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ABSTRACT

As has usually been the case in the tradition of some scientific novel ideas, we use the hydrogen
atom as a “test particle”, in the context of superluminal dynamical system theory. In Paper (I) of this
series, the fundamental effect of an applied external magnetic field on a transversely guided beam
of hydrogen-like atoms is uncovered, that of transformation from spherical wave expansion into
plane wave function. This leads to an unprecedented concept of a planar helical hydrogen field,
with a continuum of linear momentum in (3+1)-dimensional spacetime. Thereupon, we investigate
a possible “superluminality” of this field. It turns out that, as in the case of a free Dirac field, the
Dirac-hydrogen field accords with the law of conservation of energy and momentum. As a result,
the generalized translational velocity component expectation value of the planar Dirac-hydrogen is
found to exceed the speed of light, with however, a subluminal minimal velocity.
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1 INTRODUCTION

The hydrogen atom has a long history of offering
a testing ground for new physical theories,
due to the simplicity of its unique bound state
structure, consisting of a single electron and a
much heavier proton and so, very easy to treat
theoretically, and experimentally. The scientific
research history on this atom started with the
discovery of its spectral lines, produced by the
transitions of the electron from higher excited
states to the lower first excited one above the
ground state, with corresponding wavelengths
(also called Balmer series) given by [1]:

1

λn
∝ 1

22
− 1

n2
, n ∈ N (1.1)

seconded by Rydberg in 1888 with his formula ,

1

λfi

= Ryd

(
1

n2
i

− 1

n2
f

)
, nf , ni ∈ N, nf > ni,

(1.2)

This was later identified with the principal
quantum number of the hydrogen atom,
where the Rydberg constant Ryd amounts to
approximately 1.1 × 107m−1, corresponding to
13.6 eV. The series of spectral lines related to
transitions to the ground state were found in
the ultra violet [2] and more spectral series of
the atom had been discovered in later years at
lower energies. It was up until 1913 that the first
theoretical explanation on the hydrogen spectrum
was given by Bohr, in a series of papers. The
model was that of an electron orbiting the proton
on classical trajectories, like a planet orbits the
sun; the angular momentum of the electron is
set to be quantized, giving by L = n ∈ N, thus
inducing discrete energy levels:

En = −Ryd
n2

, Ryd =
mα2

2
, (1.3)

where m is the reduced mass of the electron
in the hydrogen atom and α the fine-structure
constant, introduced [3]. The transitions between
the different Bohr levels which lead to the
emission of photons with wavelengths expressed
by formula (1.2) , gave rise to the Rydberg
constant.

Earlier, it was found that the spectral lines were
actually multiplets of lines very close together [4].

At first this had been somehow explained in the
more refined Bohr-Sommerfeld model [3], but it
was only with the advent of the theory of quantum
mechanics that a more satisfying answer could
be obtained.

Reference [5] introduced a new perspective
on the infinitesimal processes of atoms, which
was elaborated rigorously later [6] [7]. This
is presently known as the operator formalism.
Using this new formalism [8] was able to
derive the Bohr energy levels (1.3). [9] soon
followed with the introduction of the wave function
with its equation named after him. From this
equation he derived the energy levels (1.3)
and, with the wave function, determined the
spatial distribution for the probability of finding
the electron in the hydrogen atom. Soon later,
[10] developed the quantum theory, based on
the principles of special relativity. The Dirac
equation incorporated the spin of the electron and
reduces to the Schrödinger equation in the non-
relativistic limit. This equation can also be solved
for the hydrogen atom [11] and features the
line splittings [4], which are due to the electron
spin, that is, spin-orbit coupling, and relativistic
corrections.

Meanwhile, in 1922, Stern and Gerlach came
up with an impressive experiment originally
designed to test “space quantization” and
consists of passing a beam of hydrogen-
like (silver) atoms through a transverse
inhomogeneous magnetic field. In addition to
the result of space quantization, it was later
realized, by the first proposal concerning the
spin of the electron [12], that this experiment
is quintessential in illustrating the intrinsic spin
angular momentum of the electron. But that was
not the end of the story about the multifunctional
aspect of this experiment. Presently, wave
transformation from spherical propagation to
planar expansion (in the special case of guided
hydrogen-like beams through a transverse
magnetic field), is another fundamental and
interesting aspect uncovered in Paper (I) of this
series.

