsetConstants = [aj(1); cj(end)]; 

for i = N:-1:1 

    price(2:end-1,i) = A*price(2:end-1,i+1); 

    % Offset the first and last terms 

    price([2 end-1],i) = price([2 end-1],i) + ... 

        offsetConstants.*price([1 end],i+1); 

end 

  

% Calculate the option price 

oPrice = interp1(Svec,price(:,1),S0); 
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MATLAB Function: finDiffCN 

function oPrice = finDiffCN(X,S0,r,sig,Svec,tvec,oType) 

% Function to calculate the price of a vanilla European 

% Put or Call option using the Crank-Nicolson finite difference method 

% 

% oPrice = finDiffCN(X,r,sig,Svec,tvec,oType) 

% 

% Inputs: X - strike 

%       : S0 - stock price 

%: r - risk-free interest rate 

%: sig - volatility 

%: Svec - Vector of stock prices (i.e. grid points) 

%: tvec - Vector of times (i.e. grid points) 

%       : oType - must be 'PUT' or 'CALL'. 

% 

% Output: oPrice - the option price 

% 

% Notes: This code focuses on details of the implementation of the 

%        Crank-Nicolson finite difference scheme. 

%        It does not contain any programmatic essentials such as error 

%        checking. 

%        It does not allow for optional/default input arguments. 

%        It is not optimized for memory efficiency, speed, or 
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%        use of sparse matrices. 

  

% Author: Phil Goddard (phil@goddardconsulting.ca) 

% Date  : Q4, 2007 

  

% Get the number of grid points 

M = length(Svec)-1; 

N = length(tvec)-1; 

% Get the grid sizes (assuming equispaced points) 

dt = tvec(2)-tvec(1); 

  

% Calculate the coefficients 

% To do this we need a vector of j points 

j = 0:M; 

sig2 = sig*sig; 

aj = (dt/4)*(sig2*(j.^2) - r*j); 

bj = -(dt/2)*(sig2*(j.^2) + r); 

cj = (dt/4)*(sig2*(j.^2) + r*j); 

  

% Pre-allocate the output 

price(1:M+1,1:N+1) = nan; 

  

% Specify the boundary conditions 
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switch oType 

    case 'CALL' 

        % Specify the expiry time boundary condition 

        price(:,end) = max(Svec-X,0); 

        % Put in the minimum and maximum price boundary conditions 

        % assuming that the largest value in the Svec is 

        % chosen so that the following is true for all time 

        price(1,:) = 0; 

        price(end,:) = (Svec(end)-X)*exp(-r*tvec(end:-1:1)); 

    case 'PUT' 

        % Specify the expiry time boundary condition 

        price(:,end) = max(X-Svec,0); 

        % Put in the minimum and maximum price boundary conditions 

        % assuming that the largest value in the Svec is 

        % chosen so that the following is true for all time 

        price(1,:) = (X-Svec(1))*exp(-r*tvec(end:-1:1)); 

        price(end,:) = 0; 

end 

  

% Form the tridiagonal matrix 

C = -diag(aj(3:M),-1) + diag(1-bj(2:M)) - diag(cj(2:M-1),1); 

[L,U] = lu(C); 

D = diag(aj(3:M),-1) + diag(1+bj(2:M)) + diag(cj(2:M-1),1); 
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% Solve at each node 

offset = zeros(size(D,2),1); 

for idx = N:-1:1 

    if length(offset)==1 

        offset = aj(2)*(price(1,idx)+price(1,idx+1)) + ... 

            cj(end)*(price(end,idx)+price(end,idx+1)); 

    else 

        offset(1) = aj(2)*(price(1,idx)+price(1,idx+1)); 

        offset(end) = cj(end)*(price(end,idx)+price(end,idx+1)); 

    end 

    price(2:M,idx) = U\(L\(D*price(2:M,idx+1) + offset)); 

end 

  

% Calculate the option price 

oPrice = interp1(Svec,price(:,1),S0); 
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Binomial Pricing Model Code: 

function oPrice = binPriceCRR(X,S0,r,sig,dt,steps,oType,earlyExercise) 

% Function to calculate the price of a vanilla European or American 

% Put or Call option using a Cox Ross Rubinstein binomial tree. 

% 

% Inputs: X - strike 

%       : S0 - stock price 

%: r - risk-free interest rate 

%: sig - volatility 

%: dt – the size of time steps 

%: steps - number of time steps to calculate 

%       : oType - must be 'PUT' or 'CALL'. 

%       : earlyExercise - true for American, false for European. 

% 

% Output: oPrice - the option price 

% 

% Notes: This code focuses on details of the implementation of the Cox Ross Rubinstein (CRR) 

%        algorithm. 

%        It does not contain any programmatic essentials such as error 

%        checking. 

%        It does not allow for optional/default input arguments. 

%        It is not optimized for memory efficiency or speed. 
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% Author: Phil Goddard (phil@goddardconsulting.ca) 

% Date  : Q4, 2007 

  

% Calculate the Cox-Ross Rubinstein model parameters 

a = exp(r*dt); 

u = exp(sig*sqrt(dt)); 

d = 1/u; 

p = (a-d)/(u-d); 

  

% Loop over each node and calculate the Cox Ross Rubinstein underlying price tree 

priceTree = nan(steps+1,steps+1); 

priceTree(1,1) = S0; 

for idx = 2:steps+1 

    priceTree(1:idx-1,idx) = priceTree(1:idx-1,idx-1)*u; 

    priceTree(idx,idx) = priceTree(idx-1,idx-1)*d; 

end 

  

% Calculate the value at expiry 

valueTree = nan(size(priceTree)); 

switch oType 

    case 'PUT' 

        valueTree(:,end) = max(X-priceTree(:,end),0); 

    case 'CALL' 
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        valueTree(:,end) = max(priceTree(:,end)-X,0); 

end 

  

% Loop backward to get values at the earlier times 

steps = size(priceTree,2)-1; 

for idx = steps:-1:1 

    valueTree(1:idx,idx) = ... 

        exp(-r*dt)*(p*valueTree(1:idx,idx+1) ... 

        + (1-p)*valueTree(2:idx+1,idx+1)); 

    if earlyExercise 

        switch oType 

            case 'PUT' 

                valueTree(1:idx,idx) = ... 

                    max(X-priceTree(1:idx,idx),valueTree(1:idx,idx)); 

            case 'CALL' 

                valueTree(1:idx,idx) = ... 

                    max(priceTree(1:idx,idx)-X,valueTree(1:idx,idx)); 

        end 

    end 

end 

  

% Output the option price 

oPrice = valueTree(1);         


	INTRODUCTION
	Partial Differential Equations
	Simple Finite Difference Methods
	Constructing a Finite Difference Toolkit

	2. The Finite Difference Method and its Applications to Options
	Assumptions for the Implicit Finite Differencing Method
	Example 3.1

	4. The Explicit Method
	Assumptions for the Explicit Finite Difference Method
	See the code below for an illustration of how to solve the above matrix equation using MATLAB.
	Example 4.1

	5. The Crank-Nicolson Method
	See the implementation of the following code for an example of the Crank-Nicolson method.
	Example 5.1

	5. The Binomial Method
	One-step Binomial Model
	The Multi-Step Binomial Model
	Calculating the Option Payoffs at Maturity
	Discounting the Option Payoffs
	Example 5.1

	6. Analysis
	Table 6.1
	Table

	Conclusion
	References
	Appendix
	MATLAB Function: finDiffImplicit
	MATLAB Function: finDiffExplicit
	MATLAB Function: finDiffCN


