Contents lists available a[t www.gsjpublications.com](http://www.gsjpublications.com/)

Global Scientific Journal of Mathematics

journal homepage[: www.gsjpublications.com/](http://www.gsjpublications.com/)gsjm

Enhancing the Bounds of $|\mathcal{N}_1(x) - \tau x|$ **Using Special Form of** ω_p *numbers*

Sarah Sh Hasan

Department of Mathematics, University of Al Mustansiriyah, Baghdad, Iraq.

A R T I C L E I N F O

Received: 21 Jul 2023, Revised: 23 Jul 2023, Accepted: 30 Jul 2023, Online: 15 Aug 2023

Keywords: Beurling's prime system, Squarefree, Abundant numbers, Deficient numbers and ωp-numbers

1. Introduction

Let x be a natural number, and $\sigma(x)$ be the sum of its divisors. Then x is called abundant, deficient and perfect if $\Delta(x) = \sigma(x) - 2x >$ 1, $\nabla(x) = 2x - \sigma(x) = -\Delta(x)$ and $\Delta(x) = 0$ respectively. We say that an abundant number x which can be express as a sum of distinct proper divisors is semiperfect $\int sp$ number in this paper). We say x is weird $(\omega$ number in this paper) if x is abundant and not *sp*-number. We call a ω -number x primitive $(\omega_p$ -number in this paper) if it is not a multiple of any smaller ω -number. This introduction also addresses some details from lectures about Beurling prime system

A B S T R A C T

Primitive weird number is weird number which are not a multiple of any smaller weird numbers. The goal of this work is to generate a square-free primitive weird number $x = c \prod_{i=1}^{n} q_i$ where $\{q_i\}_{i=1}^{n}$ be an increasing sequence of prime numbers such that q_1 is greater than $\prod_{j=1}^r (\overline{q}_j + 1)$ and $c = \prod_{j=1}^r \overline{q}_j$ is deficient number with n greater than 1, to be able to use this special form to enhancing the classic bounds of Ω -results for $(N_3 - \tau x)$.

> and the generalized Chebyshev's function $\Psi_{3}(x)$ which would be the integer part of x minus 1. That is:

$$
\Psi_{3}(x) = x + O(1)
$$

Where the Beurling prime system is very closed to being discrete system and investigating how regular the corresponding generalized counting function of integers $N₃$ to be. Now we move our attention to address an O-results and Ω-results for $(N_3(x) - \tau x)$ which has been investigated by number of writers (for example [1]) as follows:

Corresponding author:

E-mail address: sarahshh_87@uomustansiriyah.edu.iq doi[: 10.5281/gsjm.2023.8243026](https://doi.org/10.5281/zenodo.8243026)

^{© 202}3 Global Scientific Journals - MZM Resources. All rights reserved.

On the Riemann Hypothesis the upper bound for $(N_3(x) - \tau x)$ can be improved to:

$$
N_3(x) - \tau x = O\left(x \exp\left\{-\frac{a \log x \log_3 x}{\log_2 x}\right\}\right), \qquad \text{for}
$$

every $a < 0.25$.

Furthermore, they also find lower bound for $(N_3(x) - \tau x)$, they have:

$$
N_3(x) - \tau x = \Omega(xe^{-\frac{a \log x \log_4 x}{\log_3 x}})
$$
 for
every $a > 1$,

As a comparison between O-results on the Riemann Hypothesis and $Ω$ -results, they have

$$
N_3(x) - \tau x = \Omega \left(x \exp\{-\frac{b \log x \log_4 x}{\log_3 x} \} \right)
$$
 for
every $b > 1$,

$$
N_3(x) - \tau x \ll x \exp\{-\frac{c \log x \log_3 x}{\log_2 x}\}\
$$
 for
every $c < \frac{1}{4}$.

This shows that there is a small gap between these results which reflects the great difficulty in determining the behaviors of $\zeta_3(\sigma + it)$ in the strip $0.5 < \sigma < 1$. In a previous paper [2] we have been restricted the gap between the error terms of $Ω$ -results for $(N_3 - \tau x)$ (where the Ω-results are generalized Ω-results for N_p as counting function of Beurling) and the error terms of O-results for $(N - \tau x)$ on R.H. and we get:

$$
N_3(x) - \tau x = \Omega(xe^{-ck_x})
$$
 for every $c > 1$,

Where

$$
k_x = \log x \sqrt{\frac{\log_4 x}{\log_3 x}}.
$$

The aim of this work is to generate ω_p number from square-free prime numbers and using this special form to enhancing the upper bound of $(N_3 - \tau x)$ using the same approach as in [2].