It is our aim in this second paper to draw
the essential scientific implications of this
transformation. As a result, we want to study the
planar helical Dirac-hydrogen field, comparatively
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to the free Dirac plane wave, and derive the
expectation value of the generalized linear
velocity component thereof. In Section 2, we
review, summarily, the theory of the effective
Lagrangian of the electromagnetic field. In
Section 3, we study the coupled Maxwell and
Dirac-hydrogen field, its solution in the limit of
a homogeneous magnetic field, and evaluate its
translational velocity component.

2 THE EFFECTIVE LAGRAN-
GIAN OF THE ELECTRO-
MAGNETIC FIELD

The Lagrange density of the massless
spin-1 field, which produces the following
inhomogeneous Maxwell field equation of second
order

�Aµ − ∂µ (∂νA
ν) = jµ (2.1)

agrees with the Lagrangian

L0 = −1

4
FµνF

µν − jµAµ, (2.2)

up to a four-divergence term

∂µ (Aµ∂νA
ν −Aν∂µA

µ) , where Aµ is the four-
potential, jµ the four-current, and Fµν and Fµν

are defined below.
If we consider the electromagnetic field in
isolation, it satisfies the linear Maxwell equations,
and the superposition principle [i.e., solutions can
be linearly superposed and the relation between
wave functions at different times (ψ (x, t)and
ψ (x, t0)) has to be linear], holds. There are
no charge in empty space in the classical theory,
and since the photons do not bear charge, and
thus do not interact among themselves, their field
is described by the free non-interacting Lagrange
density [13].

To start with we recall that there are two
Lorentz-invariant quantities that characterize the
electromagnetic field, namely

I1 = E2 −H2, I2 = H ·E. (2.3)

where E and H denote the electric and magnetic
field strengths.

The vacuum of quantum electrodynamics (QED)

is a polarizable medium owing to virtual
processes and obtains novel physical properties.
One may try to describe this effect by replacing
the Lagrangian L0 of the electromagnetic field by
an effective Lagrangian Leff . This will contain
corrections in higher orders in E and H and lead
to nonlinear field equations. In the limiting case of
a stationary and homogeneous electromagnetic
field an “exact” closed expression can be given
for Leff . This result was found in a pioneering
work [14]. Following in part another derivation
[15], one can start by expressing the effective
Lagrangian as a function of the invariants I1 and
I2:

Leff (H,E) = Leff (I1, I2)

= Leff

(
H2 −E2,H ·E

)
.

(2.4)

The scalars I1 and I2 can be obtained by
contraction of the electromagnetic field tensor
Fµν , which is defined by

Fµν = ∂µF ν − ∂νFµ

=


0 −E1 −E2 −E3

E1 0 −H3 H2

E2 H3 0 −H1

E3 −H2 H1 0

 .(2.5)

We also introduce the dual-field obtained
by contracting Fµν with the completely
antisymmetric unit tensor (the Levi-Civita tensor)

⋆Fµν =
1

2
εµνλσFλσ = Fµν (E ↔H)

=


0 −H1 −H2 −H3

H1 0 −E3 E2

H2 E3 0 −E1

H3 −E2 E1 0

 .(2.6)

We may construct two scalars by contraction of
these tensors, namely

FµνFµν = 2
(
H2 −E2) = 2I1, (2.7)

Fµν ⋆Fµν = −4H ·E = −4I2. (2.8)
The Lagrange function is gauge invariant since
it depends only on the field strengths. We will
calculate the energy W0 of the vacuum per unit
volume as a function of the field strength. We
sum up the energy eigenvalues ϵpσ < −m of all
the electrons in the “Dirac sea” to obtain the total
energy E0. From this value the potential energy
U0 in the electric field has to be subtracted. The
energy E0 contains the potential energy U0 of the
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electrons of the Dirac sea in the external field in
addition to the pure energy W0 of the vacuum.
Since we are interested only in the pure energy
of the vacuum, the contribution U0 has to be
subtracted from E0:

W0 = E0 − U0, E0 =
∑
pσ

ε(−)
pσ , (2.9)

U0 =
∑
pσ

∫
d3xψ(−)†

pσ eA0 (x)ψ
(−)
pσ , (2.10)

where A0 (x) is the electrostatic potential. Here
the sum extends over all momenta p and all
spin directions; only the states with negative
energy (−) are taking into account. U0 may
be expressed in terms of E0 through the
following general considerations valid in quantum
mechanics.
Let Ĥ (λ) be a self-adjoint Hamiltonian that
depends analytically on a parameter λ and ψn (λ)
a normalized eigenfunction

Ĥ (λ)ψn (λ) = εn (λ)ψn (λ) . (2.11)

The derivative of the energy eigenvalue with
respect to λ then obeys, by differentiation of
(2.11) and projection unto ⟨ψn |

∂εn
∂λ

=

⟨
ψn

∣∣∣∣∣∂Ĥ∂λ
∣∣∣∣∣ψn

⟩
+

⟨∣∣∣∣(Ĥ − εn) ∂

∂λ

∣∣∣∣ψn

⟩
.

