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Abstract 
The survival, development and productivity of plants can be affected by elevation. Remote 

sensing has been used to study altitudinal gradient and plant reflectance. Plant reflectance is 
an important factor for determining plant health and phenology. This study presents a technique 
to support a better understanding of how plant reflectance is associated with elevation. In 
particular, this study determined the effect of elevation on reflectance of pineapple. This study 
was conducted at Polomolok, South Cotabato, Philippines. The Unmanned Aerial Vehicle (UAV) 
platform, eBee Ag, onboard the Parrot Sequoia multispectral camera was used to capture 
multispectral images at 121 meters flight altitude with 80% image overlap on eight areas located 
at 400-500 meter-above-sea-level (masl) (Location 1) and 650-700 masl (Location 2) elevations. 
Image stitching was done through Pix4DMapper 3.1 using Ag Multispectral template. The root 
mean square error (RMSE) for the x-, y- and z- direction justified good and comparable accuracy 
for all images stitched. Multispectral images captured by an UAV could discriminate plant 
reflectance response in different elevations. Most of the data demonstrate a moderate positive 
correlation between elevation and green, red, red-edge and near-infrared reflectance. The only 
exceptions were correlations between elevation and red-edge reflectance (no correlation), and 
between elevation and near-infrared reflectance (weak correlation) in Location 2.

Keywords - fixed-wing drone, image processing, multispectral camera, Pix4DMapper, Quantum 
Geographic Information System (QGIS)

Introduction
Environmental signals dictate plant reaction 

or response to light, gravity, minerals and water 
availability. Environmental signals can influence 
the length, intensity and direction of plant growth, 
suggesting a complex process that makes plant 
behavior non-automatic (Trewavas, 2009). Sunlight 
or spectral characteristics also affect plants’ 
response. Several digital sensors have been 
developed to measure spectral characteristics. 
The capability of sensors to quantify environment 
and plant relations permits us to measure things 
through remote sensing at flexible scales and 
precise degree (Adler, 2018).

Satellite and/or point-shot camera are 
primary platforms for remote sensing, and these 

have advantages and disadvantages. Satellite 
imagery may suffer from low spatial resolution, 
cloud blockage, and other atmospheric effects. 
Meanwhile, near-surface cameras capture limited 
scenery, viewing only what is in front of the system, 
thereby blocking the background vegetation which 
may cause a false view of the vegetation. These 
disadvantages are encountered when conducting 
trials but can be rectified by using a process 
showing the vegetation at a degree between the 
satellite and the near-surface camera (Klosterman 
& Richardson, 2017; Klosterman et al., 2018). The 
use of an Unmanned Aerial Vehicle (UAV) or drone 
as another platform for remote sensing observation 
fills the gap between satellite and near-surface 
remote sensing. The UAV provides high temporal 
and spatial resolution (Berra et al., 2016; Kavoosi 
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et al., 2020; Matese et al., 2015) which is promising 
for direct reflectance measurement system (Hakala 
et al., 2018).

A UAV has been considered to be one of 
the potential equipment for precision agriculture 
(Daponte et al., 2019) and is commonly used to 
measure spectral reflectance. Spectral reflectance 
is one of the characteristics of vegetation and an 
important tool for studying plant stress physiology 
(Richardson & Berlyn, 2002) and plants’ response 
to environmental signals (Richardson et al., 2003). 
In remote sensing, spectral reflectance can be 
used for weed monitoring, soil water assessment 
for irrigation, crop monitoring especially for biomass 
estimates (Peñuelas & Filella, 1998), plant growth 
(Li et al., 2001) and productivity, health assessment 
(Ahirwar et al., 2019; Daponte et al., 2019), and 
identification of actual land use (Honrado et al., 
2017). The combination of UAV and spectral 
reflectance with the use of advanced sensors like 
the multispectral camera can capture data that the 
human eye cannot perceive (Veroustraete, 2015) 
through different spectral wavebands and this can 
be interpreted to determine the features in the area.