 In this section we provide a way for generate ω_p -number from square-free prime numbers, so we start with:

2.1. Lemma

Let $c = \prod_{j=1}^r \overline{q}_j$ with $\Delta(c) \le -1$ (c to be deficient number) and there exists a prime $q > \overline{q_r}$ such that cq is abundant, then for $n > 0$ there are an increasing sequence of prime numbers $\{q_i\}_{i=1}^n$ such that $q_1 > \overline{q_r}$, $c \prod_{i=1}^{n} q_i$ is abundant and $c \prod_{i=1}^{s} q_i$ is deficient for all $s < n$. Hence $x = c \prod_{i=1}^{n} q_i$ is PA-number.

Proof:

To prove that x is PA-number (i.e. x is abundant and $c \prod_{i=1}^{s} q_i$ is deficient for all $1 \leq s < n$). If $s = 1$ then $x = cq_1$ is PAnumber, by [3, lemma 2.1] we get $x = cq_1$ is abundant and since for all $d | x$ is deficient (either $d = q_1$ or $d | c$ which are deficient by [3, lemma 2.2]).

Now, for $s = 2$, let $x = c_1 q_2$ where $c_1 = cq_1$. By $[3, \text{ lemma } 4.1]$ we have x is abundant. Now, If there is divisor d of x then either d divide c_1 or $d = q_2$. So when $d | c_1$ either $d = q_1$ or d/c . Therefore, d is deficient by [3, lemma 2.2]. Continue in this manner applying corollary 2.11 in [4] for n-times we get that x is PA-number.

2.2. Proposition

Let $c = \prod_{j=1}^r \overline{q}_j$ such that $\Delta(c) \leq -1$ (c to be deficient number) and n greater than 1. Let ${q_i}_{i=1}^n$ be an increasing sequence of prime numbers such that q_1 is greater than $\prod_{j=1}^r (\overline{q}_j + 1)$. Let

$$
\ell = flow(\frac{q_1 - \prod_{j=1}^r(\overline{q}_j+1)}{q_n - q_1}).
$$

Let $x = c \prod_{i=1}^{n} q_i$ and

2. Generating ω_p **-number**

$$
\mathcal{K} = \bigcup_{k=0}^{\ell} \left\{ a \in \mathbb{N} | k q_n + \prod_{j=1}^{r} (\overline{q}_j + 1) < a \right\}
$$
\n
$$
< (k+1)q_1
$$

Then for all $a \in \mathcal{K}$, a cannot be expressible as a sum of distinct divisors of x .

Proof:

Since $\prod_{j=1}^r (\overline{q}_j + 1) + 1 \le q_1$, then K is not empty set. If

$$
\overline{\ell} < \frac{q_1 - \prod_{j=1}^r (\overline{q}_j + 1)}{q_n - q_1}
$$

So,

$$
\prod_{j=1}^r (\overline{q}_j + 1) + \overline{\ell} q_n < (\overline{\ell} + 1) q_1.
$$

Let $k \leq \ell$ and let a belongs to \mathcal{K} , (i.e. $\prod_{j=1}^r (\bar{q}_j + 1) + k q_n < a < (k+1)q_1$. We went to prove that $a \neq \sum_{b|x} b$ (sum of distinct divisors of x).

Suppose that $a = \sum_{b|x} b$ (sum of distinct divisors of x). As

$$
a < (k+1)q_1 < \left(\overline{\ell} + 1\right)q_1 < \left(\frac{q_1}{2} + 1\right) < q_1^2.
$$

So these divisors take one of the forms $\bar{q}q_1$ or \overline{q} with $\overline{q}|c$ and \overline{q} belongs to the set $\{\overline{q_1}, \overline{q_2}, \ldots, \overline{q_r}\}.$

For $a = \sum_{j=1}^{N} \overline{q}_j q_1 + \sum_{i=1}^{M} \widetilde{q}_i$ where $\{\widetilde{q}_k\}_{i=1}^{M}$ is the set of distinct divisors of c . As $a < (k+1)q_1$, then $\sum_{j=1}^{N} \overline{q}_j$ must be less than or equal k . So

$$
\sum_{i=1}^{M} \tilde{q}_i = a - \sum_{j=1}^{N} \bar{q}_j q_1 > a - k q_n > \prod_{j=1}^{r} (\bar{q}_j + 1)
$$

This is a contradiction with our assumption. Hence $a \neq \sum_{b|x} b$ (*b* distinct divisors of *x*). Therefore, there is no elements in K can be expressed as a sum of distinct divisors of x .