(2.12)
The last term is zero since ⟨ψn| Ĥ = ⟨ψn| εn.

Using this general statement by writing for the
potential of a stationary, homogeneous E field

A0 (x) = −E · x

and considering the parameter λ as the field
strength, we have

U0 = E ·
∑
pσ

∫
d3xψ(−)†

pσ
∂Ĥ

∂E
ψ(−)

pσ = E · ∂E0

∂E
,

(2.13)

and hence

W0 = E0 − U0 = E0 −E · ∂E0

∂E
. (2.14)

This relation serves to switch from the energy to
the Lagrange function. The relationship between
the energy (Hamiltonian) and the Lagrangian for
a system having the generalized coordinates qi in
general reads

W =
∑
i

q̇i
∂L
∂q̇i
− L. (2.15)

In electrodynamics the potentials A0 and A
play the role of the generalized coordinates qi.
Because of the relation E = −Ȧ − ∇A0 and
H = ∇ × A, there is a dependence on a
generalized velocity (q̇i) in the Lagrangian only
in the time derivative of the vector potential. But
differentiation with respect to Ȧ is equivalent to
differentiation with respect to E. Hence (2.15)
can also be written as

W = E · ∂L
∂E
− L. (2.16)

Thus we find that the charge of the Lagrangian
density of the electromagnetic field is given, up to
a sign, by the additional energy density E0:

Leff = L0 +L
′
, with L

′
= −E(renormalized)

0 .
(2.17)

In the second equation of (2.15) , we have
indicated that the expression of (2.9) still has to
be renormalized. In particular the energy of the
vacuum in the absence of the electromagnetic
field has to be subtracted, because it cannot be
observed.

In order to calculate E0 we restrict ourselves for
the beginning to the case of pure magnetic field,
E = 0. The energy eigenvalues can be given
exactly according to (3.29) , below, where n =
0, 1, 2, ... and σ = −1. The density of states per
momentum interval is |e|H/2π, cf. (3.29) . Hence,
it is found that

L
′
(E = 0,H) = −E0

=

∫ +∞

−∞

dpz
2π

|e|H
2π

∑
nσ

√
m2 + p2z + |e|H (2n+ 1 + σ)

=
|e|H
(2π)2

∫ +∞

−∞
dpz

(√
m2 + p2z + 2

∞∑
n=1

√
m2 + p2z + 2|e|H

)
. (2.18)
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Here we have taken account of the fact that all states are doubly degenerate except for the levels with
n = 0, σ = −1. The states with quantum number n, σ = +1 and with n − 1, σ = −1 have the same
energy. Only for the state n = 0, σ = −1 can such a partner not be found.

Obviously (2.13) is highly divergent. But one can split off a physically meaningful finite expression.
Differentiating twice with respect to the parameter m2 and summing up the series using the integral
representation

1

m2
=

∫ ∞

0

dηe−m2η, (2.19)

it can be shown that the effective Lagrangian of the electromagnetic field is obtained as

L
′
(E = 0,H) =

m4

8π2

∫ ∞

0

dη
e−η

η3

(
−H̃η coth

(
H̃η
)
+ 1 +

1

3

(
H̃η
)2)

, (2.20)

with H̃ = H/Hcr = |e|H/m2.

The investigation is more difficult for general
electromagnetic fields, because an expression
analogous to (3.29) cannot be found. However,
the case of a constant pure electric field (H = 0)
can be reduced to (2.20) [13]. On another hand,
in a uniform, pure magnetic field (E = 0) with
vector potential A = (0, Hx, 0) , the Lagrangian
is invariant under translations in the y−direction.
This last limiting case will be our testing ground
for the generalized linear velocity component of
the Dirac-hydrogen field.