Elevation may dictate the kind of lights that 
plants are exposed to, the water that plants receive, 
and the soil nutrients that are available to the plant. 
With this, some plants live well in low or middle 
elevations while others thrive in high elevations 
(McDaniel, 2017). Plants in higher elevation receive 
more direct sunlight than plants in lower elevation 

(Gale, 2004; Hakala et al., 2018), but the proportion 
of days with heavy clouds also increases with 
elevation (Richardson & Berlyn, 2002). Although 
plants in higher elevation obtain enough sunlight for 
their growth, this sunlight has a shortwave radiation 
(Gale, 2004) which can be damaging to plants 
when it exceeds the allowable amount (McDaniel, 
2017). Lower elevation plants receive safer light 
since less short-wave radiation reaches farther into 
these regions (McDaniel, 2017). This supports the 
statement of Jin et al. (2008) and Zhan et al. (2011) 
that elevation is an important controlling factor in 
vegetation growth and contributes a significant 
influence on the distribution of vegetation. With 
the elevation effect on plant growth, the spectral 
characteristics of the plants may also alter. Thus, 
this study was conducted to determine plant 
reflectance in varying elevations through the use of 
UAV.

Materials and Methods 

Study Sites and Selection

This study was conducted in pineapple areas 
in Polomolok, South Cotabato, Philippines (Figure 
1). The area has Type IV climate characterized with 
more or less evenly distributed rainfall throughout 
the year (Elegado et al., 2016). Plant uniformity, 
plant variety, and difference in elevation were 
considered in area selection. Plants in this study 
were at the canopy closure stage, 270-300 days 

Figure 1. Geographical location of the study sites.
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after planting. At canopy closure stage, the soil is 
fully covered with plant leaves, thus eliminating 
possible reflectance from the soil. Plant stage was 
the same in all study sites characterized by erect 
leaves with light green to dark green leaf color. Two 
elevation range groups were selected: one at 400-
500 meter-above-sea-level (masl) (Location 1) and 
the other at 650-700 masl (Location 2). The data 
plot approximately covered five hectares in each 
study location. 
 
UAV Platform and Multispectral Camera 
Used

 The eBee Ag, a fixed-wing UAV platform, 
onboard the Parrot Sequoia Multispectral Camera 
(Parrot Sequoia MSP) and sunshine sensor were 
used to obtain plant reflectance and the digital 
surface model (DSM) of the study area. The eBee 
Ag (developed by senseFly SA: A Parrot Company, 
Switzerland) was made from ultralight materials 
(700 g) and can be used and adjusted on a preferred 
setting. Compatible with it is the Parrot Sequoia 
multispectral camera (developed by the Parrot SA, 
Paris, France) containing four separate spectral 
sensors and one RGB sensor with image resolution 
of 1280x960 and 3264x4896 pixels, respectively. 

The Parrot Sequoia MSP captured green, 
red, red-edge and near-infrared (NIR) spectral 
reflectance with center wavelength of 550, 660, 
735, and 790 nm, and bandwidth of 40, 40, 10, 
and 40 nm, respectively. A sunshine sensor was 
mounted to the multispectral camera to measure 
the incoming solar radiation with four sensors and 
had the same band as the Parrot Sequoia MSP. The 
data captured by the sunshine sensor was used 
to calibrate and normalize the images, and made 
it possible to compare photos over time despite 
variations in light during photo shoots.
 
Flight Planning and Aerial Imaging 
Campaign

The plot size for each location was five 
hectares. To ensure good image overlap on the 
data plots, aerial imaging was conducted within   
20-30 hectares such that the data plot was at the 
center of the selected area. The UAV flight mission 
was planned with 80% overlap using the eMotion, a 
package software that allows the interactions of the 
operator to the eBee Ag. The eBee Ag flight altitude 
was maintained at 121 m above ground level (AGL), 
resulting in ground resolution of approximately 11.4 

cm pixel-1. Simultaneously, the Parrot Sequoia MSP 
took photos every 21.9 m advance flight distance 
while the distance between flight tracks was 29.2 
m. Aerial imaging was conducted from February 
to March 2019. Imaging time was between 07:00-
09:30 AM (Table 1) to ensure that pineapple 
leaves were already dried, eliminating the possible 
reflectance contamination from dew. During each 
aerial imaging campaign, the weather was good 
and the light was not constantly changing. There 
were clear to partly cloudy skies with no rolling 
clouds, guaranteeing that images do not develop 
deep shadows and sunspots. The deep shadows 
could significantly affect the multispectral results 
while the sunspots would produce bright sunspots 
in the captured images (MicaSense, 2017a). 

Table 1 also shows the aerial imaging details 
per site with the corresponding images captured 
on four bands. Six flights were conducted to cover 
the eight sites and took a total of 5,576 raw images 
that represented approximately 29.62 GB of 
information. The wind velocity during aerial imaging 
ranged from 0.4-6.5 ms-1 which was lower than the 
maximum recommended value of 7 ms-1 to capture 
good imagery while maintaining the flight altitude to 
121 m AGL at 80% image overlap.