2.3. Theorem

Let $c = \prod_{j=1}^r \overline{q}_j$ that $\Delta(c) \leq -1$ (deficient number) and there exists a prime $q > \overline{q_r}$ such that cq is abundant. And for n greater than 1, let $\{q_i\}_{i=1}^n$ be an increasing sequence of prime numbers such that q_1 is greater than $\prod_{j=1}^r (\overline{q}_j + 1)$. Let

$$
x=c\prod_{i=1}^n q_i.
$$

If x is abundant and $\Delta(x)$ belongs to $\mathcal K$, then x is ω_{p} -number.

Proof:

If $n = 2$, then

To prove that x is ω_p -number (i.e. x is ω numbers and PA-numbers).

First we prove that x is ω -number by using lemma 2 in [5] and as $\Delta(x)$ belongs to $\mathcal K$, and since there is no elements in K can be expressed as a sum of distinct divisors of x . We get that x is ω -number.

The second part of the prove is to show that x is PA-number it is enough to show that $\Delta(c \prod_{i=1}^{s} q_i) < 0$ for all $s < n$.

$$
\Delta(cq_1) = \sigma(\prod_{j=1}^r \overline{q}_j)(q_1 + 1) - 2 \prod_{j=1}^r \overline{q}_j q_1
$$

$$
= \left(\prod_{j=1}^r (\overline{q}_j + 1) - 2 \prod_{j=1}^r \overline{q}_j \right) q_1 + \prod_{j=1}^r (\overline{q}_j + 1)
$$

$$
= \Delta \left(\prod_{j=1}^r \overline{q}_j \right) q_1 + \prod_{j=1}^r (\overline{q}_j + 1)
$$

So $\Delta(cq_1)$ less than zero (deficient), since $\Delta(c)$ ≤ -1 and q_1 greater than $\prod_{j=1}^r (\overline{q}_j + 1)$.

Now, we went to show that $\Delta(cq_1 ... q_{n-1}) <$ 0 for $n \geq 3$. We have

$$
\Delta \left(c \prod_{i=1}^{n-1} q_i \right) = \Delta \left(\frac{c \prod_{i=1}^n q_i}{q_n} \right)
$$

= $\sigma \left(\frac{c \prod_{i=1}^n q_i}{q_n} \right) - 2 \frac{c \prod_{i=1}^n q_i}{q_n}$

1

$$
= \frac{\sigma(c \prod_{i=1}^{n} q_i)}{q_n + 1} - 2 \frac{c \prod_{i=1}^{n} q_i}{q_n}
$$

$$
= \frac{\Delta(c \prod_{i=1}^{n} q_i) - 2 \frac{c \prod_{i=1}^{n} q_i}{q_n}}{q_n + 1}
$$

Therefore, $\Delta(c \prod_{i=1}^{n-1} q_i) < 0$ since for $\Delta(x) \in \mathcal{K}$, so $\Delta(x) < (k+1)q_1 \leq$ $(\ell+1)q_1 < (\frac{q_1}{n})$ $\frac{q_1}{n} + 1)q_1 < q_1^2$.

And

$$
2\frac{c\prod_{i=1}^{n}q_i}{q_n} = 2c\prod_{i=1}^{n-1}q_i > 2cq_1^2 > q_1^2.
$$

So $\Delta(c \prod_{i=1}^{n} q_i) < 2c \prod_{i=1}^{n-1} q_i$. Hence $c \prod_{i=1}^{s} q_i$ is deficient for all $s < n$.

As $x = c \prod_{i=1}^{n} q_i$ is abundant and by using lemma 4.4, so x is PA-number. Hence x is ω_p number.

3. Enhancing the bounds of $(N_3(x) - \tau x)$

 We will need to recall a fundamental theorem, which will be used in the proof of the main theorem.

3.1. Theorem

For k greater than or equal 1 the k –prime q_k satisfies the inequalities

$$
\frac{1}{6}klog k < q_k < 12(k\log k + k\log 12e^{-1}).
$$

Proof: for a proof see [6, Theorem 4.7].

 After preparing the necessary concepts, now we are able to prove theorem.