3 SUPERLUMINAL HYDRO-
GEN ATOM IN (3+1)-
DIMENSIONAL SPACETIME

The transformation of spherical waves into plane
waves is topically relevant, and has been
presented earlier in the first article of this series.
A hydrogen-like atom subject to an external
magnetic field has its spherical wave expansion
stabilized (or transformed) into helical plane wave
propagation. The spherical-wave-formalism does
no more apply in the study of hydrogen wave
functions which propagate under the effect of
applied magnetic field, since, the radius r relative
to the central potential becomes a constant of
motion. We are thus led to introduce a new
concept of hydrogen helical plane waves.
Consider the hydrogen atom with a single
electron orbiting the dense and fixed nucleus with
spin, in a radius r ( i.e., spin-orbit coupling), in the
context of relativistic quantum theory using the
Dirac equation. We restrict ourselves to realistic
one-particle systems with positive energy , and
waves propagating in the z−direction [16]. In

this limit, with no essential lost of generality,
the hydrogen atom is considered as one-body
problem. The mass m used in this context is the
particle reduced mass m = me/ (1 +me/mp) ≈
me (1− 1/1836) in an external Coulomb potential
V = −e2/r, derived from the attraction force of
e2/r2 between electrons and protons of masses
me and mp, respectively. The z−axis of our
coordinate system is assumed to be parallel to
the axis of the hydrogen atom.

3.1 Coupled Maxwell and Dirac-
hydrogen Fields

The interaction of a Dirac-hydrogen with an
electromagnetic field may be incorporated by
the standard prescription from nonrelativistic
quantum mechanics, resulting in a bound state
with minimal coupling. We therefore insert
the binding energy term V = −e2/r into the
“Dirac-electron” equation subject to magnetic
field. Quantum electrodynamics can describe
this coupled system of Maxwell field and an
electrically charged Dirac-hydrogen field, just as
it does in the lesser complex unbounded case
(see e.g., [17], Section 6.3) of Maxwell-Dirac-
electron field. This coupling culminates into the
Dirac-hydrogen helical plane wave field, which
is driven by the Dirac current jµ = eψ̄γµψ. We
will derive the classical equation of motion, and
show that the energy-momentum vector of the
total system is gauge invariant and that energy
and momentum are conserved.

The Lagrangian of the system under
consideration is given by

5
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L = LDirac−hydrogen + Le.m. + Lint

= ψ̄

(
iγµ∂µ −

e2

r
−m

)
ψ − 1

4
FµνF

µν − eψ̄γµψAµ. (3.1)

This leads to the following set of coupled equations of motion for the fields ψ, ψ̄, and Aµ :[
γµi (∂µ + ieAµ)−

e2

r
−m

]
ψ = 0, (3.2)

ψ̄

[
γµi

(←−
∂µ − ieAµ

)
+
e2

r
+m

]
= 0, (3.3)

�Aµ − ∂µ (∂ ·A) = eψ̄γµψ, (3.4)

where the arrow in (3.3) indicates that the partial derivative acts on the function to the left. The
Lagrangian (3.1) and the field equations (3.2) , (3.3) , and (3.4) are invariant under local gauge
transformations

A
′
µ (x) = Aµ (x) + ∂µΛ (x) , (3.5)

ψ
′
(x) = exp [−ieΛ (x)]ψ (x) , ψ̄

′
(x) = exp [+ieΛ (x)] ψ̄ (x) , (3.6)

where Λ is an arbitrary scalar function. This is made possible by the prescription of minimal coupling,
replacing the partial derivative by the “gauge-covariant” derivative, ∂µ → Dµ = ∂µ + ieAµ, and not
forgetting that the additional term −e2/r describing the central hydrogen Coulomb potential is just as
constant as the electron mass m and its distance r from the nucleus.

The canonical energy-momentum tensor resulting from (3.1) is

Θµν = Θµν
Dirac−hydrogen +Θµν

e.m. +Θµν
int, (3.7)

where

Θµν
Dirac−hydrogen = ψ̄iγµ∂νψ − gµν ψ̄

(
iγσ∂σ −

e2

r
−m

)
ψ, (3.8)

Θµν
e.m. = −Fµσ∂νAσ + gµν

1

4
FστF

στ , (3.9)

Θµν
int = gµνeψ̄γσψAσ. (3.10)

Application of the gauge transformation (3.5) and (3.6) leads to the following extra terms

△Θµν
Dirac−hydrogen = eψ̄γµψ∂νΛ− gµνeψ̄γσψ∂σΛ, (3.11)

△Θµν
e.m. = −Fµσ∂ν∂σΛ, (3.12)

△Θµν
int = gµσeψ̄γσψ∂σΛ. (3.13)

The sum of this contributions reduces to

△Θµν = eψ̄γµψ∂νΛ− Fµσ∂ν∂σΛ

=
(
eψ̄γµψ + ∂σF

µσ) ∂νΛ− ∂σ (Fµσ∂νΛ)