Flight coverage is defined as the ground 
boundary set during the flight with the corresponding 
flight altitudes. Increasing area of coverage, numbers 
of flight lines and/or wind velocity simultaneously 
influences flight duration. Flight altitude alone has 
its own effect on the number of captured images and 
flight duration. Increase in flight altitude decreases 
the number of images but increases the area 
covered per image (Mesas-Carrascosa et al., 2015; 
Torres-Sánchez et al., 2013). In contrast, increase 
in flight altitude decreases the flight duration with 
the same flight coverage (Seifert et al., 2019; 
Torres-Sánchez et al., 2013). Flight duration is also 
affected by flight coverage and wind velocity (Holy 
Stone, 2019; Torres-Sánchez et al., 2013). In this 
study, the number of images increased with flight 
coverage having the same flight altitude and image 
overlap.

Before each flight mission, the Parrot Sequoia 
MSP took the photo of the calibrated reflectance 
panel (CPR) – AirinovAircalib. The CPR measured 
the lighting conditions at the time of image capture 
and represented the actual light reaching the 
grounds (MicaSense, 2017b), thus creating a 
reflectance-compensated output by converting 
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the raw pixel values into reflectance (MicaSense, 
2017c) during image stitching.

Image Processing

Log and raw imagery (multispectral and 
RGB images) extraction from the eBee Ag drone 
and Parrot Sequoia Multispectral Camera took 
approximately 30 min for each imagery campaign 
using the eMotion “flight data manager” features. 
Six flights took a total of 180 min. The data 
extraction output is a Pix4D project of multispectral 
raw imagery. During data extraction, the eMotion 
was able to match the information (coordinates, 
orientation and altitude) from the drone and the 
images of the camera to have an accurate and good 
quality processed orthomosaic.

Image processing and stitching were done 
using the Pix4Dmapper 3.1 software and the “Ag 
Multispectral” template (Pix4DMapper, 2016) to 
produce the Digital Surface Model (DSM) and the 
reflectance map. The resulting DSM displayed 
continuous surface features of objects and 
structures, and was converted into the Digital Terrain 
Model (DTM) that represented the actual terrain 
removing the ground-based objects in the Pix4D 
workflow. The DTM was used in data analysis and 
interpretation.  

Pix4Dmapper Pro 3.1 computed keypoints in 
each image and used them to find matches between 
images during initial processing. From the matches, 
the software iteratively ran a number of automatic 

aerial triangulation-bundle block adjustment (AAT-
BBA) and camera self-calibration steps until best 
rebuilding was achieved. Georeferencing was done 
by introducing the camera coordinates in the AAT-
BBA stage (Fernández-Guisuraga et al., 2018). 
Likewise, 11.4 cm pixel-1 spatial resolution during 
image acquisition was re-sampled into 12 cm pixel-1 
to lower the space requirement of the processing 
and output orthomosaic. Next, densified point clouds 
were generated to obtain a highly detailed DSM 
that was used to produce reflectance maps. The 
camera and sun irradiance radiometric correction 
and calibration were applied. Normalization and 
radiometric corrections were introduced considering 
the camera parameters written in the EXIF metadata 
related to the camera (vignetting, dark current, 
ISO, etc.) and sun irradiance information written 
in the XMP file (Pix4DMapper, 2016; Adler, 2018; 
Fernández-Guisuraga et al., 2018). Per band, the 
AirinovAircalib calibrated reflectance panel (CRP) 
reflectance values were extracted and the values 
were used to convert raw pixel data into reflectance 
values as the latter represented the amount of light 
reaching the ground during image acquisition.

Since Pix4Dmapper Pro 3.1 processing steps 
need a large number of computational resources 
that grow exponentially as more images are 
simultaneously processed (Fernández-Guisuraga et 
al., 2018), the software was installed in a high-end 
computer with Intel(R) Xeon(R) CPU X5570 @ 2.93 
GHz processor with 48GB RAM, 64-bit Windows 
10 Pro operating system, processing desktop. The 

Location 
No.

Site 
No.