3.2. Theorem

Let $\{x_n\}_{n=1}^{\infty}$ to be an infinite sequence of a square-free ω_{p} -numbers, then

$$
N_3(x_n) - \tau x_n = \Omega(x_n e^{-AG(x_n)}) \qquad \text{for all } A > 1,
$$

Where

$$
G(x_n) = \log x_n \left(\log_3 x_n\right)^{-\frac{1}{2}}.
$$

Proof:

In previous paper [2], we proved that:

$$
N_3(x) - \tau x = \Omega(xe^{-ck_x})
$$
 for every $c > 1$,

where

$$
k_x = \log x \left(\frac{\log_4 x}{\log_3 x}\right)^{\frac{1}{2}}.
$$

This is valid for any x goes to ∞ . As a special case, let $\{x_n\}$ to be an infinite sequence of square-free ω_{p} number $x_n = \prod_{i=1}^k q_i$, then one can get:

$$
N_{3}(x_{n}) - \tau x_{n} \geq B \prod_{i=1}^{k} q_{i} e^{-c \log \prod_{i=1}^{k} q_{i} \left(\frac{\log_{4} \prod_{i=1}^{k} q_{i}}{\log_{3} \prod_{i=1}^{k} q_{i}}\right)^{\frac{1}{2}}}
$$
\n
$$
\geq B \prod_{i=1}^{k} q_{i} e^{-c \log \prod_{i=1}^{k} q_{i} \left(\frac{\log_{3} \left(\sum_{i=1}^{k} \log q_{i}\right)}{\log_{3} \prod_{i=1}^{k} q_{i}}\right)^{\frac{1}{2}}}
$$
\n
$$
> B \prod_{i=1}^{k} q_{i} e^{-c \log \prod_{i=1}^{k} q_{i} \left(\frac{\log_{3}(k \log q_{k})}{\log_{3} \prod_{i=1}^{k} q_{i}}\right)^{\frac{1}{2}}}
$$
\n
$$
> B \prod_{i=1}^{k} q_{i} e^{-c \log \prod_{i=1}^{k} q_{i} \left(\frac{\log_{3}(kq_{k})}{\log_{3} \prod_{i=1}^{k} q_{i}}\right)^{\frac{1}{2}}}
$$
\n
$$
\geq B \prod_{i=1}^{k} q_{i} e^{-A \log \prod_{i=1}^{k} q_{i} \left(\frac{1}{\log_{3} \prod_{i=1}^{k} q_{i}}\right)^{\frac{1}{2}}}
$$

Since $kq_k < 12k(k \log k + k \log 12e^{-1})$ by (theorem 2.1.) Therefore,

$$
N_3(x_n) - \tau x_n = \Omega\left(x_n e^{-A \log x_n (\log_3 x_n)^{-\frac{1}{2}}}\right) \text{ for every } A > 1.
$$

4. Conclusion

This work explains how could the form of ω_p -numbers effect on the bound of the generalized counting function of integers N_3 and thus restrict the gap between the error terms of Ω-results for $(N_3 - \tau x)$ and the error terms of O-results for $(N - \tau x)$ on Riemann Hypothesis. One can use this form to show the effect on O-results for $(N_3(x) - \tau x)$.

5. References

- [1]. F. Al-maamori, T. Hilberdink, An example in Beurling's theory of generalized primes, Acta Arithmetica, 4(168), (2015), 383-395.
- [2]. S. Sh. Hasan, F. Al-Maamori, H. Abdulrahman, Restricted the gap between the error terms of Ω results for $(N_3 - \tau x)$ and the error terms of 0-results for $(N - \tau x)$ on Riemann Hypothesis, International Journal of Pure and Applied Mathematics, Volume 120, No. 5, 2018, 751-758.
- [3]. S. Sh. Hasan, F. Al-Maamori, Abdulrahman H., A Further Restricting the gap between $(N_3 - \tau x)$ and ($N - \tau x$) on R.H. by using the sence of ω -numbers and ω_{p} -numbers, Journal of Advanced Research in Dynamical and Control Systems, Volume 11 No. 05, 2019, 2043-2051.
- [4]. G. Amato, M. Hasler, G. Melfi, M.Parton, Primitive abundant and weird numbers with many prime factors, Journal of Number Theory, Volume 201, 2019, 436-459.
- [5]. G. Melfi, On the conditional infiniteness of primitive weird numbers, Journal of Number Theory 147 (2015), 508-514.
- [6]. T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.