= −∂σ (Fµσ∂νΛ) , (3.14)

where in the last step the field equation (3.4) has been used. The energy-momentum four-vector
proves to be gauge invariant since its change collapses to a surface integral:

△P ν =

∫
d3x△Θ0ν = −

∫
d3x∂σ

(
F 0σ∂νΛ

)
=

∫
d3x∂i

(
Ei∂νΛ

)
= 0. (3.15)
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Using the field equations (3.2) , (3.3) , and (3.4) ,we can write the four-divergences of the contributions
to the electromagnetic field-strength tensor as

∂µΘ
µν
Dirac−hydrogen = −∂ν (ψ̄γσψ

)
Aσ, (3.16)

∂µΘ
µν
e.m. = −

(
eψ̄γσψ

)
(∂νAσ) , (3.17)

∂µΘ
µν
int = ∂ν (eψ̄γσψ

)
Aσ +

(
eψ̄γσψ

)
(∂νAσ) . (3.18)

The conservation of energy-momentum in the combined systems follows from summing up the three
contributions

∂µΘ
µν
Dirac−hydrogen + ∂µΘ

µν
e.m. + ∂µΘ

µν
int = 0. (3.19)

Clearly, this also holds for the symmetrized
energy-momentum tensor of the symmetrized
Lagrange density of the coupled Maxwell and
Dirac-hydrogen fields.

Thus, the Dirac-hydrogen field, like the free
Dirac spin-1/2 field, is in conformity with the
basic natural law of conservation of energy
and momentum, a quite significant result with
the implication that these two fields share
similar properties and can be quantized using
the same treatment. In particular, in our
restriction to constant magnetic field where
variation of the action with respect to the field
potential Aµ is practically null, and since the
binding energy −e2/r and the field additional
energy |e|H (2n+ 1 + σ) terms remain constants
of motion, one can check and find that the
results obtained from second quantization of
the Dirac-hydrogen field coincide with those of
the free Dirac spin-1/2 field. These common
results include notably the mirage of causality
violation, the removal of which is achieved
by superluminal field velocity prescription [16].
This also means that the general expression
of the generalized variation transformation (as
derived in [16], Section 3 ) of the free spin-
1/2 field, is applicable to the planar Dirac-
hydrogen field. The variations, for intrinsic spin,
orbital, and generalized angular momenta are all
linear along the z−axis and their corresponding
transformations are velocity transformations [16].
We will now seek the solution of the Dirac-
hydrogen plane wave equation and subsequently
evaluate the velocity of the field.

3.2 Solution of the Dirac-
hydrogen Equation in a
Homogeneous Magnetic
Field

Applying the bispinor ψ =

(
ϕ
χ

)
formalism

of the Dirac equation ( [18], Chap. 2, e.

g.) to our special case of Dirac hydrogenic
planar helical field, we calculate the energy of
the propagation in the z−direction subject to an
homogeneous magnetic field H = Hez and
reduce the problem to the differential equation
of the harmonic oscillator, by elimination of χ.
Moreover, we evaluate the density of states per
momentum interval in the volume V = 1.

In general, states with definite momentum p are
found with the ansatz(

ϕ
χ

)
=

(
ϕ0

χ0

)
exp

[(
i

~

)
p · x

]
. (3.20)

Equations (3.22) below are transformed into
the same equations for components ϕ0 and
χ0, but replacing the operator (p̂− eA) by the
eigenvalues p.

The Dirac-hydrogen equation in two-component
solution reads (in relativistic units ~ = c = 1)

i
∂

∂t
ϕ = σ · (p̂− eA)χ+ eA0ϕ−

e2

r
ϕ+mϕ,

i
∂

∂t
χ = σ · (p̂− eA)ϕ+ eA0χ−

e2

r
χ−mχ.