Flight Wind 
Velocity 
(ms-1)

Total 
Images 

(4 Band)Date Time (AM) Duration 
(min)

Lines Coverage 
(ha)

1

1 2/21/2019 07:13 -07:32 19 12 30 4.4  -  5.4 752

2
2/23/2019 07:09 -07:32 24 19 67 0.4 - 0.6 1308

3

2

4 2/23/2019 08:13 -08:25 12 9 30.5 1.0 - 1.5 752

5
2/23/2019 09:02 -09:24 22 17 54 1.4 - 2.2 1384

6

7 2/28/2019 07:55 -08:06 11 7 27.3 4.3 - 6.5 436

8 3/14/2019 08:48-09:06 14 14 48.2 1.2 - 2.6 944

Table 1. Aerial imagery details and the total number of images gathered per flight. 
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multispectral orthomosaicing took 1783.48 min 
(29.73 hr). Depending on the area of coverage, the 
AAT-BBA and camera calibration processing took 
9-77 min (0.15-1.5 hr) while point densification and 
orthomosaic production of the reflectance maps 
took 25-475 min (0.42-7.92 hr).

Relative Accuracy Determination of the UAV 
Produced DTM

In the absence of high grade GPS instrument 
to measure ground control points, the results were 
validated by determining its relevancy to the Aster 
DEM (downloaded from https://earthexplorer.usgs.
gov). Fifty points were randomly plotted in the 
data plot. The elevation coincides with the points 
extracted in the UAV-produced and satellite-based 
DTM. Relative accuracy was measured through the 
root mean square error (RMSE).

The relative accuracy was found to be of 0.88 
m. This result implies that the UAV-based or the 
satellite-based (aster) DTM may differ with each 
other by approximately 0.88 m, which is within the 
acceptable range.

Data Extraction and Analysis 
The DTM and reflectance map were loaded 

to the Quantum Geographic Information System 
(QGIS), a free and open source Geographic 
Information System (GIS) software, installed in a 
PC with Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz 
processor with 16.0 GB RAM in a 64-bit Windows 
10 Operating System (OS). A polygon vector layer 
(data plot) separating the road network and other 
non-pineapple area from the pineapple field was 
digitized. Using the “clipper” feature of the QGIS, 
the pineapple area was separated from the road 
network and other non-pineapple area on the digital 
terrain model (DTM) and the reflectance map. Using 
the QGIS vector random-points algorithm, 10,000 
randomly plotted points inside the 5-ha polygon 
were set. The reflectance and elevation model data 
coinciding with the points were extracted using the 
Point Sampling in QGIS algorithm. This gave a huge 
amount of extracted data for better analysis. Outliers 
ranging from 0.5-3.0% of the total populations 
were analyzed using interquartile range (IQR). The 
highest number of outliers was observed in NIR 
band of Location 2 while the lowest was in the red-
edge of both locations. The relationship between 
reflectance and elevation was quantified using a 
regression model.

Results and Discussion

Raw Imagery Dataset

Upon examination of raw images gathered, no 
image anomaly/noise had been observed. Figure 
2 shows one of the reflectance photos taken from 
the third flight. With the color contrast, the difference 
between vegetation and non-vegetation per band 
was distinct. Depending on the spectral band, the 
vegetation reflectance may be lighter or darker 
compared to the non-vegetative objects. Features 
like soil, trees and buildings were distinct. For 
instance, a sandy gully shown as a light-colored 
band on the upper portion of each image can be 
easily recognized. The high soil reflectance may 
be attributed to the moisture content, soil texture, 
surface roughness, and organic matter component 
(Ben-dor et al., 2014; Cierniewski & Kuśnierek, 2010; 
Jain & Singh, 2003; Mzuka et al., 2015; Navalgund, 
2002; Stamatiadis et al., 2005). The mentioned 
soil characteristics are complex, variable and 
interrelated in view of the reflectance. For example, 
the presence of moisture on soil will decrease the 
reflectance especially in visible regions (Cierniewski 
& Kuśnierek, 2010; Lobell & Asner, 2002; Navalgund, 
2002). The soil moisture content is interrelated to soil 
texture. To mention, coarse sandy soils are usually 
well-drained, resulting in low moisture content and 
relatively high reflectance. Otherwise, poorly drained 
fine textured soils generally have lower reflectance 
(Lobell & Asner, 2002). Buildings and other 
infrastructure showed higher reflectance compared 
to vegetation. This study revealed the potential of 
using reflectance as a tool for discriminating surface 
features in different elevations.