(3.21)

The stationary solution for a constant purely
magnetic field (A0 = 0, A independent of time)
are obtained from(

ε+
e2

r
−m

)
ϕ = σ · (p̂− eA)χ,(

ε+
e2

r
+m

)
χ = σ · (p̂− eA)ϕ,(3.22)

where the quantity ε = ∂/∂t describes the
time evolution of the stationary state ψ (x). We
multiply the first equation by

(
ε+ e2

r
+m

)
and

eliminate χ :

7
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[(
ε+

e2

r

)2

−m2

]
ϕ = σ · (p̂− eA)σ · (p̂− eA)ϕ. (3.23)

Next, we use the identity
(σ · a) (σ · b) = a · b+ iσ · a× b (3.24)

and the gradient property of the momentum operator p̂ = −i∇:[(
ε+

e2

r

)2

−m2

]
ϕ = [(p̂− eA) + iσ · (p̂− eA)× (p̂− eA)]ϕ

=
[
(p̂− eA)2 − eσ ·H

]
ϕ

=
[
p̂− 2eA · p̂+ e2A2 − eσ ·H

]
ϕ

=
[
p̂2 + e2H2x2 − eH (σz + 2xp̂y)

]
ϕ. (3.25)

The vector potential was chosen to be A = (0, Hx, 0) in the last transformation, and ∇ ·A = 0 and
H = ∇×A have been used. We notice that the right-hand side of (3.25) obviously commutes with
the components of the momentum operator p̂y and p̂z. Consequently the ansatz

ϕσ (x) = ei(pyy+pzz)f (x)χσ (3.26)

presents itself where χσ is the unit spinor. Insertion into (3.25) immediately yields[(
ε+

e2

r

)2

−m2

]
f (x) =

(
− d2

dx2
+ p2y + p2z + e2H2x2 − 2eHxpy − eHσ

)
f (x) , (3.27)

which can be written as[
− d2

dx2
+ e2H2

(
x− py

eH

)2]
f (x) =

[(
ε+

e2

r

)2

−m2 − p2z + eHσ

]
f (x) . (3.28)

This is just the Schrödinger equation of the harmonic oscillator in the variable ξ = x − py/eH .
The “oscillator energy” is given by ~ω = 2|e|H. The eigenvalues thus are λn = (1 + 1/2) ~ω =
(2n+ 1) |e|H. Therefore (

ε+
e2

r

)2

−m2 − p2z + eHσ = (2n+ 1) |e|H,

or

εpσ = −e
2

r
±
√
m2 + p2z + |e|H (2n+ 1 + σ), (3.29)

pz is the momentum in the z−direction and
σ = ±1 is the projection of the spin. The two
signs of the time-evolution factor εpσ correspond
to two types of solutions of the Dirac-hydrogen
equation, which we call positive and negative
solutions, respectively. Except for the neutrino,
the energy ε

′
= ±

√
m2 + p2z + |e|H (2n+ 1 + σ)

is the relativistic generalization of the Landau
levels of a Dirac particle (spin-1/2 particles)
in a magnetic field [13]. Hence, (3.29) may
be regarded as the relativistic generalization of

the Landau levels of a hydrogen-like atom in
a magnetic field. Obviously, for the single-
particle interpretation limit of the plane Dirac-
hydrogen wave (describing a realistic system
with positive energy) to be possible, the positive
quantity +

√
m2 + p2z + |e|H (2n+ 1 + σ) in this

last equation is required to be greater than the
binding energy −e2/r.

In order to determine the density of states, we
note that the energy levels (3.29) are infinitely
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degenerate since the momentum py does not
appear in the formula. It is quite interesting
to observe that in the classical framework,
our solution describes a helical motion of the
single spin-orbiting electron in a radius r which
carries the nucleus with chosen but quantized
momentum components in y and z direction, and
of horizontal displacement of locus

x =
py
eH

, (3.30)

along the y−axis . This is a charged system
driven by the Dirac current jµ = eψ̄γµψ, as
mentioned above.

If we put the particle into a box with dimensions
Lx, Ly, Lz, the y and z motions are quantized by
the boundary conditions and the number of states
reads (~ = 1)

△N =
Ly

2π
△py

Lz

2π
△pz. (3.31)

Now △py = (eH)△x0 holds because of (3.30) ,
where x0 is a fixed center. We sum over the
allowed values 0 < x0 < Lx and obtain

△N =
Ly

2π
|e|HLx

Lz

2π
△pz =

|e|H
(2π)2

△pzV.

(3.32)
Next, the stationary states of the Dirac-hydrogen
equation are found with the ansatz

ψ (x, t) = ψ (x) exp [− (i/~) εt] (3.33)

We want to determine, with no essential loss
of generality, the wave function of the Dirac-
hydrogen field propagating in the z−direction with
positive energy. From (3.22) , for fixed ε = εpσ +
e2

r
, (c = 1)

χ =
σ · (p̂− eA)

ε+m
ϕ =

σ · Π̂
ε+m

ϕ, (3.34)

where we have set Π̂ = (p̂− eA). Applying
the same treatment used in finding the free Dirac
plane wave function [18], we calculate and obtain

the Dirac-hydrogen plane wave function in the
upward z−direction, with positive energy, as,
(dropping the relativistic units)

ψhydro = N


(

1
0

)
cσzpz

mc2+Ep

(
1
0

)


exp [i (pzz − Ept) /~] , (3.35)

where Ep = +εpσ = − e2

r
+√

m2 + p2z + |e|H (2n+ 1 + σ) is the positive
energy of the system required in order for the
single-particle aspect to hold [16], and the factor
N is a normalization constant obtained as

N =

√
mc2 + Ep

2Ep
.

Thus, the Dirac-hydrogen plane wave function is
similar, in terms of its expression, to the plane
free Dirac wave (i.e., the free spin-1/2 field).
Precisely, these two fields can be said to be
identical up to two quantities: a binding factor
−e2/r and an additional constant energy term
|e|H (2n+ 1 + σ). Now it is obvious to wonder
what will be the difference, as far as propagation
linear velocity is concerned, between the Dirac-
hydrogen field and the free Dirac field.

3.3 Evaluation of Velocity of the
Dirac-hydrogen Atom in a
Constant Magnetic Field in
Spacetime

According to our discussion at the end of Section
3.1 above, the implications, methodology, and
prescriptions for velocity evaluation, used in [16]
for the free Dirac field, hold in the study of
the plane Dirac-hydrogen field. Its generalized
angular momentum transformation expression,
which is the composition of spin and orbital
transformations, is therefore given by [16]:

δM = [MδS03 ◦MδL03 ]xµ = [F (V )]xµ

=


− cos (V/c)

− cos (V/c)
cos (V/c)

cos (V/c)




t
x
y
z

 , (3.36)

9



Gazoya; BJAST, 21(5): 1-13, 2017; Article no.BJAST.34195

where V is the generalized (overall) relative
translational velocity component of the system
and c, the speed of light.

Here now comes to take shape the difference
between the two fields. Though the two
propagations are helical in spacetime, the atomic
linear momentum is solely produced by spin-
orbit coupling of the single electron in the limit
of a fixed definite radius r about the nucleus,
whereas the free electron dynamics helicity is
carried out on an indefinite, unclear radius basis.
Hence, the geometry of the helix described by the
spin-orbiting electron in the fixed radius r about
the nucleus becomes a central ingredient in the
velocity evaluation of the hydrogen field.

Some helpful relationships emerge from the
geometry of the cylinder formed by one revolution

of the helix. If the cylinder is split down the side,
parallel to the z−axis, and laid flat, the wall of
the cylinder forms a rectangle. The length of the
sides parallel to the z−axis equals ∥δM∥ (which
is the length of the overall relative linear variation
of the field in (3.36)). The length of the other
sides equals the circumference of the cylinder
(2πr), Fig. 1 (a) and (b). The arc of the helix for
one revolution is the diagonal, with length equal

to
√
∥δM∥2 + 4π2r2 = ||xµ|| (i.e., this arc of the

helix or the diagonal is just the length of the four-
vector xµ which, stretched out, coincides with
the angular momentum vector). Also crucial in
these discussions is the angle θ formed by the
diagonal and the side parallel to the z−direction.
The diagonal is the arc of the helix, so θ is the
angle formed by the z−axis and any line tangent
to the helix, and is given by (see Fig. 1 (b) ):

tan θ =
2πr

∥δM∥ . (3.37)

Thus, also, we have that

cos θ =
∥δM∥√

∥δM∥2 + 4π2r2
=
∥δM∥
∥xµ∥

=
∥[F (V )]∥ ∥xµ∥

∥xµ∥

= ∥[F (V )]∥∞ = ∥[F (V )]∥1 = max
1≤i≤n

n∑
j=1

|aij |

=

∥∥∥∥∥∥∥∥


− cos (V/c)
− cos (V/c)

cos (V/c)
cos (V/c)


∥∥∥∥∥∥∥∥
∞ or 1

= | cos (V/c) |, (3.38)

i.e., simply put:
cos (V/c) = cos θ, (3.39)

where the only nonzero entry aij in each row and column of the matrix [F (V )] is equal to its
eigenvalue cos (V/c), and the angle θ must be acute because of the absolute value notation.