Multispectral Image Processing and Output 
Quality 

During initial processing, the 3D reconstruction 
algorithm (AAT-BBA and camera self-calibration) 
obtained 100% images alignment on all channels 
(green, red, red-edge and NIR) on the basis of more 
than 10,000 keypoints extracted for each image, 
with over 5,500 keypoints matching adjacent fields. 
The number of 2D keypoints is shown in Table 2. A 
high precision in 2D keypoints was observed. The 
2D keypoints result indicates that processed images 
had enough visual contexts. Quality calibration 
results required at least 1,000 matches per image 
and this was obtained in this study. From 2D points, 
the 3D point was computed considering the camera 
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external and internal parameters and reprojected 
images for more accurate results. The difference 
in image projection at 2D and 3D points was 
represented by the reprojection error. The number 
of 3D keypoints and the reprojection error are shown 
in Table 2. During multispectral image processing, 
higher 3D points and lower reprojection errors 
indicate higher output accuracy (Pix4D, n.d). The 
high precision result obtained in this study was due 
to large forward and side images overlap provided in 
the keypoints matching process between adjoining 
images (Dandois et al., 2015; Frey et al., 2018; 
Santesteban et al., 2017; Seifert et al., 2019; Torres-
Sánchez et al., 2018).

The precision of georeferenced images was 
reported on Pix4D as the root RMSE (Table 3). The 
RMSE in three directions were comparable across 
all eight sites and were lower than the Ground 
Sampling Distance (GSD) which was 11.4 cm pixel-1; 
thus, the RMSE justified the good and comparable 
accuracy for the x-, y- and z- direction of stitched 
images (Pix4D, 2018).

Extracted Data and its Characteristics

The elevation characteristic of the study area 
is presented in Table 4. The lowest and highest 
elevations for Location 1 and Location 2 ranged 
from 419.49-470.23 and 661.20-704.42 masl, 
respectively. The elevation data were extracted from 
the DTM which formed part of the product in image 
processing at Pix4DMapper. 

A very low reflectance was observed in the 
visible region (green and red) in both locations (Table 
5). High reflectance was observed in the infrared 
region which conformed to the findings of Hakala 
et al. (2018), Roy (1989), and Shafri and Hamdan 
(2009). Within the visible region reflectance, green 
reflectance was observed to be higher than red 
reflectance, which is consistent with previous reports 
(DigitalGlobe, 2010; Roy, 1989). The low reflectance 
on red portion can be explained by strong chlorophyll 
absorbance (Bhandari et al., 2012; DigitalGlobe, 
2010; Everitt et al., 1985; Thomas & Gausman, 
1977; Turrel et al., 1961; Weichelt et al. n.d) during 
photosynthetic activity (Roy, 1989). By contrast, 
most of the green was reflected, which is also the 

Figure 2. Reflectance raw images captured by Parrot Sequoia Multispectral Camera: (A) RGB 
image, (B) green band (center wavelength (CW): 550nm, Band Width (BW): 40 nm), (C) red 
band (CW: 660, BW: 40), (D) red-edge (CW: 735, BW: 10), and (E) NIR (CW: 790, BW: 40).
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Location 
No. Site No. Flight No. X Y Z

1
1 1 0.42 0.38 0.60
2

2 0.49 0.36 0.86
3

2

4 3 0.48 0.40 0.78
5

4 0.50 0.32 0.72
6
7 5 0.44 0.41 0.67
8 6 0.39 0.39 0.70

p-value 0.506 0.709 0.884

Table 3. Computed root mean square error (RMSE) using UAV’s GPS location to each georeferenced 
images in centimeter.

Location 
No. Site No. Flight No. No. of 2D 

keypoints
No. of 3D 
keypoints

Mean 
Reprojection 
Error (pixels)

1
1 1 951,389 326,109 0.246
2

2 1,641,314 587,183 0.248
3

2

4 3 833,814 291,133 0.291
5

4 1,422,961 515,731 0.288
6
7 5 644,667 214,610 0.285
8 6 905,548 321,923 0.305

Table 2. Resulting 2D and 3D keypoints during initial image processing at Pix4DMapper and their 
reprojection error.

Location 
No. Site No. Minimum 

(m)
Maximum 

(m)
Mean 
(m)

Standard 
Deviation

1
1 459.37 470.23 465.11 2.12
2 447.75 467.47 457.50 4.38
3 419.49 445.74 433.71 7.29

2

4 655.84 673.29 664.42 3.73
5 665.96 686.42 678.67 3.68
6 661.20 673.72 667.70 2.64
7 665.35 680.14 674.02 3.25
8 687.05 704.42 687.05 3.66

Table 4. Elevation profile of the selected sites in meter-above-sea-level 
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reason for the leaf’s color (Jain & Singh, 2003).

The leaf structure could cause the strong 
reflection in the infrared portion (Bhandari et al., 
2012; Weichelt et al., n.d).  The reflectance of red-
edge was found to be between that of the red and 
near-infrared bands. Red-edge value was typically 
higher than red but lower compared to the near 
infrared due to the combination effect of chlorophyll 
content and structure of the leaf (Curran et al., 
1990; Weichelt et al., n.d). Nevertheless, healthy 
plants have low reflectance in the visible region but 
higher reflectance in the red-edge and infrared band 
(Navalgund, 2002; Roy, 1989; Shafri & Hamdan, 
2009).

Relationship of  Reflectance and Elevation
 

Table 6 shows that all r-values were in the 
range 0.47-0.64, except for the red-edge and near-

infrared reflectance in Location 2 where r = 0.04 
and 0.39, respectively. Thus, most values suggest 
a moderate positive correlation between elevation 
and reflectance in both locations, except for the 
relationship between elevation and red-edge in 
Location 2 where no correlation was observed and 
between elevation and near-infrared reflectance 
was weak.

Figure 3 shows the model fitness of pineapple 
reflectance and the elevation through the coefficient 
of determination (R2), which represents the 
proportion of the variance in reflectance that can 
be explained by elevation. Among all the spectral 
reflectance, the data shows that elevation predicts 
the red reflectance best—33.63% and 40.74% for 
Locations 1 and 2, respectively.

This study shows an increasing linear trend 
of reflectance in most bands with the increase of 

Location 
No. Reflectance

Population
ß r p

Initial Final*

1

Green 30,000 29,345 0.0003 0.4683 0.001
Red 30,000 29,411 0.0002 0.5799 0.001

Red-edge 30,000 29,849 0.0022 0.5502 0.001
NIR 30,000 29,345 0.0031 0.4941 0.001

2

Green 50,000 48,829 0.0005 0.6347 0.001
Red 50,000 49,480 0.0004 0.6383 0.001

Red-edge 50,000 49,708 0.0001 0.0415 0.001
NIR 50,000 48,456 0.0016 0.3914 0.001

Table 6. Results of the regression analysis for each of the four spectral bands in the two locations.

Note: *Final population after removal of outliers. This data was used in generation of regression model.

Location 
No. Reflectance Minimum Maximum Mean Standard 

Deviation

1

Green 0.03 0.07 0.05 0.01
Red 0.01 0.04 0.02 0.01

Red-edge 0.11 0.44 0.28 0.06
NIR 0.23 0.73 0.48 0.09

2

Green 0.03 0.08 0.05 0.01
Red 0.01 0.05 0.03 0.07

Red-edge 0.12 0.37 0.25 0.04
NIR 0.32 0.57 0.45 0.05

Table 5. Minimum, maximum and mean reflectance value of pineapple taken by the Parrot Sequoia 
MSP.
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elevation, and that this result was validated in two 
different sites (Location 1 and Location 2). The 
results confirm those by Richardson et al. (2003) who 
measured plant reflectance using a UniSpec spectral 
analysis system (PP Systems, Haverhill, MA). A 
possible reason why elevation affects reflectance 
is because of photosynthesis reduction that is 
associated with a decrease of light absorbance and 
an increase in reflectance. In turn, this may cause 
variability in plant physiology processes (Richardson 
& Berlyn, 2002). Incidentally, an increasing linear 
trend in reflectance was also found using Landsat 
8 imagery in non-organic material such as glaciers 
found in Western China (Li et al., 2017). 

Conclusions
This study showed the usefulness of eBee 

Ag onboard in UAV with the Parrot Sequoia 
Multispectral Camera, as remote sensing platform 
in agricultural research undertakings. Aerial imaging 
at the maximum wind speed of 6.5 ms-1 captured 
high quality multispectral images free from noise. 
The data acquisition with 80% overlap produced 
high precision result at 2D and 3D keypoints during 
orthomosaicing resulting to good image alignment. 
Previous studies showed that multispectral images 
made it possible to discriminate between vegetative 
and non-vegetative features. This study showed 
how the same technique can be used to analyze 

Figure 3. Location 1 and 2 reflectance-elevation plot of four spectral band captured by Parrot Sequoia 
MSP: (A) green, (B) red, (C) red-edge and (D) near-infrared (NIR). Note: Scales are different across 
graphs.
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reflectance at varying elevations, leading to the 
finding that pineapple reflectance increased with 
elevation. Most of the data show a moderate positive 
correlation between elevation and reflectance. Thus, 
plant reflectance must also consider elevation data 
for meaningful and precise remotely-sensed data of 
plant health and phenology.
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