So, this is to say that the angle θ between the z−axis and any line tangent to the helix (i.e., the
diagonal formed by the arc of the helix) is just equal to the translational velocity ratio V/c of the field
motion. It is worthy of note that equation (3.38) or (3.39) corroborates and justifies, elegantly, the
assumptions, claims, and prescriptions according to which the field velocity transformation matrix
eigenvalue should be a trigonometric sine or cosine function with argument V/c, see [16], Section 3.
We will now determine the angle θ, and this would readily result in the velocity V evaluation of the
Dirac-hydrogenic field.

10
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Fig. 1. Reduction of one revolution of hydrogen helical trajectory to the geometry of the
cylinder.

The angle θ is a physical quantity which in a
classical system may assume any value, but
which in a quantum system may take on only
certain discrete values. One needs not accept
this result on faith. The magnetism exhibited by
atoms (especially hydrogen-like ones) provides
an experimental means by which one may study
the direction of the angular momentum vector.
There is a simple, elegant experiment which
illustrates the quantization of θ, just as a line
spectrum illustrates the quantization of energy
in the hydrogen atom [19]. It has been shown,
by passing a narrow beam of atoms through a
magnetic field placed perpendicular across the
interior axis of an evacuated tube, that the angle
θ between the angular momentum vector and
the direction of the applied magnetic field (the
z−axis) is found to equal only three values, 45o,
0o, and −45o, [19], Fig. 1 (c).

Thereupon, subsequently readily, the hydrogenic
field overall linear velocity component expectation
value V = VsupalH is obtained as:

1. for the case θ = 45o, this corresponds to
spin-up propulsion in the z−direction, and

VsupalH =
(π
4
+ 2kπ

)
×c, k = 0, 1, 2, ...

(3.40)

2. for θ = 0o, there is no linear momentum
and so V is identically zero, making this
point trivial; and finally

3. the case θ = −45o describes a spin-
down helical motion, with the same linear
velocity of propagation as in spin-up.

Thus, as in the free Dirac field context, the
Dirac-hydrogen field linear velocity component
expectation value is of course quantized, and

11
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exceeds the speed of light with, however, a
subluminal minimal value of

VH−minimal ≃ (0.7855)× c. (3.41)

4 DISCUSSIONS

We observe that the subluminal minimal linear
velocity component evaluated for the hydrogen
atom, in contradistinction to the superluminal
minimal velocity of a free Dirac particle in
spacetime [16], has obviously to do with the
binding energy and the constraint of quantization
of direction of the angular momentum vector
about the z-axis, exerted by the applied magnetic
field.

As mentioned earlier in this work, it is important
to note that spherical wave functions of hydrogen-
like atoms cannot produce a continuum of linear
angular momentum, because of the perturbation
of the system caused by the unstable nuclear
magnetic moment. That is the reason behind
the fact that, to obtain a sustained linear
momentum to carry these particles in spacetime,
there must occur a transformation from spherical
wave function into plane wave expansion, hence
our interest in the Stern-Gerlach experiment,
to this effect. It is admissible that this
superluminal result for the hydrogen could hold
for all other hydrogen-like atoms in this context
of coupled Maxwell and Dirac fields (since,
in general, the radius, i.e., the distance of
the valence electron from the nucleus remains
constant in motion), if their angular momentum
vector exhibits experimentally similar direction
quantization constraints. Furthermore, this
result could imply another interesting one: the
superluminal linear velocity of an electron in
homogeneous magnetic field. How could it
be otherwise, since, clearly, the Lagrangians of
these two dynamical systems are identical, up
to a binding constant energy term V = −e2/r
? Finally, it should be observed that though
the free Dirac field and the Dirac-hydrogen field
share common generalized angular momentum
expression, their giro-factors (known to be 2 for
the free electron, but yet to be determined for the
bound state electron in hydrogen atomic orbital)
are not the same. This triggers another future
investigation to be achieved for the helical plane
Dirac-hydrogen.

5 CONCLUSION

Gregory Breit, in 1928, demonstrated that a spin-
1/2 particle always moves with the speed of light.
Walter Greiner, in 2000, went further to prove
that this kind of particle always moves with the
speed of light, either in free motion or when
subject to a magnetic field. I have laboured to
discern and explain beyond these results, in the
present article and the previous ones as well on
the same subject-matter, that free Dirac particles
in general, an electron in a magnetic field, and
an electron in bound state of hydrogen atomic
orbital subject to a magnetic field, all of these
could be superluminal. To paraphrase a great
discoverer (I cannot mention here) who was
desperate to be understood by readers, I have
not compromised conscience to suit the general
drift of thought (that regards any superluminal
entity as paradoxical or “unnatural”), but have
bluntly and honestly given the text of a “probable”
scientific truth.
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